
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FINGERTIP 20K: A BENCHMARK FOR PROACTIVE AND
PERSONALIZED MOBILE LLM AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Mobile GUI agents are becoming critical tools to improve user experience on
smart devices, with multimodal large language models (MLLMs) emerging as
the dominant paradigms in this domain. Current agents, however, rely on ex-
plicit human instructions, overlooking the potential to leverage the contextual
information (like location, time, user profile) and historical data for proactive
task suggestions. Besides, previous works focus on optimizing the success rate
during task execution, but pay less attention to the personalized execution tra-
jectory, thereby neglecting potentially vast differences in user preferences. To
address these challenges, we introduce the FingerTip 20K benchmark. We col-
lected 20K unique human demonstrations of multi-step Android device interactions
across a variety of everyday apps. These demonstrations are not isolated but are
continuously acquired from the users’ long-term usage in their real lives, and
encompass essential user-related contextual information. The benchmark contains
two new tracks: proactive task suggestions by analyzing environment observation
and users’ previous intents, and personalized task execution by catering to users’
action preferences. Our experiments reveal that the tracks we propose pose sig-
nificant challenges for leveraging user-related information in GUI tasks. We also
performed a human study to show that there exists a huge gap between existing
agents and humans. The model fine-tuned with the data we collected effectively
utilized user information and achieved good results, highlighting the potential of
our approach in building more user-oriented mobile LLM agents. Our code is open-
source at https://anonymous.4open.science/r/FingerTip-57B8
for reproducibility.

1 INTRODUCTION

Recent studies have explored how to utilize multimodal large language models (MLLMs) to build
graphical user interface (GUI) control agents (Koh et al., 2024; Zheng et al., 2024; Yan et al., 2023;
Kim et al., 2023; Deng et al., 2023), with a significant direction being mobile phone GUI control
agents. These mobile LLM agents have the potential to tremendously improve user experience with
mobile devices, since GUI is a universal interface across various applications. These agents receive a
natural language task instruction, such as "Set an alarm for 7:30 for me", and then perceive the device
state by observing the device screen (via screenshots or textual UI trees), and generate actions (click,
type, scroll, etc.) to interact with the device environment to fulfill human instructions.

Despite rapid progress, currently, most existing mobile LLM agents are confined to a completely
passive paradigm: they only perform tasks upon receiving a clear instruction. This paradigm restricts
their ability to proactively offer task suggestions and assistance in the absence of direct human
instructions. If users have to formulate detailed instructions for every intent when interacting with
mobile LLM agents, it will significantly increase the cognitive burden of mobile phone usage.
Moreover, humans sometimes may not clearly express some latent needs. Therefore, mobile LLM
agents need to be more proactive to provide users with more comprehensive and seamless services.
Furthermore, the existing agents utilize almost exclusively user instructions as textual information
when performing tasks, without taking into account any additional user-related information (e.g., time
and location, user profile, user historical intents and actions), thus failing to provide personalized
services to users. We argue that these limitations stem largely from the lack of suitable training data
and standardized evaluation benchmarks that incorporate rich user-related information.

1

https://anonymous.4open.science/r/FingerTip-57B8

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: An overview task example in FingerTip 20K. The agent proactively offers task suggestions
to the user and personalizes the execution of tasks in a way that aligns with the user’s preferences.

To comprehensively evaluate the proactive and personalized capabilities of mobile LLM agents, we
propose the FingerTip 20K benchmark, which includes two new tracks: (i) proactive task suggestion,
where the agent needs to integrate the user’s past intents and the current environmental state to infer
the user’s potential current intent; (ii) personalized task execution, where the agent needs to refer
to the user’s past action preferences to execute current instructions. The overall task scenario we
envision is shown in Figure 1. Since existing benchmarks do not provide user-related contextual
information and historical data, we spent over one month collecting new diverse data from 95 users
in their daily mobile phone usage, including 21,437 episodes covering 506 apps. We then conducted
experiments on the FingerTip 20K benchmark to evaluate the capabilities of generalist models and
GUI-control agents built on specifically designed models and found that there is still much room
for improvement in their proactive and personalized capabilities. Current agents still find it hard to
reach or surpass the human level. The best-performing model achieved a success rate of 12.8%, while
humans reached 30.3%. We fine-tuned a small model using the collected data and achieved better
results.

In summary, the main contributions of this work include:

• We propose the FingerTip 20K benchmark, which includes two brand-new tracks, to evaluate
the ability of mobile LLM agents to proactively predict user intents and offer suggestions,
as well as their ability to personalize task execution in accordance with user preferences.

• We collect large-scale user-oriented mobile GUI-control data, derived from scenarios in
users’ daily lives, which includes user-related contextual information and users’ long-term
mobile phone usage patterns.

• We evaluated the capabilities of generalist models and GUI-control-specific models on
the FingerTip 20K benchmark, demonstrating the difficulty of the tracks we propose. The
excellent performance of the model fine-tuned with our collected data highlights the potential
of our approach in building more proactive and personalized mobile agents.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 MOBILE GUI-CONTROL DATASETS AND BENCHMARKS

Table 1 compares FingerTip 20K to existing mobile GUI-control datasets and benchmarks (Chai
et al., 2024; Li et al., 2024; Rawles et al., 2023; 2024; Xu et al., 2024a; Chai et al., 2025; Ran
et al., 2025; Chen et al., 2024). These datasets typically represent each data instance through two
core components: a textual task instruction and its corresponding operational demonstration. The
demonstration is encoded as a sequence of interface interactions (e.g., clicking, typing, scrolling)
accompanied by relevant screenshots. What differentiates them is mainly whether they are single-step
(grounding instructions to UI elements on the screen), and whether they have supplemental View
Hierarchy (VH) data for each screenshot. These datasets share some common drawbacks. Firstly,
their task instructions are either pre-defined by authors or generated by LLMs, and it is questionable
to what extent they can reflect the real intents of people using mobile phones in their daily lives.
Additionally, they collect task demonstrations mainly by having annotators operate simulators on
computers, which is not the real scenario of people using mobile phones. Finally, each data instance
is isolated, lacking temporal correlation and contextual information related to the user.

Table 1: Comparison of FingerTip 20K to existing mobile GUI-control datasets and benchmarks.

Dataset &
Benchmark #Episode #Apps #Avg

steps
User-defined
tasks?

Contextual
info?

Historical
data?

