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ABSTRACT

Pre-trained vector representations in natural language processing often inadver-
tently encode undesirable social biases. Identifying and removing unwanted biased
information from vector representation is an evolving and significant challenge. Our
study uniquely addresses this issue from the perspective of statistical independence,
proposing a framework for reducing bias by transforming vector representations to
an unbiased subspace using sufficient projection. The key to our framework lies in
its generality: it adeptly mitigates bias across both debiasing and fairness tasks, and
across various vector representation types, including word embeddings and output
representations of transformer models. Importantly, we establish the connection
between debiasing and fairness, offering theoretical guarantees and elucidating our
algorithm’s efficacy. Through extensive evaluation of intrinsic and extrinsic metrics,
our method achieves superior performance in bias reduction while maintaining
high task performance, and offers superior computational efficiency.

1 INTRODUCTION

Natural Language Processing (NLP) models have made significant strides in recent years, with
much of their success attributed to representation learning - the process of creating effective vector
representations for textual data. Various research has been conducted in this area, including static
word embedding (Mikolov et al., 2013; Pennington et al., 2014), contextualized embedding (Peters
et al., 2018; Devlin et al., 2018; Radford et al., 2019), sentence embedding (Reimers and Gurevych,
2019) in addition to other representation methods.

However, as vector representations have been applied in a wide range of real-life scenarios, researchers
have discovered that stereotypical biases and spurious correlations can be transferred from human-
generated corpora to vector representations and models (Bolukbasi et al., 2016; Caliskan et al., 2017;
Vig et al., 2020). This has the potential to produce biased and unfair outcomes in various downstream
tasks (Kurita et al., 2019) and can even lead to serious social problems. For instance, in the word
analogy task presented in (Bolukbasi et al., 2016), it was found that the vector representation for

−→
she

was closer to −−−→nurse than the representation for
−→
he was to

−−−→
doctor. De-Arteaga et al. (2019) found a

performance gap between different genders in text classification tasks.

The bias and fairness issues in NLP models are primarily caused by the unbalanced and stereotypical
nature of the training corpora. Liang et al. (2020) described this as unbalanced model behavior in
relation to certain socially sensitive topics such as gender, race, and religion. To quantify biases in
NLP, two types of bias evaluation metrics(intrinsic and extrinsic) have been proposed. However,
recent research has shown that in most cases, there is a weak correlation between them (Goldfarb-
Tarrant et al., 2021; Kaneko et al., 2022; Cao et al., 2022). There remains a significant research
gap in understanding how to bridge these two kinds of tasks. In our research, we employ statistical
independence to establish a theoretical linkage between these tasks, offering insights into the interplay
between intrinsic and extrinsic biases.

Various methods have been proposed for reducing bias in NLP, but it remains a challenge to effectively
mitigate bias while maintaining high model performance. Furthermore, it is particularly difficult
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for debiasing methods to efficiently address both intrinsic and extrinsic biases at the same time, as
discussed in the related works section.

In this paper, we propose a general debiasing method that can effectively mitigate bias across both
debiasing and fairness tasks. Our key contributions include the following:

• We are the first to scope the debiasing and fairness tasks unitedly through statistical indepen-
dence, providing theoretical analysis to bridge the connection between them.

• Our algorithm showcases its effectiveness in both intrinsic(bias embedding evaluation) and
extrinsic(fairness text classification) evaluation metrics. It is versatile, adapting to different
embedding methods and sensitive variable types, making it universally applicable.

• Our method improves upon existing state-of-the-art methods while still maintaining good
task performance compared to the original model and stands out due to its superior compu-
tational efficiency.

The structure of this paper is as follows. We begin with a comprehensive review of existing research
on bias evaluation and debiasing techniques in NLP. We then introduce our methodology, including
our proposed algorithm. We present experimental results on a range of gender bias evaluation tasks,
showcasing the effectiveness of our approach. Finally, we provide a theoretical bridge and guarantee,
and a discussion of our method.

2 RELATED WORKS

Debiasing Methods in NLP Researchers have been focusing on reducing bias from each component
of NLP models. The most intuitive idea of debiasing is through counterfactual data augmentations
(Zmigrod et al., 2019; Dinan et al., 2020; Barikeri et al., 2021), which involves re-balancing a corpus
by swapping bias attribute words (e.g., he/she) in a dataset. The re-balanced corpus is then used for
further training to debias a model. While this approach is simple and can be applied to all tasks,
it does not perform well in terms of debiasing and requires additional computational resources for
model re-training. Another direction is fine-tuning pre-trained transformer-based language models
using methods such as projection (Kaneko and Bollegala, 2021), adversarial (Han et al., 2021),
contrastive (Cheng et al., 2020; Shen et al., 2021; He et al., 2022), dropout (Webster et al., 2020), and
prompting (Schick et al., 2021; Guo et al., 2022). These methods show effectiveness in reducing bias
in various intrinsic evaluation tasks. However, when deploying these debiased models to downstream
tasks, especially fine-tuning on task-specific datasets, the debiased language model can still re-learn
social bias, making these debiasing methods less effective.

Our proposed debiasing method is based on the controlled removal of specific information from vector
representations, which is closely related to the task of disentangling representations (Bengio et al.,
2013). Previous research in this area includes methods for removing bias from static embeddings,
such as projecting the word embedding into the orthogonal space of the gender direction (

−→
he -

−→
she)

(Bolukbasi et al., 2016), re-training the entire embedding using some loss functions (Kaneko and
Bollegala, 2019), and utilizing the ideas in causal inference (Yang and Feng, 2020; Ding et al., 2022).
There are several similar projection-based methods like Iterative Nullspace Linear Projection (INLP;
(Ravfogel et al., 2020)), RLACE (Ravfogel et al., 2022a). We discuss the detailed comparison and
advantages of our method in Section 7.

