# Compressing Sentence Representation via Homomorphic Projective Distillation

**Anonymous ACL submission** 

#### Abstract

How to learn highly compact yet effective sen-002 tence representation? Pre-trained language models have been effective in many NLP tasks. However, these models are often huge and produce large sentence embeddings. Moreover, 006 there is a big performance gap between large 007 and small models. In this paper, we propose Homomorphic Projective Distillation (HPD) to learn compressed sentence embeddings. Our method augments a small Transformer encoder model with learnable projection layers to produce compact representations while mimicking 013 a large pre-trained language model to retain the sentence representation quality. We evaluate 014 015 our method with different model sizes on both semantic textual similarity (STS) and semantic 017 retrieval (SR) tasks. Experiments show that our method achieves 2.7-4.5 points performance gain on STS tasks compared with previous best representations of the same size. In SR tasks, our method improves retrieval speed  $(8.2\times)$ and memory usage  $(8.0 \times)$  compared with stateof-the-art large models.

# 1 Introduction

024

034

040

It is a fundamental problem to learn compact yet effective sentence representations. Good representations have wide applications in NLP, including web search (Palangi et al., 2016), question answering (Hao et al., 2019), knowledge inference (Wang and Kuo, 2020), and machine translation (Yang et al., 2020). Sentence embedding models take a sentence as the input and output a fixed-length continuous vector representation. Based on BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019), recent sentence embedding models such as Sentence-BERT (SBERT) (Reimers and Gurevych, 2019) and SimCSE (Gao et al., 2021), are fine-tuned on sentence pair scoring tasks to learn better sentence representations, which show much improvement in downstream tasks. However, these models are big in two aspects. 1) They contain hundreds of

millions to billions of parameters, which requires large memory and powerful machine to serve in production; 2) Their resulting embeddings are high dimensional (e.g. 1024), requiring huge database to store and index, which cause high search latency. Therefore, it is challenging to directly use these large models in real-world applications with strict throughput/latency requirement and bounded hardware resources. Our work focuses on reducing both the model size and the representation size. 042

043

044

045

046

047

051

054

055

058

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

081

There has been several works to reduce model size and retain the superior model performance. Recent studies (Jiao et al., 2020; Sanh et al., 2019; Wang et al., 2020) have used knowledge distillation (KD) on large language models to derive compressed compact models with decent performance. TinyBERT (Jiao et al., 2020) performs layer-to-layer transformer distillation at pretraining and task-specific learning stage utilizing the teacher's hidden states and self-attention distributions. MiniLM (Wang et al., 2020) proposes task-agnostic transformer distillation, which uses self-attention distributions and value relations to help the student deeply mimic the teacher's selfattention modules. Nevertheless, directly finetuning small transformer models for sentence embedding shows less desirable results than large ones (Reimers and Gurevych, 2019; Reimers, 2019).

Can we learn a compact yet highly performant sentence representation? In this work, we propose HPD: a dimension reduced sentence embedding model via projected knowledge distillation. The key idea is to start from a pre-trained large model and distill its knowledge into a small one. The large model is fine-tuned on natural language inference (NLI) datasets first. Then the small and large ones are augmented with linear projection layer and Principal Component Analysis (PCA) (Abdi and Williams, 2010) respectively to reduce final representation dimension. In this way, the small model is expected to produce semantic meaningful

representations (semantically similar sentences will have close embeddings), where it mimics the power of large models through homomorphic mappings.

We evaluate our model on semantic textual similarity (STS) and semantic retrieval (SR) tasks. Empirical results show that our model can attain 2.7-4.5 points of performance gain on STS tasks compared to other dimension reduction approaches and achieve competitive retrieval performance against large sentence embedding models while significantly improving retrieval speed (8.2×) and memory usage (8.0×) in SR tasks.