Task
setting

Android Instruct 10.5k - 9.0 ✗ ✗ ✗ execution
AMEX 3046 192 12.8 ✗ ✗ ✗ execution
AndroidControl 15283 833 5.5 ✗ ✗ ✗ execution
AitW 715142 357 6.5 ✗ ✗ ✗ execution
AndroidWorld 116 20 - ✗ ✗ ✗ execution
AndroidLab 138 9 - ✗ ✗ ✗ execution
A3 201 20 - ✗ ✗ ✗ execution
SPHINX - 100 8.1 ✗ ✗ ✗ execution
SPA-Bench 340 58 - ✗ ✗ ✗ execution

FingerTip 20K 21437 506 11.1 ✓ ✓ ✓
proactive task suggestion &
personalized task execution

For benchmarks, the success rate is the most commonly used metric, and some studies also consider
efficiency and cost. A common approach to assessing the success of a task is to determine whether
essential states have been reached (Rawles et al., 2024; Zhang et al., 2024; Lee et al., 2024). Some
studies also compare agents’ actions to golden actions (Xing et al., 2024). However, these golden
actions do not take into account potentially vast differences in user preferences, that is, the action
sequences of different users to complete similar tasks may be very different. In addition, current
benchmarks have similar task forms, that is, given an existing instruction, how to perform actions to
complete it. To the best of our knowledge, there is no mobile LLM agent benchmark that discusses
how to proactively suggest tasks based on user-related information when instructions are unknown.

2.2 MOBILE GUI-CONTROL AGENTS

Mobile GUI agents are designed to understand the UI and automate tasks on mobile apps in a manner
similar to that of humans. Current agents leverage the extensive world knowledge and powerful
embodied capabilities of multimodal large language models (MLLMs) for complex task planning
and reasoning in multi-step GUI-control tasks. One notable approach is to directly guide generalist
models like GPT-4v to perform tasks through extensive prompt engineering (Yan et al., 2023; Rawles
et al., 2023; He et al., 2024; Koh et al., 2024; Kim et al., 2023; Zheng et al., 2023; Zhang et al., 2025;
Wen et al., 2024). However, these methods require meticulously designed prompts to achieve the best
results. Another research direction focuses on fine-tuning smaller models (Nakano et al., 2022; Qin
et al., 2025; Hong et al., 2024; Xu et al., 2024b; Gur et al., 2023) on GUI-specific datasets to endow
them with GUI grounding capabilities and the ability to break down high-level instructions, thereby
enhancing their operational efficiency. Despite these advancements, most current agents are still
confined to passively following explicit instructions and are unable to proactively predict user needs.
Moreover, they do not take into account any user preferences when performing tasks. Some studies
focus on proactively clarifying users’ ambiguous instructions (Wu et al., 2021; Chen et al., 2020;
Qian et al., 2024); however, these studies still require users to provide initial instructions. Proactive

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Agent (Lu et al., 2024) predicts potential tasks by monitoring user activities and environmental states,
but the input is text-only, and the task scenarios are mainly limited to computer or web environments
rather than mobile ones.

3 PROBLEM FORMULATION

3.1 PROACTIVE TASK SUGGESTION

Figure 2: Demonstration of proactive task suggestion and personalized task execution.

In the FingerTip 20K benchmark we propose, unlike the evaluation tasks of traditional mobile LLM
agent benchmarks that rely entirely on explicit instructions, we introduce a new task where the agent
proactively predicts the user’s current intent and proposes tasks suggestion that the user might want
to perform, as shown in Figure 2. The agent’s task is to generate an intent prediction I based on the
user profile U , the current time T , the current scenario S, the user’s historical intents Ihistory, and the
partial screenshots O observed at present. This can be formalized as:

I = f (U, T, S, Ihistory, O) (1)

where f represents the agent. I is a sentence that unambiguously predicts the intent of the user.
It should clearly state the name of the app that the user wants to use, and the final effect that the
user wants to achieve. U includes common user attributes such as age, sex, occupation, etc. T
represents the current timestamp, accurate to the second. S represents the current scenario, expressed
in common location categories. Ihistory contains the user’s historical intents in the recent period, up
to 20 items, which may include the potential patterns and preferences of the user’s mobile phone
usage. O includes the first few screenshots of the user’s current actions (e.g., opening the home page
of a certain app). We hope that the agent can utilize the above-mentioned user-related contextual
information and historical intents to infer the user’s potential intents, and thereby proactively offer
helpful task suggestions.

3.2 PERSONALIZED TASK EXECUTION

In addition to proactive task suggestion, we also aim to evaluate the agent’s ability to carry out tasks
under the condition of explicit instructions, that is, when the user’s intent is known. The setting of
this part is similar to the existing benchmarks. The difference lies in that we additionally assess the
agent’s ability to execute tasks in a personalized manner specifically catering to the action preferences

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

of different users. Given user profile U , user intent Itrue, user’s historical actions Ahistory, agent’s
action sequence Aagent, and the current screenshot Ot and the corresponding accessibility tree ATt,
the agent needs to perform the next action At+1, and then observe Ot+1 and ATt+1. This can be
formalized as:

At+1, Ot+1, ATt+1 = f (U, Itrue, Ahistory, Aagent, Ot, ATt) (2)

where f represents the agent. Itrue is equivalent to the user’s true intent that needs to be predicted in
proactive task suggestion, and here it serves as the instruction to be executed. Ahistory is the complete
action sequence of the user when performing a similar task in the past, provided to the agent for
in-context learning to imitate the user’s action preferences. Aagent, on the other hand, is the action
sequence {A1, ..., At} that the agent has already executed in the current task, helping the agent
determine the progress of the task. The agent needs to constantly interact with the mobile phone
environment until it believes that Itrue has been fulfilled. We hope that the final sequence of agent
actions Aagent can reflect the user’s action preferences.

4 THE FINGERTIP 20K BENCHMARK

4.1 OVERVIEW

The motivation for FingerTip 20K data collection is to evaluate the dual tracks we have proposed,
namely proactive task suggestion and personalized task execution. To this end, the most distinctive
feature of the data should be user-oriented, containing sufficient user-related contextual information
and being able to reflect the patterns and preferences of users in terms of intents and actions.

Figure 3: Data collection pipeline. Users record their intents and demonstrate actions by using the
FingerTip APP in their daily mobile phone usage.

4.2 DATA COLLECTION

The data collection pipeline is shown in Figure 3. We first recruited 95 data collectors (hereinafter
referred to as users) using Android phones through crowdsourcing, covering a wide range of device
types and Android versions. Users were required to download an APP developed by us on their own
daily used phones and use it to collect data. Specifically, whenever users had a real intent to use their
phones in their daily lives, they could open the FingerTip APP, record their intent at that moment in
one sentence, and select the location category they were in. Then, users needed to switch to the app
involved in the intent they recorded and demonstrate the specific action sequence to complete this
intent.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The FingerTip APP will automatically upload the intent they fill in (including time and location) and
the demonstration process they provide (including screenshot sequences, corresponding accessibility
tree XML file sequences, and UI action sequences) to the cloud server. This is regarded as the user
collecting one piece of data. The APP may remind the user to collect data when they wake up the
phone screen to prevent them from forgetting. Each user is required to use their phone to collect data
for one month, with a maximum of 12 pieces of data uploaded per day. In this way, users can fully
customize the data they upload. See Appendix A.3 and A.4 for more details on data collection and
data format.

