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We study a distributed Principal Component Analysis (PCA) framework where
each worker targets a distinct eigenvector and refines its solution by updating from
intermediate solutions provided by peers deemed as “superior”. Drawing intu-
ition from the deflation method in centralized eigenvalue problems, our approach
breaks the sequential dependency in the deflation steps and allows asynchronous
updates of workers, while incurring only a small communication cost. To our
knowledge, a gap in the literature – the theoretical underpinning of such distributed,
dynamic interactions among workers – has remained unaddressed. This paper offers
a theoretical analysis explaining why, how, and when these intermediate, hierar-
chical updates lead to practical and provable convergence in distributed environ-
ments. Despite being a theoretical work, our prototype implementation demon-
strates that such a distributed PCA algorithm converges effectively and in scal-
able way: through experiments, our proposed framework offers comparable per-
formance to EigenGame-µ, the state-of-the-art model-parallel PCA solver.

1. Introduction
Currently, datasets have gotten large, encompassing billions, if not trillions, of entries spanning
various domains [1–10]. This scale advanced various distributed optimization protocols, such as
federated learning [11], and, notably, the development of multiple distributed ML software pack-
ages [12, 13]. Specialized frameworks such as Ray [14], Spark [15], Hadoop [16], and JAX [17] have
become popular due to their ability to speed computations significantly.
However, at the algorithmic level, most distributed implementations simulate the behavior of the
centralized versions of the underlying algorithms. That is, how distributed algorithms navigate the
parameter landscape is often designed such that we achieve a similar outcome as if data is available
in one location. There are a few key reasons for this:
• Mathematical Understanding: When there is sufficient theoretical understanding of the central-

ized version, it is often a desired goal to attain the same result by designing algorithms to emulate
the centralized counterparts. This ensures consistency and theoretical understanding.

• Algorithm Simplicity: Since centralized algorithms are better understood, distributed variants
that replicate the algorithms’ outcomes enjoy the same simplicity and interpretation.

• Benchmarking: By simulating the centralized execution, comparing the accuracy and conver-
gence properties of the distributed implementation in practice becomes easier.

Yet, precisely simulating centralized algorithms in a distributed fashion could pose some challenges.
Take as a characteristic feature the notion of synchrony in distributed implementations, as this leads
to training dynamics closer to centralized training. Synchronization among workers means proper
orchestration [18, 19]: Synchronized implementations thatwait for someor allworkers to finish each
iteration before proceeding can suffer from stragglers and load imbalance [20, 21]. Yet, while asyn-
chronous motions seem like a favorable alternative, developing an asynchronous learning method
is often complicated [22–24], set aside the lack of theoretical understanding in many cases.
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This work addresses a fundamental question in distributed systems: whether and how to or-
chestrate workers, by focusing on a specific problem - Principal Component Analysis (PCA) [25–
32]. While PCA is conceptually straightforward, developing efficient distributed implementations
remains an active research challenge, recently reinvigorated by the introduction of EigenGame
[33, 34]. EigenGame departs from traditional data-parallel approaches to distributed PCA, where
each worker processes a portion of the data or covariance matrix. Instead, it introduces a model-
parallel framework inspired by game theory, where each worker computes specific principal com-
ponents. This novel approach enables PCA computation on massive datasets, as demonstrated
with the Meena conversation model and ResNet-200 [35] activations on ImageNet [36]. However,
EigenGame’s theoretical guarantees rely on a strict hierarchical structure: each worker handles ex-
actly one component and must wait for the convergence of higher-priority principal components
(those with larger eigenvalues) before proceeding. While effective, this hierarchical dependency
has theoretical limitations, as the impact of approximation errors in higher-ranked eigencompo-
nents on subsequent calculations remains uncharacterized in [33].
Our approach and contributions. This work advances model-parallel distributed PCA by building
upon the collaborative computation framework introduced by [33, 34]. Our approach proposes a
provable parallel computation of principal components without imposing strict sequential depen-
dencies among workers. Our primary contributions are:
• We introduce a distributed PCA framework that fundamentally transforms computational dy-

namics. Different from traditional sequential computational model, Our approach enables mul-
tiple workers to compute distinct principal components in parallel.

• In cases where the covariance is unknown or cannot be efficiently estimated, our algorithm can
be modified to accommodate data that comes in mini-batches.

• We provide theory that validates the convergence properties of our proposed algorithm. By for-
malizing the interaction between parallel computations and convergence rates, we establish a
theoretical benchmark for distributed PCA algorithms. This contribution underscores our algo-
rithm’s efficiency and enhances the understanding of parallel deflation processes in PCA.

• Through experiments, we demonstrate the practical efficacy of our algorithm. Our approach
meets the performance of existing algorithms on datasets as large as ImageNet [36], justifying
our theory and highlighting the applicability of our method.

1.1. Related Works
Eigenvector-based approaches. PCA has been fundamental to statistical data analysis since its in-
troduction by Pearson in 1901 [cite]. Themethodwas later formalizedwithin amultivariate analysis
framework by Hotelling [26], establishing its theoretical foundations. In its classical form, PCA in-
volves computing an empirical covariancematrix from the data, followed by its eigendecomposition.
This formulation allows the application of numerous efficient numerical methods, includingQR de-
composition [37], xLAHQR [38], the Lanczos method [39], and ARPACK [40], some of which are
implemented in numerical linear algebra packages such as ScaLAPACK [41]. These methods are
effective but often require complete knowledge of the covariance matrix prior to computation.
Centralized stochastic approaches. With large datasets, iterative and gradient-based methods for
PCA have gained prominence. Krasulina and Oja & Karhunen proposed two of the earliest stochas-
tic gradient descent methods for online PCA [42, 43]. The application of the least square minimiza-
tion to the PCA has also received attention [44–47]. More recently, [48] and [49] have proposed
efficient stochastic optimization methods that adapt to the streaming model of data (stochastic)
and focus on the theoretical guarantees of gradient-based methods in such non-convex scenarios;
see also [50–53]. Other approaches include manifold methods [54–57], Frank-Wolfe methods [58],
Gauss-Newton methods [59], coordinate descent methods [60], accelerated methods [61], as well
as variants of the PCA problem itself [62–66]. Nevertheless, these methods are primarily designed
as centralized algorithms.
Data-parallel distributed approaches. Prior distributed PCA approaches span several key direc-
tions. One line of work utilizes randomized linear algebra and SVD projections in distributed set-
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tings, yielding strong theoretical guarantees [67–70]. For distributed subspace computation, recent
methods combine FedAvg with Orthogonal Procrustes Transformations [71–74]. Approaches for
computing leading principal components leverage both convex [75] and Riemannian optimization
for improved efficiency [76, 77]. Notable recent advances include an asynchronous Riemannian gra-
dient method that achieves low computational and communication costs [56]. The field has also ex-
panded to address specialized scenarios, including Byzantine-robust computation [78, 79], stream-
ing data analysis [80, 81], shift-and-invert preconditioning [82], and coreset-based approaches [83].
Model-parallel distributed approaches. While most prior work focuses on data-parallel ap-
proaches, where each machine computes all principal components using local data, DeepMind’s
EigenGame [33] introduced a novel model-parallel framework. Their approach reformulates PCA
as a collaborative game, where each principal component computation acts as a player maximizing
its utility through Riemannian gradient ascent. Though initially presented as a sequential process
with proved convergence guarantees, EigenGame extends to a distributed setting where compo-
nents are optimized simultaneously across machines. While this parallel extension offers practical
benefits, its theoretical convergence properties remain unanalyzed, a limitation that persists in sub-
sequent improvements [34].
Our work complements existing literature mostly theoretically, but also practically. By eliminating
the requirement for sequential completion of principal components, our algorithmic framework
achieves comparable empirical performance to EigenGame [33] on large-scale datasets. Crucially,
we establish rigorous convergence guarantees for parallel computation, providing the theoretical
foundation that has been missing in existing model-parallel approaches.

2. Problem statement and background
LetY ∈ Rn×d be the matrix representing an aggregation of n properly scaled, centered data points,
each with d features. The empirical covariance matrix is given by Σ = Y⊤Y ∈ Rd×d. Let u⋆

k and
λ⋆
k be the kth eigenvector and eigenvalue of Σ, with λ⋆

1 ≥ · · · ≥ λ⋆
d. Then u⋆

k is the kth principal
component of the data matrixY. Therefore, whenΣ can be easily computed, principal component
analysis aims at finding the top-K eigenvectors of the empirical covariance matrixΣ, whereK ≤ d.
The leading eigenvector problem. Finding the leading eigenvector is the cornerstone of finding
multiple eigenvectors, and is thus utilized by many PCA algorithms. Mathematically, the problem
of finding the leading eigenvector u⋆

1 can be formulated as the following optimization problem:
u⋆
1 = argmax

v∈Rd:∥v∥2=1

v⊤Σv. (1)

In practice, algorithms like power iteration andHebb’s rule are used to solve the leading eigenvector.
Definition 1 (Power Iteration). The power iteration algorithm PowIter (Σ,v, T ) outputs a vector xT

based on the following iterates:
x0 = v; x̂t+1 = Σxt; xt+1 = x̂t+1/ ∥x̂t+1∥2 .

