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ABSTRACT

Conformal prediction has recently emerged as a promising strategy for quanti-
fying the uncertainty of a predictive model; these algorithms modify the model
to output sets of labels that are guaranteed to contain the true label with high
probability. However, existing conformal prediction algorithms have largely tar-
geted classification and regression settings, where the structure of the prediction
set has a simple form as a level set of the scoring function. However, for complex
structured outputs such as text generation, these prediction sets might include a
large number of labels and therefore be hard for users to interpret. In this paper,
we propose a general framework for conformal prediction in the structured pre-
diction setting, that modifies existing conformal prediction algorithms to output
structured prediction sets that implicitly represent sets of labels. In addition, we
demonstrate how our approach can be applied in domains where the prediction
sets can be represented as a set of nodes in a directed acyclic graph; for instance,
for hierarchical labels such as image classification, a prediction set might be a
small subset of coarse labels implicitly representing the prediction set of all their
more fine-descendants. We demonstrate how our algorithm can be used to con-
struct prediction sets that satisfy a desired coverage guarantee in several domains.

1 INTRODUCTION

Deep neural networks (DNNs) have recently proven to be highly effective at solving challenging
prediction problems. Despite this progress, a key challenge is the difficulty building reliable systems
out of DNNs since they are intrinsically prone to error. One way to address this challenge is to
use uncertainty quantification to determine when the model’s predictions may be unreliable. As
a consequence, uncertainty quantification has been a key strategy for improving reliability when
integrating DNNs into broader systems or when interfacing with human experts.

Conformal prediction has emerged as a promising strategy for uncertainty quantification (Vovk et al.,
2005; Angelopoulos et al., 2023). This technique replaces a model f : X → Y with a conformal
predictor h : X → 2Y ; given an input x ∈ X , h(x) ⊆ Y is a set of labels that captures the
uncertainty of the model. One of the key advantages of conformal prediction is that it provides
a coverage guarantee—roughly speaking, h(x) is guaranteed to contain the ground truth label y∗
corresponding to x with high probability under standard assumptions. This strategy provides the
user with an interpretable form of uncertainty quantification. For instance, suppose a robot is using
an object detector to identify obstacles; if we apply conformal prediction to the object detector, then
the robot could avoid the entire prediction set of obstacles to ensure safety with high probability.

Most existing conformal prediction algorithms target the classification and regression settings, where
prediction sets have simple structures—e.g., a subset of labels in classification, or prediction inter-
vals in regression. However, many practical prediction problems involve far more complex struc-
tured outputs. As a consequence, there has been recent interest in developing conformal prediction
algorithms that target various structured prediction problems, such as code generation (Khakhar
et al., 2023) and question answering (Mohri & Hashimoto, 2024; Quach et al., 2024). However,
existing approaches have all targeted specific domains and do not provide general algorithms.

We propose a novel framework for conformal structured prediction. Our goal is to generate struc-
tured prediction sets, which are interpretable representations of a potentially large number of con-
crete labels. For instance, in image classification, a structured prediction set might be a small set of
coarse-grained labels that implicitly represent the set of all fine-grained labels that are leaf nodes of
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the coarse-grained labels in the label hierarchy (see Figure 1). Alternatively, for a question answer-
ing task where the answer is a year, a structured prediction set might be a small set of intervals.

Standard Conformal Prediction

balance beam, horizontal
bar, parallel bars

Conformal Structured Prediction

gymnastic apparatus

Figure 1: Structured prediction sets improve interpretability
while maintaining the coverage guarantee. In this example,
the standard conformal prediction set (top) is guaranteed to
include the true label “balance beam” with high probabil-
ity, but may be more difficult to interpret for someone with-
out gymnastics knowledge. In contrast, the structured pre-
diction set can be more interpretable since it contains only
a single coarse-grained label “gymnastic apparatus”, while
guaranteeing that the true label is descendant of this label in
the label hierarchy with high probability. The error level for
both the standard conformal prediction and conformal struc-
tured set is 0.05 (i.e., the desired coverage level is 0.95). See
Appendix A.3 for more examples.

As with traditional conformal pre-
diction, our framework considers a
search space over conformal predic-
tors parameterized by a single real
number τ ∈ R, which intuitively
says that the prediction set should
include labels with predicted proba-
bility at least τ . However, whereas
in traditional conformal prediction,
the search space over τ is mono-
tone (i.e., coverage always decreases
in τ whereas prediction set size al-
ways decreases in τ ), this is no longer
the case in the structured predic-
tion set setting. Existing conformal
prediction algorithms make signifi-
cant use of this monotonic structure
to enable efficient estimation of the
optimal choice of τ . Our frame-
work modifies these existing algo-
rithms using an approach inspired
by techniques from the learn-then-
test framework (Angelopoulos et al.,
2022) (which is designed to handle
potential lack of monotonicity due to
non-standard choice of loss function). Roughly speaking, our algorithm searches sequentially over
the space of candidate τ and returns as soon as it finds one that is invalid. For achieving marginal
coverage guarantees, the correctness guarantee follows directly from learn-then-test. We extend
these ideas to the setting of probably approximately correct (PAC) (or training conditional) coverage
guarantees (Vovk, 2012; Park et al., 2020). In particular, we provide a strategy that can be applied
to obtaining PAC prediction sets in the structured prediction setting.

Next, we instantiate our framework in the context of a general class of structured prediction sets. We
consider structured prediction sets that are subsets of a directed acyclic graph (DAG). For instance,
the DAG might represent the label hierarchy, where the internal nodes are coarse-grained labels and
the leaf nodes are fine-grained labels. Then, a structured prediction set might be a small subset
of coarse-grained labels, which corresponds to the prediction set of fine-grained labels that are de-
scendants of those coarse-grained labels. In this setting, we describe how to compute the optimal
structured prediction set for a given value of τ by expressing the optimization problem as an integer
program. This algorithm can then be used both in conjunction with our framework to estimate the
optimal parameter τ , as well as during inference to compute structured prediction sets.