FingerTip APP is developed based on the accessibility features of the Android system. It can
automatically record the type and coordinates, as well as optional text descriptions of each user action.
The actions we collect are unified into an action space, as shown in Table 2. Among them, finish is
uniformly added to the last screenshot of all episodes.

Figure 4: Dataset statistics and distribution. (a) The length distribution of the natural language intents
recorded by users. (b) The distribution of the number of screenshots contained in each episode (i.e.,
the distribution of the number of action steps of users). (c) The distribution of all categories to which
the intents belong. (d) The distribution of all apps involved in the data.

4.3 DATA STATISTICS

The summary of data statistics is presented in Table 1. Additionally, Figure 4 reports the distribution
of user intent length, episode length, intent categories, and app name in all data. The intent categories
are determined by DeepSeek-V3 (Liu et al., 2024).

4.4 PERSONALIZED ACTION ANALYSIS

To verify the personalized differences in actions among users of different types, we first simply
classified users into different categories based on age groups. Then, we randomly sampled one piece
of data from each of the 40 intent categories. For the action sequence of such a piece of data, we

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: The action space of an agent when in-
teracting with a mobile phone environment.

Action Parameter

click coordinates=(x,y),
content="

long_click coordinates=(x,y),
content="

type text="

scroll coordinates=(x,y),
direction="

press_back -
press_home -
press_recent -
wait -
finish -

Figure 5: Personalized action analysis. We
demonstrated the similarities of user action se-
quences in six intent categories. The similarities
were higher among the same users or users of the
same type, while the similarities between users
of different types were lower.

calculated the Levenshtein similarity with the action sequence of the most intent-similar data from
(i) the same user, (ii) users of the same type, and (iii) users of different type. All similarities were
normalized to [0, 100] and plotted in Figure 5. It can be seen that even when performing similar
intents, the similarity of action sequences with users of different type is significantly lower than that
of the same user or users of the same type, indicating that user preferences on action sequences do
exist and are measurable.

5 EXPERIMENTS

We conducted experiments on some generalist models and some GUI-control agents built on specif-
ically designed models, evaluating their capabilities on the two tracks proposed in the FingerTip
20K benchmark and assessing their performance under different task difficulties. Additionally, we
fine-tuned a model using the collected data. For details on the data splits (including the training set,
validation set, and two test sets), please refer to Appendix A.5.

5.1 EXPERIMENTAL SETUP

Proactive task suggestion The LLMs we experiment with in this track include GPT-4.1, Qwen-VL-
Max, DeepSeek-VL2 (Wu et al., 2024) and Qwen-2.5-VL-7B (Bai et al., 2025). We also introduce
Qwen-2.5-VL-72B (Bai et al., 2025) to compare with the 7B version; and Qwen-QVQ-Max (thinking
model) to compare with other non-thinking models. We set the temperature to zero for all models.
For proactive task suggestion, the agent only needs one query to output the predicted intent. Since
this is a brand new track proposed in our benchmark, there is no mature agent design available for
direct use. We have designed a simple prompt to provide to all models evaluated in this track. This
prompt contains all necessary inputs (see Section 3.1 and Appendix A.7.1).

Personalized task execution In this track, in addition to the generalist models mentioned above,
we also experiment with three GUI-control agents built on specifically designed models, including
Aguvis-7B (Xu et al., 2024b), CogAgent-9B (Hong et al., 2024) and UI-TARS-1.5-7B (Qin et al.,
2025). We also introduce AutoDroid Wen et al. (2024) and AppAgent Zhang et al. (2025), two
GUI-control agents based on prompt engineering (using GPT4.1 as the base model). For personalized
task execution, the agent needs to interact with the environment in multiple steps to fulfill the user’s
instructions. We connect a physical phone to the computer via USB and use Android Debug Bridge
(ADB) to provide this environment. Using an emulator would be a more convenient approach, but
due to strict app control measures, most Chinese apps can only run on physical phones rather than
emulators. For the generalist models, we designed a simple prompt to guide their output of the next
action, with the action space consistent with Table 2. This prompt contains all necessary inputs (see
Section 3.2 and Appendix A.7.2). For the GUI-control agents, they have specific format requirements

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

for input and output. To ensure normal output effects, their original prompts were used, and the input
information in Section 3.2 was uniformly integrated into these original prompts. Their output was
converted into a form consistent with the action space.

Metrics In proactive task suggestion track, the goal of the agent is to maximize the textual similarity
between the output and the user’s true intent. We use a pre-trained model, paraphrase-multilingual-
MiniLM-L12-v2 (Reimers & Gurevych, 2019), to convert the agent’s output and the user’s true intent
into embedding vectors and calculate their cosine similarity S1. And, we calculate the Levenshtein
similarity S2 of these two strings. Both similarities are normalized to the range of [0, 1]. Finally,
we take Sim1 = (S1 + S2)/2 to comprehensively represent the text similarity. In addition to this
numerical metric, we also use DeepSeek-V3 (Liu et al., 2024) to directly determine whether the
agent’s output and the user’s true intent can be regarded as the same intent and provide a binary value
to evaluate whether the agent successfully predicted the user’s intent, thereby calculating the success
rate SR1.

In personalized task execution track, the primary goal of the agent is to execute user instructions in
a personalized manner. We calculate the final success rate SR2 by manually checking whether the
environment state when the agent outputs finished() matches the user’s instructions. In addition,
when the agent steps exceed 2.5 times the golden steps, the task is automatically considered a failure.
Note that the path to successfully execute the user’s instructions is not unique. The agent should
also make the action sequence reflect the user’s action preferences as much as possible. We do not
require the agent’s action at each step to be exactly the same as the user’s golden action. Instead,
we calculate the Levenshtein similarity SI of the agent’s complete action sequence and the user’s
complete action sequence as two strings. Then, following the approach in Section 4.4, we take the
data that is most similar to the current user’s intent from the users of different type, and calculate the
Levenshtein similarity SII of the agent’s complete action sequence and this data’s complete action
sequence. Finally, we take the value Sim2 = SI/SII. It is obvious that the larger this value is, the
more similar the agent’s action sequence is to that of the current user, and the more different it is
from that of users of different type. In addition, we measure execution efficiency by comparing the
agent steps with the user’s golden steps to calculate the step ratio when the agent successfully execute
the user’s instructions. For the two tracks, we also tallied the average time and token count consumed
per query to assess the model’s cost.

5.2 OVERALL PERFORMANCE

The overall performance of the models we evaluated in proactive task suggestion is shown in Table 3.
Note that here we set the number of O (the first few screenshots of the user’s current actions) to 0.
This makes the task quite challenging. The thinking model Qwen-QVQ-Max surpassed GPT-4.1,
achieving the best performance among the generalist models with SR1 = 12.8 and Sim1 = 0.39,
but also took the longest time and the most tokens. From SR1, it can be intuitively seen that the
success rate of all models in predicting the user’s intent is very low. Additionally, we conducted
a user study where 20 human annotators (distinct from the users who collected the data) labeled a
subset of the test set (a total of 400 episodes), achieving a success rate of 30.3%. This highlights the
significant gap between the existing models and human in proactive task suggestion capabilities.