Definition 2 (Hebb’s Rule). The Hebb’s Rule Hebb (Σ,v, T ) with some fixed step size η outputs a vector
xT based on the following iterates:

x0 = v; x̂t+1 = xt + ηΣxt; xt+1 = x̂t+1/ ∥x̂t+1∥2 .
Undermild assumptions, the output xT of both the power iteration andHebb’s rule converges to the
top eigenvector of the input matrix Σ, as the number of steps T →∞. Notably, the power iteration
enjoys a linear convergence rate [49].
Top-K eigenvector using sequential deflation. An extension of (1) is the top-K eigenvector prob-
lem, where one aims to find u⋆

1, . . .u
⋆
K . Since u⋆

1, . . . ,u
⋆
K form an orthonormal set, finding the top-K

eigenvector can be mathematically formulated as:
U⋆ = [u⋆

1, . . . ,u
⋆
K ] ∈ argmax

V∈{Q:,:K : Q∈SO(d)}
⟨ΣV,V⟩ , (2)

where SO(d) denotes the group of rotations about a fixed point in d-dimensional Euclidean space.
A classical way to solve (2) is through deflation [26]. Deflation operates in the following manner.
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Once the top component u⋆
1 is approximated, the matrix Σ undergoes further processing to reside

in the subspace orthogonal to the one spanned by the first eigenvector. This process is iterated by
finding the leading eigenvector as in (1) on the deflated matrix, resulting in an approximation of
the second component u⋆

2, and so forth, as described below:
Σ1 = Σ; vk = Top1 (Σk, v̂k, T ) ;

Σk+1 = Σk − vkv
⊤
k Σkvkv

⊤
k , (3)

where Top1 (Σk, v̂k, T ) abstractly denotes any iterative algorithm initialized at v̂k and returns a nor-
malized approximation of the top eigenvector of the deflated matrix Σk after T iterations of execu-
tion. Consider the eigendecomposition Σ =

∑d
k′=1 λ

⋆
k′u⋆

k′u⋆⊤
k′ . When T → ∞ and Top1 (Σk, v̂k, T )

solves the top eigenvector of Σ exactly, one can show that Σk =
∑d

k′=k λ
⋆
k′u⋆

k′u⋆⊤
k′ and vk = u⋆

k.
However, when T is finite, it is shown in [84] that each Top1 (Σk, v̂k, T ) produces a non-negligible
error that accumulates and propagates through the deflation process.
Stochastic algorithm to find top-1 principal component. When the dataset becomes large, the co-
variance matrixΣmay not be efficiently computed, making the previous routine of first computing
the covariance matrix and then its eigenvector infeasible. Alternatively, people estimate Σ with
Σ̂ = Ŷ⊤Ŷ, where Ŷ is a mini-batch of the dataset. In this case, Hebb’s rule can be written as

x̂t+1 = xt + ηŶ⊤
(
Ŷxt

)
;xt+1 = x̂t+1/ ∥x̂t+1∥2

Notice that the stochastic estimate of the covariance matrix Σ̂ is never explicitly computed.

3. The Parallel Deflation Algorithm

Algorithm 1 Parallel Deflation
Require: Σ ∈ Rd×d; # of workers K; sub-routine

for top eigenvector PCA(·, ·, ·); # of iterations T ;
global communication rounds L ≥ K.

Ensure: Approximate eigenvectors {vk}Kk=1.
1: for k = 1, . . . ,K do
2: Randomly initialize v̂k,init with unit norm;
3: end for
4: for ℓ = 1, . . . , L do
5: parfor k = 1, . . . ,K do
6: if k ≤ ℓ then
7: Receive v1,ℓ−1, . . . ,vk−1,ℓ−1

8: ∆k′,ℓ = vk′,ℓ−1v
⊤
k′,ℓ−1Σvk′,ℓ−1v

⊤
k′,ℓ−1

9: Σk,ℓ = Σ−∑k−1
k′=1 ∆k′,ℓ

10: vk,ℓ ← Top1 (Σk,ℓ,vk,ℓ−1, T )
11: Broadcast vk,ℓ

12: else
13: vk,ℓ := v̂k,init;
14: end if
15: end parfor
16: end for
17: return {vk,L}Kk=1

Algorithm overview. Our framework dis-
tributes the computation ofK principal com-
ponents across K distinct workers, where
worker k is responsible for computing the
k-th principal component. Our innovation
lies in reformulating the traditional deflation
process for distributed settings. The conven-
tional sequential deflation requires the k-th
eigenvector computation to wait for the com-
pletion of all previous k− 1 eigenvectors, cre-
ating a strict dependency chain that inhibits
parallelization. We overcome this limitation
through an iterative two-phase approach:
–Initial Estimation: Each worker k computes
an approximate version of the k-th deflated
matrix using preliminary estimates of the first
k − 1 eigenvectors from other workers.
–Iterative Refinement: Workers computing the
first k − 1 eigenvectors continuously provide
updated estimates to worker k, enabling pro-
gressive refinement of the deflated matrix
and the k-th eigenvector estimation.
This parallel approach eliminates the need for worker k to wait for the complete convergence of the
first k− 1 eigenvectors before beginning its computation. The complete specification of our parallel
deflation algorithm is presented in Algorithm 1. We detail the explanation below:
The computation process is divided into L communication rounds (Line 4). In the ℓth communi-
cation round, the kth worker will compute an approximation of the kth principal component vk,ℓ
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by running their own sub-routine in parallel, following the rule that the kth worker only deflates
its matrix and starts computing the kth principal component after the first k− 1workers have com-
puted some rough estimation of the first k− 1 principal components (Lines 7-10). Therefore, in the
ℓth communication round, there can be two scenarios for worker k: i) if ℓ < k, this means that not
all of the first k−1workers have computed some approximation of their own principal component.
Therefore, worker k does not deflate the matrix and output vk,ℓ = v̂k,init; ii) If ℓ ≥ k, then the
first k− 1workers have at least computed one approximation of their own principal component. In
this case, worker k deflates the matrix using the most updated vectors v1,ℓ−1, . . .vk−1,ℓ−1 (Line 7),
compute its approximation of the kth principal component by calling the Top1 (·) on the deflated
matrix starting from its output in the previous communication round (Line 10), and then broadcast
the current approximation to the other workers for the next communication round (Line 11). An
illustration of the algorithm is given in Figure 1.

Worker 1 Worker 2 Worker 3

Σ1,0

Σ1,1

Σ1,2

Σ1,3

v1,0

v1,1

v1,2

v1,3

Σ2,0

Σ2,1

Σ2,2

Σ2,3

v2,0

v2,1

v2,2

v2,3

Σ3,0

Σ3,1

Σ3,2

Σ3,3

v3,0

v3,1

v3,2

v3,3

Top1(Σ1,0,v1,0)

Top1(Σ1,1,v1,1)

Top1(Σ1,2,v1,2)

Top1(Σ1,3,v1,3)

Top1(Σ2,1,v2,1)

Top1(Σ2,2,v2,2)

Top1(Σ2,3,v2,3)

Top1(Σ3,1,v3,1)

Top1(Σ3,2,v3,2)

Figure 1: Illustration of the parallel deflation
algorithm.

Extension to Stochastic PCA. The algorithm de-
scribed above can be applied to the case where the
covariance matrix is either known or can be effi-
ciently estimated. However, in many machine learn-
ing scenarios, the covariance matrix may not be di-
recly accessible. For instance, when data drawn
from an underlying distribution comes in a stream-
ing fashion [80], the traditional approach of first es-
timating the covariance matrix and then solves for
its eigenvector is no longer efficient. Moreover, for
large datasets that contains hundreds of thousands
of features, it is impossible to compute or even store
the covariance matrix [33, 34]. In these cases, our
algorithm can be adapted to estimate the principal
components in a stochastic fashion.
Let Ŷ denote the mini-batch that the algorithm
receives in the tth iteration. Starting from
Line 8, whose major computation burden is on
v⊤
k′,ℓ−1Σvk′,ℓ−1, we notice that the covariance ma-

trix is estimated as Σ ≈ Σ̂ = Ŷ⊤Ŷ. In this case, we
have:

v⊤
k′,ℓ−1Σ̂vk′,ℓ−1 = v⊤

k′,ℓ−1Ŷ
⊤Ŷvk′,ℓ−1

= ∥Ŷvk′,ℓ−1∥22.

Therefore, each ∆k′,ℓ in Algorithm 1 can be written as ∆k′,ℓ = ∥Ŷvk′,ℓ−1∥22vk′,ℓ−1v
⊤
k′,ℓ−1. Thus,

Line 9 becomes:

Σk,ℓ ≈ Σ̂k = Ŷ⊤Ŷ −
k−1∑
k′=1

∥Ŷvk′,ℓ−1∥22vk′,ℓ−1v
⊤
k′,ℓ−1.

