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Abstract

How to learn highly compact yet effective sen-001
tence representation? Pre-trained language002
models have been effective in many NLP tasks.003
However, these models are often huge and pro-004
duce large sentence embeddings. Moreover,005
there is a big performance gap between large006
and small models. In this paper, we propose007
Homomorphic Projective Distillation (HPD) to008
learn compressed sentence embeddings. Our009
method augments a small Transformer encoder010
model with learnable projection layers to pro-011
duce compact representations while mimicking012
a large pre-trained language model to retain the013
sentence representation quality. We evaluate014
our method with different model sizes on both015
semantic textual similarity (STS) and semantic016
retrieval (SR) tasks. Experiments show that our017
method achieves 2.7-4.5 points performance018
gain on STS tasks compared with previous best019
representations of the same size. In SR tasks,020
our method improves retrieval speed (8.2×)021
and memory usage (8.0×) compared with state-022
of-the-art large models.023

1 Introduction024

It is a fundamental problem to learn compact yet ef-025

fective sentence representations. Good representa-026

tions have wide applications in NLP, including web027

search (Palangi et al., 2016), question answering028

(Hao et al., 2019), knowledge inference (Wang and029

Kuo, 2020), and machine translation (Yang et al.,030

2020). Sentence embedding models take a sentence031

as the input and output a fixed-length continuous032

vector representation. Based on BERT (Devlin033

et al., 2019) and RoBERTa (Liu et al., 2019), re-034

cent sentence embedding models such as Sentence-035

BERT (SBERT) (Reimers and Gurevych, 2019)036

and SimCSE (Gao et al., 2021), are fine-tuned on037

sentence pair scoring tasks to learn better sentence038

representations, which show much improvement039

in downstream tasks. However, these models are040

big in two aspects. 1) They contain hundreds of041

millions to billions of parameters, which requires 042

large memory and powerful machine to serve in 043

production; 2) Their resulting embeddings are high 044

dimensional (e.g. 1024), requiring huge database 045

to store and index, which cause high search latency. 046

Therefore, it is challenging to directly use these 047

large models in real-world applications with strict 048

throughput/latency requirement and bounded hard- 049

ware resources. Our work focuses on reducing both 050

the model size and the representation size. 051

There has been several works to reduce model 052

size and retain the superior model performance. 053

Recent studies (Jiao et al., 2020; Sanh et al., 054

2019; Wang et al., 2020) have used knowledge 055

distillation (KD) on large language models to 056

derive compressed compact models with decent 057

performance. TinyBERT (Jiao et al., 2020) per- 058

forms layer-to-layer transformer distillation at pre- 059

training and task-specific learning stage utilizing 060

the teacher’s hidden states and self-attention dis- 061

tributions. MiniLM (Wang et al., 2020) proposes 062

task-agnostic transformer distillation, which uses 063

self-attention distributions and value relations to 064

help the student deeply mimic the teacher’s self- 065

attention modules. Nevertheless, directly fine- 066

tuning small transformer models for sentence em- 067

bedding shows less desirable results than large ones 068

(Reimers and Gurevych, 2019; Reimers, 2019). 069

Can we learn a compact yet highly performant 070

sentence representation? In this work, we propose 071

HPD: a dimension reduced sentence embedding 072

model via projected knowledge distillation. The 073

key idea is to start from a pre-trained large model 074

and distill its knowledge into a small one. The 075

large model is fine-tuned on natural language infer- 076

ence (NLI) datasets first. Then the small and large 077

ones are augmented with linear projection layer 078

and Principal Component Analysis (PCA) (Abdi 079

and Williams, 2010) respectively to reduce final 080

representation dimension. In this way, the small 081

model is expected to produce semantic meaningful 082
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representations (semantically similar sentences will083