Table 3: Overall performance of proactive task suggestion.

Model SR1 (%) Sim1 Time (sec) Token
GPT-4.1 7.2 0.35 5.64 796
Qwen-VL-Max 6.9 0.33 1.98 950
Deepseek-VL2 4.3 0.25 0.71 743
Qwen-2.5-VL-7B 3.1 0.25 0.78 943
Qwen-2.5-VL-72B 7.0 0.31 5.45 963
Qwen-QVQ-Max 12.8 0.39 10.60 2335
Human 30.3 0.57 - -

The overall performance of the models we evaluated in personalized task execution is shown in
Table 4. Qwen-QVQ-Max and UI-TARS-1.5-7B achieved the best performance among the generalist
models and GUI-control models respectively. AppAgent achieved the best performance among all

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Overall performance of personalized task execution.

Model SR2 (%) Sim2 Step Ratio Time (sec) Token
GPT-4.1 5.5 0.98 1.98 8.02 2912
Qwen-VL-Max 4.5 1.07 2.06 4.17 2304
Deepseek-VL2 1.0 0.93 2.19 3.46 2130
Qwen-2.5-VL-7B 1.5 0.95 2.16 3.66 2213
Qwen-2.5-VL-72B 4.0 0.96 2.05 9.31 2018
Qwen-QVQ-Max 9.5 1.04 1.94 15.60 3048
AutoDroid 10.5 1.08 1.29 22.20 3123
AppAgent 11.0 1.12 1.13 19.74 3853
Aguvis-7B 20.5 1.02 1.38 6.86 2494
CogAgent-9B 18.0 0.92 1.73 12.54 2808
UI-TARS-1.5-7B 38.5 1.06 1.22 10.15 2440

models in Sim2 and step ratio, possibly due to its proficiency in learning from human demonstrations,
but time and token costs also increased significantly. The SR2 of the generalist models were all very
low, mainly due to their lack of precise GUI grounding ability, which led to incorrect UI coordinates
being output even when they could correctly analyze the next action, thus failing to interact with the
environment accurately. In contrast, the GUI-control models, having undergone targeted training, had
stronger abilities to execute instructions and interact with the UI environment, resulting in higher
SR2, with UI-TARS-1.5-7B having the highest at 38.5. However, the Sim2 of all models were
approximately 1, indicating that the agent’s action sequence did not favor either the current user
or users of different type. This might suggest that the agent tends to complete tasks in a general
way without catering to the specific action preferences of users, thus failing to complete tasks in a
personalized manner.

5.3 EFFECT OF TASK DIFFICULTY

Figure 6: Performance under different task difficulties. (a) The variation of SR1 under different
numbers of input screenshots. (b) The variation of SR2 under different action lengths.

We experiment with the models’ performance under different task difficulty levels. For proactive task
suggestion (see Figure 6.a), we varied the number of O (the first few screenshots of the user’s current
actions). The SR1 of all models increased as the number of screenshots increased. This was expected.
Clearly, if the agent knew the first screenshot of the user’s current action, it could basically infer
which app the user was using, thereby significantly narrowing the range of the user’s intent. With the
second and third screenshots, the agent could further narrow the user’s intent range by analyzing the
actions therein (e.g. clicking the search box).

For personalized task execution (see Figure 6.b), we calculated the SR2 of GUI-control models on
different subsets of action length (i.e., the number of action steps) in the test set. It can be seen that as
the action length increases, the SR2 decreases. This is in line with expectations, as the greater the
action length required to complete a certain instruction, the more complex the instruction is, and the
more difficult it is to complete.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5.4 EFFECT OF FINE-TUNING

We fine-tuned Qwen-2.5-VL-7B and adopted the parameter-efficient fine-tuning method of LoRA,
with the LoRA rank set to 4 or 64. Following the method of sampling the test set, we randomly
sampled 1,000 data episodes from the training set for fine-tuning. These data covered all users, and
the proportion of data for each user was the same as their proportion in the training set. We also
used the complete training set (16,000 episodes) for fine-tuning. The data episodes were reorganized
according to the input and output formats of the two tracks, respectively. The prompts used in
fine-tuning are the same as those we designed for generalist models. Finally, we trained separately on
two tracks and obtained two fine-tuned models, each suitable for one of the two tracks.

Table 5: Performance of fine-tuned models. In square brackets [X] we report the performance increase
from the un-fine-tuned Qwen-2.5-VL-7B.

Model Proactive task suggestion Personalized task execution
SR1(%) Sim1 SR2(%) Sim2 Step Ratio

Qwen-2.5-VL-7B 3.1 0.25 1.5 0.95 2.16
Qwen-2.5-VL-7B-FT-1k-r4 9.7 [+6.6] 0.49 [+0.24] 12.5 [+11.0] 1.21 [+0.26] 1.17 [-0.99]
Qwen-2.5-VL-7B-FT-1k-r64 11.8 [+8.7] 0.50 [+0.25] 12.5 [+11.0] 1.26 [+0.31] 1.17 [-0.99]
Qwen-2.5-VL-7B-FT-all-r4 20.3 [+17.2] 0.52 [+0.27] 15.0 [+13.5] 1.32 [+0.37] 1.15 [-1.01]
Qwen-2.5-VL-7B-FT-all-r64 26.0 [+22.9] 0.55 [+0.30] 15.5 [+14.0] 1.42 [+0.47] 1.13 [-1.03]
Qwen-QVQ-Max 12.8 0.39 9.5 1.04 1.94
UI-TARS-1.5-7B - - 38.5 1.06 1.22

The performance of fine-tuned models on the two tracks is shown in Table 5. Despite using a smaller
model and less training data, the fine-tuned models achieved significant performance improvements
in all main metrics. Increasing the LoRA rank or the amount of training data both improve the
model’s performance, with the increase in training data having a particularly significant effect. In
proactive task suggestion, compared with the best-performing generalist model Qwen-QVQ-Max,
our fine-tuned models achieved better performance in both SR1 and Sim1. In personalized task
execution, compared with the best-performing UI-TARS-1.5-7B, our fine-tuned models had a lower
success rate SR2. We consider this acceptable because UI-TARS is a model specifically designed
and extensively trained for GUI grounding and GUI control, and thus has a more general instruction
execution capability. However, our fine-tuned models had a significantly higher Sim2, indicating
that the action paths they select may not be optimal but are closer to the user’s action preferences.
When trained on the entire training set with a LoRA rank of 64, Qwen-2.5-VL-7B outperforms all
the un-fine-tuned models in the experiment in terms of SR1, Sim1, and Sim2, achieving the best
performance. Overall, the models fine-tuned on our collected data demonstrated stronger proactivity
and personalization capabilities, being able to utilize user-related contextual information to extract
potential intent patterns and action preferences from the user’s past intents and actions, which existing
models have not or find it difficult to consider.