This new form of Σk,ℓ allows an efficient estimation of the matrix-vector product Σk,ℓx, as in:

λ̂k′ = ∥Ŷvk′∥22; ∀k′ ∈ [k − 1]; Σk,ℓx = Ŷ⊤Ŷxt −
k−1∑
k′=1

λ̂k′
(
v⊤
k′,ℓ−1xt

)
· vk′,ℓ−1. (4)

In the current form of Algorithm 1, the computation of Lines 8-9 takes O (Kd2
) time. Moreover,

when calling the Top1 function in Lines 10, any matrix-vector multiplicationΣk,ℓxwill take O (d2)
time. Notice that in (4), the complexity of computing each Yvk′ is O (nd). Thus computing λ̂k′

takes O (nd). In total,(4) has a complexity of O (Knd). In (4), computing the first term Ŷ⊤Ŷx

involves computing first yt = Ŷxt, which takes O (nd), and then Ŷ⊤yt, which also takes O (nd).
Thus, computing the first term Ŷ⊤Ŷxt takes O (nd) in total. For the second term, each summand
takes O(d) to compute, giving the complexity of computing the second term as O (kd). Therefore,
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each iteration of (4) takes O ((n+ k)d). This implies a saving in the computation cost, since in this
case, n is the batch size and can be much smaller than d. The complete algorithm in the stochastic
setting is given in Algorithm 2 in the Appendix.
Communication Analysis: Let Ccomm be the time for one all-reduce operation across workers. The
total communication cost per iteration is:

Tcomm =
1

2
K(K − 1)Ccomm · d (5)

For high-latency environments,Ccomm can be large, resulting in a larger communication cost. In this
case, one could use a larger T , leading to a smaller communication cost (see Appendix D). Addi-
tionally, we should notice that the communication can happen in parallel as the local computation
of the eigenvectors. From this perspective, our algorithm also has the potential to be extended to
an asynchronous version, where the eigenvectors are updated asynchronously, resulting in a non-
blocking computation on each worker.
Connection with EigenGame. The EigenGame [33] considers the problem of solving the top-K
eigenvectors of amatrix as a game betweenK players, with the kth player solving vk bymaximizing
its utility: vk = argmaxv:∥v∥2=1 Uk (v | v1, . . .vk−1), where:

Uk
(
v | {vk′}k−1

k′=1

)
= v⊤Σv −

k−1∑
k′=1

(
v⊤
k′Σv

)2
v⊤
k′Σvk′

. (6)

Similarly, the deflation algorithm in (2) also bears a game formulation, where the utility of the kth
player is given by:

Vk

(
v | {vk′}k−1

k′=1

)
= v⊤

(
Σ−

k−1∑
k′=1

vk′v⊤
k′Σvk′v⊤

k′

)
v = v⊤Σv −

k−1∑
k′=1

v⊤
k′Σvk′ ·

(
v⊤
k′v
)2

. (7)

It should be noted that both the EigenGame utility Uk and the deflation utility Vk depend on only
the policy of the first k − 1 players. Moreover, when the first k − 1 players recovers the top-(k − 1)
eigenvectors exactly, we shall have:

Vk
(
v | {u⋆

k′}k−1
k′=1

)
= v⊤Σv −

k−1∑
k′=1

λ⋆
k′

(
v⊤u⋆

k′

)2
= Uk

(
v | {u⋆

k′}k−1
k′=1

)
.

To this end, we can also show that the set of true eigenvectors {u⋆
k}Kk=1 is the unique strict Nash

Equilibrium defined by the utilities in (7). The proof of Theorem 1 is deferred to Appendix B.
Theorem 1. Assume that the covariance matrix Σ has positive and strictly decreasing eigenvalues λ⋆

1 >
· · · > λ⋆

K > 0. Then, {u⋆
k}Kk=1 is the unique strict Nash Equilibrium defined by the utilities in (7) up to sign

perturbation, i.e., replacing u⋆
k with −u⋆

k.

4. Convergence Guarantee for the Parallel Deflation Algorithm
We provide a convergence guarantee for the parallel deflation algorithm in Algorithm 1. The pivot
of the convergence analysis will be to track the dynamics of {Σk,ℓ}Kk=1 and {vk,ℓ}Kk=1 as ℓ increases.
The dynamics of the two sequences from Algorithm 1 can be compactly represented as:

Σk,ℓ = Σ−
k−1∑
k′=1

vk′,ℓ−1v
⊤
k′,ℓ−1Σvk′,ℓ−1v

⊤
k′,ℓ−1; vk,ℓ = Top1 (Σk,ℓ,vk,ℓ−1) ; ∀ℓ ≥ k.

Here, we embed the number of solver steps T in the property of the abstract local solver Top1(·).
Indeed, if Top1(·) returns the exact top eigenvector of the input matrix every time it is called, then
we can easily see that vk,ℓ = u⋆

k for all ℓ ≥ k. When Top1(·) returns an inexact estimate of the
input matrix sequentially, i.e., worker k waits until the top-(k − 1) worker no longer improves the
estimation of the top-(k − 1) eigenvectors, the error is analyzed by [84].
Our scenario is further complicated by the continuous improvement of the eigenvector estimates
used to deflate the matrix: in each communication round, the Top1(·) function, called by worker k,
will start at the estimate of the top eigenvector of the deflated matrix in the previous round but will
be fitted to the top eigenvector of the deflatedmatrix in the current round. Our convergence analysis
tackles this complicated dynamic by utilizing the following abstraction of the Top1(·) sub-routine.
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Assumption 1. Let Σ̂ ∈ Rd×d be a real symmetric matrix. Let λ⋆ be its eigenvalue with the largest absolute
value, and let u⋆ be the corresponding eigenvector of λ⋆. We assume that there exists a real value F

(
Σ̂
)
∈

(0, 1) that depends on Σ̂ such that for any x0 ∈ Rd, Top1(·) satisfies:∥∥∥Top1(Σ̂,x0

)
− u⋆

∥∥∥
2
≤ F

(
Σ̂
)
∥x0 − u⋆∥2 .

Assumption 1 can be easily guaranteed. as long as the Top1(·) algorithm enjoys a non-asymptotic
convergence to the top eigenvector; see the Related Works section above. With Assumption 1, the
convergence of Algorithm 1 is given by the following theorem.
Theorem 2. Assume that Assumption 1 holds, and letFk = maxℓ≥k F

(
Σ̂k,ℓ

)
. LetW−1 (·) be the Lambert-

W function in the −1 branch1, and define for a > 0:

Ŵ (a) =

{−W−1 (−a) if a ∈ (0, e−1)

1 if a ∈ [e−1,∞)

Let {mk}Kk=0 be a sequence of numbers denoting the convergence rates of recovering theK eigenvectors, where
mk = max

{
Fk,

1
k + k−1

k mk−1

}
and m0 = F1 as a dummy starting point. Let {sk}nk=1 be a sequence of

integers denoting the starting communication round where theK eigenvectors’ error recovery enters the linear
convergence phase, respectively. To be more specific, let s1 = 1 and for all k ∈ [K − 1] and k′ ∈ [k]:

sk+1 ≥ max

{
Ŵ (mk log 1/mk)

log 1/mk

,
kmk + 1

1−mk

}
+

Ŵ
(

λ⋆
k+1−λ⋆

k+2

12kλ⋆
k′

(log 1/mk)
2
)

log 1/mk′
+ sk′ . (8)

Then, we have that the following holds for all k ∈ [K]

∥vk,ℓ − u⋆
k∥2 ≤ 6 (ℓ− sk + 2)mℓ−sk+1

k ; ∀ℓ ≥ sk − 1. (9)

In words, Theorem 2 says that starting from the skth communication round, the recovery error of
the kth eigenvector converges according to a nearly-linear convergence rate given in (9). However,
the convergence starting point sk for the kth eigenvector must be later than the convergence starting
point for the 1, . . . , k − 1th eigenvector for a number of communication rounds. This delay in the
convergence starting point is characterized in (8). Intuitively, the starting point sk denotes the index
of the communication round where the top-(k − 1) eigenvectors have been estimated accurately
enough for the kth worker to make positive progress.
Remark 1. By the definition that mk = max

{
Fk,

1
k + k−1

k mk−1

}, one could see that mk < 1 since
Fk < 1 for all k ∈ [K]. The convergence rate in (9) involves the product of a linear term ℓ − sk + 2

and an exponential term mℓ−sk+1
k . When ℓ is large enough, mℓ−sk+1

k decays at a much faster speed
than the increase of ℓ− sk + 2, thus giving a nearly-linear convergence rate.
Remark 2. Upper bound on the separation between the sk’s. By using the inequality that
W−1(e

−u−1) ≥ −1−
√
2u− u [85], we could obtain that Ŵ (a) ≤ log 1/a+

√
2(log 1/a− 1) + 1when

a ∈ (0, e−1). Therefore, we can conclude that Ŵ = O(max{1, log 1/a}). Notice that (8) requires that
sk+1, the starting point of the linear convergence for the error of vk+1,ℓ, must be later than s1, . . . , sk
for some steps. Using the bound of Ŵ (a), one could simplify (8) to:

sk+1 ≥ sk +O

(
max

{(
log

1

mk

)−1(
1 + log

kλ⋆
k

λ⋆
k+1 − λ⋆

k+2

)
,
kmk + 1

1−mk

})
.