We empirically evaluate our approach in four domains: (i) predicting integers represented by a list of
MNIST digits (LeCun & Cortes, 2010), where the structured prediction sets are ranges, (ii) hierar-
chical image classification using the ImageNet dataset (Deng et al., 2009), (iii) a question answering
benchmark based on the SQuAD dataset (Rajpurkar et al., 2016) restricted to questions where the
answers are years, and the structured prediction sets are unions of a small number of intervals, and
(iv) predicting emotion labels in a given piece of text based on the GoEmotions dataset (Demszky
et al., 2020). Our experiments demonstrate how our approach can be used to construct small predic-
tion sets while satisfying a desired coverage guarantee (marginal or PAC).

Contributions. We propose the first general framework (summarized in Figure 2) for conformal
prediction applied to structured label spaces. We assume the user provides a search space of inter-
pretable structures that implicitly represent prediction sets of labels. Then, our framework constructs
a conformal predictor that is guaranteed to achieve the desired coverage guarantee (either marginal
or PAC) while attempting to minimize prediction set size.
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Figure 2: An overview of our framework. To estimate the conformal predictor parameter τ , our
algorithm uses a statistical test ϕ designed to either establish marginal or PAC coverage guarantees
based on the given calibration set. It iterates until an invalid τi is identified, and returns the last valid
threshold τi−1. This computation assumes given a subroutine to compute the optimal prediction set
ỹ. In general, any optimizer can be used in conjunction with our framework; for the case where the
prediction sets are derived from a DAG structure (including hierarchical labels), we show how the
optimization problem can be encoded as an integer program.

Related work. Traditional conformal prediction algorithms provide a marginal coverage guaran-
tee (Vovk et al., 2005; Angelopoulos et al., 2023), which says that assuming examples are drawn
i.i.d. from the data distribution, then the prediction set contains the true label with high probability:

PZ∼Dn,(x,y∗)∼D[y∗ ∈ hZ(x)] ≥ 1− ϵ,

where x is the input, y∗ is the true label, D is the data distribution, Z is the calibration set provided to
the conformal prediction algorithm, hZ is the conformal predictor constructed using Z, and ϵ ∈ R>0

is a given error bound. Alternate algorithms disentangle the probability over Z from the one over
(x, y∗) to provide probably approximately correct (PAC) (or training conditional) coverage:

PZ∼Dn

[
P(x,y∗)∼D[y∗ ∈ hZ(x)] ≥ 1− ϵ

]
≥ 1− δ.

Conformal prediction has recently been applied to deep learning, including image classification (An-
gelopoulos et al., 2023; Park et al., 2020), anomaly detection (Li et al., 2022a), object detection (Li
et al., 2022b; Andéol et al., 2023), semantic segmentation (Angelopoulos et al., 2022), and question
answering (Li et al., 2024). However, in these domains, the label space is either a finite set (i.e.,
classification) or a real number (i.e., regression), or a relatively simple product of the two. For in-
stance, in object detection, the label is a list of tuples (x1, y1, x2, y2, c), where (x1, y1, x2, y2) ∈ R4

are real-valued coordinates and c ∈ C is an object category. We can straightforwardly quantify
uncertainty separately for each component using traditional conformal prediction.

However, in many domains, we may require alternative representations of the prediction sets to
ensure interpretability. For instance, a natural way to represent uncertainty for hierarchical label
spaces is to use coarse-grained labels (see Figure 1 for an example). Mortier et al. (2022) takes
this approach, but unlike our method, they do not offer formal coverage guarantees. Furthermore,
their goal is to find the prediction set with the highest probability mass, whereas our goal is to find
the smallest possible prediction sets under a constraint that the coverage rate meets some desired
level. Therefore, their approach sometimes obtains significantly lower coverage (e.g., ≤ 50%),
whereas our results demonstrate that our approach achieves the desired coverage rate. Khakhar et al.
(2023) provides a conformal prediction algorithm for the case where the true label is a program,
and the prediction set is implicitly represented as a “partial program” where certain portions have
been omitted. Quach et al. (2024); Mohri & Hashimoto (2024) provide a similar strategy for certain
kinds of question answering tasks. However, these existing approaches are highly specialized to a
specific form of prediction set, whereas our approach is general. Moreover, Quach et al. (2024) still
use sets of samples, which may suffer from lack of interpretability. Mohri & Hashimoto (2024)’s
algorithm is closely related to the learn-then-test algorithm. However, they do not consider a tree
structure of structured prediction sets; instead, they only consider a single sequence of increasingly
coarse-grained labels. Thus, their approach is not applicable to our problem.
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Next, Angelopoulos et al. (2024) considers hierarchical image classification in ImageNet. However,
their goal is to minimize more general risk functions instead of prediction set size, whereas our
goal is to extend conformal prediction to structured prediction. In particular, their purpose is to
control an alternative risk function based on the hierarchical label structure, while still constructing
traditional prediction sets. Indeed, we believe that our approach could be combined with theirs to
further improve interpretability of the resulting prediction sets. For this specific task, their algorithm
can be viewed as producing a structured prediction set; however, even in this context, their search
is constrained to only parent nodes of the class with the highest estimated probability ŷ, whereas
our search space is much more general (and can be much more flexibly specified by the user).
Angelopoulos et al. (2021) proposes an algorithm that introduces regularization to encourage smaller
and stable sets. However, the goal of their paper is to reduce the average prediction set size by adding
a regularization term, whereas our goal is to compute structured prediction sets.

More broadly, conformal prediction has been work with other kinds of structure. For instance, Lee
et al. (2024) and Dunn et al. (2022) address cases where inputs are grouped and where repeated
measurements are present in the dataset, respectively. However, these are examples of structure in
the input space instead of the label space. Finally, Angelopoulos et al. (2022) studies minimizing
risk functions other than prediction set size; though they are studying a very different problem, their
techniques can also be applied to our problem when aiming to achieve marginal guarantees. To the
best of our knowledge, we are the first to adapt these techniques to provide PAC guarantees.

