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Abstract

NLP has achieved great progress in the past001
decade through the use of neural models and002
large labeled datasets. The dependence on003
abundant data prevents NLP models from be-004
ing applied to low-resource settings or novel005
tasks where significant time, money, or ex-006
pertise is required to label massive amounts007
of textual data. Recently, data augmentation008
methods have been explored as a means of im-009
proving data efficiency in NLP. To date, there010
has been no systematic empirical overview of011
data augmentation for NLP in the limited la-012
beled data setting, making it difficult to un-013
derstand which methods work in which set-014
tings. In this paper, we provide an empirical015
survey of recent progress on data augmenta-016
tion for NLP in the limited labeled data setting,017
summarizing the landscape of methods (in-018
cluding token-level augmentations, sentence-019
level augmentations, adversarial augmenta-020
tions and hidden-space augmentations) and021
carrying out experiments on 11 datasets cover-022
ing topics/news classification, inference tasks,023
paraphrasing tasks, and single-sentence tasks.024
Based on the results, we draw several conclu-025
sions to help practitioners choose appropriate026
augmentations in different settings and discuss027
the current challenges and future directions for028
limited data learning in NLP.029

1 Introduction030

Deep learning methods have achieved strong per-031

formance on a wide range of supervised learn-032

ing tasks (Sutskever et al., 2014; Deng et al.,033

2013; Minaee et al., 2021). Traditionally, these re-034

sults were attained through the use of large, well-035

labeled datasets. This make them challenging to036

apply in settings where collecting a large amount037

of high-quality labeled data for training is expen-038

sive. Moreover, given the fast-changing nature of039

real-world applications, it is infeasible to relabel040

every example whenever new data comes in. This041

highlights a need for learning algorithms that can 042

be trained with a limited amount of labeled data. 043

There has been a substantial amount of re- 044

search towards learning with limited labeled data 045

for various tasks in the NLP community. One 046

common approach for mitigating the need for la- 047

beled data is data augmentation. Data augmen- 048

tation (Feng et al., 2021) generates new data by 049

modifying existing data points through transfor- 050

mations that are designed based on prior knowl- 051

edge about the problem’s structure (Yang, 2015; 052

Wei and Zou, 2019). This augmented data can 053

be generated from labeled data, and then di- 054

rectly used in supervised learning (Wei and Zou, 055

2019), or in semi-supervised learning for unla- 056

beled data through consistency regularization (Xie 057

et al., 2020) (“consistency training”). While var- 058

ious approaches have been proposed to tackle 059

learning with limited labeled data — including un- 060

supervised pre-training (Peters et al., 2018; De- 061

vlin et al., 2019; Raffel et al., 2020), multi-task 062

learning (Glorot et al., 2011; Liu et al., 2017; Au- 063

genstein et al., 2018), semi-supervised learning 064

(Zhu, 2005; Chapelle et al., 2009; Miyato et al., 065

2017; Xie et al., 2020), and few-shot learning 066

(Deng et al., 2019) — in this work, we focus on 067

and compare different data augmentation meth- 068

ods and their application to supervised and semi- 069

supervised learning. 070

In this survey, we comprehensively review and 071

perform experiments on recent data augmentation 072

techniques developed for various NLP tasks. Our 073

contributions are three-fold: (1) summarize and 074

categorize recent methods in textual data augmen- 075

tation; (2) compare different data augmentation 076

methods through experiments with limited labeled 077

data in supervised and semi-supervised settings 078

on 11 NLP tasks, and (3) discuss current chal- 079

lenges and future directions of data augmentation, 080

as well as learning with limited data in NLP more 081

broadly. Our experimental results allow us to con- 082
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clude that no single augmentation works best for083