More experiments In Appendix A.6 we conducted more experiments to study the influence of
other factors.

6 CONCLUSIONS

We present FingerTip 20K, a benchmark advancing mobile LLM agents toward proactive task
suggestion and personalized task execution. Our data captures longitudinal user interactions, enriched
with contextual information to model user-specific patterns. Experiments reveal significant gaps in
existing models’ ability to mine such patterns. Fine-tuning Qwen-2.5-VL-7B on our data improved
suggestion success rate while better aligning actions with user preferences, demonstrating the value
of user-oriented training. This work establishes critical infrastructure for developing mobile agents
that anticipate user needs and adapt to user action preferences.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

Our data collection involves human participants. We detail our data collection process and the
multiple measures we have taken to reduce the risk of privacy leakage in Appendix A.3. We also
discuss the broader impacts of this study in Appendix A.2.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide all the necessary resources and code used in this
paper. All adopted models are fully open source or publicly accessible. Our project code, including the
data format, data splits, and evaluation process of FingerTip 20K, can be publicly accessed via the fol-
lowing anonymous link: https://anonymous.4open.science/r/FingerTip-57B8.

REFERENCES

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao, Liang Liu, Dingyu Zhang, Peng Gao, Shuai Ren,
and Hongsheng Li. Amex: Android multi-annotation expo dataset for mobile gui agents. arXiv
preprint arXiv:2407.17490, 2024.

Yuxiang Chai, Hanhao Li, Jiayu Zhang, Liang Liu, Guangyi Liu, Guozhi Wang, Shuai Ren, Siyuan
Huang, and Hongsheng Li. A3: Android agent arena for mobile gui agents. arXiv preprint
arXiv:2501.01149, 2025.

Jingxuan Chen, Derek Yuen, Bin Xie, Yuhao Yang, Gongwei Chen, Zhihao Wu, Li Yixing, Xurui
Zhou, Weiwen Liu, Shuai Wang, et al. Spa-bench: A comprehensive benchmark for smartphone
agent evaluation. In NeurIPS 2024 Workshop on Open-World Agents, 2024.

Weiwen Chen, Mohammad Shidujaman, Jiangbo Jin, and Salah Uddin Ahmed. A methodological
approach to create interactive art in artificial intelligence. In HCI International 2020–Late Break-
ing Papers: Cognition, Learning and Games: 22nd HCI International Conference, HCII 2020,
Copenhagen, Denmark, July 19–24, 2020, Proceedings 22, pp. 13–31. Springer, 2020.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36:28091–28114, 2023.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and program
synthesis. arXiv preprint arXiv:2307.12856, 2023.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
arXiv preprint arXiv:2401.13919, 2024.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281–14290, 2024.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
Advances in Neural Information Processing Systems, 36:39648–39677, 2023.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024.

11

https://anonymous.4open.science/r/FingerTip-57B8

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Juyong Lee, Taywon Min, Minyong An, Dongyoon Hahm, Haeone Lee, Changyeon Kim, and Kimin
Lee. Benchmarking mobile device control agents across diverse configurations. arXiv preprint
arXiv:2404.16660, 2024.

Wei Li, William E Bishop, Alice Li, Christopher Rawles, Folawiyo Campbell-Ajala, Divya Tyama-
gundlu, and Oriana Riva. On the effects of data scale on ui control agents. Advances in Neural
Information Processing Systems, 37:92130–92154, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Yaxi Lu, Shenzhi Yang, Cheng Qian, Guirong Chen, Qinyu Luo, Yesai Wu, Huadong Wang, Xin
Cong, Zhong Zhang, Yankai Lin, et al. Proactive agent: Shifting llm agents from reactive responses
to active assistance. arXiv preprint arXiv:2410.12361, 2024.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback, 2022. URL https://arxiv. org/abs/2112.09332, 2022.

Cheng Qian, Bingxiang He, Zhong Zhuang, Jia Deng, Yujia Qin, Xin Cong, Zhong Zhang, Jie Zhou,
Yankai Lin, Zhiyuan Liu, et al. Tell me more! towards implicit user intention understanding of
language model driven agents. arXiv preprint arXiv:2402.09205, 2024.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326, 2025.

Dezhi Ran, Mengzhou Wu, Hao Yu, Yuetong Li, Jun Ren, Yuan Cao, Xia Zeng, Haochuan Lu, Zexin
Xu, Mengqian Xu, et al. Beyond pass or fail: A multi-dimensional benchmark for mobile ui
navigation. arXiv preprint arXiv:2501.02863, 2025.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural Information
Processing Systems, 36:59708–59728, 2023.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A dynamic
benchmarking environment for autonomous agents. arXiv preprint arXiv:2405.14573, 2024.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084, 2019.

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao
Liu, Yaqin Zhang, and Yunxin Liu. Autodroid: Llm-powered task automation in android. In
Proceedings of the 30th Annual International Conference on Mobile Computing and Networking,
pp. 543–557, 2024.

Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang
Ma, Chengyue Wu, Bingxuan Wang, et al. Deepseek-vl2: Mixture-of-experts vision-language
models for advanced multimodal understanding. arXiv preprint arXiv:2412.10302, 2024.

Zhuohao Wu, Danwen Ji, Kaiwen Yu, Xianxu Zeng, Dingming Wu, and Mohammad Shidujaman. Ai
creativity and the human-ai co-creation model. In Human-computer interaction. theory, methods
and tools: thematic area, HCI 2021, held as part of the 23rd HCI international conference, hCII
2021, virtual event, July 24–29, 2021, proceedings, part i 23, pp. 171–190. Springer, 2021.

Mingzhe Xing, Rongkai Zhang, Hui Xue, Qi Chen, Fan Yang, and Zhen Xiao. Understanding the
weakness of large language model agents within a complex android environment. In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 6061–6072,
2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yifan Xu, Xiao Liu, Xueqiao Sun, Siyi Cheng, Hao Yu, Hanyu Lai, Shudan Zhang, Dan Zhang,
Jie Tang, and Yuxiao Dong. Androidlab: Training and systematic benchmarking of android
autonomous agents. arXiv preprint arXiv:2410.24024, 2024a.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. arXiv
preprint arXiv:2412.04454, 2024b.

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu
Zhong, Julian McAuley, Jianfeng Gao, et al. Gpt-4v in wonderland: Large multimodal models for
zero-shot smartphone gui navigation. arXiv preprint arXiv:2311.07562, 2023.

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yanda Li, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and
Gang Yu. Appagent: Multimodal agents as smartphone users. In Proceedings of the 2025 CHI
Conference on Human Factors in Computing Systems, pp. 1–20, 2025.