2 PROBLEM FORMULATION

As with existing conformal prediction algorithms, we assume that the model f : X → Y is implicitly
represented by a scoring function g : X×Y → R, so f(x) = argmaxy∈Y g(x, y). Typically, g(x, y)
is the predicted probability that the true label for input x is y, but we make no assumptions about g.

Given g, we consider a space of structured prediction sets Ỹ , along with a mapping γ : Ỹ → 2Y

such that γ(ỹ) ⊆ Y is a prediction set of labels, and a size function σ : Ỹ → R measuring the size
of a structured prediction set. We consider conformal predictors hτ : X → Ỹ of the form

hτ (x) = argmin
ỹ∈Ỹ

σ(ỹ) subj. to
∑
y∈Y

g(x, y) · 1(y ∈ γ(ỹ)) ≥ τ, (1)

where τ ∈ R is a real-valued parameter that we need to estimate. In other words, we want the
smallest prediction set according to the size function σ that achieves cumulative score at least τ .
Intuitively, if g(x, y) is the predicted probability of y given x, then the constraint says that ỹ covers
τ fraction of labels y ∈ Y weighted by their probability g(x, y). In general, while g does not need
to be a predicted probability, our approach may be more effective when this is the case.

The main challenge is estimating the parameter τ . We assume given a held-out calibration set
Z ⊆ (X × Y)n of i.i.d. samples (x, y∗) ∼ D from the underlying data distribution D. Then, we
want to choose the smallest possible τ subject to some kind of coverage guarantee; i.e., y∗ ∈ hτ (x)
with high probability assuming (x, y∗) ∼ D. Specifically, we consider two coverage guarantees.
First, we consider a marginal guarantee

P(x,y∗)∼D,Z∼Dn [y∗ ∈ γ(hτ̂(Z)(x))] ≥ 1− ϵ,

where τ̂ : (X × Y)∗ → R is an estimator outputting a choice of τ for a given Z ∈ (X × Y)∗,
and ϵ ∈ R>0 is a given error bound (note that τ depends implicitly on ϵ). Second, we consider a
probably approximate correct (PAC) guarantee (or training-conditional guarantee)

PZ∼Dn [P(x,y∗)∼D[y∗ ∈ γ(hτ̂(Z)(x))] ≥ 1− ϵ] ≥ 1− δ,

where ϵ, δ ∈ R>0 are given error bounds. Intuitively, PAC guarantees “disentangle” the probability
over the calibration set Z and the current example (x, y∗); they are useful when the goal is to provide
a 1− ϵ guarantee across all predictions with high probability.

Finally, given τ , computing hτ is nontrivial in general. We can typically formulate the computation
of hτ as a constraint solving problem such as an integer program; we describe how to do so for a
special case in Section 3. Our estimators τ̂ require that hτ is computed using the same algorithm
on the calibration examples as on the new examples, but do not make any other assumptions; for
instance, it could rely on heuristics instead of finding the global optimum.
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3 ALGORITHMS FOR STRUCTURED CONFORMAL PREDICTION

Our algorithm considers a finite set of candidate thresholds T ∗
ϵ ⊆ R. We assume that T =

(τ1, τ2, ..., τk) is ordered by τ1 > τ2 > ... > τk. We assume these thresholds are in descending
order (i.e., from least to most desirable). At a high level, our algorithm will consider each candidate
threshold τi in sequence, using a statistical test in conjunction with the calibration set Z to determine
if τi is valid. We use ϕ : (X ×Y)∗×R → {0, 1} to denote this statistical test; its first argument is the
calibration set Z, its second argument is a candidate threshold τ , and its output is ϕ(Z, τ) = 1 if it
determines τ is valid and ϕ(Z, τ) = 0 otherwise. We provide tests for marginal and PAC coverage.

Now, our algorithm considers increasingly desirable candidate thresholds τi; for each one, it runs
the statistical test ϕ(Z, τi) to determine whether τi is valid. The search halts when ϕ(Z, τi) = 0
for the first time at τi, and the algorithm returns τi−1. Formally, given an error level ϵ ∈ [0, 1] and
m ∈ N, our algorithm returns the threshold τ̂(Z) = τî(Z,ϕ), where

î(Z, ϕ) = argmax
i∈[k]

i subj. to
i∧

i′=1

1(ϕ(Z, τi′) = 1).

In other words, î is the largest i ∈ [k] before which all τi′ ’s are valid. Below, we describe specific
implementations of the statistical test ϕ for marginal and PAC guarantees.

Marginal guarantees. Given ϵ ∈ [0, 1], we use the following statistical test:

ϕϵ
marginal(Z, τ) = 1

 ∑
(x,y∗)∈Z

1(y∗ ̸∈ γ(hτ (x))) ≤ (n+ 1)ϵ

 .

We have the following marginal coverage guarantee:
Theorem 3.1. The estimator τ̂(Z, ϵ) = τî(Z,ϕϵ

marginal)
satisfies

PZ∼Dn,(x,y∗)∼D[y∗ ∈ γ(hτ̂(Z,ϵ)(x))] ≥ 1− ϵ.

Proof. This result follows from the learn-then-test algorithm (Angelopoulos et al., 2022).

PAC guarantees. Given ϵ, δ ∈ [0, 1], consider the statistical test

ϕϵ,δ
PAC(Z, τ) = 1

 ∑
(x,y∗)∈Z

1(y∗ ̸∈ γ(hτ (x))) ≤ ℓ̂

 ,

where

ℓ̂ = argmax
ℓ∈N

h subj. to F (ℓ;n, ϵ) < δ,

where F (ℓ;n, p) =
∑ℓ

j=0

(
n
j

)
pj(1 − p)n−j < δ is the cumulative distribution function (CDF) of

the random variable Binomial(n, p). Then, we have the following guarantee:
Theorem 3.2. The estimator τ̂(Z, ϵ, δ) = τî(Z,ϕϵ,δ

PAC)
satisfies

PZ∼Dn [P(x,y∗)∼D[y∗ ∈ γ(hτ̂(Z,ϵ,δ)(x))] ≥ 1− ϵ] ≥ 1− δ.