Evaluating Bias in NLP The measurement methods for evaluating bias in pre-trained word
embeddings and language models can be broadly divided into two categories: Intrinsic and Extrinsic
evaluations. Intrinsic bias evaluations probe the bias within pre-trained word embeddings and
language models. Common methods include measuring the geometry in embedding space, such
as the Word Embedding Association Test (WEAT; Caliskan et al. (2017)) and Sentence Encoder
Association Test (SEAT; May et al. (2019)). Additionally, Kurita et al. (2019); Nangia et al. (2020);
Nadeem et al. (2021) propose metrics using the likelihood score. Furthermore, research suggests that
some debiasing methods may only hide bias, and thus additional measurement approaches are needed
Gonen and Goldberg (2019).

The extrinsic bias is specific to certain downstream tasks. In the text classification task, De-Arteaga
et al. (2019); Blodgett et al. (2016) proposed two benchmark datasets and used the equal opportu-
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nity measure from fairness literature. Zhao et al. (2018a) proposed the WinoBias benchmark for
Coreference resolution. As well as other benchmarks, such as Bias-NLI (Dev et al., 2020) and in
machine translation (Stanovsky et al., 2019). However, recent research has indicated that intrinsic
bias in embeddings or models typically does not have a strong correlation with bias in downstream
tasks(Goldfarb-Tarrant et al., 2021; Cao et al., 2022). Kaneko et al. (2022) found out that the debiased
models re-learn the bias from the fine-tuning datasets, showing that only debiasing upstream models
may not be enough to eliminate bias in downstream tasks.

In our work, we conduct comprehensive evaluation experiments in both intrinsic and extrinsic tasks.
Additionally, our approach avoids the issue of re-learning bias by directly addressing the vector
representation in downstream tasks.

3 METHODOLOGY

3.1 PROBLEM SETUP

We consider the problem of removing sensitive information inside the vector representation. Given
the representation vector X ∈ Rp1 accompanied with the target attribute Y ∈ Rp2 and the sensitive
attribute Z ∈ Rp3 , our goal is to find a map g : Rp1 7→ Rp1 such that:

• g(X) is uncorrelated with Z;
• g(X) maintains ability to predict Y .

In other words, the new representation X̃ = g(X) removes the sensitive information Z contained
in the original representation while preserving other useful information in X . The notations given
above incorporate debiasing and fairness tasks into the same framework, which are formulated in the
following definitions:

Definition 3.1 (Debias). Let X̃ = g(X) and f1 be the model with input X̃ . Then X̃ is said to be a
debiased representation if f1(X̃) ⊥⊥ Z.

Definition 3.2 (Fairness). Let X̃ = g(X) and f2 be the predictor trained by (X̃,Y ). Then X̃ is
said to be a fair representation if f2(X̃) ⊥⊥ Z | Y .

Our formulated definition directly aligns with the objectives of each task. In the debiasing task, given
the input X , the model f1 is biased if the output f1(X) relies heavily on Z. Ideally, an unbiased
model should satisfy that the distribution of Z is uniform over its support. Therefore, the goal is to
make Z and the output of the model f1(X) to be independent given the representation X . Similarly,
for fairness tasks, the aim is to develop a fair predictor f2, ensuring its prediction is independent of
sensitive information Z conditioned on Y (Hardt et al., 2016).

3.2 MOTIVATION

As previously discussed, our goal is to identify a mapping g such that X̃ = g(X) possesses the
desired properties. A direct approach involves constructing a p1 × p1 projection matrix P and
applying the linear transformation g(X) = PX . When we restrict the transformation g into linear
projections, the original vector X can be decomposed into X = PX + (I − P )X , where I is the
p1 × p1 identity matrix. Letting S1 and S2 represent the spaces spanned by P and I −P respectively,
the representation space is then decomposed as Rp1 = S1

⊕
S2. For a debiased representation

X̃ = PX , S1 should be structured to minimize the information regarding Z, while S2 should
encapsulate as much of the information regarding Z as possible.

Consequently, the debiasing goal transforms into the identification of the subspaces S1 and S2.
It’s crucial to note that the majority of information regarding Z resides within S2. Therefore, the
expression (I − P )X emerges as a potential predictor for Z. Throughout this paper, we adhere to
the following linearity assumption,

Assumption 3.3 (Linearity). Z can be perfectly predicted by the linear combinations of X .

With this assumption, denote Q = I − P with its rank equal to q. If we suppose the orthogonal basis
of Q is (β1, . . . , βq), with each βj belonging to Rp1 , then we can assume the following model as an
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ideal representation where Z can be perfectly predicted by projecting X onto q distinct directions:

Z = f(β⊤
1 X, . . . , β⊤

q X, ε), (1)

where f is an unknown function, which can be linear or nonlinear, and ε denotes the random effect.

Based on the discussion above, the primary objective of this study is articulated as follows: initially,
to identify the direction matrix B = (β1, . . . , βq) ∈ Rp1×q ensuring that B⊤X captures most of
the information about Z. Then given this direction matrix, we can obtain a debiased representation
of X by projecting it onto the subspace orthogonal to Span{B}. Note that Span{B} is equivalent
to Span{Q} = S2, and hence, its corresponding orthogonal subspace S1 is spanned by P as
preliminarily defined. This approach underpins the theoretical foundation of our proposed algorithm,
details of which will be explored in the forthcoming sections.

3.3 MINIMAL SUBSPACE

It is crucial that we want the subspace S2 with the desired property as small as possible so that we
can retain the utility of X after projecting it on S1. Essentially, we want to find the matrix Q with
minimum rank q. Consider the random variables X ∈ Rp1 and Z ∈ Rp3 . If there exists a full rank
matrix B ∈ Rp1×q , such that Z⊥⊥X | B⊤X (X is independent of Z conditioned on its projections
on B), then the column space of the matrix B, denoted as Span{B}, is called a sufficient dimension
reduction subspace of Z with respect to X . The intersection of all the dimension reduction subspaces
is called the central subspace and denoted as SZ|X . That is SZ|X =

⋂
B∈BXZ

Span{B}, where

BXZ =
{
B | Z⊥⊥X conditioned on B⊤X

}
The dimension of the central subspace is denoted as dim(SZ|X). When Span{B} is the central
subspace, we have dim(SZ|X) = dim(Span{B}) = q. See Cook and Li (2002) for more details.