every task, but (i) token-level augmentations work084

well for supervised learning, (ii) sentence-level085

augmentation usually works the best for semi-086

supervised learning, and (iii) augmentation meth-087

ods can sometimes hurt performance, even in the088

semi-supervised setting.089

Related Surveys. Recently, several surveys also090

explore the data augmentation techniques for NLP091

(Hedderich et al., 2020; Feng et al., 2021). Hed-092

derich et al. (2020) provide a broad overview of093

techniques for NLP in low resource scenarios and094

briefly cover data augmentation as one of several095

techniques. In contrast, we focus on data augmen-096

tation and provide a more comprehensive review097

on recent data augmentation methods in this work.098

While Feng et al. (2021) also survey task-specific099

data augmentation approaches for NLP, our work100

summarizes recent data augmentation methods in101

a more fine-grained categorization. We also fo-102

cus on their application to learning from limited103

data by providing an empirical study over differ-104

ent augmentation methods on various benchmark105

datasets in both supervised and semi-supervised106

settings, so as to hint data augmentation selections107

in future research.108

2 Data Augmentation for NLP109

Data augmentation increases both the amount (the110

number of data points) and the diversity (the va-111

riety of data) of a given dataset (Cubuk et al.,112

2019). Limited labeled data often leads to over-113

fitting on the training set and data augmentation114

works to alleviate this issue by manipulating data115

either automatically or manually to create addi-116

tional augmented data.Such techniques have been117

widely explored in the computer vision field, with118

methods like geometric/color space transforma-119

tions (Simard et al., 2003; Krizhevsky et al., 2012;120

Taylor and Nitschke, 2018), mixup (Zhang et al.,121

2018), and random erasing (Zhong et al., 2020;122

DeVries and Taylor, 2017). Although the dis-123

crete nature of textual data and its complex syn-124

tactic and semantic structures make finding label-125

preserving transformation more difficult, there126

nevertheless exists a wide range of methods for127

augmenting text data that in practice preserve la-128

bels. In the following subsections, we describe129

four broad classes of data augmentation methods:130

2.1 Token-Level Augmentation 131

Token-level augmentations manipulate words and 132

phrases in a sentence to generate augmented text 133

while ideally retaining the semantic meaning and 134

labels of the original text. 135

Designed Replacement. Intuitively, the seman- 136

tic meaning of a sentence remains unchanged if 137

some of its tokens are replaced with other tokens 138

that have the same meaning. A simple approach 139

is to fetch synonyms as words for substitutions 140

(Kolomiyets et al., 2011; Yang, 2015; Zhang et al., 141

2015a; Wei and Zou, 2019; Miao et al., 2020). The 142

synonyms are discovered based on pre-defined 143

dictionaries such as WordNet (Kolomiyets et al., 144

2011), or similarities in word embedding space 145

(Yang, 2015). However, improvements from this 146

technique are usually minimal (Kolomiyets et al., 147

2011) and in some cases, performance may even 148

degrade (Zhang et al., 2015a). A major draw- 149

back stems from the lack of contextual infor- 150

mation when fetching synonyms—especially for 151

words with multiple meanings and few synonyms. 152

To resolve this, language models (LMs) have been 153

used to replace the sampled words given their con- 154

text (Kolomiyets et al., 2011; Fadaee et al., 2017; 155

Kobayashi, 2018; Kumar et al., 2020). Other work 156

preserves the labels of the text by conditioning on 157

the label when generating the LMs’ predictions 158

(Kobayashi, 2018; Wu et al., 2019a). In addition, 159

different sampling strategies for word replacement 160

have been explored. For example, instead of sam- 161

pling one specific word from candidates by LMs, 162

Gao et al. (2019) propose to compute a weighted 163

average over embeddings of possible words pre- 164

dicted by LMs as the replaced input since the av- 165

eraged representations could augment text with 166

richer information. 167

Random Insertion, Replacement, Deletion and 168

Swapping. While well-designed local modifica- 169

tions can preserve the syntax and semantic mean- 170

ing of a sentence (Niu and Bansal, 2018), random 171

local modifications such as deleting certain tokens 172

(Iyyer et al., 2015; Wei and Zou, 2019; Miao et al., 173

2020), inserting random tokens (Wei and Zou, 174

2019; Miao et al., 2020), replacing non-important 175

tokens with random tokens (Xie et al., 2017, 2020; 176

Niu and Bansal, 2018) or randomly swapping to- 177

kens in one sentence (Artetxe et al., 2018; Lample 178

et al., 2018; Wei and Zou, 2019; Miao et al., 2020) 179

can preserve the meaning in practice. Different 180

kinds of operations can be further combined (Wei 181
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Methods Level Diversity Tasks Related Work

Synonym
replacement Token Low Text classification

Sequence labeling

Kolomiyets et al. (2011), Zhang et al. (2015a),
Yang (2015), Miao et al. (2020),
Wei and Zou (2019)

Word replacement
via LM Token Medium

Text classification
Sequence labeling
Machine translation

Kolomiyets et al. (2011), Gao et al. (2019)
Kobayashi (2018), Wu et al. (2019a)
Fadaee et al. (2017)

Random insertion,
deletion, swapping Token Low

Text classification
Sequence labeling
Machine translation
Dialogue generation

Iyyer et al. (2015), Xie et al. (2017)
Artetxe et al. (2018), Lample et al. (2018)
Xie et al. (2020), Wei and Zou (2019)

Compositional
Augmentation Token High

Semantic Parsing
Sequence labeling
Language modeling
Text generation

Jia and Liang (2016) , Andreas (2020)
Nye et al. (2020), Feng et al. (2020)
Furrer et al. (2020) , Guo et al. (2020)

Paraphrasing Sentence High

Text classification
Machine translation
Question answering
Dialogue generation
Text summarization

Yu et al. (2018), Xie et al. (2020)
Chen et al. (2019), He et al. (2020)
Chen et al. (2020c), Cai et al. (2020)

Conditional
generation Sentence High Text classification

Question answering
Anaby-Tavor et al. (2020), Kumar et al. (2020)
Zhang and Bansal (2019), Yang et al. (2020)

White-box
attack

Token or
Sentence Medium

Text classification
Sequence labeling
Machine translation

Miyato et al. (2017), Ebrahimi et al. (2018b)
Ebrahimi et al. (2018a), Cheng et al. (2019),
Chen et al. (2020d)

Black-box
attack

Token or
Sentence Medium

Text classification
Sequence labeling
Machine translation
Textual entailment
Dialogue generation
Text Summarization

Jia and Liang (2017)
Belinkov and Bisk (2017), Zhao et al. (2017)
Ribeiro et al. (2018), McCoy et al. (2019)
Min et al. (2020), Tan et al. (2020)

Hidden-space
perturbation

Token or
Sentence High

Text classification
Sequence labeling
Speech recognition

Hsu et al. (2017), Hsu et al. (2018)
Wu et al. (2019b), Chen et al. (2021)
Malandrakis et al. (2019), Shen et al. (2020)

Interpolation Token High
Text classification
Sequence labeling
Machine translation

Miao et al. (2020), Chen et al. (2020c)
Cheng et al. (2020b), Chen et al. (2020a)
Guo et al. (2020)

Table 1: Overview of different data augmentation techniques in NLP. Diversity refers to the difference of augmented
data from existing data and the amount of different augmented data could be generated.

and Zou, 2019), where each example is randomly182

augmented with one of insertion, deletion, and183

swapping. These noise-injection methods can effi-184

ciently be applied to training, and show improve-185

ments when they augment simple models trained186

on small training sets. However, the improvements187

might be unstable due to the possibility that ran-188

dom perturbations change the meanings of sen-189

tences (Niu and Bansal, 2018). Also, finetuning190

large pre-trained models on specific tasks might191

attenuate improvements due to preexisting gener-192

alization abilities of the model (Shleifer, 2019).193

Compositional Augmentation. To increase the194

compositional generalization abilities of models,195

recent efforts have also focused on composi-196

tional augmentations (Jia and Liang, 2016; An- 197

dreas, 2020) where different fragments from dif- 198

ferent sentences are re-combined to create aug- 199

mented examples. Compared to random swap- 200

ping, compositional augmentation often requires 201

more carefully-designed rules such as lexical over- 202

lap (Andreas, 2020), neural-symbolic stack ma- 203

chines (Chen et al., 2020e), and neural program 204

synthesis (Nye et al., 2020). With the potential 205

to greatly improve the generalization abilities to 206

out-of-distribution data, compositional augmenta- 207

tion has been utilized in sequence labeling (Guo 208

et al., 2020), semantic parsing (Andreas, 2020; 209

Nye et al., 2020; Furrer et al., 2020), language 210

modeling (Andreas, 2020; Shaw et al., 2020), and 211
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text generation (Feng et al., 2020).212