Li Zhang, Shihe Wang, Xianqing Jia, Zhihan Zheng, Yunhe Yan, Longxi Gao, Yuanchun Li, and
Mengwei Xu. Llamatouch: A faithful and scalable testbed for mobile ui automation task evaluation.
arXiv e-prints, pp. arXiv–2404, 2024.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web
agent, if grounded. arXiv preprint arXiv:2401.01614, 2024.

Longtao Zheng, Rundong Wang, Xinrun Wang, and Bo An. Synapse: Trajectory-as-exemplar
prompting with memory for computer control. arXiv preprint arXiv:2306.07863, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 LIMITATIONS

Our study has several limitations. Firstly, all 95 contributors live in mainland China, and mainly
interact with Chinese third-party apps. The recorded linguistic habits, UI layouts and action patterns
may differ markedly from other regions. Secondly, our LoRA fine-tuning uses only a single 7B model.
Due to cost constraints, we did not conduct larger-scale fine-tuning experiments. Finally, we assume
that screenshots can be stored and shared after anonymization. In practice, fine-grained UI traces can
still contain unique visual features that allow re-identification. Techniques such as selective redaction
or synthetic replay should be explored before large-scale deployment.

A.2 BROADER IMPACTS

FingerTip 20K aims to advance mobile agents that anticipate user needs and adapt to individual
preferences. If developed responsibly, such agents could reduce the interaction barrier for elderly
or motor-impaired users, reduce screen time by automating repetitive tasks, and serve as a test
bed for privacy-preserving personalization research. At the same time, the technology entails risks.
Continuous screen capture combined with explicit user profiles gives models an intimate view of
personal life. An attacker compromising the agent, or a service provider lacking strong governance,
could reconstruct sensitive behaviors, contacts or locations. We encourage future work on on-device
processing, differential privacy and audit mechanisms.

A.3 DATA COLLECTION

The data collection was carried out through crowdsourcing, and participants were paid in accordance
with the living wage laws of their country. Participants consist of one-third undergraduates, one-third
postgraduates, and one-third employed individuals, including 54 males and 41 females, whose ages
range from 18 to 60, with an average age of 25.9. Participants filled out a questionnaire, which
collected their user profiles. Participants were informed of the expected use of the collected data and
signed a data usage agreement. They were asked not to upload any data related to private information.
We provided participants with detailed guidance documents and video tutorials on how to operate
the FingerTip APP for data collection. All participants went through a training phase during which
they became familiar with the FingerTip APP. They were encouraged to avoid using overly simplified
or ambiguous language to collect clear and useful intent descriptions. They were clearly informed
that they should not perform redundant or useless operations during the demonstration process, and
the operation speed should not be too fast to avoid frequent repetitive operations. However, minor
noisy operations (e.g., users making a typo or accidentally touching advertisements) are realistic
situations in human interaction. A robust agent must be able to handle such scenarios. Even if the
demonstrations are not collected from daily life but by recruiting annotators to perform operations
in a simulator like existing datasets, such noise cannot be completely avoided. Therefore, we allow
for its existence. During data collection, we conducted multiple timed quality checks on the data
submitted by each participant and manually deleted the low-quality data. We also provided quality
feedback to the corresponding participants, reminding them how to submit higher-quality data.

It should be noted that the FingerTip APP only collects data when participants actively use it. It does
not automatically collect data at other times. Participants can check or delete the data they upload at
any time. We conducted two rounds of inspections. We first manually inspected the data and removed
those that obviously involved privacy. Then, we used Qwen-VL-Max to examine the first and last
screenshots of each episode and determine whether it involved privacy. Those episodes marked as
potentially involving privacy were then rechecked by humans.

Our primary goal for collecting the data was to capture deep and longitudinal user interactions in
daily life settings. We believe that this context-rich dataset, even from a single region, provides a
crucial foundation for the novel tasks of proactive task suggestion and personalized task execution.
Considering the cost, we did not collect data in other regions. To our knowledge, previous datasets
such as Rawles et al. (2023); Li et al. (2024); Chen et al. (2024) also contain a single language
and UI ecosystem. We believe that this is a sufficient start for a first-of-its-kind study. However,
user diversity is a crucial aspect in ensuring the global generalizability of our findings. To facilitate

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

broader research, we plan to open source our APP for data collection. It can run on any (new version)
Android personal phone, providing support for data collection in other regions and languages. We
believe that our data collection methods and evaluation methods are universal.

A.4 DATA FORMAT

Our data is released at https://anonymous.4open.science/r/FingerTip-57B8. The
data contains several folders named with numbers (i.e. user IDs), and each of these folders contains
multiple folders named with timestamps (e.g., 20250309_133115), representing all the data episodes
submitted by that user. For each data episode, the following information is included:

• screenshots: a list of screenshots for each observation encoded as JPGs.

• accessibility trees: a list of Android accessibility tree XML files for each observation.

• actions: a list of actions represented in the form of JSON dictionaries. Each screenshot
corresponds to an action.

• intent_description: the user’s true intent in this episode.

• user_id: the unique integer identifier of the user to whom this episode belongs. This
information can be used to retrieve the corresponding user’s user profile.

• time: the timestamp when this episode was collected.

• scenario: the category of location where the user was when this episode was collected.

• app: the name of the activity running when the episode was collected. This information is
only used to launch the corresponding app in personalized task execution and is not provided
to the LLM agent.

Figure 7: An example data episode from FingerTip 20K.

The example of an episode from FingerTip 20K is shown in Figure 7.

Accessibility trees Note that when using accessibility trees, the LLM agent utilizes a list of all
accessible UI elements and their coordinates corresponding to a certain screenshot, which is extracted
from the metadata XML file through a Python function.

User profile The types of information included in user profiles and an example can be seen in
Table 6.

15

https://anonymous.4open.science/r/FingerTip-57B8

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: User profile example.

Field user_id sex age occupation address marital_status phone_brand

Example 55 male 20 student Beijing single Huawei

Scenario When users record their intents with the FingerTip APP, they need to select the category
of the location they are in. Specifically, they can choose from the following 12 common categories:
residence, office, school, dining place, shopping mall, medical institution, entertainment and leisure
venue, sports venue, cultural venue, transportation, urban street, and natural outdoor spaces. If users
think that none of these categories can describe the location they are in, they can fill in a new category
on their own.

A.5 DATA SPLITS

Table 7: Details on FingerTip 20K train, validation and test splits. For each split, we report the number
of episodes, the number of screenshots, the number of apps, and the number of intent categories it
contains.

Split # Episodes # Screens # Apps # Categories

Train 16000 177674 460 40
Vali 4411 32859 41 27

Test-suggestion 1000 10412 155 38
Test-execution 200 2074 68 31

We created a training set, a validation set, and two test sets. The number of episodes and features
in these sets are detailed in Table 7. Please note that the two test sets contain partially overlapping
episodes. The test sets were formed by randomly sampling the last 20% of the data sorted by time of
each user, and then concatenated to ensure coverage of all users and that the proportion of data from
each user in the test sets is equal to their proportion in all data. These test sets were used in all main
experiments. The collection method of the training set is similar to that of the test sets, except that it
is sampled from the first 60% of the data.