have close embeddings), where it mimics the power084

of large models through homomorphic mappings.085

We evaluate our model on semantic textual simi-086

larity (STS) and semantic retrieval (SR) tasks. Em-087

pirical results show that our model can attain 2.7-088

4.5 points of performance gain on STS tasks com-089

pared to other dimension reduction approaches and090

achieve competitive retrieval performance against091

large sentence embedding models while signifi-092

cantly improving retrieval speed (8.2×) and mem-093

ory usage (8.0×) in SR tasks.094

2 Related Work095

Sentence embedding is a well-studied area with096

various proposed methods. Early works (Kiros097

et al., 2015; Logeswaran and Lee, 2018) build upon098

distributional hypothesis and train the models to099

predict the surrounding sentences. Conneau et al.100

(2017) propose to fine-tune a Siamese network on101

NLI datasets, which is then further extended to pre-102

trained models in Sentence-BERT (Reimers and103

Gurevych, 2019). SimCSE (Gao et al., 2021) pro-104

poses a contrastive learning method and achieves105

state-of-the-art performance on STS tasks.106

Recently, Raunak and Gupta (2019) address the107

latency and capacity issues through PCA to reduce108

large dimensionality, but it only focuses on word109

embedding. Su et al. (2021) find that the whiten-110

ing operation can enhance the isotropy of sentence111

distribution and reduce the dimensionality of the112

sentence representation, which optimizes the mem-113

ory storage and accelerates the retrieval speed. We114

use this approach as one of our baselines.115

3 Method116

The overview of our approach is illustrated in Fig-117

ure 1. Given a set of sentences X = {xi}mi=1,118

our goal is to obtain efficient sentence embedding119

models f : X → Rd, where d is the embedding120

dimension.121

The teacher model ft is trained on the same122

NLI dataset as Conneau et al. (2017); Reimers123

and Gurevych (2019); Gao et al. (2021), where124

there are three types of sentence pairs (entail-125

ment/neutral/contradiction). We follow the super-126

vised contrastive training framework in SimCSE127

(Gao et al., 2021) and take a cross-entropy objec-128

tive with in-batch negatives and hard negatives. Let129

(ei, e
+
i , e

−
i ) denote the representations of sentence130

triplet (xi, x+i , x
−
i ). For a mini-batch with N pairs,131

Avg Pooling
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Avg Pooling
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Augmented sentences
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Figure 1: Overview of Homomorphic Projective
Distillation (HPD).

the training objective is 132

ℓi = − log
esim(ei,e

+
i )/τ∑N

j=1

(
esim(ei,e

+
j )/τ + esim(ei,e

−
j )/τ

) , (1) 133

where τ is a temperature hyperparameter; 134

sim (e1, e2) is the cosine similarity e⊤1 e2
∥e1∥·∥e2∥ and 135

(x+i , x
−
i ) are corresponding "entailment" and "con- 136

tradiction" pairs for xi in the NLI dataset. 137

After building up a teacher model with superior 138

performance, we use it for knowledge distillation. 139

Firstly, we enrich the training dataset by data aug- 140

mentation (Details in Section 4.3). Then for each 141

sentence xi, we get the embedding eti ∈ Rd′t from 142

the teacher model ft and esi ∈ Rd′s from the student 143

model fs. Note that the dimensions for eti and esi 144

may be different (d′t ̸= d′s). 145

In order to perform homomorphic projective 146

distillation, we employ PCA (Abdi and Williams, 147

2010), ht
i = Wt(eti − ēt), to the teacher model 148

after its average pooling layer and we add a pro- 149

jection layer, hs
i = Wsesi + bs, to the student 150

model, where ht
i,h

s
i ∈ Rd are the teacher and stu- 151

dent’s final embeddings with the same dimension. 152

Wt ∈ Rd′t×d,Ws ∈ Rd′s×d are weight matrices. 153

b is the bias term and both d′s and d′t are smaller 154

than d. The teacher’s transformer parameters θt 155

and PCA matrix Wt are fixed, while only the stu- 156

dent’s transformer parameters θs, projection weight 157

Ws, and projection bias bs can be updated during 158

the distillation process. We minimize the distance 159

between final embeddings ht
i and hs

i by taking the 160

mean squared loss: 161

L =
1

M

M∑
i=1

∥∥hs
i − ht

i

∥∥2
2
, (2) 162

where M is the total number of sentences after data 163

augmentation. 164
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg. Size Dim Speed
Large models