2.2 Sentence-Level Augmentation213

Instead of modifying tokens, sentence-level aug-214

mentation modifies the entire sentence at once.215

Paraphrasing. Paraphrasing has been widely216

adopted as a data augmentation technique in var-217

ious NLP tasks (Yu et al., 2018; Xie et al., 2020;218

Kumar et al., 2019; He et al., 2020; Chen et al.,219

2020b,c; Cai et al., 2020), as it generally pro-220

vides more diverse augmented text with different221

word choices and sentence structures while pre-222

serving the meaning of the original text. The most223

popular is round-trip translation (Sennrich et al.,224

2015; Edunov et al., 2018), a pipeline which first225

translates sentences into certain intermediate lan-226

guages and then translates them back to gener-227

ate paraphrases. Translating through intermediate228

languages with different vocabulary and linguis-229

tic structures can generate useful paraphrases. To230

ensure the diversity of augmented data, sampling231

and noisy beam search can also be adopted during232

the decoding stage (Edunov et al., 2018). Other233

work focuses on directly training end-to-end mod-234

els to generate paraphrases (Prakash et al., 2016),235

and further augments the decoding phase with syn-236

tactic information (Iyyer et al., 2018; Chen et al.,237

2019), latent variables (Gupta et al., 2017), and238

sub-modular objectives (Kumar et al., 2019).239

Conditional Generation. Conditional generation240

methods generate additional text from a language241

model, conditioned on the label. After training the242

model to generate the original text given the label,243

the model can generate new text (Anaby-Tavor244

et al., 2020; Zhang and Bansal, 2019; Kumar et al.,245

2020; Yang et al., 2020). An extra filtering process246

is often used to ensure high-quality augmented247

data. For example, in text classification, Anaby-248

Tavor et al. (2020) first fine-tune GPT-2 (Radford249

et al., 2019) with the original examples prepended250

with their labels, and then generate augmented ex-251

amples by feeding the fine-tuned model certain252

labels. Only confident examples as judged by a253

baseline classifier trained on the original data are254

kept. Similarly, new answers are generated on the255

basis of given questions in question answering and256

are filtered by customized metrics like question257

answering probability (Zhang and Bansal, 2019)258

and n-gram diversity (Yang et al., 2020). Genera-259

tive models used in this setting have been based on260

conditional VAE (Bowman et al., 2016; Hu et al.,261

2017; Guu et al., 2017; Malandrakis et al., 2019),262

GAN (Iyyer et al., 2018; Xu et al., 2018) or pre- 263

trained language models like GPT-2 (Anaby-Tavor 264

et al., 2020; Kumar et al., 2020). Overall, these 265

conditional generation methods can create novel 266

and diverse data that might be unseen in the origi- 267

nal dataset, but require significant training effort. 268

2.3 Adversarial Data Augmentation 269

Adversarial methods create augmented examples 270

by adding adversarial perturbations to the original 271

data, which dramatically influences the model’s 272

predictions and confidence without changing hu- 273

man judgements. These adversarial examples 274

(Morris et al., 2020; Zeng et al., 2020) could 275

be leveraged in adversarial training (Goodfellow 276

et al., 2015) to increase neural models’ robustness, 277

and can also be utilized as data augmentation to in- 278

crease the models’ generalization ability (Miyato 279

et al., 2017; Cheng et al., 2019).1 280

White-Box methods rely on model architecture 281

and parameters being accessible and create ad- 282

versarial examples directly using a model’s gra- 283

dients. Unlike image pixel values that are contin- 284

uous, textual tokens are discrete and cannot be di- 285

rectly modified based on gradients. To this end, 286

adversarial perturbations are added directly to to- 287

ken embeddings or sentence hidden representa- 288

tions (Miyato et al., 2017; Zhu et al., 2020; Jiang 289

et al., 2019; Chen et al., 2020d) which creates “vir- 290

tual adversarial examples”. Other approaches vec- 291

torize modification operations as the difference of 292

one-hot vectors (Ebrahimi et al., 2018b,a), or find 293

real word neighbors in a model’s hidden represen- 294

tations via its gradients (Cheng et al., 2019). 295

Black-Box methods are usually model-agnostic 296

since they do not require information from a 297

model or its parameters and usually focus on 298

task-specific heuristics for creating adversarial ex- 299

amples. For example, by enumerating feasible 300

substitutions on the basis of word similarity and 301

language models, Ren et al. (2019) and Garg 302

and Ramakrishnan (2020) select adversarial word 303

replacements which severely influence the pre- 304

dictions from the text classification model. To 305

attack reading comprehension systems, Jia and 306

Liang (2017) and Wang and Bansal (2018) in- 307

sert distracting but meaningless sentences at dif- 308

ferent locations in paragraphs and Ribeiro et al. 309

(2018) leverage rule-based paraphrasing to pro- 310

1For more detailed discussion on textual adversarial ex-
amples, please refer to recent comprehensive surveys (Zhang
et al., 2020b; Huq and Pervin, 2020; Goel et al., 2021).
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duce semantically-equivalent adversarial exam-311