#### 2 Related Work

084

096

100

102

103

105

106

107

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

127

128

129

130

131

Sentence embedding is a well-studied area with various proposed methods. Early works (Kiros et al., 2015; Logeswaran and Lee, 2018) build upon distributional hypothesis and train the models to predict the surrounding sentences. Conneau et al. (2017) propose to fine-tune a Siamese network on NLI datasets, which is then further extended to pretrained models in Sentence-BERT (Reimers and Gurevych, 2019). SimCSE (Gao et al., 2021) proposes a contrastive learning method and achieves state-of-the-art performance on STS tasks.

Recently, Raunak and Gupta (2019) address the latency and capacity issues through PCA to reduce large dimensionality, but it only focuses on word embedding. Su et al. (2021) find that the whitening operation can enhance the isotropy of sentence distribution and reduce the dimensionality of the sentence representation, which optimizes the memory storage and accelerates the retrieval speed. We use this approach as one of our baselines.

### 3 Method

The overview of our approach is illustrated in Figure 1. Given a set of sentences  $\mathcal{X} = \{x_i\}_{i=1}^m$ , our goal is to obtain efficient sentence embedding models  $f : \mathcal{X} \to \mathbb{R}^d$ , where d is the embedding dimension.

The teacher model  $f_t$  is trained on the same NLI dataset as Conneau et al. (2017); Reimers and Gurevych (2019); Gao et al. (2021), where there are three types of sentence pairs (entailment/neutral/contradiction). We follow the supervised contrastive training framework in SimCSE (Gao et al., 2021) and take a cross-entropy objective with in-batch negatives and hard negatives. Let  $(\mathbf{e}_i, \mathbf{e}_i^+, \mathbf{e}_i^-)$  denote the representations of sentence triplet  $(x_i, x_i^+, x_i^-)$ . For a mini-batch with N pairs,



Figure 1: Overview of Homomorphic Projective Distillation (HPD).

the training objective is

$$\ell_i = -\log \frac{e^{\sin(\mathbf{e}_i, \mathbf{e}_i^+)/\tau}}{\sum_{j=1}^N \left( e^{\sin(\mathbf{e}_i, \mathbf{e}_j^+)/\tau} + e^{\sin(\mathbf{e}_i, \mathbf{e}_j^-)/\tau} \right)}, \quad (1)$$

where  $\tau$  is a temperature hyperparameter;  $sim(\mathbf{e}_1, \mathbf{e}_2)$  is the cosine similarity  $\frac{\mathbf{e}_1^\top \mathbf{e}_2}{\|\mathbf{e}_1\| \cdot \|\mathbf{e}_2\|}$  and  $(x_i^+, x_i^-)$  are corresponding "entailment" and "contradiction" pairs for  $x_i$  in the NLI dataset.

After building up a teacher model with superior performance, we use it for knowledge distillation. Firstly, we enrich the training dataset by data augmentation (Details in Section 4.3). Then for each sentence  $x_i$ , we get the embedding  $\mathbf{e}_i^t \in \mathbb{R}^{d'_t}$  from the teacher model  $f_t$  and  $\mathbf{e}_i^s \in \mathbb{R}^{d'_s}$  from the student model  $f_s$ . Note that the dimensions for  $\mathbf{e}_i^t$  and  $\mathbf{e}_i^s$ may be different  $(d'_t \neq d'_s)$ .

In order to perform homomorphic projective distillation, we employ PCA (Abdi and Williams, 2010),  $\mathbf{h}_{i}^{t} = \mathbf{W}^{t}(\mathbf{e}_{i}^{t} - \bar{\mathbf{e}}^{t})$ , to the teacher model after its average pooling layer and we add a projection layer,  $\mathbf{h}_{i}^{s} = \mathbf{W}^{s}\mathbf{e}_{i}^{s} + \mathbf{b}^{s}$ , to the student model, where  $\mathbf{h}_{i}^{t}, \mathbf{h}_{i}^{s} \in \mathbb{R}^{d}$  are the teacher and student's final embeddings with the same dimension.  $\mathbf{W}^t \in \mathbb{R}^{d'_t \times d}, \mathbf{W}^s \in \mathbb{R}^{d'_s \times d}$  are weight matrices. **b** is the bias term and both  $d'_s$  and  $d'_t$  are smaller than d. The teacher's transformer parameters  $\theta_t$ and PCA matrix  $\mathbf{W}^t$  are fixed, while only the student's transformer parameters  $\theta_s$ , projection weight  $\mathbf{W}^{s}$ , and projection bias  $\mathbf{b}^{s}$  can be updated during the distillation process. We minimize the distance between final embeddings  $\mathbf{h}_{i}^{t}$  and  $\mathbf{h}_{i}^{s}$  by taking the mean squared loss:

$$\mathcal{L} = \frac{1}{M} \sum_{i=1}^{M} \left\| \mathbf{h}_{i}^{s} - \mathbf{h}_{i}^{t} \right\|_{2}^{2}, \qquad (2)$$

where M is the total number of sentences after data augmentation.

134

135

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

163

| Model                                | STS12 | STS13 | STS14 | STS15 | STS16 | STS-B | SICK-R | Avg.  | Size | Dim  | Speed |
|--------------------------------------|-------|-------|-------|-------|-------|-------|--------|-------|------|------|-------|
| Large models                         |       |       |       |       |       |       |        |       |      |      |       |
| SBERT <sub>base</sub>                | 70.97 | 76.53 | 73.19 | 79.09 | 74.30 | 77.03 | 72.91  | 74.89 | 109M | 768  | 993   |
| SRoBERTalarge                        | 74.53 | 77.00 | 73.18 | 81.85 | 76.82 | 79.10 | 74.29  | 76.68 | 355M | 1024 | 385   |
| SimCSE-MPNet <sup>†</sup>            | 73.70 | 86.78 | 82.56 | 87.24 | 83.06 | 86.54 | 79.27  | 82.75 | 109M | 768  | 986   |
| SimCSE-RoBERTa <sub>large</sub> ‡    | 77.46 | 87.27 | 82.36 | 86.66 | 83.93 | 86.70 | 81.95  | 83.76 | 355M | 1024 | 291   |
| Backbone for compact model: TinyBERT |       |       |       |       |       |       |        |       |      |      |       |
| SimCSE-TinyBERT                      | 73.02 | 80.71 | 76.89 | 83.01 | 78.57 | 81.10 | 78.19  | 78.78 | 14M  | 312  | 2650  |
| +Projection-128                      | 72.73 | 79.81 | 76.60 | 82.70 | 77.37 | 80.24 | 77.41  | 78.12 | 14M  | 128  | 2604  |
| +Whitening-128                       | 73.00 | 80.81 | 77.02 | 82.79 | 78.45 | 80.97 | 78.16  | 78.74 | 14M  | 128  | 2612  |
| HPD-128 (Teacher: <sup>†</sup> )     | 74.20 | 84.49 | 79.95 | 85.79 | 80.07 | 83.41 | 78.99  | 80.99 | 14M  | 128  | 2608  |
| HPD-128 (Teacher: <sup>‡</sup> )     | 74.29 | 83.05 | 78.80 | 84.62 | 81.17 | 84.36 | 80.83  | 81.02 | 14M  | 128  | 2609  |
| Backbone for compact model: MiniLM   |       |       |       |       |       |       |        |       |      |      |       |
| SimCSE-MiniLM                        | 70.34 | 78.59 | 75.08 | 81.10 | 77.74 | 79.39 | 77.85  | 77.16 | 23M  | 384  | 2031  |
| +Projection-128                      | 70.19 | 79.22 | 75.53 | 80.78 | 78.13 | 79.45 | 77.46  | 77.25 | 23M  | 128  | 2022  |
| +Whitening-128                       | 70.55 | 78.85 | 75.4  | 81.06 | 77.77 | 79.40 | 77.92  | 77.28 | 23M  | 128  | 2015  |
| HPD-128 (Teacher: <sup>†</sup> )     | 74.25 | 84.43 | 80.33 | 85.75 | 80.68 | 83.91 | 79.06  | 81.20 | 23M  | 128  | 2025  |
| HPD-128 (Teacher: <sup>‡</sup> )     | 74.94 | 84.52 | 80.25 | 84.87 | 81.90 | 84.98 | 81.15  | 81.80 | 23M  | 128  | 2024  |

Table 1: Sentence embedding performance on STS tasks (Spearman's correlation  $\rho \times 100$ ). STS12-STS16: SemEval 2012-2016, STSb: STSbencemark, SICK-R: SICK relatedness dataset, Dim: embedding dimension, Size: number of parameters, Speed: sentences per second.