Proof. Let i0 be the smallest index of τi such that τi is invalid (i.e., τ ̸∈ T ∗
ϵ ), and let τ0 = τi0 .

Also, let z = 1(y∗ ̸∈ hτ0(x)); note that z is a function of the random variable (x, y∗) ∼ D, and in
particular z ∼ Bernoulli(µ) with µ = P[y∗ ̸∈ hτ0(x)]. Since τ0 is invalid, we have µ > ϵ.

Next, the sum in ϕϵ,δ
PAC is a sum of i.i.d. samples from Bernoulli(µ). In particular, let Z =

{(xi, y
∗
i )}ni=1, let zi = 1(y∗i ̸∈ γ(hτ0(x0))), and let b =

∑n
i=1 zi; note that b is a sum of n

i.i.d. Bernoulli random variables with mean µ, so b ∼ Binomial(n, µ). Now, ϕϵ,δ
PAC has form

1(ϕϵ,δ
PAC(Z, τ) = 1) = 1(b ≤ ℓ̂),
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so

P(ϕϵ,δ
PAC(Z, τ) = 1) = P(b ≤ ℓ̂) = F (ℓ̂;n, µ) ≤ F (ℓ̂;n, ϵ) < δ,

where the first inequaltiy follows since the CDF of the Binomial(n, p) is monotonically decreasing
in p and µ ≤ ϵ (this follows since ∂

∂pF (ℓ;n, p) ≤ 0).

Finally, note that our algorithm returns a valid parameter τi as long as ϕϵ,δ
PAC(Z, τ) = 0, since it

returns τi for some i < i0, and by definition of i0, all of these τi are valid. Thus, our algorithm
returns a valid τi with probability at least 1− δ, as claimed.

4 APPLICATION TO DAG STRUCTURED PREDICTION SETS

Problem formulation. We consider a prediction problem where the prediction set consists of se-
lecting a subset of nodes in a directed acyclic graph (DAG). For example, the DAG may be a tree
representing hierarchical labels. Consider a DAG G = (V,E) with vertices V = [k] = {1, ..., k}
and directed edges E ⊆ V × V . For example, for image classification, G might encode a hierarchy
of image categories. We let L ⊆ V denote the leaf nodes of G; we assume that each v ∈ L is
labeled with a probability pv , such that

∑
v∈L pv = 1. In our image classification example, a leaf v

corresponds to a fine-grained label, and pv might be the predicted probability of that label.

Now, we consider structured prediction sets of the form ỹ ⊆ V , where |ỹ| ≤ m for a given hyperpa-
rameter m. Furthermore, we assume that the size function is σ(ỹ) = |leaves(ỹ)|, where

leaves(ỹ) = {v ∈ L | ∃v′ ∈ ỹ . v is a descendant of v′}.

We say a leaf node v ∈ L is covered by ỹ if v ∈ leaves(ỹ). In other words, the size of ỹ is the
number of leaf nodes v that are the descendant of some node v′ ∈ ỹ. For instance, if ỹ = {cat, dog},
then σ(ỹ) would be the number of kinds of cats and dogs in the label space. We also assume that the
cumulative label probability in (1) has the form∑

y∈Y
g(x, y) · 1(y ∈ γ(ỹ)) =

∑
v∈leaves(ỹ)

pv.

In other words, to obtain the cumulative label probability for ỹ, we simply sum the probabilities pv
of the leaf nodes that are covered by ỹ. In our image classification example, this value would simply
be the sum of all the fine-grained label probabilities that are subsumed by the labels in ỹ. With these
assumptions, the definition of hτ (x) in (1) becomes

hτ (x) = argmin
ỹ∈Ỹ

|leaves(ỹ)| subj. to
∑

v∈leaves(ỹ)

pv ≥ τ.

If we additionally unroll the definition of Ỹ , then the objective becomes

hτ (x) = argmin
ỹ⊆V

|leaves(ỹ)| subj. to
∑

v∈leaves(ỹ)

pv ≥ τ ∧ |ỹ| ≤ m, (2)

i.e., we need to compute a subset of nodes ỹ of size at most m such that the leaf nodes covered by ỹ
have cumulative probability at most τ , while minimizing the number of leaf nodes covered by ỹ.

Our framework can also be used to represent qualitatively very different domains from our image
classification example. For instance, suppose we want to represent uncertainty in a predicted date;
then, we might consider a conjunction of prediction intervals of years—e.g., 1968-1972 or 2010-
2012. To do so, each node in G can represent an interval I = [ℓ, u], with the children of a node
being the intervals I ′ that are immediately contained in [ℓ, u] (i.e., there is no I ′′ in the search space
such that I ′ ⊊ I ′′ ⊊ I). Furthermore, we assume that each leaf node of G corresponds to an interval
where ℓ = u, so it represents a single year. Then, ỹ = {I1, ..., Im′} (for some m′ ≤ m) would
be a conjunction of intervals, and leaves(ỹ) would be the years contained in at least one of these
intervals. We can also handle instances where G varies from one input to another.

We emphasize that our DAG structure is a structure on the space of prediction sets, and can differ
from the structure of the label space. In applications where the label space has a tree or DAG
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structure, we can naturally consider structured prediction sets that conform to this structure, but this
is not a requirement. For instance, if the label space has a graph structure, we could still construct
prediction sets representing sets of labels, and impose a DAG structure on these prediction sets (e.g.,
based on set inclusion). Thus, our approach can be flexibly applied to more complex domains.