ples. Likewise, for multi-hop question answer-312

ing, Jiang and Bansal (2019) insert shortcut rea-313

soning sentences and Trivedi et al. (2020) con-314

structed disconnected reasoning example by re-315

moving certain supporting facts. For NLI, (Mi-316

tra et al., 2020) use VerbNet and other Semantic317

Role Labelling resources to generate pair of sen-318

tences containing same set of words but have dif-319

ferent meaning. For machine translation, Belinkov320

and Bisk (2017) attacks character-based models by321

natural or synthesized typos and Tan et al. (2020)322

further adopt subword morphology level attacks.323

Similar attacks also help dialogue generation (Niu324

and Bansal, 2019) and text summarization (Cheng325

et al., 2020a; Fan et al., 2018). Other methods do326

not rely in editing input text directly; Iyyer et al.327

(2018) leverage round-trip translation to generate328

paraphrases in given syntactic templates and Zhao329

et al. (2017) search for adversarial examples in un-330

derlying semantic space with GANs (Goodfellow331

et al., 2014). Some of these heuristics could be332

further refined to obtain simple adversarial data333

augmentation approaches. For example, McCoy334

et al. (2019) craft adversarial examples for natural335

language inference using sophisticated templates336

which create lexical overlap between the premise337

and the hypothesis to fool the model. Min et al.338

(2020) proposes two simple yet effective adver-339

sarial transformations that reverse the position of340

subject and object or the position of premise and341

hypothesis.342

2.4 Hidden-Space Augmentation343

This line of work generates augmented data by344

manipulating the hidden representations through345

perturbations such as adding noise or perform-346

ing interpolations with other data points. Hidden-347

space perturbations augment existing data by348

adding perturbations to the hidden representations349

of tokens (Miyato et al., 2017; Zhu et al., 2020;350

Jiang et al., 2019; Chen et al., 2020d; Shen et al.,351

2020; Chen et al., 2021) or sentences (Hsu et al.,352

2018; Wu et al., 2019b; Malandrakis et al., 2019).353

Interpolation-Based Methods. Interpolation-354

based methods create new examples and labels by355

linear combinations of existing data-label pairs.356

Given two data-label pairs, virtual data-label pairs357

are created through linear interpolations of the pair358

of data points. Such interpolation-based methods359

can generate infinite augmented data in the “vir-360

tual vicinity” of the original data space, thus im-361

proving the generalization performance of mod- 362

els. Interpolation-based methods were first ex- 363

plored in computer vision (Zhang et al., 2018), and 364

have more recently been generalized to the text do- 365

main (Miao et al., 2020; Chen et al., 2020c; Cheng 366

et al., 2020b; Chen et al., 2020a) by performing in- 367

terpolation between original data and token-level 368

augmented data in the output space (Miao et al., 369

2020), between original data and adversarial data 370

in embedding space (Cheng et al., 2020b), or be- 371

tween different training examples in general hid- 372

den space (Chen et al., 2020c). Different strategies 373

to select samples to mix have also been explored 374

(Chen et al., 2020a; Guo et al., 2020; Zhang et al., 375

2020a) such as k-nearest-neighbours (Chen et al., 376

2020a) or sentence composition (Guo et al., 2020). 377

We summarize the preceding overview of recent 378

widely-used data augmentation methods in Table 379

1, characterizing them with respect to augmenta- 380

tion levels, the diversity of generated data, and 381

their applicable tasks. 382

3 Consistency Training with DA 383

While data augmentation (DA) can be applied in 384

the supervised setting to produce better results 385

when only a small labeled training dataset is avail- 386

able, data augmentation is also commonly used in 387

semi-supervised learning (SSL). SSL is an alter- 388

native approach for learning from limited data that 389

provides a framework for taking advantage of un- 390

labeled data. Specifically, SSL assumes that our 391

training set comprises labeled examples in addi- 392

tion to unlabeled examples drawn from the same 393

distribution. Currently, one of the most common 394

methods for performing SSL with deep neural net- 395

works is “consistency regularization” (Bachman 396

et al., 2014; Tarvainen and Valpola, 2017). Consis- 397

tency regularization-based SSL (or “consistency 398

training” for short) regularizes a model by en- 399

forcing that its output doesn’t change significantly 400

when the input is perturbed. In practice, the input 401

is perturbed by applying data augmentation, and 402

consistency is enforced through a loss term that 403

measures the difference between the model’s pre- 404

dictions on a clean input and a corresponding per- 405

turbed version of the same input. 406

Formally, let fθ be a model with parameters θ, 407

fθ̂ be a fixed copy of the model where no gradients 408

are allowed to flow, xl be a labeled datapoint with 409

label y, xu be an unlabeled datapoint, and α(x) be 410

a data augmentation method. Then, a typical loss 411
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Methods Types News Classification Topic Classification

AG News 20 Newsgroup Yahoo Answers PubMed

None - 78.8(8.9) 65.2(4.8) 56.6(9.4) 63.7(6.1)/49.3(3.9)

SR 79.4(5.9) 66.1(2.5) 56.0(10.1) 62.4(5.7)/48.3(3.9)
LM

Token

76.8(5.1) 60.0(14.4) 56.2(8.4) 60.9(3.0)/47.4(2.5)

Su
pe

rv
is

ed RI 79.5(4.9) 66.6(0.6) 57.3(12.0) 63.7(4.2)/49.4(2.1)
RD 79.6(5.0) 66.8(3.0) 58.0(8.3) 63.4(5.0)/49.3(1.5)
RS 79.5(5.3) 64.8(10.8) 57.1(10.3) 63.8(7.4)/49.5(3.3)
WR 79.7(2.0) 67.5(4.2) 59.3(8.9) 64.9(4.9)/49.4(2.5)

RT Sentence 80.1(4.3) 65.1(7.9) 57.1(9.6) 60.2(5.1)/46.3(6.4)

ADV
Hidden

78.2 (5.3) 65.5(1.6) 53.8(4.89) 37.4(2.6)/19.9(10.6)
Cutoff 79.3(5.0) 66.6(1.4) 57.3(9.3) 60.5(8.3)/46.6(9.4)
Mixup 80.0 (6.52) 65.9(3.1) 57.8(4.19) 51.4(19.3)/39.8(3.2)

SR

Token

69.6(29.3) 65.7(1.8) 51.4(9.4) 59.3(5.9)/43.1(11.9)

Se
m

iS
up

er
vi

se
d LM 68.5(13.7) 68.3(2.1) 53.2(6.3) 61.5(6.6)/46.4(4.4)

RI 65.8(5.5) 66.7(1.1) 50.5(3.2) 61.4(11.3)/44.4(17.4)
RD 73.2(14.0) 66.1(3.3) 51.5(7.5) 59.3(7.1)/46.0(3.8)
RS 71.6(16.6) 65.0(2.0) 51.1(7.1) 64.2(12.1)/46.7(11.5)
WR 74.1(12.3) 69.3(2.5) 55.6(5.9) 60.4(7.5)/43.7(14.2)

RT Sentence 82.1(8.2) 68.8(2.4) 59.8(3.9) 64.3(1.2)/49.8(1.9)

ADV Hidden 82.3(2.33) 66.8(5.9) 55.9(3.89) 62.2(10.8)/46.2(9.8)
Cutoff 79.9(5.5) 67.9(0.8) 60.1(1.0) 62.7(9.0)/48.1(3.2)

Table 2: Topic Classification and News Classification results with 10 examples. We report the average results across 3 different
random seeds with the 95% confidence interval and bold the best results.. For PubMed, we report the accuracy and F1 score.