### 4 Experiment

165

166

167

168

170

171

172

173

174

175

176

177

178

179

180

181

183

184

189

190

191

192

193

We conduct our experiments on standard semantic textual similarity (STS) tasks using the SentEval toolkit (Conneau et al., 2017) for evaluation. We also test mean reciprocal rank (MRR), memory usage, and retrieval speed on semantic retrieval (SR) tasks.

4.1 Semantic Textual Similarity (STS) Task

Semantic textual similarity (STS) is a natural language processing (NLP) task to quantitatively assess the semantic similarity between two text snippets. We evaluate our model by computing the cosine similarity between sentence pair embeddings on 7 standard STS tasks: STS 2012–2016 (Agirre et al., 2012, 2013, 2014, 2015, 2016), STS Benchmark (Cer et al., 2017) and SICK-Relatedness (Marelli et al., 2014). Spearman rank correlation is used to measure the correlation quality between calculated similarity and human labels, consistent with Reimers and Gurevych (2019); Su et al. (2021); Gao et al. (2021).

4.2 Semantic Retrieval (SR) Task

The semantic retrieval (SR) task is to identify all sentences in the retrieval corpus that are semantically similar to a query sentence. We construct the SR task on Quora Duplicate Questions Dataset<sup>1</sup> and Faiss<sup>2</sup> (Johnson et al., 2017), a vector retrieval engine, to test the retrieval effect and efficiency of different models. We report the results on three parts: average mean reciprocal ranking (MRR@10), average retrieve time for 1,000 sentences (Time/ms) and memory usage (Mem/MB). We show the detailed task settings in Appendix C.

195

196

197

198

199

200

201

202

203

204

205

206

207

209

210

211

212

213

214

215

216

217

218

219

221

222

# 4.3 Experiment Setup

We train our model on the NLI dataset, which is a combination of the SNLI (Bowman et al., 2015) and the MNLI (Williams et al., 2018) dataset. SNLI dataset contains 570k sentence pairs and MNLI is a collection of 430k sentence pairs. Particularly, the teacher model is trained on "entailment" and "contradiction" pairs in NLI dataset using contrastive loss (Equation 1). We use two state-of-theart large sentence embedding models, SimCSE-RoBERTa<sub>large</sub><sup>3</sup> (Gao et al., 2021) and SimCSE-MPNet<sup>4</sup> (Song et al., 2020), as our teacher models. For the student model, we choose the released pretrained checkpoints of TinyBERT (Jiao et al., 2020) and MiniLM (Wang et al., 2020), and we leverage a linear projection layer for dimension reduction.

**Baseline Models** We compare our HPD to both state-of-the-art sentence embedding models and various dimension reduction techniques. For sentence embedding model baseline, we directly fine-tune pre-trained language models Tiny-BERT/MiniLM given NLI dataset using contrastive loss. For dimension reduction baseline, we test both projection and whitening approaches: 1) adding a projection layer after TinyBERT/MiniLM

<sup>&</sup>lt;sup>1</sup>https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

<sup>&</sup>lt;sup>2</sup>https://github.com/facebookresearch/faiss

<sup>&</sup>lt;sup>3</sup>https://huggingface.co/princeton-nlp/sup-simcseroberta-large