This simplification implies that a smaller mk would cause a smaller decay between sk and sk+1.
Sincemk depends onFk, a smallermk can be achieved bydoingmore local steps in the call to Top1(·).
However, since the decay between sk and sk+1 is measured in terms of the communication rounds,
doing more local steps also increases the computation time per round in the delayed periods.
Sketch of Proof. The key challenge in proving Theorem 2 lies in handling the dynamic, asyn-
chronous nature of our algorithm. Unlike sequential deflation, where each principal component

1The Lambert-W function in the −1-branch is defined as the inverse of the function f(x) = xex when
x ∈ (−∞,−1).
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Figure 2: Comparison of the convergence behavior of parallel deflation, EigenGame-α, and
EigenGame-µ in deterministic setting on (a). synthetic dataset with power-law decaying eigen-
values, (b). synthetic dataset with exponentially decaying eigenvalues, and (c). MNIST dataset.
is computed after the previous ones have converged and stays fixed, our method deals with simul-
taneous updates of all principal components. This requires careful analysis of how errors propagate
and accumulate across different workers. To start, we derive upper bounds of the per-iteration dif-
ference between the actual deflated matrix Σk and the ideal deflated matrix Σ∗

k and the difference
between the estimated eigenvector vk,ℓ and the ground-truth eigenvector u∗

k. Notice that these two
upper bounds are inter-dependent. We apply Davis-Kahan SinΘ Theorem [86] to derive the bound
between the matrices’ top-eigenvectors based on the matrix differences. Next, we carefully choose
a convergence starting point sk for each eigenvector. Construct two simpler two-dimensional se-
quences {Bk,ℓ} and {Gk,ℓ} starting from sk’s that upper bound these differences. Lastly, we unroll
the bounds on {Bk,ℓ} and {Gk,ℓ} to arrive at a closed form upper bound on error of the estimated
eigenvector vk,ℓ. The detailed proof is deferred to Appendix C.

5. Experiments
In this section, we experimentally verify the performance of the parallel deflation algorithm.
Baseline algorithms. Wecompared the parallel deflation algorithmwith power iteration as the Top1
subroutine with the distributed version of EigenGame-α [33] and EigenGame-µ [34]. EigenGame-
α was proposed as a sequential principal component recovery algorithm and can be adapted as a
distributed algorithm. Both EigenGame-α and EigenGame-µ are restricted to the case of one iter-
ation of update per communication round. We modified their algorithm to generalize to multiple
iterations of update in Algorithm 3 and Algorithm 4 in Appendix F. As in the implementation of
[33] and [34], we do not project the utility gradient to the unit sphere.
Evaluation Metric. We evaluate the performance of the three algorithms by computing how close
the recovered principal component is to the true eigenvector of the covariance matrix. For the set
of true principal components {u⋆

k}Kk=1 and a set of recovered principal component {vk}Kk=1, we use
the following metric to compute the approximation error2

E
(
{u⋆

k}Kk=1, {vk}Kk=1

)
=

(
1

K

K∑
k=1

min
s∈{±1}

∥u⋆
k − s · vk∥22

) 1
2

(10)

Deterministic Experiments. For synthetic experiments, we choose the number of features d = 1000,
which gives the covariance matrices Σ ∈ R1000×1000. We consider Σ generated with two different
eigenvalue spectra: i) a power-law decaying spectrum λ⋆

k = 1√
k
, and ii) an exponential decaying

spectrum λ⋆
k = 1

1.1k
. We choose the number of local updates in each communication round T to

be T ∈ {1, 5}. We ran parallel deflation, EigenGame-α, and EigenGame-µ to recover the top-30
eigenvectors (K = 30). For each setting, we run 10 trials with different random initialization.

2We choose this metric instead of the Longest Correct Eigenvector Streak [33] to study the precise dynamic
of the recovery error as the number of computations steps increases.
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Figure 3: Comparison of the convergence behavior of parallel deflation, EigenGame-α, and
EigenGame-µ in stochastic setting on (a). synthetic dataset with power-law decaying eigenvalues,
(b). MNIST dataset, and (c) ImageNet dataset.

Figure 2a presents the convergence behavior of the three algorithmswith T ∈ {1, 5} on the synthetic
matrix with λ⋆

k = 1√
k
. Both EigenGame-µ and parallel deflation demonstrate stable convergence to a

low error value under the case of T = 1 and T = 5, with parallel deflation converging slightly slower
than EigenGame-µ in the first 200 total steps, and then arriving at a lower error than EigenGame-µ
in the last 100 total steps. Figure 2b presents the result on the synthetic matrix with λ⋆

k = 1
1.1k

, with
similar conclusions. In both Figure 2a and Figure 2b, the setting of T = 1 shows a faster convergence
than T = 5. This is because T = 1 allowsmore communication in a fixed number of total steps T×L,
which keeps the deflated matrices of each local worker to be better updated.
We also use the real-world dataset of MNIST, Y ∈ R60000×784 in Figure 2c. We choose T ∈ {1, 5}
and aim at recovering the top-30 eigenvectors. We observe a similar convergence behavior of the
three algorithms as above. For EigenGame-α, the case T = 1 converges even slower than the case
T = 5. We hypothesize that this is because one local iteration is not sufficient for the top eigenvector
solvers to provide an accurate enough estimate for the following solvers to make positive progress.
Stochastic Setting. We generate Σ with power-law decaying spectrum as in the deterministic ex-
periments. We sample I.I.D. samples from N (0,Σ) and pass the sampled data batches to parallel
deflation and EigenGame in a streaming fashion. We use a decaying step size for all three algo-
rithms, and the result is given in Figure 3a. In this setting, parallel deflation shows a slightly worse
performance than the two EigenGame algorithms. We hypothesize that this is because parallel de-
flation is more sensitive to the step size tuning in the stochastic case. In Figure 3b, we plot the
performance of parallel deflation and EigenGame in the stochastic setting of the MNIST dataset.
Parallel deflation achieves similar performance to EigenGame-µ, with a slightly faster convergence
speed in the early phase of the algorithm.
We also test the performance of parallel deflation on the ImageNet dataset [36] that contains
n = 1.2M images of d = 50176 pixels. Due to the size of Y, it was not possible in our set up
to compute or store the covariance matrix on a single device. We use both parallel deflation and
EigenGame-µ to compute the top-10 eigenvector of the dataset. Since no "ground-truth" principal
component is known, we can use an aggregation of the terms v⊤

k Σvk as a metric to evaluate the
quality of the solved principal components. To follow the internal hierarchy of the eigenvectors
that the leading eigenvectors are free to explore more space and thus are expected to attain a larger
v⊤Σv, we penalize terms with larger index with a discounting factor. This result in the following
metric:

M
(
{vk}Kk=1

)
=

K∑
k=1

1

k
v⊤
k Σvk =

1

n

n∑
i=1

K∑
k=1

(
ȳ⊤
i vk

)2
k

(11)
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Notice that a larger value ofM (·) implies a higher quality of the recovered eigenvectors. Figure 3c
shows that in this large scale dataset, our algorithm can keep up with the performance of the state-
of-the-art algorithm EigenGame-µ.

6. Conclusion
Wepresent an algorithmic framework for computing the principal components in a distributed fash-
ion. We introduce additional parallelism by early-starting the computation of the following eigen-
vectors based on the initial rough estimation of leading principal components and continuously
refining the local deflated matrix based on updated estimated principal components. Our frame-
work has a similar game-theoretic formulation as the EigenGame, while enjoying a nice convergence
guarantee even in the distributed case. Future work can focus on empirically examining the poten-
tial of using other Top1 subroutines in our parallel deflation algorithm, such as Oja’s rule.
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A. Appendix

B. Missing Proof from Section 3
Proof of Theorem 1. Letu⋆

1, . . . ,u
⋆
d be the set of eigenvectors ofΣ, and λ⋆

1, . . . , λ
⋆
d be the corresponding

eigenvalues, potentially with some λk = 0. Recall that in the game formulation of the deflation
algorithm, the utility function of the kth player is given by

Vk
(
v | {vk′}k−1

k′=1

)
= v⊤Σv −

k−1∑
k′=1

v⊤
k′Σvk′ ·

(
v⊤
k′v
)2
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and when vk′ = u⋆
k′ for k′ ∈ [k − 1], we have

Vk
(
v | {u⋆

k′}k−1
k′=1

)
= v⊤Σv −

k−1∑
k′=1

λ⋆
k′ ·
(
v⊤
k′v
)2

It should be noted that Σ has the eigendecomposition Σ =
∑d

k′=1 λ
⋆
k′u⋆

k′u⋆⊤
k′ . Therefore we can

rewrite v⊤Σv as∑d
k′=1 λ

⋆
k′

(
v⊤u⋆

k′

)2. Thus, the utility becomes

Vk
(
v | {u⋆

k′}dk′=1

)
=

k−1∑
k′=k

λ⋆
k′

(
v⊤u⋆

k′

)2
Since u⋆

1, . . . ,u
⋆
d spans Rd and are mutually orthogonal, we can write v =

∑d
j=1 βju

⋆
j . where∑d

j=1 β
2
j = 1. Then we have

Vk
(
v | {u⋆

k′}dk′=1

)
=

k−1∑
k′=k

λ⋆
k′

 d∑
j=1

βju
⋆⊤
j u⋆

k′

2

=

k−1∑
k′=k

λ⋆
k′β2

k′

Since λk’s are strictly decreasing and positive, wemust have that themaximumofVk
(
v | {u⋆

k′}dk′=1

)
is only attainedwhen β2

k = 1, which implies that v = ±u⋆
k will be the only optimal policies for player

k.
The uniqueness can be shown by induction. To start, we notice that V1 does not depend on the
policy of the other plays. Therefore, the only optimal policy for player 1 is v1 = ±u⋆

1. This shows
the base case. Now, assume that within the top-(k − 1) players, the optimal policies are vk′ = ±u⋆

k′

for k′ ∈ [k− 1]. By the formulation of the utility functions, these optimal policies are not affected by
the policy of player k, . . . ,K. Moreover, it should be noted that the utility of player k only depends
on the top-(k−1) players. Therefore, the optimal policy for player kmust be vk = ±u⋆

k. This finishes
the inductive step and completes the proof.