Integer programming algorithm. We describe an integer program to solve (2). For each node
v ∈ V , our optimization problem includes two variables αv, βv ∈ {0, 1}. Intuitively, αv = 1
indicates that v ∈ ỹ, and βv = 1 indicates that v is covered by ỹ (in general, v ∈ V is covered by ỹ
if there is some v′ ∈ ỹ such that v is a descendant of v′). Then, our integer program is

min
α,β

∑
v∈L

βv (3)

subj. to
∑
v∈V

αv ≤ m (4)

αv → βv (∀v ∈ V ) (5)

βv → βv′ (∀(v, v′) ∈ E) (6)

βv′ → αv′ ∨
∨

(v,v′)∈E

βv (∀v′ ∈ V ) (7)

∑
v∈L

pv · βv ≥ τ (8)

We have included some Boolean constraints for clarity; in general, a Boolean constraint of the form
α → β is equivalent to the linear constraint α ≤ β, and α → β ∨ β′ is equivalent to α ≤ β + β′.
The objective constraints in our integer program have the following intuition:

• Eq. (3): The objective is to minimize the number of leaf nodes covered by ỹ.
• Eq. (4): The prediction set ỹ contains at most m nodes.
• Eq. (5): If v is contained in ỹ, then v is covered by ỹ.
• Eq. (6): If v is covered by ỹ, and v′ is a child of v, then v′ is also covered ỹ.
• Eq. (7): If v′ is covered by ỹ, then either v′ is contained in ỹ or one of the parents of v′ is

also covered by ỹ.
• Eq. (8): The cumulative probability of leaf nodes covered by ỹ is at least τ .

Given the solution α∗, β∗ to this integer program, our algorithm returns ỹ = {v ∈ V | α∗
v = 1}.

5 EXPERIMENTS

We empirically validate our approach by demonstrating that it constructs prediction sets that satisfy
the desired coverage guarantees while producing reasonably sized prediction sets. We evaluate
our approach on four tasks: (i) predicting numbers represented as lists of MNIST digits (LeCun &
Cortes, 2010), (ii) ImageNet classification (Deng et al., 2009) with hierarchical label space tasks, (iii)
SQuAD question answering (Rajpurkar et al., 2016) where the answer is a year, and (iv) predicting
emotions on the GoEmotions dataset (Demszky et al., 2020).

5.1 EXPERIMENTAL SETUP

MNIST digits. The goal in this task is to predict a number represented as a list of k MNIST digits
(we use k ∈ {2, 3}). Each digit is classified using a standard feedforward network fθ. We consider
prediction sets inspired by significant figures for representing measurements—namely, a prediction
set is represented by a confident prediction in the first h ≤ k digits, and uncertain in the remaining
ones. In more detail, a prediction set has the form ỹ = [d1, ..., dk], where di ∈ {0, 1, ..., 9,∅} for
each i ∈ [k], and where di = ∅ implies that di′ = ∅ for all i′ ≥ i. Then, we have

γ(ỹ) =

{
k∑

i=1

d′i · 10k+1−i

∣∣∣∣ d′i ∈ γ(di)

}
where γ(d) =

{
{d} if d ̸= ∅
{0, 1, ..., 9} otherwise.
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For example, [1, 2,∅] represents the prediction set {120, 121, ..., 129}. According to our opti-
mization problem setup, the prediction set consists of at most m intervals, which together form
a non-continuous digit interval as the final prediction. Finally, the DAG is constructed by having
[d1, ..., di,∅,∅, ...,∅] → [d1, ..., di, di+1,∅, ...,∅] for all d1, ..., di, di+1 ̸= ∅. In other words, one
node is the parent of another if it predicts the same prefix and exactly one additional digit. A leaf
node of this DAG is a sequence of k digits [d1, ..., dk]; we associate with this leaf node with the
probability

∏k
i=1 fθ(di | xi), where [x1, ..., xk] is the sequence of input images and fθ(di | xi) is

the predicted probability that xi is an image of digit di according to fθ.

Image classification with hierarchical labels. We consider image classification using ResNet-
50 (He et al., 2015) on ImageNet (Deng et al., 2009). In this domain, the DAG is a tree; we take the
original 1000 ImageNet labels to be leaves of the tree, and a standard set of coarse-grained labels
(e.g., dog, animal, living thing, etc.) as the internal nodes. We include an edge (v, v′) ∈ E if v
is an immediate hypernym of v′ in the WordNet lexical database (Miller, 1994). A prediction set
ỹ = {ℓ1, ..., ℓm′} is a set of m′ ≤ m internal nodes, representing the set of fine-grained labels
corresponding to leaf nodes that are descendants of some ℓ ∈ ỹ (e.g., the prediction set might be
“dog or cat”). We associate with each leaf node the probability fθ(ℓ | x), where ℓ is the fine-grained
label associated with the leaf node, x is the input image, and fθ is the pretrained ResNet-50 model.

Question answering about dates. We consider a question answering task based on the the Stanford
Question Answering Dataset (SQuAD) (Rajpurkar et al., 2016), but focusing on questions where
the answer is a year in the range from 1970 to 2020. Our subset contains 262 problems, which we
split into calibration and test sets of size 131 using 5 random seeds. Finally, the DAG is constructed
as the set of intervals [ℓ, u], where ℓ, u ∈ {1970, 1971, ..., 2020}. We have edge [ℓ, u] → [ℓ′, u′] if
[ℓ′, u′] ⊊ [ℓ, u], and there is no interval [ℓ′′, u′′] such that [ℓ′, u′] ⊊ [ℓ′′, u′′] ⊊ [ℓ, u]. Each leaf node
is a year [ℓ, u] where ℓ = u; we associate it with the probability of the answer being ℓ as predicted
by the Llama-3.1-70B-Instruct model (Dubey et al., 2024)—i.e., fθ(ℓ | x), where x is the question,
fθ is the Llama model, and fθ(ℓ | x) is the probability of the sequence of tokens representing the
year ℓ with a standard question answering prompt asking the model for the answer to question x. We
provide additional details on the dataset subset, prompt, and the DAG structure in Appendix A.1.

Emotion label prediction for text. Finally, we use the GoEmotions dataset (Demszky et al., 2020),
which consists of 27 emotion categories annotated on 58,000 English Reddit comments, to demon-
strate the application of our framework to predict the emotion labels in a given piece of text. Similar
to the ImageNet task, the DAG in this domain is also a tree. We use the provided set of concrete
emotion labels (e.g., amusement, fear, grief, etc.) as the leaves of the tree. The tree structure follows
the one proposed in the GoEmotions dataset (Demszky et al., 2020). The definitions of prediction
sets and leaf node probabilities are consistent with those from the ImageNet task, with fθ being a
pretrained RoBERTa base model (Sam Lowe, 2024).