<sup>&</sup>lt;sup>4</sup>https://huggingface.co/sentence-transformers/nli-mpnetbase-v2

| Model               | Dim | STS-B | Avg.  |
|---------------------|-----|-------|-------|
|                     | 128 | 83.91 | 81.20 |
| HPD-MiniLM          | 256 | 83.95 | 81.05 |
|                     | 384 | 83.44 | 80.91 |
|                     | 128 | 82.33 | 79.48 |
| HPD-MiniLM-wo-Aug   | 256 | 82.55 | 79.57 |
|                     | 384 | 82.04 | 79.15 |
|                     | 128 | 83.41 | 80.99 |
| HPD-TinyBERT        | 256 | 83.19 | 80.81 |
|                     | 312 | 83.11 | 80.72 |
|                     | 128 | 81.88 | 79.64 |
| HPD-TinyBERT-wo-Aug | 256 | 81.67 | 79.47 |
|                     | 312 | 81.50 | 79.27 |

Table 2: Effect of data augmentation and different dimensions (STS-B and Avg. in STS tasks, wo: without, HPD Teacher: SimCSE-MPNet)

encoder and training on NLI dataset with contrastive loss; 2) adopting whitening (Su et al., 2021) as a post-processing operation (similar to PCA) to reduce the dimension of SimCSE-TinyBERT or SimCSE-MiniLM. More details about each baseline and training setting can be found in Appendix A.

**Data Augmentation** To generate synthetic data and improve the student's performance, we apply WordNet substitution and back translation (Ma, 2019) to every distinct sentence in NLI dataset. After data augmentation, the training data size is boosted from 1 million to 3 millions sentences.

# 5 Results

### 5.1 Results of STS Tasks

Table 1 presents the results of our model comparing with current state-of-the-art sentence embedding models on STS tasks. Our HPD-MiniLM can achieve 97.7% of Spearman's correlation performance and 7 times higher speed with only 6.5% of parameters compared with the best performance model SimCSE-RoBERTa<sub>large</sub>. We also observe that our HPD-TinyBERT and HPD-MiniLM models outperform SimCSE-TinyBERT and SimCSE-MiniLM, which are directly fine-tuned on the same training data and loss function as SimCSE-RoBERTa<sub>large</sub>. Besides, our results show that our model can significantly improve the results with 2.7-4.5 points absolute gain compared with projection or whitening for dimension reduction.

Impact of Data Augmentation and Final Dimension
sion Results in Table 2 show that models with
augmented data can raise the performance by 1-2
points compared with ones without augmented data.
We find that different projected layer dimensions

| Model                           | MRR   | Time  | Mem    |
|---------------------------------|-------|-------|--------|
| HPD-TinyBERT-128                | 0.613 | 63.1  | 42.61  |
| HPD-TinyBERT-256                | 0.616 | 130.4 | 85.22  |
| HPD-TinyBERT-312                | 0.615 | 165.4 | 103.86 |
| HPD-MiniLM-128                  | 0.610 | 68.6  | 42.61  |
| HPD-MiniLM-256                  | 0.615 | 132.1 | 85.22  |
| HPD-MiniLM-384                  | 0.612 | 194.4 | 127.83 |
| SimCSE-MPNet                    | 0.671 | 385.8 | 255.66 |
| SimCSE-RoBERTa <sub>large</sub> | 0.670 | 518.0 | 340.88 |

Table 3: Semantic retrieval results on Quora dataset. (MRR@10: retrieval quality, Time: retrieval efficiency, Mem: memory consumption)

achieve similar performances. However, small dimension has slightly better results than large ones.

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

281

283

284

285

286

287

290

291

292

293

294

### 5.2 Results of SR Tasks

From Table 3, we demonstrate that the embedding dimension plays a vital role in the performance of semantic retrieval tasks. Our HPD model with different dimensions can achieve similar MRR performance while the retrieval speed and memory usage increase significantly when dimension goes up. Compared with SimCSE-MPNet, our model with 128 dimensions can achieve competitive MRR performance while reducing the retrieval time by  $8.2 \times$  and memory usage by  $8.0 \times$ .

# 6 Conclusion and Discussion

In this paper, we propose an effective method to compress sentence representation using homomorphic projective distillation. We demonstrated that this approach successfully enables small language models to achieve competitive high-quality sentence representations compared with large ones while keeping a small embedding size to optimize the memory storage and retrieval latency in downstream tasks.