function for consistency training is412

CE(fθ(xl), y) + λuCE(fθ̂(xu), fθ(α(xu)))413

where CE is the cross entropy loss and λu414

is a tunable hyperparameter that determines the415

weight of the consistency regularization term. In416

practice, various other measures have been used417

to minimize the difference between fθ̂(xu) and418

fθ(α(xu)), such as the KL divergence (Miyato419

et al., 2018; Xie et al., 2020) and the mean-squared420

error (Tarvainen and Valpola, 2017; Laine and421

Aila, 2017; Berthelot et al., 2019). Because gra-422

dients are not allowed to flow through the model423

when it was fed the clean unlabeled input xu, this424

objective can be viewed as using the clean unla-425

beled datapoint to generate a synthetic target dis-426

tribution for the augmented unlabeled datapoint.427

We refer the reader the Appendix for more details.428

4 Empirical Experiments429

4.1 Datasets and Experiment Setup430

To provide a quantitative comparison of the DA431

methods we have surveyed, we experiment with 10432

of the most commonly used and model-agnostic433

augmentation techniques from different levels in 434

Table 1, including: (i) Token-level augmenta- 435

tion: Synonym Replacement (SR) (Kolomiyets 436

et al., 2011; Yang, 2015), Word Replacement 437

based on Language Model (LM (Kumar et al., 438

2020), Random Insertion (RI) (Wei and Zou, 439

2019; Miao et al., 2020), Random Deletion (RD) 440

(Wei and Zou, 2019), Random Swapping (RS) 441

(Wei and Zou, 2019), and Word Replacement 442

(WR) based on TF-IDF in Vocabulary Set (Xie 443

et al., 2020); (ii) Sentence-level augmentation: 444

Roundtrip Translation (RT) (Xie et al., 2020; 445

Chen et al., 2020c); (iii) Hidden-space Augmen- 446

tation: Adversarial training (ADV) (Goodfellow 447

et al., 2015), Cutoff (Shen et al., 2020), and 448

Mixup in the embedding space (Zhang et al., 449

2018). Most aforementioned techniques are not 450

label-dependent (except mixup), thus can be ap- 451

plied directly to unlabeled data. 452

We test them on different types of benchmark 453

datasets including: (i) news classification tasks in- 454

cluding AG News (Zhang et al., 2015b) and 20 455

Newsgroup (Joachims, 1997); (ii) topic classifica- 456

tion tasks including Yahoo Answers (Chang et al., 457

2008) and PubMed news classification ((Zhang 458
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Methods Types Inference Paraphrase Single Sentence

MNLI QNLI RTE QQP MRPC SST-2 CoLA

None - 35.2(0.7) 51.8(7.0) 49.8(3.1) 63.9(9.1) 61.8(21.2) 60.5(13.1) 12.9(6.32)

SR

Token

35.1(2.3) 51.4(7.2) 51.5(3.4) 61.3(9.7) 59.7(26.3) 62.1(17.4) 7.2(11.6)
LM 35.3(0.8) 51.0(8.0) 49.0(1.4) 62.4(11) 61.0(24.3) 62.8(9.8) 6.8(15.8)

Su
pe

rv
is

ed RI 34.9(2.6) 51.5(8.4) 51.5(1.4) 60.6(10.9) 60.6(25.0) 63.3(12.2) 7.8(7.42)
RD 35.5(2.1) 51.1(8.4) 50.9(2.4) 62.4(11.3) 61.2(22.0) 59.7(18.4) 7.1(16.6)
RS 35.1(1.1) 51.5(7.0) 50.9(5.0) 62.6(6.7) 63.2(22.5) 61.2(10.8) 5.2(17.0)
WR 34.5(2.6) 52.0(3.8) 50.0(0.9) 60.6(10.2) 61.0(25.3) 61.8(12.5) 7.0(10.6)

RT Sentence 35.3(0.5) 51.1(9.6) 50.8(4.4) 60.5(17.8) 61.8(23.7) 62.0(1.99) 8.37(8.35)

ADV
Hidden

33.3(4.7) 49.7(1.8) 48.3(12.1) 57.5(24.7) 61.5(21.5) 53.3(13.07) 1.37(4.66)
Cutoff 35.1(2.3) 51.4(8.3) 52.2(3.6) 62.6(8.8) 61.0(21.2) 63.5(8.45) 12.4(9.58)
Mixup 32.6(3.5) 49.9(1.4) 49.8(9.2) 63.0(0.3) 62.1(19.8) 62.3(12.3) 4.03(8.68)

SR

Token

35.6(1.0) 52.1(4.5) 52.9(5.4) 53.5(10.7) 68.1(4.0) 61.8(37.9) 6.65(5.69)

Se
m

i-S
up

er
vi

se
d LM 35.0(3.3) 52.5(4.2) 50.2(6.5) 47.9(34.1) 68.4(3.8) 57.3(14.2) 6.38(6.3)

RI 35.8(1.7) 52.1(4.1) 50.7(1.4) 59.6(5.1) 64.9(8.9) 58.3(14.8) 6.55(0.91)
RD 35.2(0.5) 52.1(5.2) 52.6(4.9) 56.1(16.0) 62.4(30.6) 55.7(16.4) 4.33(10.9)
RS 34.6(2.5) 52.1(6.2) 51.5(3.7) 49.8(7.9) 63.2(22.5) 55.2(15.3) 7.77(11.77)
WR 34.8(2.5) 52.1(4.1) 50.9(1.8) 51.8(16.0) 63.1(23.5) 54.8(13.8) 5.43(17.8)

RT Sentence 35.3(2.7) 52.7(4.8) 51.6(4.1) 63.9(7.5) 62.2(12.5) 61.9(20.8) 11.6(14.5)

ADV Hidden 36.2(8.9) 50.6(1.9) 50.9(6.8) 59.1(14.7) 63.9(9.1) 53.1(5.0) 7.64(25.1)
Cutoff 35.3(2.8) 52.5(4.3) 51.7(6.5) 62.9(9.9) 68.6(4.4) 54.3(9.8) 4.11(11.8)

Table 3: GLUE results with 10 labeled examples per class. We report the average results across 3 different random seeds with
the 95% confidence interval and bold the best results.

et al., 2015b) (iii) inference tasks including MNLI,459

QNLI and RTE (Wang et al., 2018); (iv) similarity460

and paraphrase tasks including QQP and MRPC461

(Wang et al., 2018); and (v) single-sentence tasks462

including SST-2 and CoLA (Wang et al., 2018).463

For all datasets, we experiment with 10 labeled464

data points per class 2 in a supervised setup, and465

an additional 5000 unlabeled data points per class466

in the semi-supervised setup. The detailed experi-467

mental setup is described in the Appendix.468

4.2 Results469

News/Topic Classification Tasks. The results are470

shown in Table 2. We observe that in supervised471

settings, token-level augmentations work the best.472

Specifically, word replacement works well, getting473

the highest or second highest score every time; in474

the semi-supervised settings, sentence level aug-475

mentations (round-trip translation) works the best,476

getting the highest or second highest score every477

time. This makes sense since for many classifica-478

tion tasks, multiple words indicate the label, and479

so dropping several words will not affect the label.480

Inference Tasks. As shown in Table 3, we ob-481

serve that token-level augmentations work the best482

overall (e.g., random insertion, random deletion,483

2The results for 100 labeled data points per class are
shown in the Appendix.