If Z⊥⊥X | B⊤X , then B⊤X are most useful to predict Z based on X , which is exactly the case
in Model (1). Therefore, the central subspace SZ|X is the minimal subspace processing the desired
property and serves as a promising candidate for the expected subspace S2. We will illustrate the
estimation procedure in the next section, which is robust to any kind of mapping f in Model (1) and
only relies on the data set {(Xi, Zi)}ni=1.

Note that Model (1) is an ideal case based on the linearity assumption. In real-world applications,
using only q directions might not be sufficient to cover all the information of Z because there might
be nonlinear correlations between X and Z. However, since the q directions can cover most of the
information, it is still safe to use Model (1) in practice. Specifically, in NLP tasks, we may assume
that the sensitive attribute Z can be predicted by the projections of the representation X onto q
directions with some unknown mapping f .

4 SUFFICIENT UNIVERSAL PROJECTION (SUP)

4.1 SUBSPACE ESTIMATION

In this subsection, we will explain the process of estimating the subspace S2 = SZ|X in different
scenarios. We will begin with the simplest case where p3 = 1, meaning Z ∈ R is a scalar. Sliced
Inverse Regression (SIR) is a classical dimension reduction method proposed by Li (1991) for
univariate response Z. We provide the detailed scheme for SIR applied on the data set {(Xi, Zi)}ni=1
in the Appendix A.1. The main procedure of SIR is: (1) divide the support of Z into H intervals and
calculate the covariance matrix of X for each interval, (2) calculate the weighted covariance matrix
based on H intervals, (3) obtain the directions from the weighted covariance matrix. The space
spanned by the directions B = (β1, . . . , βq) provided by SIR is a consistent estimation of SZ|X .

For multivariate sensitive attributes, a direct analogy of the slicing strategy in SIR no longer works, as
the number of partitions of the support of Z = (Z1, . . . ,Zp3

) ∈ Rp3 becomes Hp3 and thus suffers
the curse of dimensionality. To address the limitation of the original SIR, the Pooled Marginal Slicing
(PMS) estimator proposed in Aragon (1997) combines the subspaces SZi|X estimated by univariate
response SIR to get the directions for the multivariate response, which is motivated by the following
proposition.
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Proposition 4.1. Note that Z⊥⊥X | B⊤X implies Zj⊥⊥X | B⊤X . Therefore, for j = 1, . . . , p3,
SZj |X ⊆ SZ|X .

Proof. For any B ∈ BXZ , we have B ∈ BXZj
, thus BXZ ⊂ BXZj

. Recall that SZ|X is the
intersection of all elements in BXZ . Therefore, we have SZj |X ⊆ SZ|X for j = 1, . . . , p3.

Proposition 4.1 indicates that SZj |X can be used to recover SZ|X , which guarantees the theoretical
properties of PMS estimator. It also naturally lifts the curse of dimensionality. Let Zij denote the j-th
coordinate of i-th sample. We apply SIR to data set {(Xi, Zij)}ni=1 and obtain the estimators MSIR

i

for j = 1, . . . , p3. Then we define the weighted sum of estimators as MPMS =
∑p3

j=1 wiM
SIR
i ,

where wi can be chosen as either equal weights or proportional to the leading eigenvalues of Mi.
Then the leading q eigenvectors ψ1, . . . , ψq of MPMS can be used to recover SZ|X . The detailed
implementation of obtaining MPMS is summarized in Algorithm 2 in the Appendix.

4.2 ALGORITHM IMPLEMENTATION

To obtain the debiased representation, we first collect the original vector representation Xi and the
associated sensitive attribute Zi. Note that Zi can be labeled by humans or learned from the training
data. Specifically, we place no restrictions on the structure of Zi – it can be either discrete labels
Zi ∈ {1, 2, . . . , k} representing gender or race, or a continuous variable. When Zi is a continuous
variable, we directly set Z̃i = Zi and handle {(Xi, Z̃i)} as discussed above. If Zi is a categorical
variable with choices {1, 2, . . . , k}, we first train a classifier fcls based on the data set {(Xi, Zi)}ni=1,
whose output is the probability of Xi belonging to each category, then denote

Z̃i = fcls(Xi) = (Z̃i1, . . . , Z̃ik) ∈ Rk,

where
∑k

j=1 Z̃ij = 1. In both scenarios, the attribute Zi is converted to the vector variable with

continuous support. Then we can obtain the PMS estimator MPMS based on {(Xi, Z̃i)}ni=1 with
its leading q eigenvectors ψ1, . . . , ψq. The projection matrix is defined as P = I −

∑q
i=1 ψiψ

⊤
i .

Intuitively, Q =
∑q

i=1 ψiψ
⊤
i is the estimated central mean space regarding Z, and the space spanned

by this matrix contains most of the information we want to eliminate. The procedure is outlined in
Algorithm 1.

Algorithm 1 Sufficient Universal Projection (SUP)
Input: Data {(Xi, Zi)}ni=1, partition H and number of dimension q;
Output: Sufficient projection P ;

1: if Zi is continuous then
2: Set Z̃i = Zi;
3: else if Zi is discrete then
4: Train a classifier fcls by {(Xi, Zi)}ni=1;
5: Set Z̃i = fcls(Xi);
6: end if
7: Obtain MPMS using {(Xi, Z̃i)}ni=1 by Algorithm 2;
8: Calculate the leading eigenvectors {ψj}qj=1 of MPMS;
9: Obtain P = Ip1

−
∑q

j=1 ψjψ
⊤
j ;

10: Return: P .