Our results show that knowledge distillation with augmented data improves the student model's capability to cover and understand more complex sentence variances. The learned projection layer with contrastive loss for sentence embedding can help improve the isotropy of sentence representation distribution, which aligns with the findings in Gao et al. (2021). We also try adding whitening transformation on HPD's output and the performance is slightly dropped (Appendix B). Since we find that smaller dimensions can have slightly better results than larger ones, we will check over the optimal projected layer size to enhance the isotropy of sentence representation distribution for semantic similarity tasks in our future work.

241

243

244

245

246

247

248

250

224

### References

296

301

307

310

311

312

313

314

315

317

318

319

321

325

327

328

329

330

331

332

333

334

335

336

337

339

341 342

345

346

347 348

- Hervé Abdi and Lynne J. Williams. 2010. Principal component analysis. *Wiley Interdisciplinary Reviews: Computational Statistics*, 2:433–459.
  - Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Matthew Cer, Mona T. Diab, Aitor Gonzalez-Agirre, Weiwei Guo, Iñigo Lopez-Gazpio, Montse Maritxalar, Rada Mihalcea, German Rigau, Larraitz Uria, and Janyce Wiebe. 2015. Semeval-2015 task 2: Semantic textual similarity, english, spanish and pilot on interpretability. In *SemEval@NAACL-HLT*.
- Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Matthew Cer, Mona T. Diab, Aitor Gonzalez-Agirre, Weiwei Guo, Rada Mihalcea, German Rigau, and Janyce Wiebe. 2014. Semeval-2014 task 10: Multilingual semantic textual similarity. In *\*SEMEVAL*.
  - Eneko Agirre, Carmen Banea, Daniel Matthew Cer, Mona T. Diab, Aitor Gonzalez-Agirre, Rada Mihalcea, German Rigau, and Janyce Wiebe. 2016. Semeval-2016 task 1: Semantic textual similarity, monolingual and cross-lingual evaluation. In \*SE-MEVAL.
  - Eneko Agirre, Daniel Matthew Cer, Mona T. Diab, and Aitor Gonzalez-Agirre. 2012. Semeval-2012 task 6: A pilot on semantic textual similarity. In *\*SEMEVAL*.
  - Eneko Agirre, Daniel Matthew Cer, Mona T. Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. \*sem 2013 shared task: Semantic textual similarity. In \*SE-MEVAL.
  - Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large annotated corpus for learning natural language inference. In *EMNLP*.
  - Daniel Matthew Cer, Mona T. Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. 2017. Semeval-2017 task 1: Semantic textual similarity multilingual and crosslingual focused evaluation. In *SemEval@ACL*.
  - Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc Barrault, and Antoine Bordes. 2017. Supervised learning of universal sentence representations from natural language inference data. In *EMNLP*.
  - Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional transformers for language understanding. In *NAACL*.
- Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. SimCSE: Simple contrastive learning of sentence embeddings. In *Empirical Methods in Natural Language Processing (EMNLP)*.
- Yu Hao, Xien Liu, Ji Wu, and Ping Lv. 2019. Exploiting sentence embedding for medical question answering. In *AAAI*.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu. 2020. Tinybert: Distilling bert for natural language understanding. *ArXiv*, abs/1909.10351. 350