C. Missing Proof from Section 4
We first introduce a tool that we will utilize in the proof in this section.
Lemma 1 (sinΘ Theorem [86]). Let M∗ ∈ Rd×d and let M = M∗ + H. Let a∗1 and a1 be the top
eigenvectors ofM∗ and M, respectively. Then we have:

sin∠ {a∗1,a1} ≤
∥H∥2

minj ̸=k |σ∗
k − σj |

.

C.1. Proof of Theorem 2
DefineΣ⋆

k =
∑d

k=1 λ
⋆
ku

⋆
ku

⊤⋆
k as the "ground-truth" deflationmatrix. Recall that the parallel deflation

algorithm executes

Σk,ℓ = Σ−
k−1∑
k′=1

vk′,ℓ−1v
⊤
k′,ℓ−1Σvk′,ℓ−1v

⊤
k′,ℓ−1; vk,ℓ = Top1 (Σk,ℓ,vk,ℓ−1) (12)

Let uk,ℓ denote the top eigenvector of Σk,ℓ. In particular, it suffices to show that the quantity
∥vk,ℓ − u⋆

k∥
2
2 decreases as ℓ increases. Combining Assumption 1 and the definition that Fk =

maxℓ≥k F (Σk,ℓ),we have that
∥vk,ℓ − uk,ℓ∥2 ≤ Fk ∥vk,ℓ−1 − uk,ℓ∥2 (13)

We could upper bound ∥vk,ℓ−1 − uk,ℓ∥2 using
∥vk,ℓ−1 − uk,ℓ∥2 ≤ ∥vk,ℓ−1 − uk,ℓ−1∥2 + ∥uk,ℓ − uk,ℓ−1∥2

≤ ∥vk,ℓ−1 − uk,ℓ−1∥2 + ∥uk,ℓ − u⋆
k∥2 + ∥uk,ℓ−1 − u⋆

k∥2
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Combining this upper bound with (13) gives
∥vk,ℓ − uk,ℓ∥2 ≤ Fk

(
∥vk,ℓ−1 − uk,ℓ−1∥2 + ∥uk,ℓ − u⋆

k∥2 + ∥uk,ℓ−1 − u⋆
k∥2
) (14)

Moreover, the triangle inequality implies that
∥vk,ℓ − u⋆

k∥2 ≤ ∥vk,ℓ − uk,ℓ∥2 + ∥uk,ℓ − u⋆
k∥2 (15)

Now, (14) and (15) give a pretty good characterization of the propagation of the errors. It remains
to characterize ∥uk,ℓ − u⋆

k∥2 for each ℓ, and then we can dive into solving the recurrence. A naive
bound would be that ∥uk,ℓ − u⋆

k∥2 ≤ 2, as ∥uk,ℓ∥2 = ∥u⋆
k∥2 = 1. However, notice that uk,ℓ is the top

eigenvector of Σk,ℓ and Σ⋆
k, respective. Thus, we can invoke the Davis-Kahan Theorem to obtain a

tighter bound. This property is given by Lemma 2, whose proof is deferred to Appendix C.2.
Lemma 2. Assume that 1 = λ⋆

1 > λ⋆
2 > . . . . If the following inequality holds for some c0 > 1

k−1∑
k′=1

λ⋆
k′ ∥u⋆

k′ − vk′,ℓ−1∥2 ≤
c0 − 1

4c0

(
λ⋆
k − λ⋆

k+1

) (16)

then we have that

∥uk,ℓ − u⋆
k∥2 ≤

4c0
λ⋆
k − λ⋆

k+1

k−1∑
k′=1

λ⋆
k′ ∥u⋆

k′ − vk′,ℓ−1∥2 (17)

Now, we are going to use induction to proceed with the proof. Notice that, in order to control
∥uk,ℓ − u⋆

k∥2 using Lemma 2, one only need to control the recovery error of all previous eigenvectors
∥u⋆

k′ − vk′,ℓ−1∥2, as given in (16). Thus, fix some k, we will assume the inductive hypothesis that
there exists some s such that for all ℓ ≥ s, we can guarantee (16). For the case of k = 1, this is
obvious, as the left-hand side of (16) is 0. When k ≥ 1 and we can gather the conditions as

∥vk,ℓ − uk,ℓ∥2 ≤ Fk,ℓ

(
∥vk,ℓ−1 − uk,ℓ−1∥2 + ∥uk,ℓ − u⋆

k∥2 + ∥uk,ℓ−1 − u⋆
k∥2
)

∥u⋆
k − vk,ℓ∥2 ≤ ∥vk,ℓ − uk,ℓ∥2 + ∥uk,ℓ − u⋆

k∥2

∥uk,ℓ − u⋆
k∥2 ≤

4c0
λ⋆
k − λ⋆

k+1

k−1∑
k′=1

λ⋆
k′ ∥u⋆

k′ − vk′,ℓ−1∥2 ; ∀ℓ ≥ sk

For simplicity, we let
∥vk,ℓ − uk,ℓ∥2 =: Dk,ℓ; ∥uk,ℓ − u⋆

k∥2 =: Bk,ℓ; ∥u⋆
k − vk,ℓ∥2 =: Gk,ℓ

Moreover, we let Ck = 4c0
λ⋆
k−λ⋆

k+1
. Then the iterates are simplified to
Dk,ℓ ≤ Fk (Dk,ℓ−1 +Bk,ℓ +Bk,ℓ−1)

Gk,ℓ ≤ Dk,ℓ +Bk,ℓ

Bk,ℓ ≤ Ck
k−1∑
k′=1

λ⋆
k′Gk′,ℓ−1

where we set G0,ℓ = 0 for all ℓ. Then Gk,ℓ can be written as

Gk,ℓ ≤ Fℓ−s
k Dk,s +

ℓ−1∑
ℓ′=s

Fℓ−ℓ′

k (Bk,ℓ′ +Bk,ℓ′−1) +Bk,ℓ

for any s ∈ [ℓ]. Here, the first term can be made small as long as we choose a large enough ℓ. The
third term is the unavoidable error propagation. The second term can causeGk,ℓ to grow, and needs
a careful analysis. To understand the recurrence betweenGk,ℓ andBk,ℓ, we use the following lemma
Lemma 3. Let ŝk be given for all k ∈ [K] such that 1 ≤ ŝ1 ≤ · · · ≤ ŝK . Let sk ∈ Z be given for all k ∈ [K]
such that 1 = s0 ≤ s1 ≤ · · · ≤ sK . Consider the sequence {Bk,ℓ}∞ℓ=ŝk

and {Gk,ℓ}∞ℓ=sk−1 for all k ∈ [K]
characterized by the following recurrence

Bk,ℓ ≤ Ck

k−1∑
k′=1

λ⋆
k′Gk′,ℓ−1

Gk,ℓ ≤ Fℓ−sk+1
k Dk,sk−1 +

ℓ−1∑
ℓ′=sk−1

Fℓ−ℓ′

k (Bk,ℓ′ +Bk,ℓ′−1) +Bk,ℓ

(18)
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Let mk = max{Fk, γk−1} for all k ∈ [K] and m0 = −1. Let {γ}Kk=−1 be given such that γ−1 = γ0 = 0

and γk = 1
k+1 + k

k+1mk for all k ∈ [K]. Define sequences {B̂k,ℓ}∞ℓ=ŝk
and {Ĝk,ℓ}∞ℓ=sk−1 for all k ∈ [K] as

B̂k,ℓ =

{
min

{
2,mℓ−ŝk

k−1 (ℓ− ŝk + 1) B̂k,ŝk

}
if ℓ > ŝk

Ck

∑k−1
k′=1 λ

⋆
k′Ĝk′,ŝk−1 if ℓ = ŝk

Ĝk,ℓ =

{
mℓ−sk+1

k (ℓ− sk + 2)Ĝk,sk−1 if ℓ ≥ sk
Dk,sk−1 + B̂k,sk−1 + B̂k,sk−2 if ℓ = sk − 1

(19)

Suppose that ŝk+1 ≥ sk, and sk satisfies satisfies msk−ŝk−2
k−1 ≤ 1

sk−ŝk−1 and sk ≥ kmk−1

1−mk−1
+ ŝk + 2.