and word replacement) for both supervised and 484

semi-supervised settings. This is a bit surprising 485

since the inference tasks usually heavily depend 486

on several words, and changing these words can 487

easily change the label for inferene tasks. 488

Similarity and Paraphrase Tasks. From Table 3, 489

in the supervised settings, we observe that token- 490

level augmentations (random swapping) achieve 491

the best performances, while hidden space aug- 492

mentations work well in semi-supervised settings, 493

with cutoff performing the best on average. This 494

makes sense since for paraphrasing tasks, aug- 495

menting the text usually consists of paraphrases, 496

and so can easily change whether two texts are 497

paraphrases of each other. 498

Single Sentence Tasks. Based on the single- 499

sentence tasks results in Table 3, hidden space 500

augmentations (cutoff) provides the biggest boost 501

in performance in supervised settings, while in 502

semi-supervised settings, sentence level augmen- 503

tations (roundtrip translation) works best. We note 504

most augmentation methods hurt performance on 505

CoLA, a task for judging grammatical acceptabil- 506

ity. This could be caused by the fact that most 507

of augmentation methods try to preserve meaning 508

and not grammatical correctness. 509

Overall, no single augmentation works the 510

best for every task in the supervised or semi- 511
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supervised setting. However, several overall con-512

clusions can be made: first, augmentation does not513

always improve performance, and can sometimes514

hurt performances, even in the semi-supervised515

setting. This suggests that we may need to design516

different augmentations for different tasks. Sec-517

ond, token-level augmentations (especially word518

replacement and random swapping) work well in519

general for supervised learning, especially when520

there is extremely limited labeled data. Third,521

round-trip translation usually works the best for522

semi-supervised learning, showing the most con-523

sistent gains. However, if the computation is lim-524

ited, cutoff may be a better choice.525

5 Other Limited Data Learning Methods526

This work mainly focuses on data augmentation527

and semi-supervised learning (consistency regu-528

larization) in NLP; however, there are other or-529

thogonal directions for tackling the problem of530

learning with limited data. For completeness, we531

summarize this related work below.532

Low-Resourced Languages. Most languages533

lack large monolingual or parallel corpora, or suf-534

ficient manually-crafted linguistic resources for535

building statistical NLP applications (Garrette and536

Baldridge, 2013). Researchers have therefore537

developed a variety of methods for improving538

performance on low-resource languages, includ-539

ing cross-lingual transfer learning which trans-540

fers models from resource-rich to resource-poor541

languages (Do and Gaspers, 2019; Lee and Lee,542

2019; Schuster et al., 2019), few/zero-shot learn-543

ing (Johnson et al., 2017; Blissett and Ji, 2019;544

Pham et al., 2019; Abad et al., 2020) which uses545

only a few examples from the low-resource do-546

main to adapt models trained in another domain,547

and polyglot learning (Cotterell and Heigold,548

2017; Tsvetkov et al., 2016; Mulcaire et al.,549

2019; Lample and Conneau, 2019) which com-550

bines resource-rich and resource-poor learning us-551

ing an universal language representation.552

Few-shot Learning. Few-shot learning is a broad553

technique for dealing with tasks with less labeled554

data based on prior knowledge. Compared to555

semi-supervised learning which utilizes unlabeled556

data as additional information, few-shot learning557

leverages various kinds of prior knowledge such558

as pre-trained models or supervised data from559

other domains and modalities (Wang et al., 2020).560

While most work on few-shot focuses on com-561

puter vision, few-shot learning has recently seen 562

increasing adoption in NLP (Han et al., 2018; Rios 563

and Kavuluru, 2018; Hu et al., 2018; Herbelot and 564

Baroni, 2017). To better leverage pre-trained mod- 565

els, PET (Schick and Schütze, 2021a,b) finetune 566

models using masked language modeling by con- 567

verting the text and label into a fluent sentence, 568

outperforming GPT3 for few shot learning (Brown 569

et al., 2020). 570

6 Discussion and Future Directions 571

In this work, we empirically surveyed data aug- 572

mentation methods for limited-data learning in 573

NLP and compared them on 11 different NLP 574

tasks. Despite the success, there are still certain 575

challenges that need to be tackled for improve 576

their performance. This section highlights some 577

of these challenges and discusses future research 578

directions. 579

Theoretical Guarantees and Data Distribution 580

Shift. Current data augmentation methods for 581

text typically assume that they are label-preserving 582

and will not change the data distribution. How- 583

ever, these assumptions are often not true in prac- 584

tice, which can result in noisy labels or a shift 585

in the data distribution and consequently a de- 586

crease in performance or generalization (e.g., QQP 587

in Table 3). Thus, providing theoretical guaran- 588

tees that augmentations are label- and distribution- 589

preserving under certain conditions would ensure 590

the quality of augmented data and further acceler- 591

ate the progress of this field. 592

Automatic Data Augmentation. Despite being 593

effective, current data augmentation methods are 594

generally manually-designed. Methods for auto- 595

matically selecting the appropriate types of data 596

augmentation still remain under-investigated. Al- 597

though certain augmentation techniques have been 598

shown effective for a particular task or dataset, 599

they often do not transfer well to other datasets 600

or tasks (Cubuk et al., 2019), as shown in Ta- 601

ble 3. For example, paraphrasing works well for 602

general text classification tasks, but may fail for 603

some subtle scenarios like classifying bias because 604

paraphrasing might change the label in this set- 605

ting. Automatically learning data augmentation 606

strategies or searching for an optimal augmenta- 607

tion policy for given datasets/tasks/models could 608

enhance the generalizability of data augmentation 609

techniques (Maharana and Bansal, 2020; Hu et al., 610

2019). 611
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Xiaojin Jerry Zhu. 2005. Semi-supervised learning1392
literature survey. Technical report, University of1393
Wisconsin-Madison Department of Computer Sci-1394
ences.1395