It is worth emphasizing that SUP is a general framework for bias elimination, and we have no
assumption on the type of representation. Therefore, our proposed method is universally robust
to both static and contextualized embeddings with different dimensions and can be applied to any
downstream tasks.
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5 EXPERIMENT AND SETTINGS

5.1 STATIC WORD EMBEDDING EVALUATION TASKS

We begin by demonstrating our method in the context of debiasing static word embeddings using
300-dimensional GloVe embeddings (Pennington et al., 2014) pre-trained on English Wikipedia
data. We first split all the words evenly into two classes by calculating the cosine similarity between
each word embedding with the gender direction

−→
he -

−→
she. The label of each class is the sensitive

attribute Z and the projection matrix P is calculated through Algorithm 1. For a fair comparison, the
following evaluations are based on the methodology outlined in (Gonen and Goldberg, 2019; Ding
et al., 2022). We compare our results with the following baseline methods: hard-debiasing method
(Hard) (Bolukbasi et al., 2016), gender-preserving debiasing method (GP) (Kaneko and Bollegala,
2019), word vector learning method (GN) (Zhao et al., 2018b), half-sibling regression (HSR) (Yang
and Feng, 2020), INLP (Ravfogel et al., 2020) and DeSIP (Ding et al., 2022).

Clustering Gender Biased Words. Biased words tend to cluster together, and debiased embeddings
may not escape this phenomenon. We use K-means clustering (K=2) to split the top 500 male-biased
and top 500 female-biased words. A visualization graph is presented in Appendix A.3. In Table 1
column one, we report the accuracy in splitting the 1,000 words into male and female clusters. Our
method brings about a 50% reduction compared with the original GloVe and about 20% compared
with the second-best method.

Correlation Using the top 50,000 most frequent words as targets, we calculate the Pearson correla-
tion coefficient between the bias-by-projection and bias-by-neighbor results. The latter is calculated
using the neighborhood metric, which counts the percentage of male and female-biased words within
the 100 nearest neighbors of each target word. The result is presented in the second column of Table
1, and we achieve the lowest correlation coefficient.

Profession Words In this task, we determine the correlation between the original bias and the
number of male neighbors among the 100 nearest neighbors of profession words, as listed by
Bolukbasi et al. (2016); Zhao et al. (2018b). The correlation coefficient is shown in Table 1. Our
method reduces the coefficient by 20% compared with the original GloVe and achieves the best result.

Classifcation We selected the top 2,500 biased words for each gender and trained a support vector
machine (SVM) model using 1,000 randomly sampled words for each baseline model. We then
applied the trained classifier to the remaining 4,000 words to predict gender bias direction. The
prediction accuracy is shown in Table 1. Lower accuracy implies that the original embedding does not
contain enough gender-related information. Our method has the least accuracy among all debiasing
methods, indicating that it preserves the least gender bias.

Clustering Correlation Profession Classify

GloVe 1.0000 0.7727 0.8200 0.9980
Hard 0.8050 0.6884 0.7161 0.9068
GP 1.0000 0.7700 0.8102 0.9978
GN 0.8560 0.7336 0.7925 0.9815
HSR 0.9410 0.6422 0.6804 0.9055
INLP 0.6336 0.5718 0.6651 0.8160
DeSIP 0.7920 0.6421 0.7060 0.8550

SUP 0.5198 0.5360 0.6515 0.7247

Task1 Task2

p (↑) d (↓) p (↑) d (↓)

GloVe 0.090 0.704 0.00∗ 1.905
Hard 0.363 0.187 0.00∗ 1.688
GP 0.055 0.832 0.00∗ 1.909
GN 0.157 0.541 0.074 0.753

HSR 0.265 0.340 0.00∗ 1.555
INLP 0.195 0.475 0.129 0.595
DeSIP 0.268 0.335 0.001∗ 1.462

SUP 0.411 0.119 0.142 0.565

Table 1: Left: Static word embedding bias evaluation tasks. A lower number in each column
indicates better debiasing performance. Baseline results are reported by Ding et al. (2022). Our
method surpasses all other methods; Right: WEAT result. In each column of p-value, ∗ indicates
statistically significant compared with α = 0.05; In each column of d, a value closer to 0 is indicative
of less bias. The best results are boldfaced.

Word Embedding Association Test The WEAT (Caliskan et al., 2017) is a permutation-based
test that measures bias in word embeddings. Please refer to Appendix A.4 for the details of WEAT.
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The results are reported in terms of absolute effect sizes(d) and p-values (p). The effect size is a
normalized measure of how separated two distributions are. A high effect size indicates a larger
bias between the target and attribute words, and the p-value denotes whether the bias is statistically
significant or not. We conduct two tests using the Pleasant & Unpleasant (Task 1) and Career &
Family (Task 2) word sets. We consider male and female names as attribute sets. As shown in Table
1, in both tasks, the p-value is not significant, indicating the bias is non-significant. We also achieve
the smallest effect size in both of the tasks, indicating the effectiveness in reducing bias in word
embeddings.

5.2 WORD SIMILARITY TASKS

While reducing bias is our primary goal, it is crucial not to destroy other semantic information
encoded in word embeddings. We evaluate our algorithm by the following word similarity tests:
RG65 (Rubenstein and Goodenough, 1965), WordSim-353 (Finkelstein et al., 2001), Rarewords
(Luong et al., 2013), MEN (Bruni et al., 2014), MTurk-287 (Radinsky et al., 2011), and MTurk-771
(Halawi et al., 2012), SimLex-999 (Hill et al., 2015), and SimVerb-3500 (Gerz et al., 2016). These
datasets associated with each task contain word pairs and a corresponding human-annotated similarity
score. We calculate Spearman’s rank correlation coefficient between the two ranks. The results of
our method and the original GloVe are shown in Table 2. We observe an overall non-decreasing
performance in most of the tasks, showing that the semantic information is protected.