Hyperparameters. We use m ∈ {1, 2, 4, 8} (default of m = 4), ϵ ∈ {0.05, 0.1, 0.15, 0.2} (default
of ϵ = 0.1), and δ ∈ {0.1, 0.01, 0.001} (default of δ = 0.01).

Baseline. We compare our approach with a baseline strategy adapted from Khakhar et al. (2023).
While the strategy proposed is specialized to the code domain, we generalize it to apply to arbitrary
DAG structures. Unlike our approach, this baseline leverages existing PAC prediction set algorithms,
which require that the monotonicity assumption holds. Thus, their algorithm restricts the structure
of the prediction sets across different values of τ to enforce monotonicity. In contrast, our approach
proves a novel conformal prediction bound (Theorem 3.2) to avoid the need for monotonicity.

Metrics. We report empirical coverage rate and average prediction set size on a held-out test set:

Coverage Rate =
1

|Ztest|
∑

(x,y∗)∈Ztest

1(y∗ ∈ γ(ỹ))

Average Prediction Set Size =
1

|Ztest|
∑

(x,y∗)∈Ztest

σ(ỹ).

Our goal is for the coverage rate to exceed ϵ while minimizing average prediction set size. We show
averages and standard deviations over 5 runs. We also study computational cost in Appendix A.2.
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(a) marginal (b) PAC (δ = 0.01) (c) PAC (m = 4)

Figure 3: Prediction set coverage rates for the question answering task, for (a) marginal guarantee,
(b) PAC guarantee with fixed δ and varying m, and (c) PAC guarantee with fixed m and varying δ.

(a) marginal (b) PAC (δ = 0.1) (c) PAC (m = 4)

Figure 4: Prediction set sizes for the question answering task, with the baseline represented by
dashed lines, for (a) marginal guarantee, (b) PAC guarantee with fixed δ and varying m, and (c) PAC
guarantee with fixed m and varying δ.

5.2 RESULTS

Here, we show results only for the question answering task; results for the MNIST, ImageNet, and
GoEmotions tasks can be found in Appendix A.4, and exhibit similar trends.

Coverage guarantees. First, we study the coverage rates achieved by our approach. Results are
shown in Figure 3; Figure 3a shows results with the marginal guarantee for different m values across
the given error levels ϵ, Figure 3b shows results with the PAC guarantee for different m and fixed
δ, and Figure 3c shows results with the PAC guarantee for different δ and fixed m; coverage rates
for the baseline are shown in Figure 10 in Appendix A.4. In general, for both our algorithm and for
the baseline, the empirical coverage rates are above the desired coverage level (i.e., the “Reference”
line). As expected, as δ increases, the coverage rate tends to decrease (but remains above the desired
coverage rate), and m does not significantly affect coverage.

For the marginal guarantee, the mean coverage rates remain close to the desired rate; in contrast, for
the PAC guarantee, coverage for all values holds within one standard deviation. Note that marginal
guarantees are on average over both the training set and the new examples; thus, the average cov-
erage across different random seeds is above the desired coverage level, but any individual random
seed may fall above or below this level. In contrast, PAC prediction sets hold with high probabil-
ity over the training set; thus, the coverage is above the desired level for almost all random seeds.
Intuitively, PAC guarantees are more conservative than marginal guarantees but provide greater re-
liability. In domains where it is critical for the deployed model to satisfy the coverage guarantee,
PAC prediction sets should be used; otherwise, marginal guarantees may suffice.

Prediction set size. Next, we study the average size of the prediction sets constructed using our
approach in terms of number of concrete labels and compare it to the prediction sets obtained using
the baseline. Results are shown in Figure 4; Figure 4a shows results with the marginal guarantee for
different m values across the given error levels ϵ, Figure 4b shows results with the PAC guarantee
for different m and fixed δ, and Figure 4c shows results with the PAC guarantee for different δ and
fixed m. Results for the baseline are represented by dashed lines. As expected, prediction set size

9
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ϵ = 0.05 ϵ = 0.1 ϵ = 0.2

m = 1 {[1979, 2019]} {[1979, 2019]} {[1987, 2020]}

m = 2

{
[1997, 2019],
[1979, 1980],

} {
[1997, 2019],

[1979]

} {
[2007, 2020],
[1996, 2001]

}

m = 4


[1997],

[1979, 1980],
[2007],

[2015, 2019]




[1997],
[1979],
[2007],

[2015, 2019]




[1997],
[2015],

[2016, 2017],
[2019]


Table 1: Structured prediction sets for the question, “When was 7 Lincoln Square completed?” with
the ground truth answer ‘1979’. Intervals in red contain the ground truth year.

decreases as ϵ and δ increase and as m increases; its dependence on δ is much less pronounced than
its dependence on ϵ and m. Our approach outperforms the baseline in terms of prediction set size
for almost every parameter setting, and significantly so for m = 2 and m = 4.

In general, the sensitivity of the hyperparameter m depends on the DAG structure and the perfor-
mance of the underlying model. For the question answering task, the decrease in size with m is
especially significant, likely due to the low accuracy of the underlying model (≈ 33.2%). Since all
nodes tend to have similar probability masses, usually without any dominant ones, changes in m can
significantly affect the nodes selected when m is small (e.g., 1 or 2). As m becomes larger (e.g., 4
or 8), the algorithm gains greater flexibility in selecting which nodes to include in the prediction set;
thus, the prediction set size typically becomes less sensitive to m as it becomes larger.