Moreover, suppose that B̂k,ŝk ≤ 2 for all k ∈ [K]. Then the following two conditions hold

1. B̂k,ℓ ≥ Bk,ℓ for all ℓ ≥ ŝk

2. Ĝk,ℓ ≥ Gk,ℓ for all ℓ ≥ sk − 1

The proof of Lemma 3 is deferred to Appendix C.3. Lemma 3 implies that under proper condition
of sk and ŝk, we have

Gk,ℓ ≤ Ĝk,ℓ

≤ max{Fk, γk−1}ℓ−sk+1(ℓ− sk + 1)Ĝk,sk−1

= max{Fk, γk−1}ℓ−sk+1(ℓ− sk + 1)
(
Dk,sk−1 + B̂k,sk−1 + B̂k,sk−2

)
By definition, we have that Dk,sk−1 = ∥vk,sk−1 − uk,sk−1∥2 ≤ 2. Moreover, the definition in (19)
gives that B̂k,sk−1 ≤ 2 and B̂k,sk−2 ≤ 2. Therefore, we can conclude that

Gk,ℓ ≤ 6(ℓ− sk + 1)max{Fk, γk−1}ℓ−sk+1

Now, we go back to the condition of sk and ŝk. The requirement of {sk}Kk=0 and {ŝk}Kk=1 can be
gathered below

1. 1 = s0 ≤ s1 ≤ . . . sK and 1 ≤ ŝ1 ≤ · · · ≤ ŝK

2. ŝk+1 ≥ sk and sk ≥ kmk−1

1−mk−1
+ ŝk + 2

3. msk
k−1 − ŝk − 2 ≤ 1

sk−ŝk−1

4. mℓ−ŝk
k−1 (ℓ− ŝk + 1)

∑k−1
k′=1 λ

⋆
k′Ĝk′,ŝk−1 ≤ c0−1

4c0

(
λ⋆
k − λ⋆

k+1

) for all ℓ ≥ ŝk

where the first three conditions are directly required by Lemma 3, and the fourth condition is re-
quired because the upper bound on Bk,ℓ in (18) hold only when

k−1∑
k′=1

λ⋆
k′ ∥u⋆

k′ − vk′,ℓ−1∥2 ≤
c0 − 1

4c0

(
λ⋆
k − λ⋆

k+1

)
from Lemma 2. Notice that since B̂k,ŝk = Ck

∑k−1
k′=1 λ

⋆
k′Ĝk′,ŝk−1, enforcing the fourth condition

directly implies that B̂k,ŝk ≤ 2. Now, we are going to simplify these conditions. A useful tool will
be the following lemma, whose proof is provided in Appendix C.4.
Lemma 4. Let m ∈ (0, 1) and ϵ ∈ R be given. Let g(x) = mx(x + 1), and let W−1 (·) be the Lambert-W
function. Then

1. When ϵ ≥ − 1
em logm , then any x ≥ 0 satisfies g(x) ≤ ϵ

2. When ϵ ≤ − 1
em logm , then any x ≥ 1

logmW−1 (ϵm logm)− 1 satisfies g(x) ≤ ϵ

Notice that #4 in the conditions above implies that ∥Σk,ℓ −Σ⋆
k∥F ≤ c0−1

c0

(
λ⋆
k − λ⋆

k+1

) and
Bk,ŝk =

k−1∑
k′=1

λ⋆
k′Ĝk′,ŝk−1 ≤ c0 − 1

18



Choose c0 = 3 then guarantees that Bk,ŝk ≤ 2. Now, we aim at simplifying Condition #4 above. To
start, we notice that the termmℓ−ŝk

k−1 (ℓ− ŝk + 1) achieves global maximum at ℓ− ŝk = 1
log 1/mk−1

− 1

with value 1
log 1/mk−1

m
1

log 1/mk−1
−1

k−1 . Therefore, it suffices to guarantee that
k−1∑
k′=1

λ⋆
k′Ĝk′,ŝk−1 ≤ − logmk−1 ·m

1
log mk−1

−1

k−1 · 1
6

(
λ⋆
k − λ⋆

k+1

)
From Lemma 3, we have that for ℓ ≥ sk − 1, Gk,ℓ ≤ Ĝk,ℓ, and

Ĝk,ℓ = mℓ−sk+1
k (ℓ− sk + 2) Ĝk,sk−1

with Ĝk,sk−1 ≤ 6. Therefore, it suffices to guarantee that
k−1∑
k′=1

λ⋆
k′m

ŝk−sk′+1
k′ (ŝk − sk′ + 2) Ĝk,sk′−1 ≤ − logmk−1 ·m

1
log mk−1

−1

k−1 · 1
6

(
λ⋆
k − λ⋆

k+1

)
which would be satisfied if we have

λ⋆
k′m

ŝk−sk′+1
k′ (ŝk − sk′ + 2) Ĝk,sk′−1 ≤ −

λ⋆
k − λ⋆

k+1

6(k − 1)
logmk−1 ·m

1
log mk−1

−1

k−1

Thus, ŝk must satisfy for all sk′

m
ŝk−sk′+1
k′ (ŝk − sk′ + 2) ≤ − λ⋆

k − λ⋆
k+1

36λ⋆
k′(k − 1)

logmk−1 ·m
1

log mk−1
−1

k−1 (20)

With the help of Lemma 4, Condition #3 transfers to

sk ≥
1

logmk−1
W−1 (mk−1 logmk−1) + ŝk + 1

Similarly, Condition #4 transfers to

ŝk ≥
1

logmk′
W−1

(
− λ⋆

k − λ⋆
k+1

36λ⋆
k′(k − 1)

logmk−1 ·m
1

log mk−1
−1

k−1 mk′ logmk′

)
+ sk′ − 2

which can be guaranteed as long as

ŝk ≥
1

logmk′
W−1

(
−λ⋆

k − λ⋆
k+1

36kλ⋆
k′

(logmk−1)
2 ·m

1
log mk−1

k−1

)
+ sk′ − 2

Gathering all requirements, we have

sk ≥ max

{
1

logmk−1
W−1 (mk−1 logmk−1) ,

(k − 1)mk−1 + 1

1−mk−1

}
+ ŝk + 1

ŝk ≥
1

logmk′
W−1

(
−λ⋆

k − λ⋆
k+1

36kλ⋆
k′

(logmk−1)
2 ·m

1
log mk−1

k−1

)
+ sk′ − 2

Plugging ŝk into the lower bound of sk shows that the condition in (8) suffice to guarantee that
Lemma 3 holds. Thus, we can conclude that

∥vk,ℓ − u⋆
k∥2 = Gk,ℓ ≤ 6 (ℓ− sk + 2)mℓ−sk+1

k

which finishes the proof.

C.2. Proof of Lemma 2
Applying the Davis-Kahan Theorem, if we let λk+1,ℓ = λmax (Σk,ℓ), then for all k, ℓ such that
∥Σ⋆

k −Σk,ℓ∥F < λ⋆
k − λ⋆

k+1, we have

∥uk,ℓ − u⋆
k∥2 ≤

∥Σ⋆
k −Σk,ℓ∥F

λ⋆
k − λk+1,ℓ
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By definition, we have

Σ⋆
k = Σ−

k−1∑
k′=1

λ⋆
k′u⋆

k′u⋆⊤
k′ ; Σk,ℓ = Σ−

k−1∑
k′=1

(
v⊤
k′,ℓ−1Σvk′,ℓ−1

)
vk′,ℓ−1v

⊤
k′,ℓ−1

Thus, we can write the difference between the two matrices as

Σ⋆
k −Σk,ℓ =

k−1∑
k′=1

(
λ⋆
k′ − v⊤

k′,ℓ−1Σvk′,ℓ−1

)
vk′,ℓ−1v

⊤
k′,ℓ−1 +

k−1∑
k′=1

λ⋆
k′

(
vk′,ℓ−1v

⊤
k′,ℓ−1 − u⋆

k′u⋆⊤
k′

)
It is easy to see that for vk′,ℓ−1 and v⋆

k′ with unit norm,∥∥vk′,ℓ−1v
⊤
k′,ℓ−1 − u⋆

k′u⋆⊤
k′

∥∥2
2
= 2− 2 ⟨vk′,ℓ−1,u

⋆
k′⟩2 ≤ ∥u⋆

k′ − vk′,ℓ−1∥22

Moreover to bound
∣∣∣λ⋆

k′ − v⊤
k′,ℓ−1Σvk′,ℓ−1

∣∣∣, we denote δ = vk′,ℓ−1 − u⋆
k′ , and write

v⊤
k′,ℓ−1Σvk′,ℓ−1 = (u⋆

k′ − δ)
⊤
Σ (u⋆

k′ − δ) = λ⋆
k′ − 2λ⋆

k′δ⊤u⋆
k′ + δ⊤Σδ

Therefore, we have∣∣λ⋆
k′ − v⊤

k′,ℓ−1Σvk′,ℓ−1

∣∣ = ∣∣−2λk′δ⊤u⋆
k′ + δ⊤Σδ

∣∣ ≤ 2λ⋆
k′ ∥vk′,ℓ−1 − u⋆

k′∥2 + λ⋆
1 ∥vk′,ℓ−1 − u⋆

k′∥22
This gives

∥Σ⋆
k −Σk,ℓ∥F ≤

k−1∑
k′=1

(
3λ⋆

k′ ∥u⋆
k′ − vk′,ℓ−1∥2 + λ⋆

1 ∥u⋆
k′ − vk′,ℓ−1∥22

)
We then need to assume that, for some c0 > 1,

k−1∑
k′=1

λ⋆
k′ ∥u⋆

k′ − vk′,ℓ−1∥2 ≤
c0 − 1

4c0

(
λ⋆
k − λ⋆

k+1

)
In this scenario, we can conclude that ∥u⋆

k′ − vk′,ℓ−1∥2 ≤ λ⋆
k. Combined with the condition that

λ⋆
1 = 1, we have

∥Σ⋆
k −Σk,ℓ∥F ≤ 4

k−1∑
k′=1

λ⋆
k′ ∥u⋆

k′ − vk′,ℓ−1∥2 ≤
c0 − 1

c0

(
λ⋆
k − λ⋆

k+1

)
Moreover, we have

∥uk,ℓ − u⋆
k∥2 ≤

4

λ⋆
k − λk+1,ℓ

k−1∑
k′=1

λ⋆
k′ ∥u⋆

k′ − vk′,ℓ−1∥2 ≤
4c0

λ⋆
k − λ⋆

k+1

k−1∑
k′=1

λ⋆
k′ ∥u⋆

k′ − vk′,ℓ−1∥2

where the last inequality follows from λ⋆
k − λk+1,ℓ ≥ λ⋆

k − λ⋆
k+1 − ∥Σ⋆

k −Σk,ℓ∥F ≥ 1
c0

(
λ⋆
k − λ⋆

k+1

)
C.3. Proof of Lemma 3
To start, we will need to prove an auxiliary lemma
Lemma 5. Let the sequence {B̂k,ℓ}∞ℓ=sk−1+1 be defined as