RG65 WS RW MEN

GloVe 0.7540 0.6199 0.3722 0.7216
SUP 0.7913 0.6617 0.3986 0.7423

MT-287 MT-771 SimLex SimVerb

GloVe 0.6480 0.6486 0.3474 0.2038
SUP 0.6349 0.6792 0.3949 0.2493

Gender(↓) Race (↓) Religion (↓)

BERT 0.620 0.620 0.492
+CDA 0.722 0.569 0.339
+Dropout 0.765 0.554 0.377
+INLP 0.204 0.639 0.460
+SentDebias 0.434 0.612 0.439

+SUP 0.218 0.432 0.261

Table 2: Left: Word similarity results. A higher value indicates a better semantic correlation; Right:
SEAT average effect sizes for debiased BERT. A lower number in each column indicates better
debiasing performance. The best results are boldfaced. Baseline results are from Meade et al. (2022).

5.3 SENTENCE EMBEDDING ASSOCIATION TEST (SEAT)

In addition to testing on static word embeddings, we also test on contextualized word embeddings.
SEAT (May et al., 2019), extends the WEAT test by leveraging simple templates such as ’This is
a <word>’ to obtain the individual word’s contextualized embedding. We use the implementation
results from (Meade et al., 2022). The baseline includes BERT base uncased, CDA and Dropout
(Webster et al., 2020), SentDebias (Liang et al., 2020), and INLP.

For a detailed list of the SEAT tests used to measure each type of bias in our work, the complete
results, as well as obtaining the projection, we refer readers to Appendix A.5. In Table 2, we
display the average effect size for each SEAT task category evaluated. Our findings reveal superior
performance in two out of the three tasks while delivering comparable results to the INLP method
in the Gender task. Notably, our SUP method exhibits enhanced performance across a variety of
bias-influenced topics.

5.4 EXTRINSIC: FAIRNESS TEXT CLASSIFICATION

For the extrinsic task, we consider the fairness text classification problem. We conduct experiments
over three different tasks – sentiment analysis (MOJI) Blodgett et al. (2016), biography classification
(BIOS) De-Arteaga et al. (2019). The detail of the datasets is described in Appendix A.6.

The fairness criterion is defined by Equality of Opportunity (EO), i.e. a classifier is considered fair if
its prediction is independent of the sensitive attribute given the true label. For BIOS and MOJI data,
it is measured by considering the gap in the True Positive Rate (TPR) between different sensitive
attribute groups:

TPRz,y = P [Ŷ = y|Z = z, Y = y], GAPTPR
y = TPRz,y − TPRz′,y
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The root-mean-square (RMS) gap over all groups is GAPTPR
RMS =

√
1
|C|

∑
y∈C(GAP

TPR
y )2.

We follow the original implementation of MOJI and BIOS that use race and gender labels as sensitive
attributes Z. The results are shown in Table 3. We report the Accuracy, the GAPRMS , and the Time
in seconds for BIOS and MOJI. The baselines are from (Ravfogel et al., 2020), (Ravfogel et al.,
2022a), (Chowdhury and Chaturvedi, 2022), and (Ravfogel et al., 2022b).

BIOS MOJI

Acc.(↑) GAP(↓) Time(↓) Acc.(↑) GAP(↓) Time(↓)

BERT 79.1 14.5 - 71.6 31.0 -
+INLP 71.9 9.9 271 62.2 15.8 1003
+RLACE 76.9 13.2 4312 72.2 15.4 2456
+FaRM(unconstrained) 55 7.9 6723 63.5 14.0 4162
+Kernel(Poly) 79.9 16.8 3914 72.9 17.3 8861
+Kernel(RBF) 60.7 18.0 3487 74.1 13.3 5496

+SUP 76.4 12.7 6.76 69.1 10.5 33.04

Table 3: Left: Result of BIOS text classification. Predict using [CLS] token. Right: Result of MOJI
text classification. The best result is boldfaced.

In Table 3, we implement each task using BERT and establish it as the baseline - this represents the
results without any fairness considerations. Our findings reveal that in the BIOS task, while the INLP
and FaRM achieve low RMS, it is accompanied by a compromise in accuracy. In contrast, our SUP
method demonstrates balanced performance on both fronts. For MOJI, our algorithm stands out,
yielding the smallest discrepancy gap among all methods, all the while maintaining uncompromised
accuracy. Moreover, our algorithm benefits from having an explicit solution, eliminating the need for
iterative calculations, and running significantly faster than many existing baselines.

In addition, we also conduct experiments on a more challenging dataset: the Toxic Comment Clas-
sification (Dixon et al., 2018). Within this dataset, each sample may belong to multiple sensitive
attribute groups, embodying intersectionality in biases. For instance, a single comment might simul-
taneously belong to ’black’ and ’gay’ sensitive groups. We adhere to the definitions and gap measure-
ments outlined by Dixon et al. (2018), GAPtoxic =

∑
z∈Z |TPRz,0 −meanz∈Z(TPRz,0)|, where

meanz∈Z(TPRz,0) is the average of TPR gaps of all sensitive attributes. where meanz∈Z(TPRz,0)
represents the average of True Positive Rate (TPR) gaps across all sensitive attributes. The sensitive
attribute in this scenario is depicted as a 50-dimensional vector, illustrating the relative frequency of
sensitive words within sentences.

For the original BERT model, the Area Under the Curve (AUC) was 95.5, and the GAPtoxic was
7.34. By employing our method, we managed to maintain the AUC at 95.0 while reducing the
GAPtoxic to 5.95, showcasing the efficacy of our approach in mitigating biases while preserving
model performance. It is crucial to highlight that our methodology effectively manages the intricacies
of intersectional biases in toxic comment classification, a complexity not adequately addressed by
other baseline algorithms. For a more detailed discussion, please refer to Section 7 below.