351

353

354

355

356

359

360

361

362

363

365

366

367

368

369

370

371

373

374

375

376

377

378

379

381

384

386

387

388

389

390

391

392

393

394

395

396

397

400

- Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity search with gpus. *arXiv* preprint arXiv:1702.08734.
- Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Raquel Urtasun, Antonio Torralba, and Sanja Fidler. 2015. Skip-thought vectors. In *NIPS*.
- Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. ArXiv, abs/1907.11692.
- Lajanugen Logeswaran and Honglak Lee. 2018. An efficient framework for learning sentence representations. *ArXiv*, abs/1803.02893.
- Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay regularization. In *ICLR*.
- Edward Ma. 2019. Nlp augmentation. https://github.com/makcedward/nlpaug.
- Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella Bernardi, and Roberto Zamparelli. 2014. A sick cure for the evaluation of compositional distributional semantic models. In *LREC*.
- Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xiaodong He, Jianshu Chen, Xinying Song, and Rabab Kreidieh Ward. 2016. Deep sentence embedding using long short-term memory networks: Analysis and application to information retrieval. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 24:694–707.
- Vikas Raunak and Vivek Gupta. 2019. Effective dimensionality reduction for word embeddings. In *RepL4NLP@ACL*.
- Nils Reimers. 2019. Ukplab sentence-transformers. https://www.sbert.net/docs/pretrained\_models.html.
- Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing*. Association for Computational Linguistics.
- Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. *ArXiv*, abs/1910.01108.
- Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2020. Mpnet: Masked and permuted pre-training for language understanding. *ArXiv*, abs/2004.09297.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

450

418 419

417

- 420
- 421 422
- 425
- 427

- 429 430
- 431
- 433 434
- 435
- 436
- 437 438
- 439

- 442

407 408 409

402

403

404

405

406

410 411

412

413

414 415 416

423

424 426

428

432

440

441

443

444

Jianlin Su, Jiarun Cao, Weijie Liu, and Yangyiwen Whitening sentence representations Ou. 2021. for better semantics and faster retrieval. ArXiv, abs/2103.15316.

- Bin Wang and C.-C. Jay Kuo. 2020. Sbert-wk: A sentence embedding method by dissecting bert-based word models. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28:2146–2157.
- Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. 2020. Minilm: Deep selfattention distillation for task-agnostic compression of pre-trained transformers. ArXiv, abs/2002.10957.
- Adina Williams, Nikita Nangia, and Samuel R. Bowman. 2018. A broad-coverage challenge corpus for sentence understanding through inference. In NAACL.
  - Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. 2020. Transformers: State-of-theart natural language processing. In EMNLP.
- Jiacheng Yang, Mingxuan Wang, Hao Zhou, Chengqi Zhao, Yong Yu, Weinan Zhang, and Lei Li. 2020. Towards making the most of bert in neural machine translation. In AAAI.

#### Α **Training Details**

All of our experiments are conducted on a server with Intel i7-5930K CPU @ 3.50GHz, Nvidia TI-TAN Xp GPU, CUDA 11.3 and cuDNN. We then elaborate on how we obtain different baselines for comparisons in Table 1.

- For SBERT<sub>base</sub> and SRoBERTa<sub>large</sub>, we report the results from Reimers and Gurevych (2019) and test their speed based on released models.
- For SimCSE-RoBERTa<sub>large</sub>, we directly load the pre-trained models from Huggingface's repository (Wolf et al., 2020) "princetonnlp/sup-simcse-roberta-large".
- For SimCSE-MPNet, we utilize a well fine-tuned sentence embedding model using contrastive loss trained on NLI dataset from Huggingface's repository "sentencetransformers/nli-mpnet-base-v2".
- For SimCSE-MiniLM, we use the MiniLM 445 with 6 layers, 384-hidden size and 6 self-446 attention heads as the backbone network. We 447 then fine-tune it following the contrastive loss 448 for 3 epochs with a batch size of 256. The 449

optimizer we use is AdamW (Loshchilov and Hutter, 2019) and the learning rate is set as 1e-3.

- For SimCSE-TinyBERT, we use the Tiny-BERT with 4 layers, 312-hidden size and 12 self-attention heads. The other training settings are the same as SimCSE-MiniLM.
- For Projection-128, we add a linear layer to the language model MiniLM/TinyBERT. The linear layer projects the original embedding from 384/312 dimension to 128 dimension. We train the model using the same contrastive loss and configuration as those of SimCSE-MiniLM/SimCSE-TinyBERT.
- For Whitening-128, we implement our own version of whitening operation (Su et al., 2021). It is directly applied on SimCSE-MiniLM/SimCSE-TinyBERT as a dimension reduction technique. Note that whitening is a post-processing method, which is different from HPD.
- For HPD-MiniLM and HPD-TinyBERT, the models are trained for 3 epochs with a batch size of 256 and a learning rate of 1e-4. We keep the best checkpoint during training by evaluating the model on STS-B test sets.