SBERTbase 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89 109M 768 993
SRoBERTalarge 74.53 77.00 73.18 81.85 76.82 79.10 74.29 76.68 355M 1024 385
SimCSE-MPNet† 73.70 86.78 82.56 87.24 83.06 86.54 79.27 82.75 109M 768 986
SimCSE-RoBERTalarge

‡ 77.46 87.27 82.36 86.66 83.93 86.70 81.95 83.76 355M 1024 291
Backbone for compact model: TinyBERT

SimCSE-TinyBERT 73.02 80.71 76.89 83.01 78.57 81.10 78.19 78.78 14M 312 2650
+Projection-128 72.73 79.81 76.60 82.70 77.37 80.24 77.41 78.12 14M 128 2604
+Whitening-128 73.00 80.81 77.02 82.79 78.45 80.97 78.16 78.74 14M 128 2612

HPD-128 (Teacher:†) 74.20 84.49 79.95 85.79 80.07 83.41 78.99 80.99 14M 128 2608
HPD-128 (Teacher:‡) 74.29 83.05 78.80 84.62 81.17 84.36 80.83 81.02 14M 128 2609

Backbone for compact model: MiniLM
SimCSE-MiniLM 70.34 78.59 75.08 81.10 77.74 79.39 77.85 77.16 23M 384 2031

+Projection-128 70.19 79.22 75.53 80.78 78.13 79.45 77.46 77.25 23M 128 2022
+Whitening-128 70.55 78.85 75.4 81.06 77.77 79.40 77.92 77.28 23M 128 2015

HPD-128 (Teacher:†) 74.25 84.43 80.33 85.75 80.68 83.91 79.06 81.20 23M 128 2025
HPD-128 (Teacher:‡) 74.94 84.52 80.25 84.87 81.90 84.98 81.15 81.80 23M 128 2024

Table 1: Sentence embedding performance on STS tasks (Spearman’s correlation ρ×100). STS12-STS16: SemEval
2012-2016, STSb: STSbencemark, SICK-R: SICK relatedness dataset, Dim: embedding dimension, Size: number
of parameters, Speed: sentences per second.