6 BRIDGE BETWEEN DEBIASING AND FAIRNESS

In this section, we provide a theoretical analysis of how our proposed method can incorporate
debiasing and fairness tasks into a unified framework and handle them simultaneously. As previously
discussed, both tasks aim to achieve conditional independence with respect to certain variables. Here,
we will demonstrate how minimal subspace S2 bridges these tasks. We provide the following theorem
to prove the effectiveness of our framework in dealing with both debiasing and fairness tasks. For
detailed proof, Please refer to Appendix A.7.
Theorem 6.1. With the settings defined in Section 3 and linearity assumption, suppose X ⊥⊥ Z |
QX , then X̃ = (I − Q)X is a debiased representation. Further, suppose X ⊥⊥ Y | QyX , if
Span{Qy} ⊆ Span{Q}, then X̃ = (I −Q)X is a fair representation.

Theorem 6.1 states that the projected representation X̃ = (I − Q)X has no correlation with the
sensitive attributes Z, which achieves the goal of debiasing task. Moreover, if the subspace spanned

8
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by sensitive attribute Z (SZ|X ) is included in the subspace spanned by target attribute Y (SY |X ),
we can achieve the goal of fairness task by projecting the original representation on (I −Q).

The theoretical property is consistent with the experimental results shown above. For the debiasing
task, the matrix Q =

∑q
i=1 ψiψ

⊤
i in Algorithm 1 is the estimated central mean space regarding Z,

then I −Q forms a sufficient projection defined in Theorem 6.1, which shows great improvement
upon existing state-of-the-art methods. For fairness task, the eigenvectors {ψj}qj=1 calculated in
Algorithm 1 recovers the matrix Q stated in Theorem 6.1. If we have Span{Qy} ⊆ Span{Q}, then
we can set X̃ = (I − Q)X to get the fair representation. However, in real data, this condition is
usually violated, which means Span{Qy} ⊈ Span{Q}. Therefore, the SUP may not achieve the
optimal fair representation in downstream tasks.

7 COMPARISON WITH OTHER PROJECTION METHODS

We conduct a comparative analysis between our method and other projection-based methods.

INLP: Both our method SUP and INLP employ linear projections to minimize the influence of
the sensitive attribute Z in the representations. The underlying principle of INLP revolves around
identifying the null space of the weight matrix, denoted as W ∈ Rk×p1 , which corresponds to the
parameters of linear classifier Z = f(WX), where f represents the classifier function and k is
the number of classes. This framework can be viewed as a specific instance of the Model 1, where
the subspace spanned by β1, . . . , βq exactly corresponds to the union of row spaces of Wi during
iterations. Specifically, INLP captures k directions (rows of weight matrix Wj) at each iteration,
while SUP finds q directions in a single run, which is more flexible and computationally efficient.

RLACE(Ravfogel et al., 2022a): Both SUP and RLACE operate under linearity assumption as
expressed in Assumption 3.3. In RLACE, the function f in Model (1) is interpreted as the inverse
of a link function in the generalized linear model. In contrast, our approach imposes no specific
constraints on the form of f . While RLACE achieves debiasing by solving a minimax problem to
identify the projection P that safeguards the sensitive attribute, our method directly estimates the
directions with a closed form, offering superior computational efficiency.

Advantage of SUP: The main distinction between our proposed methodology and existing projection-
based debiasing methods pertains to the range of tasks they can address. For instance, INLP is
principally designed for handling categorical sensitive attributes. In the context of the toxic data
task (see A.6), the sensitive attribute is no longer a categorical variable, thereby undermining the
effectiveness of INLP. However, it is important to note that our SUP algorithm does not violate the
structure of Model (1) under the linearity assumption. As a result, our approach remains capable of
estimating the directions β1, . . . , βq and mitigating bias through the Algorithm 1. This highlights the
versatility of our SUP algorithm, showcasing its capability to adeptly manage a spectrum of uni-/multi-
variate and discrete/continuous sensitive datasets. The capability of managing a sensitive attribute
as a continuous variable also aligns more closely with contemporary sociological understandings.
For instance, consider the interpretation of gender as a spectrum(Richards et al., 2016) rather than
a binary categorization. As such, models that can accommodate continuous variables for sensitive
attributes are better equipped to reflect these more nuanced perspectives, thereby promoting fairness
and inclusivity in their outcomes.

8 CONCLUSION AND FUTURE WORK

In this paper, we propose a theoretically grounded framework for reducing bias by projecting vector
representations to an unbiased subspace. It can reduce biased information effectively in both intrinsic
and extrinsic tasks, as well as different kinds of representations. In addition, we provide a theoretical
guarantee about the effectiveness of our method in reducing biased information.

While this work has demonstrated its effectiveness in various tasks, it has the potential to be applied
to other applications that rely on vector representation. We are also interested in combining our
method with the different other notions of fairness. We aim to explore these directions in future work.
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A APPENDIX

A.1 SCHEME FOR SIR ESTIMATOR

Suppose the data set {(Xi, Zi)}ni=1 is given, then the steps for SIR are summarized as :

1. Standardizing X by the transformation X̃i = C
−1/2
X (Xi −µX), where µX and CX are the

mean vector and covariance matrix of X .
2. Slice the range of Z into H intervals {Jh}Hh=1. Estimate the weight ph =

(1/n)
∑n

i=1 I(Zi ∈ Jh) and compute the sample mean mh = (1/nph)
∑

Zi∈Jh
X̃i on

each sliced interval.
3. Form MSIR =

∑H
h=1 phmhm

⊤
h and let ϕk be its eigenvectors. The directions are estimated

by βk = C
−1/2
X ϕk for k = 1, . . . , q.