B̂k,ℓ = min
{
2,mℓ−ŝk

k−1 (ℓ− ŝk + 1) B̂k,ŝk

}
with some B̂k,ŝk ≤ 2 andmk−1 ∈ (0, 1). Then for all s that satisfiesms−ŝk

k−1 ≤ 1
s−ŝk+1 and s ≥

kmk−1

1−mk−1
+ŝk,

we have that

B̂k,ℓ ≤
(
1

k
+

k − 1

k
mk−1

)ℓ−s

B̂k,s
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Proof. To start, by definition, we can write B̂k,s as

B̂k,s = min
{
2,ms−ŝk

k−1 (s− ŝk + 1) B̂k,ŝk

}
Since B̂k,ŝk ≤ 2, we have

ms−ŝk
k−1 (s− ŝk + 1) B̂k,ŝk ≤ 2ms−ŝk

k−1 (s− ŝk + 1) ≤ 2

where the last inequality follows from the conditionms−ŝk
k−1 ≤ 1

s−ŝk+1 . Therefore, we can write B̂k,s

as
B̂k,s = ms−ŝk

k−1 (s− ŝk + 1) B̂k,ŝk

Recall that for any ℓ ≥ swe have

B̂k,ℓ = min
{
2,mℓ−ŝk

k−1 (ℓ− ŝk + 1) B̂k,ŝk

}
Plugging in B̂k,ŝk =

(
ms−ŝk

k−1 (s− ŝk + 1)
)−1

B̂k,s we have

B̂k,ℓ ≤ mℓ−s
k−1 ·

ℓ− ŝk + 1

s− ŝk + 1
· B̂k,s

≤ mℓ−s
k

(
ℓ∏

ℓ′=s+1

ℓ′ − ŝk + 1

ℓ′ − ŝk

)
· B̂k,s

≤ mℓ−s
k

(
s− ŝk + 1

s− ŝk

)ℓ−s

B̂k,s

=

(
mk ·

s− ŝk + 1

s− ŝk

)ℓ−s

B̂k,s

≤
(
1

k
+

k − 1

k
mk

)ℓ−s

B̂k,s

where the last inequality is because s ≥ kmk

1−mk
+ ŝk implies that

mk ·
s− ŝk + 1

s− ŝk
≤ mk ·

kmk

1−mk
+ 1

kmk

1−mk

=
(k − 1)mk + 1

k
=

1

k
+

k − 1

k
mk

This completes the proof.

We will use induction on k to prove the lemma.
Base Case: k = 1. In this case, by the definition of B̂1,ŝ1 , we have B̂1,s1 = 0. Moreover, by the
definition of B̂1,ℓ for ℓ ≥ s1, we have B̂1,ℓ = mℓ−ŝk

0 (ℓ− ŝk + 1) B̂k,ŝk = 0. Lastly, by the definition
of B1,ℓ, we have B1,ℓ = 0. Therefore, we must have that B̂1,ℓ = 0 = B1,ℓ for all ℓ ≥ ŝ1. This
shows Condition #1. Using B̂1,ℓ = 0 = B1,ℓ, we can derive that Ĝ1,ℓ = Fℓ−s1+1

1 D1,s1−1, and G1,ℓ =

Fℓ−s1+1
1 D1,s1−1. This implies that G1,ℓ ≤ Ĝ1,ℓ, and shows Condition #2. Thus, we have shown that

the case k = 1 holds.
Inductive Step. Now, we assume that for all k̂ ≤ k, the following holds

1. B̂k̂,ℓ ≥ Bk̂,ℓ for all ℓ ≥ ŝk̂

2. Ĝk̂,ℓ ≥ Gk̂,ℓ for all ℓ ≥ sk̂ − 1

Wewish to show that the above three conditions hold for k̂ = k+1. We start by showing Condition
#1 for k̂ = k + 1. By Condition #2 in the inductive hypothesis, we have that Ĝk̂,ℓ ≥ Gk̂,ℓ for all
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ℓ ≥ sk̂ − 1. Since ŝk+1 ≥ sk̂ for all k̂ ≤ k, we have that Ĝk̂,ℓ ≥ Gk̂,ℓ for all ℓ ≥ ŝk+1 − 1. Therefore, in
the case of ℓ = ŝk+1

Bk+1,ℓ ≤ Ck+1

k∑
k′=1

λ⋆
k′Gk′,ℓ−1 ≤ Ck+1

k∑
k′=1

λ⋆
k′Ĝk′,ℓ−1 = B̂k,ℓ

Next, we show that B̂k+1,ℓ ≥ Bk+1,ℓ for all ℓ ≥ ŝk+1. If B̂k+1,ℓ ≥ 2, then we directly have B̂k+1,ℓ ≥
Bk+1,ℓ since Bk+1,ℓ ≤ 2. Otherwise, suppose B̂k+1,ℓ ≤ 2. Since ŝk+1 ≥ sk′ for all k′ ≤ k, by the
definition of Ĝk,ℓ, we have

Ĝk′,ŝk+1−1 = m
ŝk+1−sk′
k′ (ŝk+1 − sk′ + 1) Ĝk′,sk′−1

Based on the definition of B̂k+1,sk , and sincemk ≥ mk′ for all k ≥ k, we have that
B̂k+1,ℓ = m

ℓ−ŝk+1

k (ℓ− ŝk+1 + 1) B̂k+1,ŝk+1

= m
ℓ−ŝk+1

k (ℓ− ŝk+1 + 1)Ck+1

k∑
k′=1

λ⋆
k′Ĝk′,ŝk+1−1

≥ Ck+1

k∑
k′=1

λ⋆
k′m

ℓ−ŝk+1

k′ (ℓ− ŝk+1 + 1) Ĝk′,ŝk+1−1

≥ Ck+1

k∑
k′=1

λ⋆
k′m

ℓ−sk′
k′ (ℓ− ŝk+1 + 1) (sk+1 − sk′ + 1) Ĝk′,sk′−1

≥ Ck+1

k∑
k′=1

λ⋆
k′m

ℓ−sk′
k′ (ℓ− sk′ + 1) Ĝk′,sk′−1

= Ck+1

k∑
k′=1

λ⋆
k′Ĝk′,ℓ−1

where the third to the last inequality is due to (ℓ− ŝk+1 + 1) + (sk+1 − sk′ + 1) − 1 = ℓ − sk′ + 1,
and for all a ≥ 1, b ≥ 1, we will have ab ≥ a + b − 1. By the inductive hypothesis, we have that
Ĝk′,ℓ ≥ Gk′,ℓ for all ℓ ≥ ŝk+1 ≥ sk′ − 1. Therefore, it must hold that

B̂k+1,ℓ ≥ Ck+1

k∑
k′=1

λ⋆
k′Gk′,ℓ−1 ≥ Bk+1,ℓ

This proves Condition #1 for k̂ = k + 1. Next, we will prove Condition #2 for k̂ = k + 1. To start,
when ℓ = sk+1 − 1, we have

Ĝk+1,ℓ = Dk+1,sk+1−1 + B̂k+1,sk+1−1 + B̂k+1,sk+1−2

while by (18) we have
Gk+1,ℓ ≤ Dk+1,sk+1−1 +Bk+1,sk+1−1

Since B̂k+1,sk+1−2 ≥ 0 and B̂k+1,sk+1−1 ≥ Bk+1,sk+1−1 as proved above for sk+1 ≥ ŝk+1 − 2, we
must have that Ĝk+1,ℓ ≥ Gk+1,ℓ when ℓ = sk+1 − 1. Next, we show that Ĝk+1,ℓ ≥ Gk+1,ℓ when
ℓ > sk+1 − 1. To start,

Gk+1,ℓ ≤ Fℓ−sk+1+1
k+1 Dk+1,sk+1−1 +

ℓ−1∑
ℓ′=sk+1−1

Fℓ−ℓ′

k+1 (Bk+1,ℓ′ +Bk+1,ℓ′−1) +Bk+1,ℓ

≤ Fℓ−sk+1+1
k+1 Dk+1,sk+1−1 +

ℓ∑
ℓ′=sk+1−1

Fℓ−ℓ′

k+1 (Bk+1,ℓ′ +Bk+1,ℓ′−1)