4 Experiment165

We conduct our experiments on standard semantic166

textual similarity (STS) tasks using the SentEval167

toolkit (Conneau et al., 2017) for evaluation. We168

also test mean reciprocal rank (MRR), memory169

usage, and retrieval speed on semantic retrieval170

(SR) tasks.171

4.1 Semantic Textual Similarity (STS) Task172

Semantic textual similarity (STS) is a natural lan-173

guage processing (NLP) task to quantitatively as-174

sess the semantic similarity between two text snip-175

pets. We evaluate our model by computing the co-176

sine similarity between sentence pair embeddings177

on 7 standard STS tasks: STS 2012–2016 (Agirre178

et al., 2012, 2013, 2014, 2015, 2016) , STS Bench-179

mark (Cer et al., 2017) and SICK-Relatedness180

(Marelli et al., 2014). Spearman rank correla-181

tion is used to measure the correlation quality be-182

tween calculated similarity and human labels, con-183

sistent with Reimers and Gurevych (2019); Su et al.184

(2021); Gao et al. (2021).185

4.2 Semantic Retrieval (SR) Task186

The semantic retrieval (SR) task is to identify all187

sentences in the retrieval corpus that are semanti-188

cally similar to a query sentence. We construct the189

SR task on Quora Duplicate Questions Dataset1190

and Faiss2 (Johnson et al., 2017), a vector re-191

trieval engine, to test the retrieval effect and ef-192

ficiency of different models. We report the results193

1https://quoradata.quora.com/First-Quora-Dataset-
Release-Question-Pairs

2https://github.com/facebookresearch/faiss

on three parts: average mean reciprocal ranking 194

(MRR@10), average retrieve time for 1,000 sen- 195

tences (Time/ms) and memory usage (Mem/MB). 196

We show the detailed task settings in Appendix C. 197

4.3 Experiment Setup 198

We train our model on the NLI dataset, which is 199

a combination of the SNLI (Bowman et al., 2015) 200

and the MNLI (Williams et al., 2018) dataset. SNLI 201

dataset contains 570k sentence pairs and MNLI 202

is a collection of 430k sentence pairs. Particu- 203

larly, the teacher model is trained on "entailment" 204

and "contradiction" pairs in NLI dataset using con- 205

trastive loss (Equation 1). We use two state-of-the- 206

art large sentence embedding models, SimCSE- 207

RoBERTalarge
3 (Gao et al., 2021) and SimCSE- 208

MPNet4 (Song et al., 2020), as our teacher models. 209

For the student model, we choose the released pre- 210

trained checkpoints of TinyBERT (Jiao et al., 2020) 211

and MiniLM (Wang et al., 2020), and we leverage 212

a linear projection layer for dimension reduction. 213

Baseline Models We compare our HPD to 214

both state-of-the-art sentence embedding mod- 215

els and various dimension reduction techniques. 216

For sentence embedding model baseline, we di- 217

rectly fine-tune pre-trained language models Tiny- 218

BERT/MiniLM given NLI dataset using contrastive 219

loss. For dimension reduction baseline, we test 220

both projection and whitening approaches: 1) 221

adding a projection layer after TinyBERT/MiniLM 222

3https://huggingface.co/princeton-nlp/sup-simcse-
roberta-large

4https://huggingface.co/sentence-transformers/nli-mpnet-
base-v2
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Model Dim STS-B Avg.

HPD-MiniLM
128 83.91 81.20
256 83.95 81.05
384 83.44 80.91

HPD-MiniLM-wo-Aug
128 82.33 79.48
256 82.55 79.57
384 82.04 79.15

HPD-TinyBERT
128 83.41 80.99
256 83.19 80.81
312 83.11 80.72

HPD-TinyBERT-wo-Aug
128 81.88 79.64
256 81.67 79.47
312 81.50 79.27

Table 2: Effect of data augmentation and different di-
mensions (STS-B and Avg. in STS tasks, wo: without,
HPD Teacher: SimCSE-MPNet)