A.6 SUPPLEMENTARY EXPERIMENT RESULTS

A.6.1 OUT-OF-DOMAIN GENERALIZATION

To explore generalizability, we randomly sampled from the original test set and obtained three small
test subsets, which are: (1) User-unseen, containing 126 episodes from 3 users. All data of these 3
users in the training set were removed. (2) App-unseen, containing 106 episodes from 7 apps. All
data of these 7 apps in the training set were removed. (3) Intent-unseen, containing 99 episodes from
4 intent categories. All data of these 4 intent categories in the training set were removed. The filtered
training set has 14,706 episodes, and these data were used to re-fine-tune Qwen-2.5-VL-7B, with the
LoRA rank set to 4. The fine-tuned model was tested on these three out-of-domain test sets and the
original test set, and the results are shown in Table 8.

Table 8: Performance of the fine-tuned model on out-of-domain test sets.

Test set Proactive task suggestion Personalized task execution
SR1(%) Sim1 SR2(%) Sim2 Step Ratio

Original test set 19.9 0.51 13.5 1.29 1.18
User-unseen 15.1 0.50 13.2 1.29 1.21
App-unseen 14.2 0.49 12.7 1.22 1.23
Intent-unseen 15.2 0.51 13.1 1.27 1.21

When tested on new users, new apps, and new intent categories that have not been seen in the
training set, the decline in model performance is not particularly severe. This indicates that the model

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

fine-tuned on partial data has certain generalization ability and robustness, and can maintain good
proactive task suggestion and personalized task execution capabilities in unseen data as well.

A.6.2 CONNECTION BETWEEN TWO TRACKS

We believe that proactive task suggestion and personalized task execution are both crucial capabilities
for an agent to act as a user-oriented intelligent assistant. In practical applications, it first predicts
the user’s needs and then fulfills them in a way preferred by the user, thereby facilitating the user’s
more convenient use of the mobile phone and demonstrating a kind of collaborative connection.
However, the two tracks are conceptually distinct and emphasize different capabilities. Proactive task
suggestion places more emphasis on the agent’s ability to predict the user’s intents in advance, rather
than passively responding to the user’s clear instructions, that is, understanding "what the user wants
to do". Personalized task execution places more emphasis on aligning the agent’s behavior with the
user’s preferences during the known instruction execution process, rather than standardizing the task
execution, that is, understanding "how the user does it". In the fine-tuning of Section 5.4, we trained
separately on two tracks and obtained two fine-tuned models, each suitable for one of the two tracks.
Now we test these two models on the opposite track from the training data. Additionally, we jointly
fine-tuned a model (trained on both tracks), and the results are shown in Table 9.

Table 9: Performance of the separately fine-tuned model and the jointly fine-tuned model.

Model Proactive task suggestion Personalized task execution
SR1(%) Sim1 SR2(%) Sim2 Step Ratio

Qwen-2.5-VL-7B 3.1 0.25 1.5 0.95 2.16
Qwen-2.5-VL-7B-FT 9.7 0.49 12.5 1.21 1.17
Qwen-2.5-VL-7B-FT-proactive 9.7 0.49 1.0 0.97 2.20
Qwen-2.5-VL-7B-FT-personalized 2.9 0.25 12.5 1.21 1.17
Qwen-2.5-VL-7B-FT-joint 9.2 0.46 11.0 1.18 1.18

The model fine-tuned on one track did not bring about performance improvement when tested on
the other track; instead, there was a performance decline. The performance of the jointly fine-tuned
model also slightly declined compared to the separately fine-tuned models. This indicates that the
two tracks test two different abilities, and it is necessary to train and evaluate them separately.

A.6.3 CONTRIBUTION OF SCREENSHOTS AND HISTORICAL INTENTS

Our intention for the main results in Table 3 was to establish a baseline for the most challenging
version of proactive task suggestion, where the agent has zero screenshots and must rely solely on
historical and contextual data. This highlights the inherent difficulty of the task. To explore the
performance of the agent under more screenshots or more historical information, we supplemented
the experiments and obtained the following data in Table 10 (all using GPT4.1). Besides, we have
already demonstrated the variation of performance with the number of screenshots in Figure 6.a.

Table 10: Performance of proactive task suggestion under different number of input screenshots or
historical intents.

Setting SR1 (%) Sim1

0 screenshot + 20 Ihistory 7.2 0.35
0 screenshot + All Ihistory 9.6 0.38
3 screenshots + No Ihistory 4.3 0.45
3 screenshots + 20 Ihistory 9.9 0.53
3 screenshots + All Ihistory 13.8 0.55

0 screenshot + 20 Ihistory are the results we present in Table 3. For All Ihistory, we use DeepSeek-V3
to summarize the 20 most relevant historical intents of the user to the current time and scenario
among all historical intents. Additionally, we also tested the results of providing 3 initial screenshots
and mixing them with All Ihistory. Both providing more screenshots and historical information can
improve performance, but there is still much room for improvement. Offering more screenshots
would lose the predictive meaning of this task and significantly increase costs. We hope that the agent

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

can complete proactive task suggestion by relying on as few screenshots and historical information as
possible. When Ihistory was removed (cold-start users) while keeping three screenshots visible, the
success rate dropped to 4.3%, indicating a significant performance decline. It is evident that historical
intents are crucial for predicting current intents, and relying solely on screenshots cannot effectively
accomplish proactive task suggestion.

A.6.4 CONTRIBUTION OF CONTEXTUAL INFORMATION

To study the contribution of each contextual information in the input to the proactive task suggestion,
we supplemented the ablation study (all using GPT4.1) and obtained the following results in Table 11.

Table 11: Performance of proactive task suggestion under different contextual information.

Setting SR1 (%) Sim1

w/ User profile, Time, Scenario 7.2 0.35
w/o User profile 6.5 0.32
w/o Scenario 6.1 0.31
w/o Time 4.1 0.28

w/ User profile, Time, Scenario are the results we present in Table 3. Eliminating User profile,
Scenario, and Time all lead to performance degradation, among which the elimination of Time causes
the most significant decline, indicating that time might be the most crucial factor in the patterns of
user intent.

A.6.5 EFFECT OF THE PROBABILITY SETTING

Our data is longitudinal and collected over one month. This means that we often capture multiple
instances of similar intents from the same user. This structure is precisely what allows for modeling
user preferences and "habitual" intents. That is to say, within a specific time period of a day, a specific
user’s intents roughly follow a fixed probability distribution. We first separate all the intents of the
same user by time periods (e.g., dividing a day into 24 time periods by hour). Then, we convert all the
intents within the same time period into embedding vectors using paraphrase-multilingual-MiniLM-
L12-v2Reimers & Gurevych (2019) and cluster them based on distance. All semantically similar
intents are regarded as one category. If the number of intents in a certain category is larger, it indicates
that the probability of the user generating this type of intent during this time period is higher. In this
way, we obtain the probability distribution of intents (e.g., the user has a 35% probability of ordering
a hamburger for delivery and a 22% probability of playing music from a self-built playlist between
12:00 and 13:00...). For each user, a unique probability distribution of intents can be calculated
through the above method.