A.2 PMS ESTIMATOR IMPLEMENTATION

For multivariate variable Z ∈ Rp3 , let Zij denote the j-th coordinate of i-th sample, the PMS
estimator can be achieved through the following Algorithm 2.

Algorithm 2 PMS Estimator
Input: Data {(Xi, Zi)}ni=1, partition H , covariance matrix CX and weights {wj}p3

j=1;
Output: PMS estimator MPMS;

1: for j = 1, . . . , p3 do
2: Slice the support of Zj into H intervals denoted as {Jj,h}Hh=1
3: for h = 1, . . . ,H do
4: Estimate the weight on each interval pj,h = 1

n

∑n
i=1 I(Zij ∈ Jj,h);

5: Compute the standardized mean on each interval mj,h = 1
npj,h

∑
Zij∈Jj,h

C−1
X Xi;

6: end for
7: Obtain the estimator for each dimension MSIR

j =
∑H

h=1 pj,hmj,hm
⊤
j,h;

8: end for
9: Calculate the weighted sum of estimators MPMS =

∑p3

j=1 wjM
SIR
j ;

10: Return: MPMS.

The weights wj can be chosen as either equal weights or proportional to the leading eigenvalues of
Mj . Then the leading q eigenvectors ψ1, . . . , ψq of MPMS can be used to recover SZ|X .

A.3 T-SNE VISUALIZATION

To visually demonstrate the effectiveness of our proposed method in reducing gender bias, we selected
the top 500 male- and female-biased embeddings. Using t-SNE projection, we generated a graph
for the original GloVe and our debiased embeddings. Figure 1 shows the separation of male- and
female-biased embeddings in two different colors. It can be observed that our method has mixed the
male- and female-biased embeddings effectively.

A.4 DETAIL OF WEAT

Let X and Y be two sets of target words of equal size n with their embedding {xi}ni=1 and {yi}ni=1,
and A, B the two sets of attribute words with their embedding {ai}|A|

i=1 and {bi}|B|
i=1. The WEAT uses

the difference of averaged distance to measure the similarity of a vector w to two sets A and B. The
test statistic is

s(X,Y,A,B) =
∑
x∈X

s(x,A,B)−
∑
y∈Y

s(y,A,B)

where
s(w,A,B) =

1

|A|
∑
a∈A

cos(w, a)− 1

|B|
∑
b∈B

cos(w, b)
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Figure 1: t-SNE visualization.

In other words, s(w,A,B) measures the association of the word w with the attribute, and
s(X,Y,A,B) measures the differential association of the two sets of target words with the attribute.

Let {(Xi, Yi)}i denote all the partitions of X ∪ Y into two sets of equal size. The one-sided p-value
of the permutation test is

Pri [s (Xi, Yi, A,B) > s(X,Y,A,B)]

The effect size is

meanx∈X s(x,A,B)−meany∈Y s(y,A,B)

std-dev w∈X∪Y s(w,A,B)

It is a normalized measure of how separated the two distributions (of associations between the target
and attribute) are.

All word lists are from Caliskan et al. (2017). Because GloVe embeddings are uncased, we use
lowercase words.

A.5 DETAIL OF SEAT

A.5.1 OBTAIN THE PROJECTION MATRIX

To train projections for the topics of gender, race, and religion, we used the vocabulary from the GloVe
model. All words were divided into groups according to their cosine similarities with pre-determined
hint words: [he, she] for gender, [black people, white people] for race, and [Christianity, Jewish,
Islam] for religion. Using BERT representations, we selected the top 75k words for gender, 75k for
race, and 30k for religion from each group and associated them with their group labels as the input
dataset for Algorithm 1.

A.5.2 FULL TEST AND RESULTS OF SEAT

In this section, we provide a complete set of results for all SEAT tests. All of the baseline results are
from Meade et al. (2022). Also, for detailed attribute word sets and the target word sets, please refer
to their GitHub repo. Table 4 are tasks for Gender debias. Table 5 are tasks for Race debias. Table 6
are tasks for Religion debias.

A.6 FAIR TEXT CLASSIFICATION DETAILS

The MOJI is a sentiment classification dataset collected by Blodgett et al. (2016) that contains
tweets from either African-American English or Standard American English. Each of the text data
is labeled with a binary ’race’ label based on the kind of English they use. The binary sentiment
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SEAT Gender Tasks

Model SEAT-6 SEAT-6b SEAT-7 SEAT-7b SEAT-8 SEAT-8b Avg. Effect Size (↓)

BERT 0.931 0.090 -0.124 0.937 0.783 0.858 0.620
CDA 0.846 0.186 -0.278 1.342 0.831 0.849 0.722
Dropout 1.136 0.317 0.138 1.179 0.879 0.939 0.765
INLP 0.317 -0.354 -0.258 0.105 0.187 -0.004 0.204
SentDebias 0.350 -0.298 -0.626 0.458 0.413 0.462 0.434

SUP -0.028 -0.286 -0.403 -0.255 0.213 -0.124 0.218

Table 4: SEAT effect sizes for gender debiased BERT. Effect sizes closer to 0 are indicative of less
biased model representations.

SEAT Race Tasks

Model ABW-1 ABW-2 SEAT-3 SEAT-3b SEAT-4 SEAT-5 SEAT-5b Avg. Effect Size (↓)

BERT -0.079 0.690 0.778 0.469 0.901 0.887 0.539 0.620
CDA 0.231 0.619 0.824 0.510 0.896 0.418 0.486 0.569
Dropout 0.415 0.690 0.698 0.476 0.683 0.417 0.495 0.554
INLP 0.295 0.565 0.799 0.370 0.976 1.039 0.432 0.639
SentDebias -0.067 0.684 0.776 0.451 0.902 0.891 0.513 0.612

SUP 0.019 0.428 0.542 0.193 0.611 0.716 0.514 0.432

Table 5: SEAT effect sizes for race debiased BERT. Effect sizes closer to 0 are indicative of less
biased model representations.