encoder and training on NLI dataset with con-223

trastive loss; 2) adopting whitening (Su et al., 2021)224

as a post-processing operation (similar to PCA) to225

reduce the dimension of SimCSE-TinyBERT or226

SimCSE-MiniLM. More details about each base-227

line and training setting can be found in Appendix228

A.229

Data Augmentation To generate synthetic data230

and improve the student’s performance, we apply231

WordNet substitution and back translation (Ma,232

2019) to every distinct sentence in NLI dataset.233

After data augmentation, the training data size is234

boosted from 1 million to 3 millions sentences.235

5 Results236

5.1 Results of STS Tasks237

Table 1 presents the results of our model compar-238

ing with current state-of-the-art sentence embed-239

ding models on STS tasks. Our HPD-MiniLM can240

achieve 97.7% of Spearman’s correlation perfor-241

mance and 7 times higher speed with only 6.5%242

of parameters compared with the best performance243

model SimCSE-RoBERTalarge. We also observe244

that our HPD-TinyBERT and HPD-MiniLM mod-245

els outperform SimCSE-TinyBERT and SimCSE-246

MiniLM, which are directly fine-tuned on the247

same training data and loss function as SimCSE-248

RoBERTalarge. Besides, our results show that our249

model can significantly improve the results with250

2.7-4.5 points absolute gain compared with projec-251

tion or whitening for dimension reduction.252

Impact of Data Augmentation and Final Dimen-253

sion Results in Table 2 show that models with254

augmented data can raise the performance by 1-2255

points compared with ones without augmented data.256

We find that different projected layer dimensions257

Model MRR Time Mem
HPD-TinyBERT-128 0.613 63.1 42.61
HPD-TinyBERT-256 0.616 130.4 85.22
HPD-TinyBERT-312 0.615 165.4 103.86
HPD-MiniLM-128 0.610 68.6 42.61
HPD-MiniLM-256 0.615 132.1 85.22
HPD-MiniLM-384 0.612 194.4 127.83
SimCSE-MPNet 0.671 385.8 255.66

SimCSE-RoBERTalarge 0.670 518.0 340.88

Table 3: Semantic retrieval results on Quora dataset.
(MRR@10: retrieval quality, Time: retrieval efficiency,
Mem: memory consumption)

achieve similar performances. However, small di- 258

mension has slightly better results than large ones. 259

5.2 Results of SR Tasks 260

From Table 3, we demonstrate that the embedding 261

dimension plays a vital role in the performance 262

of semantic retrieval tasks. Our HPD model with 263

different dimensions can achieve similar MRR per- 264

formance while the retrieval speed and memory 265

usage increase significantly when dimension goes 266

up. Compared with SimCSE-MPNet, our model 267

with 128 dimensions can achieve competitive MRR 268

performance while reducing the retrieval time by 269

8.2× and memory usage by 8.0×. 270

6 Conclusion and Discussion 271

In this paper, we propose an effective method to 272

compress sentence representation using homomor- 273

phic projective distillation. We demonstrated that 274

this approach successfully enables small language 275

models to achieve competitive high-quality sen- 276

tence representations compared with large ones 277

while keeping a small embedding size to optimize 278

the memory storage and retrieval latency in down- 279

stream tasks. 280

Our results show that knowledge distillation with 281

augmented data improves the student model’s ca- 282

pability to cover and understand more complex 283

sentence variances. The learned projection layer 284

with contrastive loss for sentence embedding can 285

help improve the isotropy of sentence representa- 286

tion distribution, which aligns with the findings in 287

Gao et al. (2021). We also try adding whitening 288

transformation on HPD’s output and the perfor- 289

mance is slightly dropped (Appendix B). Since we 290

find that smaller dimensions can have slightly bet- 291

ter results than larger ones, we will check over the 292

optimal projected layer size to enhance the isotropy 293

of sentence representation distribution for semantic 294

similarity tasks in our future work. 295
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A Training Details427