≤ Fℓ−sk+1+1
k+1 Dk+1,sk+1−1 +

ℓ∑
ℓ′=sk+1−1

Fℓ−ℓ′

k+1

(
B̂k+1,ℓ′ + B̂k+1,ℓ′−1

)
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By definition of B̂k+1,ℓ, invoking Lemma 5 with s = sk+1−2 and s = sk+1−1, we have that, as long
as sk+1 satisfies msk+1−ŝk+1−2

k ≤ 1
sk+1−ŝk+1−1 and sk+1 ≥ (k+1)mk

1−mk
+ ŝk+1 + 2, it holds that

B̂k+1,ℓ ≤ γ
ℓ−sk+1+2
k B̂k+1,sk+1−2

B̂k+1,ℓ ≤ γ
ℓ−sk+1+1
k B̂k+1,sk+1−1

for all ℓ ≥ sk. Therefore

Gk+1,ℓ ≤ Fℓ−sk+1+1
k+1 Dk+1,sk+1−1 +

ℓ∑
ℓ′=sk+1−1

Fℓ−ℓ′

k+1

(
B̂k+1,ℓ′ + B̂k+1,ℓ′−1

)

= Fℓ−sk+1+1
k+1 Dk+1,sk+1−1 +

ℓ∑
ℓ′=sk+1−1

Fℓ−ℓ′

k+1 γ
ℓ′−sk+1+1
k

(
B̂k+1,sk+1−1 + B̂k+1,sk+1−2

)
≤ max{Fk+1, γk}ℓ−sk+1+1

(
Dk+1,sk+1−1 + (ℓ− sk+1 + 1)

(
B̂k+1,sk+1−1 + B̂k+1,sk+1−2

))
≤ max{Fk+1, γk}ℓ−sk+1+1(ℓ− sk+1 + 1)

(
Dk+1,sk+1−1 + B̂k+1,sk+1−1 + B̂k+1,sk+1−2

)
= Ĝk+1,ℓ

where in the last equality we use mk+1 = max{Fk+1, γk} and
Ĝk+1,sk+1−1 = Dk+1,sk+1−1 + B̂k+1,sk+1−1 + B̂k+1,sk+1−2

This proves Condition #2 under ℓ > sk+1 − 1, which finishes the induction step and completes the
proof.

C.4. Proof of Lemma 4
First, we prove the case ϵ ≥ − m

e logm . Notice that the function g(x) achieves global maximum at
x = 1

log 1/m − 1 with value 1
log 1/mm

1
log 1/m

−1. Moreover, notice that
1

log 1/m
m

1
log 1/m

−1 = −m
1

− log m

m logm
= −e−

1
log m ·logm

m logm
= − 1

em logm
≤ ϵ

Therefore, for all x ≥ 0 we would have g(x) ≤ ϵ. Next, we consider the case ϵ ≤ − 1
em logm . In this

case, x ≥ 1
logmW−1 (ϵm logm)− 1 implies that

(x+ 1) logm ≤W−1 (ϵm logm)

By the monotonicity of W−1, we have
(x+ 1) logm · e(x+1) logm ≥ ϵm logm

which gives (x+ 1)ex logm ≤ ϵ. Thus, we have g(x) = (x+ 1)mx ≤ ϵ.

D. Ablation studies.
We conducted additional ablation studies for the parallel deflation algorithms, with the results
presented in Figure 4. In Figure 4a, we conduct additional experiments comparing how differ-
ent choices of the number of local updates T contribute to the convergence speed. In particular,
since in each communication round, the local updates of all workers are done in parallel, T × ℓ
would represent the total time elapsed under the ideal scenario of no communication cost. We
could see from Figure 4a that a smaller T results in a faster convergence speed. Remarkably, since
we choose T ×L = 1200 and aim at recovering 30 eigenvectors, the case where T = 40 corresponds
to L = 30, demonstrating the convergence behavior of the sequential deflation algorithm. Figure 4a
thus supports that introducing additional parallelism into the deflation algorithm indeed speeds
up the computation process. On the other hand, Figure 4b considers the case where the commu-
nication cost is the major burden. In this case, we can run the parallel deflation algorithm with a
larger number of local updates, hoping to make more progress within one communication round.
Indeed, Figure 4b shows that a large number of local updates result in a faster convergence within
a fixed number of communication rounds on larger datasets.
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Figure 4: Ablation study of the parallel deflation algorithm. (a) shows the benefit of the run-time
by increasing the parallelism. (b) shows the benefit of decreasing the communication cost by in-
creasing the number of local iterations.
E. Stochastic Parallel Deflation Algorithm
In this section, we provide the explicit form of the stochastic version of the parallel deflation algo-
rithm as discussed in Section 3. Notice that in this algorithm we choose Hebb’s rule as the Top− 1
subroutine for the convenience of a clearer presentation. However, any subroutine that use Σk,ℓ

only for a matrix-vector multiplication can enjoy a similar efficient implementation.

Algorithm 2 Stochastic Parallel Deflation with Hebb’s Rule
Require: Batch of data in the (ℓ, t)th iteration Ŷℓ,t; # of eigenvectors (workers)K; # of iterations T ;

global communication rounds L ≥ K, step size η.
Ensure: Approximate eigenvectors {vk}Kk=1.
1: for k = 1, . . . ,K do
2: Randomly initialize v̂k,init with unit norm;
3: end for
4: for ℓ = 1, . . . , L do
5: for k = 1, . . . ,K do
6: if k ≤ ℓ then
7: Receive v1,ℓ−1, . . . ,vk−1,ℓ−1

8: vk,ℓ,0 := vk,ℓ−1;
9: for t = 1, . . . , T do
10: λ̂k′,ℓ,t = ∥Ŷℓ,tvk′,ℓ−1∥22 ∀k′ ∈ [k − 1];
11: gk,ℓ,t = Ŷ⊤

k,ℓ,tŶk,ℓ,tvk,ℓ,t−1 −
∑k−1

k′=1 λ̂k′,ℓ,t

(
v⊤
k′,ℓ−1vk,ℓ,t−1

)
· vk′,ℓ−1

12: vk,ℓ,t := (vk,ℓ,t−1 − ηgk,t,ℓ)/ ∥vk,ℓ,t−1 − ηgk,t,ℓ∥2
13: end for
14: Broadcast vk,ℓ := vk,ℓ,T

15: else
16: vk,ℓ := v̂k,init;
17: end if
18: end for
19: end for
20: return {vk,L}Kk=1

F. Baseline Algorithms
We provide the generalization of the EigenGame-α [33] and EigenGame-µ [34] algorithms with
multiple iterations of local updates T ≥ 1 in Algorithm 3 and Algorithm 4. In particular, it should
be noted that EigenGame-α and EigenGame-µ use covariance matrices computed on subsets of the
data in each iteration, where in our case we assume that the covariance matrix is computed on
the whole dataset before the algorithm runs. Moreover, if we set T = 1 in both Algorithm 3 and
Algorithm 4, then we recover the original EigenGame-α and EigenGame-µ algorithms.
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Algorithm 3 EigenGame-α
Require: Σ ∈ Rd×d; # of eigenvectors (workers)K; # of iterations T ; global communication rounds

L ≥ K, step size η.
Ensure: Approximate eigenvectors {vk}Kk=1.
1: for k = 1, . . . ,K do
2: Randomly initialize v̂k,init with unit norm;
3: end for
4: for ℓ = 1, . . . , L do
5: for k = 1, . . . ,K do
6: if k ≤ ℓ then
7: Receive v1,ℓ−1, . . . ,vk−1,ℓ−1

8: vk,ℓ,0 := vk,ℓ−1;
9: for t = 1, . . . , T do
10: gk,ℓ,t := Σvk,ℓ,t−1 −

∑k−1
k′=1

v⊤
k′,ℓ−1

Σvk,ℓ,t−1

v⊤
k′,ℓ−1

Σvk′,ℓ−1
·Σvk′,ℓ−1;

11: vk,ℓ,t := (vk,ℓ,t−1 − ηgk,t,ℓ)/ ∥vk,ℓ,t−1 − ηgk,t,ℓ∥2
12: end for
13: Broadcast vk,ℓ := vk,ℓ,T

14: else
15: vk,ℓ := v̂k,init;
16: end if
17: end for
18: end for
19: return {vk,L}Kk=1

Algorithm 4 EigenGame-µ
Require: Σ ∈ Rd×d; # of eigenvectors (workers)K; # of iterations T ; global communication rounds

L ≥ K, step size η.
Ensure: Approximate eigenvectors {vk}Kk=1.
1: for k = 1, . . . ,K do
2: Randomly initialize v̂k,init with unit norm;
3: end for
4: for ℓ = 1, . . . , L do
5: for k = 1, . . . ,K do
6: if k ≤ ℓ then
7: Receive v1,ℓ−1, . . . ,vk−1,ℓ−1

8: vk,ℓ,0 := vk,ℓ−1;
9: for t = 1, . . . , T do
10: gk,ℓ,t := Σvk,ℓ,t−1 −

∑k−1
k′=1 v

⊤
k′,ℓ−1Σvk,ℓ,t−1 · vk′,ℓ−1;

11: vk,ℓ,t := (vk,ℓ,t−1 − ηgk,t,ℓ)/ ∥vk,ℓ,t−1 − ηgk,t,ℓ∥2
12: end for
13: Broadcast vk,ℓ := vk,ℓ,T

14: else
15: vk,ℓ := v̂k,init;
16: end if
17: end for
18: end for
19: return {vk,L}Kk=1
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