SEAT Religion Tasks

Model Religion-1 Religion-1b Religion-2 Religion-2b Avg. Effect Size (↓)

BERT 0.744 -0.067 1.009 -0.147 0.492
CDA 0.355 -0.104 0.424 -0.474 0.339
Dropout 0.535 0.109 0.436 -0.428 0.377
INLP 0.473 -0.301 0.787 -0.280 0.460
SentDebias 0.728 0.003 0.985 0.038 0.439

SUP 0.392 -0.066 0.492 0.092 0.261

Table 6: SEAT effect sizes for religion debiased BERT. Effect sizes closer to 0 are indicative of less
biased model representations.

score is annotated by the emoji contained in the tweets. We compose the training data set as follows:
AAE–happy = 40%, SAE– happy = 10%, AAE–sad = 10%, and SAE–sad = 40%. We used the train,
dev, and test splits of 100k/8k/8k instances, respectively.

The BIOS dataset De-Arteaga et al. (2019) is a personal biography classification dataset annotated
by gender and 28 classes of occupation. We follow the same split setup for the BIOS data as in
De-Arteaga et al. (2019), and the ratio of train:dev:test is 65% : 10% : 25%.

The Toxic dataset features text sourced from the Talk Pages of Wikipedia, where each comment has
been categorized by human assessors as either toxic or non-toxic. Interestingly, an analysis of this
dataset has revealed a disproportionate appearance of certain demographic identity-related terms
(such as "gay" and "black") within the labels. This imbalance can inadvertently lead to biased model
training, resulting in discriminatory behavior towards certain groups. Our research employs the same
division of data as specified by (Dixon et al., 2018), enabling us to test the efficacy of our method in
reducing discrimination against minority groups.
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A.7 PROOF OF THEOREM 6.1

Proof. According to the definition of conditional independence, for any measurable function f , we
have f(X) ⊥⊥ Z | QX because the randomness of f(X) only comes from the random variable X .

For the debias task, notice that X ⊥⊥ Z | QX , thus X ⊥⊥ Z | QX . It implies that Z only depends on
QX . Therefore, if we eliminate those correlated part and denote X̃ = (I −Q)X , we have X̃ ⊥⊥ Z.
It achieves the goal of the debias task defined above.

For the fairness task, if we assume X ⊥⊥ Y | QyX , which implies Y = f0(QyX) for some
measurable function f0. Notice that Span{Qy} ⊂ Span{Q}, then Span{Qy} is orthogonal to
Span{I − Q}, which implies (I − Q)X ⊥⊥ QyX . Therefore, (I − Q)X ⊥⊥ Z | Y since the
randomness of Y comes from QyX . It achieves the goal of the fairness task defined above if we let
X̃ = (I −Q)X .

Remark A.1. We should emphasize that in the above theorem, the random vectors X , Y , and Z are
defined on the Euclidean space Rp1 , Rp2 and Rp3 respectively. For each random variable, taking
X as an example, the sample space is defined as Ω = B(Rp1), which is Borel set generated by
all open set on Rp1 , and the σ-algebra Σ is generated by Ω, i.e. Σ = σ(Ω). In this way, for any
measurable function f satisfying the sample space of f(X) is included in the sample space of X ,
we have σ(f(X)) ⊂ σ(X), and thus the desired properties of conditional independence hold in the
proof

A.8 EFFECT OF q

Figure 2: Trends of accuracy and GAP for MOJI data with number of dimension q removed.

It is important to note that the debiasing procedure may distort the relevant concepts or key informa-
tion, denoted by Y . Generally, as q increases, both the sensitive information Z and part of the target
information Y are excluded from the debiased representation. This occurs due to the intersection of
the subspaces spanned by Z and Y . Consequently, a rise in q leads to a simultaneous reduction in
accuracy and the gap, illustrating a delicate equilibrium and trade-off between targeting and debiasing
performance.

A.9 LIMITATIONS

All our result is based on the English dataset, as there is a lack of benchmark of fairness in other
languages. Also, we only consider the transformation under a linear framework, where we aim to
find the projection matrix P . However, the estimation procedure for the central subspace SZ|X has

17



Under review as a conference paper at ICLR 2024

been well developed and can find nonlinear transformation g, which we leave for future exploration.
Also, for the SEAT evaluation, there are some researchers point out that SEAT sometimes not able to
detect the bias inside the language model. But compared with other debiasing studies that only report
on SEAT, we test our method on much more comprehensive experiments.

A.10 ETHICS STATEMENT

Our research is fundamentally methodological in nature, focusing on the development of strategies to
mitigate biases in NLP. We have taken careful measures to ensure that our work adheres to recognized
ethical guidelines. For all evaluations related to bias and fairness, we have strictly followed established
protocols, utilizing well-known tasks to evaluate biases related to gender, religion, and race. It is
important to clarify that our use of these tasks is for analytical purposes only, with the sole intention of
understanding and minimizing the biases present in AI systems. Our goal is to promote fairness and
inclusivity in AI, and we firmly advocate for the respectful and unbiased treatment of all individuals,
irrespective of their gender, religion, or race.

A.11 REPRODUCIBILITY

Hyperparameter tuning: For our method, the main hyperparameter is the q: the number of directions
we want to project. We use regular grid search to find the best hyperparameter. For classifiers
mentioned in Algorithm 1, we use the logistic classifier in sklearn.

Computational detail: We conduct all our experiments on an Ubuntu Server with CPU AMD Ryzen
Threadripper 3990X 64-Core Processor and 256G RAM. Since our experiments do not need many
computational resources (no retraining or fine-tuning), no GPU is needed.

Baseline results: Most of the baseline results are from recently published papers of well-known
conferences. In static embedding evaluation, the INLP results are calculated by our code using the
embedding they provided, which has a slightly better result than they reported in their paper.
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