All of our experiments are conducted on a server428

with Intel i7-5930K CPU @ 3.50GHz, Nvidia TI-429

TAN Xp GPU, CUDA 11.3 and cuDNN. We then430

elaborate on how we obtain different baselines for431

comparisons in Table 1.432

• For SBERTbase and SRoBERTalarge, we report433

the results from Reimers and Gurevych (2019)434

and test their speed based on released models.435

• For SimCSE-RoBERTalarge, we directly load436

the pre-trained models from Huggingface’s437

repository (Wolf et al., 2020) "princeton-438

nlp/sup-simcse-roberta-large".439

• For SimCSE-MPNet, we utilize a well440

fine-tuned sentence embedding model us-441

ing contrastive loss trained on NLI dataset442

from Huggingface’s repository "sentence-443

transformers/nli-mpnet-base-v2".444

• For SimCSE-MiniLM, we use the MiniLM445

with 6 layers, 384-hidden size and 6 self-446

attention heads as the backbone network. We447

then fine-tune it following the contrastive loss448

for 3 epochs with a batch size of 256. The449

optimizer we use is AdamW (Loshchilov and 450

Hutter, 2019) and the learning rate is set as 451

1e-3. 452

• For SimCSE-TinyBERT, we use the Tiny- 453

BERT with 4 layers, 312-hidden size and 12 454

self-attention heads. The other training set- 455

tings are the same as SimCSE-MiniLM. 456

• For Projection-128, we add a linear layer to 457

the language model MiniLM/TinyBERT. The 458

linear layer projects the original embedding 459

from 384/312 dimension to 128 dimension. 460

We train the model using the same contrastive 461

loss and configuration as those of SimCSE- 462

MiniLM/SimCSE-TinyBERT. 463

• For Whitening-128, we implement our own 464

version of whitening operation (Su et al., 465

2021). It is directly applied on SimCSE- 466

MiniLM/SimCSE-TinyBERT as a dimension 467

reduction technique. Note that whitening is 468

a post-processing method, which is different 469

from HPD. 470

• For HPD-MiniLM and HPD-TinyBERT, the 471

models are trained for 3 epochs with a batch 472

size of 256 and a learning rate of 1e-4. We 473

keep the best checkpoint during training by 474

evaluating the model on STS-B test sets. 475

B More Results on STS Tasks 476

We report the full set of results for data augmen- 477

tation and different dimensions on STS tasks in 478

Table 4 (Teacher model: SimCSE-MPNet). We 479

also test a variation: adding whitening after the 480

projected distillation. Results show that adding 481

whitening after our HPD output slightly decreases 482

the performance. 483

C More Details about SR Tasks 484

For semantic retrieval (SR) tasks, the Quora dataset 485

contains over 500k sentences with over 400k pair- 486

wise annotations on whether two questions are du- 487

plicates or not. Faiss (Johnson et al., 2017) is a 488

library for efficient similarity search and cluster- 489

ing of dense vectors, which contains algorithms 490

that search in sets of vectors of any size. We calcu- 491

late all the sentence embeddings of question2, store 492

them in Faiss, and then use the sentence embedding 493

of question1 to retrieve them. Faiss is configured 494

in CPU mode with ’nlist = 1024’ and ’nprobe = 5’. 495
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
HPD-MiniLM-H128 74.25 84.43 80.33 85.75 80.68 83.91 79.06 81.20
HPD-MiniLM-H256 73.95 84.21 80.04 86.08 81.11 83.95 78.89 81.05
HPD-MiniLM-H384 73.63 83.91 79.71 85.90 80.88 83.44 78.88 80.91

HPD-MiniLM-H128-wo-Aug 71.39 82.45 78.24 84.65 78.85 82.33 78.42 79.48
HPD-MiniLM-H256-wo-Aug 71.36 82.65 78.20 84.65 79.21 82.55 78.36 79.57
HPD-MiniLM-H384-wo-Aug 70.94 82.06 77.60 84.41 78.70 82.04 78.31 79.15

HPD-TinyBERT-H128 74.2 84.49 79.95 85.79 80.07 83.41 78.99 80.99
HPD-TinyBERT-H256 74.06 84.14 79.7 85.93 80.03 83.19 78.60 80.81
HPD-TinyBERT-H312 73.97 84.14 79.61 85.65 79.79 83.11 78.74 80.72

HPD-TinyBERT-H128-wo-Aug 73.29 82.51 78.36 84.61 78.45 81.88 78.39 79.64
HPD-TinyBERT-H256-wo-Aug 73.00 82.25 78.36 84.74 78.10 81.67 78.20 79.47
HPD-TinyBERT-H312-wo-Aug 72.85 82.20 77.90 84.35 77.83 81.50 78.23 79.27
HPD-MiniLM-H384-whiten-128 73.73 84.10 79.47 85.23 79.32 82.69 78.74 80.47
HPD-MiniLM-H384-whiten-256 73.98 84.15 79.61 85.63 79.78 83.09 78.73 80.71

HPD-TinyBERT-H312-whiten-128 73.91 84.08 79.52 85.32 79.45 82.81 78.78 80.55
HPD-TinyBERT-H312-whiten-256 74.00 84.15 79.62 85.64 79.77 83.09 78.74 80.72

Table 4: Sentence embedding performance on STS tasks (Spearman’s correlation ρ× 100).
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