#### B More Results on STS Tasks

We report the full set of results for data augmentation and different dimensions on STS tasks in Table 4 (Teacher model: SimCSE-MPNet). We also test a variation: adding whitening after the projected distillation. Results show that adding whitening after our HPD output slightly decreases the performance.

#### More Details about SR Tasks С

For semantic retrieval (SR) tasks, the Quora dataset contains over 500k sentences with over 400k pairwise annotations on whether two questions are duplicates or not. Faiss (Johnson et al., 2017) is a library for efficient similarity search and clustering of dense vectors, which contains algorithms that search in sets of vectors of any size. We calculate all the sentence embeddings of question2, store them in Faiss, and then use the sentence embedding of question1 to retrieve them. Faiss is configured in CPU mode with 'nlist = 1024' and 'nprobe = 5'.

| Model                        | STS12 | STS13 | STS14 | STS15 | STS16 | STS-B | SICK-R | Avg.  |
|------------------------------|-------|-------|-------|-------|-------|-------|--------|-------|
| HPD-MiniLM-H128              | 74.25 | 84.43 | 80.33 | 85.75 | 80.68 | 83.91 | 79.06  | 81.20 |
| HPD-MiniLM-H256              | 73.95 | 84.21 | 80.04 | 86.08 | 81.11 | 83.95 | 78.89  | 81.05 |
| HPD-MiniLM-H384              | 73.63 | 83.91 | 79.71 | 85.90 | 80.88 | 83.44 | 78.88  | 80.91 |
| HPD-MiniLM-H128-wo-Aug       | 71.39 | 82.45 | 78.24 | 84.65 | 78.85 | 82.33 | 78.42  | 79.48 |
| HPD-MiniLM-H256-wo-Aug       | 71.36 | 82.65 | 78.20 | 84.65 | 79.21 | 82.55 | 78.36  | 79.57 |
| HPD-MiniLM-H384-wo-Aug       | 70.94 | 82.06 | 77.60 | 84.41 | 78.70 | 82.04 | 78.31  | 79.15 |
| HPD-TinyBERT-H128            | 74.2  | 84.49 | 79.95 | 85.79 | 80.07 | 83.41 | 78.99  | 80.99 |
| HPD-TinyBERT-H256            | 74.06 | 84.14 | 79.7  | 85.93 | 80.03 | 83.19 | 78.60  | 80.81 |
| HPD-TinyBERT-H312            | 73.97 | 84.14 | 79.61 | 85.65 | 79.79 | 83.11 | 78.74  | 80.72 |
| HPD-TinyBERT-H128-wo-Aug     | 73.29 | 82.51 | 78.36 | 84.61 | 78.45 | 81.88 | 78.39  | 79.64 |
| HPD-TinyBERT-H256-wo-Aug     | 73.00 | 82.25 | 78.36 | 84.74 | 78.10 | 81.67 | 78.20  | 79.47 |
| HPD-TinyBERT-H312-wo-Aug     | 72.85 | 82.20 | 77.90 | 84.35 | 77.83 | 81.50 | 78.23  | 79.27 |
| HPD-MiniLM-H384-whiten-128   | 73.73 | 84.10 | 79.47 | 85.23 | 79.32 | 82.69 | 78.74  | 80.47 |
| HPD-MiniLM-H384-whiten-256   | 73.98 | 84.15 | 79.61 | 85.63 | 79.78 | 83.09 | 78.73  | 80.71 |
| HPD-TinyBERT-H312-whiten-128 | 73.91 | 84.08 | 79.52 | 85.32 | 79.45 | 82.81 | 78.78  | 80.55 |
| HPD-TinyBERT-H312-whiten-256 | 74.00 | 84.15 | 79.62 | 85.64 | 79.77 | 83.09 | 78.74  | 80.72 |

Table 4: Sentence embedding performance on STS tasks (Spearman's correlation  $\rho \times 100$ ).