Qualitative examples. We provide a qualitative example from the question answering task to show:
(i) how structured sets differ from standard conformal prediction sets, and (ii) how hyperparameters
influence the sets. In this example, the question is “When was 7 Lincoln Square completed?”, with
the ground truth answer being ‘1979’. Using standard conformal prediction, we obtain a prediction
set containing six years: {1979, 1997, 2007, 2016, 2017, 2019}, representing a broad range of pos-
sibilities. Next, we construct structured prediction sets with m ∈ {1, 2, 4} and ϵ ∈ {0.05, 0.1, 0.2},
shown in Table 1. Note that increasing m increases the number of intervals but reduces the number
of labels in the concrete set. Also, for a fixed m, increasing ϵ generally produces fewer and narrower
intervals, albeit at the expense of higher miscoverage rates. In this example, m = 4 provides a
good tradeoff, summarizing {2016, 2017, 2019} into the interval [2015, 2019] while preserving the
singleton years 1979, 1997, and 2007. We provide additional qualitative examples in Appendix A.3.

In general, the choice of m depends on the needs of the given application domain. It governs the
trade-off between the interpretability and granularity of the resulting prediction sets. In particular,
larger values of m allow more labels to be included in the set, often capturing finer-grained categories
such as “attire” or “Blenheim spaniel”. Conversely, smaller values of m result in sets with fewer
or coarse-grained labels such as “artifact” or “dog”, which can be more interpretable for users. We
suggest that practitioners try different values of m, and manually examine the resulting prediction
sets to determine which choices offer the best tradeoff between interpretability and coverage.

6 CONCLUSION

We have proposed a novel algorithm for conformal structured prediction that constructs structured
prediction sets that satisfy either a marginal or PAC coverage guarantee. Our algorithm enables un-
certainty quantification in settings where the label space cannot be represented simply by a collection
of regression and/or classification outputs. Furthermore, we have demonstrated how our approach
can be applied to domains where the structured prediction sets are defined by a DAG, which in-
cludes settings such as hierarchical labels and text generation. Finally, in our empirical evaluation,
we have demonstrated that our algorithm can construct reasonable prediction sets that satisfy the
desired coverage guarantee across several application domains.

Ethics statement. The proposed method aims to improve the trustworthiness of machine learning
models by reliably quantifying their uncertainty. To the best of our knowledge, it does not pose any
risks of harm, including discrimination, bias, fairness concerns, privacy, or security issues.
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Reproducibility statement. We discuss our experimental and implementation details, including
used models, hyperparameters, and datasets, in Section 5. Here is a link to the anonymously down-
loadable source code: code link. We explicitly state our assumptions and provide complete proofs in
Section 3. To ensure the reproducibility of our results, we run the experiments with multiple random
seeds and report the means and standard deviations of each experiment.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS ON QUESTION ANSWERING TASK

The SQuAD dataset contains 691 questions where the set of possible answers include at least one
that is a four-digit number. From this subset, we conducted experiments on questions with answers
between 1970 and 2020, resulting in a total of 262 examples. Each example is a (question, context,
answer) triplet, where the context provides background information to answer the question. We
used a two-shot prompting technique to obtain the log probability from the Llama-3.1-70B-Instruct
model (Dubey et al., 2024). Figure 5 shows the prompt template used, where {question} and
{context} are replaced based on the current example. Then, for each year in [1970, 2020], we com-
pute the model’s probability of generating {year} as a response to the {question} and {context}.
Finally, Figure 6 illustrates the DAG used in this task.

Figure 5: The two-shot prompt used for our question answering task; here, {question} and
{context} are replaced with the corresponding data from each example in our dataset, and {year}
is replaced with each year between 1970 and 2020.

Figure 6: Illustration of the DAG structure for our question answering task.

A.2 COMPUTATIONAL COST AND SCALABILITY

Our method leverages Integer Programming (IP) to select nodes as prediction sets on DAGs, which
can sometimes be computationally intensive, particularly as the size of the DAG increases. We
evaluate the running time and scalability of this approach, including a comparison to our baseline
adapted from Khakhar et al. (2023). Figure 7 shows the average time required to solve each IP
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(a) marginal
(b) PAC

Figure 7: Average time required to solve each Integer Programming (IP) problem for each of the
five domains in our experiments, as m varies, for (a) marginal guarantee and (b) PAC guarantee.

(a)
(b)

Figure 8: Average time required to complete the question answering task for a given (m, ϵ) tuple for
marginal guarantee or (m, ϵ, δ) for PAC guarantee, with baseline represented by dashed lines. (a)
Fix m (and δ), vary ϵ; (b) Fix ϵ (and δ), vary m

problem as a function of m, for each of our application domains. As can be seen, the GoEmotions
problem has very fast solve times due to its small tree size, consisting of 8 layers, 27 leaves, and 52
nodes. The MNIST 2-digit and ImageNet problems also exhibit fast solve times; the MNIST-2 tree
has 3 layers, 100 leaves, and 111 nodes, whereas the ImageNet tree is a lot larger, with 18 layers,
1000 leaves, and 1816 nodes. Thus, increasing the scale of the DAG does not necessarily result in
increased computation time for the IP problem.

However, when extending to the MNIST 3-digit problem, the computation time for the IP becomes
slower. The MNIST-3 tree has 4 layers, 1000 leaves, and 1111 nodes, which significantly increases
the number of nodes compared to the MNIST-2 tree and notably increases the tree density compared
to the ImageNet tree. Thus, the computation for the IP may become intensive as the density of the
DAG scales up. A practical strategy to alleviate this computational burden is to simplify the DAG
by removing some internal nodes while preserving the overall hierarchy. In particular, if a node v
is removed, its parent nodes become the parents of each of v’s children. This approach allows us to
maintain the structured prediction set property while improving computational efficiency, though it
may affect interpretability of the resulting structured prediction sets.

The structure for the question answering task is not a tree but a DAG, where a single node can have
multiple parents. It has 51 layers, 51 leaves, and 650 nodes, making it relatively sparse compared
to structures for the other three domains. In this case, there is a small jump in running time when
m = 2, but the overall running time remains manageable.
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Figure 9: Comparison of prediction sets generated by conformal structured prediction under PAC
guarantee and the standard PAC prediction algorithm (Vovk, 2012; Park et al., 2020). For both
methods, the error level is 0.05 and the confidence level is 0.99 (δ = 0.01).