A Consistency Training with DA1396

Xie et al. (2020) showed that consistency train-1397

ing can be effectively applied to semi-supervised1398

learning for NLP. To achieve stronger results, they1399

introduce several other tricks including confidence1400

thresholding, training signal annealing, and en-1401

tropy minimization. Confidence thresholding ap-1402

plies the unsupervised loss only when the model1403

assigns a class probability above a pre-defined1404

threshold. Training signal annealing prevents the1405

model from overfitting on easy examples by ap-1406

plying the supervised loss only when the model1407

is less confident about predictions. Entropy min-1408

imization trains the model to output low-entropy1409

(highly-confident) predictions when fed unlabeled1410

data. We refer the reader to (Xie et al., 2020) for1411

more details on these tricks.1412

B Experimental Setup1413

We use BERTbase (Devlin et al., 2019) as the1414

base language model and use the same hyper-1415

parameters across all datasets/methods. We utilize1416

accuracy as the evaluation metric for all datasets1417

except for CoLA (which uses Matthews corre-1418

lation) and PubMed (which uses accuracy and1419

Macro-F1 score). Because the performance can be1420

heavily dependent on the specific datapoints cho-1421

sen (Sohn et al., 2020), for each dataset, we sam-1422

ple labeled data from the original dataset with 31423

different seeds to form different training sets, and1424

report the average result. For every setup, we fine-1425

tune the model with the same seed as the dataset1426

seed (in contrast to many works which report the1427

max across different seeds).1428

We train our models on NVIDIA 2080ti and1429

NVIDIA V-100 gpus. Supervised experiments1430

take 20 minutes, and semi-supervised experiments1431

take two hours. The BERT-base model has 100M1432

parameters. We use the same hyperaparameter1433

across all datasets, and so only use the validation1434

set to find the best model checkpoint. We use a1435

learning rate of 2e−5, batch size of 16, ratio of un-1436

labeled to labeled data of 3, and dropout ratio of1437

0.1 for different augmentation methods.1438

C Results for 100 Labeled Data per Class 1439

News/Topic Classification Tasks The results 1440

are shown in Table 4. We observe that overall, in 1441

both the supervised settings and semi-supervised 1442

setting, all the methods perofrmly similarly, with 1443

2 points of each other. This indicates that data aug- 1444

mentation methods work well with limited labeled 1445

data, and with more labeled data, its effectiveness 1446

is removed. 1447

Inference Tasks As shown in Table 5, we ob- 1448

serve that most augmentation methods hurt the 1449

performance in both the supervised and semi- 1450

supervised setting, with a greater drop in perfor- 1451

mance in the semi-supervised setting. 1452

Similarity and Paraphrase Tasks Similar to 1453

inference tasks, we observe in Table 5 that most 1454

augmentation methods hurt the performance in 1455

both the supervised and semi-supervised setting, 1456

with a greater drop in performance in the semi- 1457

supervised setting. 1458

Single Sentence Tasks Unlike inference tasks 1459

and paraphrase tasks, augmentations methods 1460

help performance, as seen in Table 5, except for 1461

CoLA. We hypothesize the reason is because most 1462

augmentatiom methods seek to preserves mean- 1463

ing, not grammatical correctness, which is what 1464

CoLA measures. In the supervised and semi- 1465

supervised setting, hidden level augmentations 1466

work well, with cutoff performing the best. 1467

D Case Study 1468

We analyze several data augmentation methods 1469

and check whether the label is preserved for these 1470

and if this affects its performance. We look at 25 1471

examples for the best performing data augmenta- 1472

tion method and the worst performing data aug- 1473

mentation method for 20 News Group and RTE. 1474

For 20 News Group, Random Deletion was the 1475

best performing, and Language Model was the 1476

worst performing. In both cases, there were no 1477

examples where the label flipped, which makes 1478

sense since the input is usually several paragraphs 1479

with multiple references to the topic. Several ex- 1480

amples are shown in Appendix. For RTE, Lan- 1481

guage Model was the worst performing and Cut- 1482

off was the best performing augmentation. Lan- 1483

guage Model flipped 24% of the labels with 4% 1484

uncertain, while Cutoff flipped 4% of the labels 1485
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Methods Types News Classification Topic Classification

- AG News 20 Newsgroup Yahoo Answers PubMed

None - 87.9(1.05) 79.5(0.3) 68.6(0.71) 75.2(1.5)/59.5(2.0)

SR 88.5(0.87) 80.0(2.2) 69.7(1.62) 76.5(1.0)/60.7(0.7)
LM

Token

88.1(1.00) 80.5(1.8) 68.8(3.2) 75.8(2.5)/59.9(1.7)

Su
pe

rv
is

ed RI 88.0(2.08) 80.1(3.1) 69.1(1.68) 76.2(2.9)/60.3(1.7)
RD 88.1(0.84) 80.2(2.9) 68.7(2.2) 76.9(0.6)/60.9(0.6)
RS 88.4(0.97) 79.5(2.1) 69.0(2.03) 76.6(0.2)/60.6(0.7)
WR 87.9(1.19) 79.3(2.5) 69.4(5.89) 76.4(1.8)/60.4(1.6)

RT Sentence 88.3(0.17) 80.4(0.7) 68.8(1.88) 76.1(0.5)/60.3(0.5)

ADV
Hidden

87.6(0.33) 78.5(1.4) 67.4(0.74) 75.6(4.0)/59.8(3.5)
Cutoff 88.3(0.38) 79.8(1.0) 68.7(0.47) 75.9(1.3)/60.1(0.7)
Mixup 88.6(1.31) 80.5(3.4) 68.27(1.76) 74.8(1.8)/59.2(0.2)

SR

Token

88.8(0.95) 81.2(8.4) 68.8(1.3) 76.6(1.5)/60.7(1.8)

Se
m

iS
up

er
vi

se
d LM 88.4(1.87) 81.4(1.0) 68.8(1.8) 76.4(1.3)/60.4(0.7)

RI 88.4(1.45) 80.3(3.0) 68.4(2.64) 76.8(1.2)/60.7(1.1)
RD 88.7(0.5) 80.5(0.8) 68.8(1.66) 77.1(1.0)/61.2(1.5)
RS 88.5(1.35) 80.9(2.2) 68.7(1.67) 76.9(1.7)/61.0(1.5)
WR 87.7(1.35) 81.5(1.3) 68.7(1.2) 76.5(0.5)/60.6(1.0)
RT Sentence 88.7(0.40) 81.7(1.0) 69.7(1.06) 77.0(1.2)/61.6(1.1)

ADV
Hidden

88.0(1.04) 80.4(2.9) 68.9(1.74) 76.7(1.5)/60.9(1.2)
Cutoff 88.9(0.25) 81.3(4.6) 69.3(1.76) 76.7(2.1)/60.7(3.1)

Table 4: Topic Classification and News Classification results with 100 examples. We report the average results across 3
different random seeds with the 95% confidence interval and bold the best results.. For PubMed, we report the accuracy and
F1 score.

with 12% uncertain. We show several examples of1486

when the label flipped for RTE in the Table 6.1487
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Methods Types Inference Paraphrase Single Sentence