We re-executed the proactive task suggestion experiment by having GPT4.1 output the probability
distribution of the user’s intents instead of a single intent. The calculation method of SR1 was
changed to be successful as long as one of the top three intents in the output probability distribution
could be regarded as the same as the user’s true intent. The calculation method of Sim1 was changed
to the cosine similarity between the output probability distribution’s embedding vector and the
true probability distribution’s embedding vector. It can be seen in Table 12 that by outputting the
probability distribution, the agent provides multiple possible task suggestions, which is more likely
to succeed than only outputting a single task suggestion.

Table 12: Performance of proactive task suggestion under a probability setting.

Setting SR1 (%) Sim1

Output a single intent directly 7.2 0.35
Output the probability distribution of intents 11.1 0.42

A.6.6 VALIDITY OF Sim2

Sim2 is an automated metric for personalization. To quantitatively analyze the correlation between
Sim2 and users’ subjective experience, we conducted a user study. Specifically, for four models

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

in Table 5, we combined their output (i.e., the complete action sequences output by the models) on
the personalized task execution test set (200 episodes) with the users’ true action sequences. Each
episode has one ground truth action sequence and four randomly ordered action sequences output by
the models. Then, we asked the users corresponding to these 200 episodes to rate the four models’
action sequences on a five-point scale. The rating principle was whether the action sequence was
personalized to execute the task according to the user’s unique habits and preferences, even if it might
not have been ultimately successful. Then, we calculated the average rating of the four models and
compared it with their Sim2. The results are shown in Table 13.

Table 13: Comparison of Sim2 and user ratings in personalized task execution.

Model Sim2 User Rating
Qwen-2.5-VL-7B 0.95 2.42
Qwen-2.5-VL-7B-FT 1.21 3.35
GPT-4.1 0.98 2.55
UI-TARS-1.5-7B 1.06 2.72

The user rating increases with the increase of Sim2, indicating a certain positive correlation between
Sim2 and users’ subjective personalized experience. The fine-tuned model has the highest Sim2 and
its user rating also reached the highest 3.35 points, indicating that fine-tuning on our data indeed
improved the model’s personalization ability.

A.6.7 EFFECT OF SIMILAR OR SAME ACTION SEQUENCE

In personalized task execution, we provide the agent with an action sequence of a similar task for
in-context learning. However, this similar task might be the same as the current one, as the user has
performed the same task before, and the agent might cheat on the same task. We used DeepSeek-V3
to determine whether the retrieved similar tasks and the current task could be regarded as the same
task. If they were the same, we moved on to the next similar task until they could no longer be
considered the same. Using this method, we re-conducted the experiment on UI-TARS-1.5-7B, and
the performance in Table 14 showed no significant difference from the original. Therefore, we believe
there is no obvious cheating phenomenon. While tasks may be the same, the exact UI states are
unlikely to be identical, so is the action sequence. The goal is for the agent to generalize a user’s style
of interaction, not replicate a specific trace.

Table 14: Performance of personalized task execution under different historical action sequences.

Setting SR2 (%) Sim2 Step Ratio
most similar task 38.5 1.06 1.22
most similar (not the same) task 37.5 1.03 1.23

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.7 PROMPTS FOR THE LLM AGENTS

A.7.1 PROMPT FOR PROACTIVE TASK SUGGESTION

You are an Android GUI agent. You are given the first few screenshots of
the user’s action (arranged in chronological order) and some
supplementary information. You need to infer the user’s intent.

Input
User_profile: {profile}
Time: {time}
Scenario: {scenario}
Previous_intents: {previous_intents}

Note
- Express the user’s intent unambiguously in one Chinese sentence,
including all necessary information.
- Clearly state the name of the app which the user is using, and the
final effect the user wants to achieve.
- Previous_intents contains the user’s intents at certain times and in
certain scenarios in the past.
- Do not output anything other than the user’s intent.

The user’s intent:

A.7.2 PROMPT FOR PERSONALIZED TASK EXECUTION

You are an Android GUI agent. You are given an instruction and current
screenshot and some supplementary information. You need to perform the
next action to complete the instruction.

Input
User_instruction: {instruction}
User_profile: {profile}
Screen_width_height: {size}
Screen_description: {screen_description}
Actions_reference: {actions_reference}
Previous_actions: {previous_actions}

Action Space
click(coordinates=(x,y), content=’’)
long_click(coordinates=(x,y), content=’’)
type(text=’’)
scroll(coordinates=(x,y), direction=’down or up or right or left’)
press_back()
press_home()
press_recent()
wait()
finished()

Note
- ’coordinates’ should represent the coordinates of the click point. The
origin is the upper left corner of the screenshot, with x increasing to
the right and y increasing downward.
- ’content’ should represent the original text at the click point or the
description of the icon, usually in Chinese.
- ’text’ should represent all the original text that the user intends to
input. (usually in Chinese, and usually included in User_instruction)
- ’press_back()’, ’press_home()’, ’press_recent()’ means that go to
previous screen, home screen, recent apps screen, respectively.
- ’wait()’ means that wait until the next observation is received. This
usually occurs during loading or switching windows.
- ’finished()’ means that the instruction is completed.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

- Screen_description contains some correct ’content’ and ’coordinates’ of
the UI, which can be directly referenced.

- Actions_reference represents the complete sequence of actions that the
user performed when executing a similar instruction in the past, which
can be used for reference.
- Previous_actions contains the sequence of actions you have already
performed under the current instruction.
- Only one action in Action Space can be taken. Do not output anything
other than the action to take.

The action to take:

21

	Introduction
	Related work
	Mobile GUI-control datasets and benchmarks
	Mobile GUI-control agents

	Problem formulation
	Proactive task suggestion
	Personalized task execution

	The FingerTip 20K benchmark
	Overview
	Data collection
	Data statistics
	Personalized action analysis

	Experiments
	Experimental setup
	Overall Performance
	Effect of task difficulty
	Effect of fine-tuning

	Conclusions
	Ethics statement
	Reproducibility statement
	Appendix
	Limitations
	Broader impacts
	Data collection
	Data format
	Data splits
	Supplementary experiment results
	Out-of-domain generalization
	Connection between two tracks
	Contribution of screenshots and historical intents
	Contribution of contextual information
	Effect of the probability setting
	Validity of Sim_2
	Effect of similar or same action sequence

	Prompts for the LLM agents
	Prompt for proactive task suggestion
	Prompt for personalized task execution