ϵ = 0.05 ϵ = 0.1 ϵ = 0.2

m = 1 {whole} {artifact} {hairpiece}

m = 2

{
dog,

artifact,

} {
toy spaniel,

attire

}
{wig}

m = 4

{ toy dog,
clothing,

hunting dog

} {Blenheim spaniel,
attire,

English setter

}
{wig}

Table 2: Structured prediction sets for the image in Figure 9. Labels in red contain the ground class.

Finally, our approach significantly outperforms the baseline. Figure 8 shows the average time re-
quired to complete the question answering task on the 262 problems, where the answer is a year in
the range from 1970 to 2020, for an (m, ϵ) tuple for the marginal guarantee, or an (m, ϵ, δ) tuple for
the PAC guarantee. The baseline results are represented by the dashed lines. For both approaches,
the running time is similar across the two different guarantees, with the marginal guarantee being
slightly faster. However, our approach is significantly faster across all parameter settings, likely due
to having fewer restrictions on the structure of the prediction sets across different values of τ .

A.3 ADDITIONAL QUALITATIVE EXAMPLES

Comparison with standard PAC prediction sets. Figure 9 compares our approach to the standard
PAC prediction set algorithm (Vovk, 2012; Park et al., 2020), with ϵ = 0.05 and δ = 0.01. As can be
seen, the standard prediction set is much larger than the one constructed by our algorithm. The large
prediction set includes labels from very distant categories, making it harder to interpret compared to
having just two coarse-grained labels that summarize the labels. In our structured prediction set, the
different dog breeds have been summarized as simply “dog”, and the different man-made artifacts
have been summarized as “artifact”. The fact that the labels are quite coarse reflects the inherent
uncertainty in the prediction for this image.

Impact of hyperparameters. In Table 2, we show additional prediction sets for the same image as
in Figure 9 to show how hyperparameters influence the prediction sets. Similar to our findings in Ta-
ble 1, for smaller m, our prediction sets contain fewer labels, making them more interpretable, while
prediction sets with larger m contain more fine-grained labels. Also, with higher ϵ, our algorithm is
allowed to make more errors, resulting in much smaller prediction sets.
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A.4 ADDITIONAL QUANTITATIVE RESULTS

(a) marginal (b) PAC (δ = 0.01) (c) PAC (m = 4)

Figure 10: Coverage rates for the question answering task using the baseline, for (a) marginal
guarantee, (b) PAC guarantee with fixed δ and varying m, and (c) PAC guarantee with fixed m and
varying δ.

(a) marginal (b) PAC (δ = 0.01) (c) PAC (m = 4)

Figure 11: Coverage rates for the 2-digit MNIST task with n = 200, for (a) marginal guarantee, (b)
PAC guarantee with fixed δ and varying m, and (c) PAC guarantee with fixed m and varying δ.

(a) marginal (b) PAC (δ = 0.01) (c) PAC (m = 4)

Figure 12: Coverage rates for the 2-digit MNIST task using the baseline with n = 200, for (a)
marginal guarantee, (b) PAC guarantee with fixed δ and varying m, and (c) PAC guarantee with
fixed m and varying δ.
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(a) marginal (b) PAC (δ = 0.1) (c) PAC (m = 4)

Figure 13: Prediction set sizes for the 2-digit MNIST task (n = 200), with the baseline represented
by dashed lines, for (a) marginal guarantee, (b) PAC guarantee with fixed δ and varying m, and (c)
PAC guarantee with fixed m and varying δ.

(a) marginal (b) PAC (δ = 0.01) (c) PAC (m = 4)

Figure 14: Coverage rates for the 3-digit MNIST task with n = 200, for (a) marginal guarantee, (b)
PAC guarantee with fixed δ and varying m, and (c) PAC guarantee with fixed m and varying δ.

(a) marginal (b) PAC (δ = 0.1) (c) PAC (m = 4)

Figure 15: Prediction set sizes for the 3-digit MNIST task with n = 200, for (a) marginal guarantee,
(b) PAC guarantee with fixed δ and varying m, and (c) PAC guarantee with fixed m and varying δ.

(a) marginal (b) PAC (δ = 0.01) (c) PAC (m = 4)

Figure 16: Coverage rates for the ImageNet task with n = 200, for (a) marginal guarantee, (b) PAC
guarantee with fixed δ and varying m, and (c) PAC guarantee with fixed m and varying δ.
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(a) marginal (b) PAC (δ = 0.01) (c) PAC (m = 4)

Figure 17: Coverage rates for the ImageNet task using the baseline with n = 200, for (a) marginal
guarantee, (b) PAC guarantee with fixed δ and varying m, and (c) PAC guarantee with fixed m and
varying δ.

(a) marginal (b) PAC (δ = 0.1) (c) PAC (m = 4)

Figure 18: Prediction set sizes for the ImageNet task (n = 200), with the baseline represented by
dashed lines, for (a) marginal guarantee, (b) PAC guarantee with fixed δ and varying m, and (c) PAC
guarantee with fixed m and varying δ.

(a) marginal (b) PAC (δ = 0.01) (c) PAC (m = 4)

Figure 19: Coverage rates for the GoEmotions task with n = 200, for (a) marginal guarantee, (b)
PAC guarantee with fixed δ and varying m, and (c) PAC guarantee with fixed m and varying δ.

(a) marginal (b) PAC (δ = 0.01) (c) PAC (m = 4)

Figure 20: Coverage rates for the GoEmotions task using the baseline with n = 200, for (a)
marginal guarantee, (b) PAC guarantee with fixed δ and varying m, and (c) PAC guarantee with
fixed m and varying δ.
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(a) marginal (b) PAC (δ = 0.1) (c) PAC (m = 4)

Figure 21: Prediction set sizes for the GoEmotions task (n = 200), with the baseline represented
by dashed lines, for (a) marginal guarantee, (b) PAC guarantee with fixed δ and varying m, and (c)
PAC guarantee with fixed m and varying δ.

Figure 22: Precision-recall curve for the question answering task when fixing m = 4 for the baseline
and our method (CSP).
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