MNLI QNLI RTE QQP MRPC SST-2 CoLA

None - 45.0(6.9) 63.2(10.7) 59.9(3.1) 71.0(2.6) 68.1(7.4) 82.7(4.0) 28.7(9.5)

SR

Token

44.6(7.2) 62.9(9.4) 61.0(10.0) 68.9(2.2) 66.7(4.4) 84.0(1.9) 24.6(5.1)
LM 45.4(6.2) 60.6(7.7) 61.5(9.1) 69.6(1.7) 67.2(2.8) 83.8(3.1) 18.5(9.7)

Su
pe

rv
is

ed RI 45.8(7.5) 64.2(10.7) 60.0(11.3) 69.2(0.6) 69.1(4.8) 84.3(1.4) 27.3(19.9)
RD 43.7(8.4) 63.6(9.4) 59.2(9.0) 69.2(1.5) 69.2(5.5) 82.3(2.05) 20.2(21.5)
RS 42.4(6.2) 63.3(9.1) 57.8(11.9) 68.3(1.6) 69.0(3.4) 82.5(5.0) 24.3(20.8)
WR 44.6(6.3) 61.6(8.8) 57.8(9.3) 66.7(1.8) 66.9(6.4) 83.5(1.9) 17.7(23.3)

RT Sentence 44.8(7.8) 59.0(7.6) 60.4(5.7) 69.9(4.0) 69.6(1.6) 84.3(3.27) 19.2(7.63)

ADV
Hidden

39.1(10.9) 50.1(3.1) 57.3(8.7) 63.7(1.9) 68.7 (6.3) 69.8(5.3) 16.5(9.2)
Cutoff 44.9(5.5) 63.0(10.2) 59.3(8.8) 69.9(0.7) 66.5(1.3) 84.7(0.9) 26.0(16.3)
Mixup 35.7(7.3) 51.4(4.4) 60.5(6.52) 64.5(5.4) 67.9 (7.1) 83.5(3.4) 20.1(18.8)

SR

Token

42.9(7.3) 60.1(6.2) 58.5(9.7) 65.0(6.0) 67.6(3.1) 85.1(3.5) 18.9(6.7)

Se
m

i-S
up

er
vi

se
d LM 43.7(4.5) 60.9(10.4) 56.9(8.3) 59.3(12.0) 70.0(4.4) 83.9(4.1) 21.7(6.8)

RI 44.7(4.6) 62.5(10.5) 56.0(6.3) 68.3(0.1) 67.0(3.9) 84.2(3.0) 23.0(10.3)
RD 41.4(2.9) 59.4(6.4) 56(0.0) 69.3(2.8) 70.4(7.4) 83.6(2.3) 13.1(6.1)
RS 40.3(2.0) 60.3(8.7) 56.4(11.6) 66.8(2.3) 69.0(3.4) 84.5(3.6) 19.4(2.7)
WR 43.9(3.1) 60.5(8.8) 56.3(7.1) 65.4(4.3) 67.2(2.1) 83.3(4.5) 16.9(6.2)

RT Sentence 45.4(7.7) 63.8(5.0) 59.9(9.1) 68.3(2.9) 67.5(0.7) 83.9(1.7) 20.4(3.6)

ADV Hidden 44.1(3.4) 58.1(4.0) 58.6(5.2) 63.0(10.8) 67.6(5.2) 80.0(7.3) 13.5(7.8)
Cutoff 42.7(4.2) 60.3(7.4) 57.9(12.6) 67.2(4.4) 71.4(2.0) 82.5(5.4) 23.9(2.7)

Table 5: GLUE results with 100 labeled examples per class. We report the average results across 3 different random seeds
with the 95% confidence interval and bold the best results.
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Original Cutoff (Best) Language Model (Worst)

Sentence 1: The Walt Dis-
ney Co. donated one of the
world’s most significant private
collections of African artwork,
yesterday, to the Smithsonian’s
National Museum of African
Art.

Sentence 1: The Walt Dis-
ney Co. donated one of the
world’s most significant private
collections of African artwork,
yesterday, to the Smithsonian’s
National Museum of African
one

Sentence 1: The Walt Disney
Co. donated one of the world’s
most significant private collec-
tions of African artwork [PAD]
[PAD] [PAD] to the Smith-
sonian’s National Museum of
African Art.

Sentence 2: Disney gave the
Smithsonian a trove of sought-
after African art.

Sentence 2: Disney gave the
Smithsonian a trove of south
African art.

Sentence 2: Disney gave the
Smithsonian a trove of [PAD]
African art.

Entailment Entailment Not Entailment

Sentence 1: An explosion, fol-
lowed by a raging fire, demol-
ished a plastics factory, killing
at least three people and injur-
ing at least 37.

Sentence 1: An explosion, fol-
lowed by a raging fire, demol-
ished a the factory, killing at
least three people and injuring
at least 37.

Sentence 1: An explosion, fol-
lowed by [PAD] [PAD] fire,
demolished a plastics factory,
killing at least three people and
injuring at least 37.

Sentence 2: A massive blast at
a plastics factory killed at least
two people.

Sentence 2: A massive blast at
a plastics factory killed at shot
two people.

Sentence 2: A massive blast at
a plastics [PAD] killed at least
two people.

Entailment Entailment Not Entailment

Sentence 1: The prize is named
after Alfred Nobel, a pacifist
and entrepreneur who invented
dynamite in 1866. Nobel left
much of his wealth to estab-
lish the award, which has hon-
oured achievements in physics,
chemistry, medicine, literature
and efforts to promote peace
since 1901.

Setence 1: The prize is named
after Alfred Nobel, a pacifist
and entrepreneur who invented
dynamite in 1866. Nobel left
much of his wealth to estab-
lish the nobel which has hon-
oured achievements in physics,
chemistry, medicine, literature
and efforts to promote peace
since 1901.

The prize is named after Al-
fred Nobel, a pacifist and en-
trepreneur who invented dyna-
mite in 1866 . Nobel left much
of his wealth [PAD] [PAD]
[PAD] [PAD], which has hon-
oured achievements in physics,
chemistry, medicine, literature
and efforts to promote peace
since 1901.

Sentence 2: Alfred Nobel in-
vented dynamite in 1866.

Sentence 2: Alfred Nobel in-
vented dynamite in 1866.

Sentence 2: Alfred Nobel in-
vented dynamite in 1866.

Entailment Entailment Not Entailment

Table 6: Examples of different data augmentation methods on RTE and whether they preserve the original label or
not
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