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ABSTRACT

Mobile GUI agents are becoming critical tools to improve user experience on
smart devices, with multimodal large language models (MLLMs) emerging as
the dominant paradigms in this domain. Current agents, however, rely on ex-
plicit human instructions, overlooking the potential to leverage the contextual
information (like location, time, previous interactions) for proactive task sugges-
tions. Besides, previous works focus on optimizing the success rate during task
execution, but pay less attention to the personalized execution trajectory, thereby
neglecting potentially vast differences in user preferences. To address these chal-
lenges, we introduce the FingerTip 20K benchmark. We collected 20K unique
human demonstrations of multi-step Android device interactions across a variety
of everyday apps. These demonstrations are not isolated but are continuously
acquired from the users’ long-term usage in their real lives, and encompass es-
sential user-related contextual information. The benchmark contains two new
tracks: proactive task suggestions by analyzing environment observation and users’
previous intents, and personalized task execution by catering to users’ action
preferences. Our experiments reveal that the tracks we propose pose significant
challenges for leveraging user-related information in GUI tasks. We also performed
a human study to show that there exists a huge gap between existing agents and
humans. The model fine-tuned with the data we collected effectively utilized user
information and achieved good results, highlighting the potential of our approach
in building more user-oriented mobile LLM agents. Our code is open-source
at https://anonymous.4open.science/r/FingerTip-57B8 for re-
producibility.

1 INTRODUCTION

Recent studies have explored how to utilize multimodal large language models (MLLMs) to build
graphical user interface (GUI) control agents (Koh et al., 2024; Zheng et al., 2024; Yan et al., 2023;
Kim et al., 2023; Deng et al., 2023), with a significant direction being mobile phone GUI control
agents. These mobile LLM agents have the potential to tremendously improve user experience with
mobile devices, since GUI is a universal interface across various applications. These agents receive a
natural language task instruction, such as "Set an alarm for 7:30 for me", and then perceive the device
state by observing the device screen (via screenshots or textual UI trees), and generate actions (click,
type, scroll, etc.) to interact with the device environment to fulfill human instructions.

Despite rapid progress, currently, most existing mobile LLM agents are confined to a completely
passive paradigm: they only perform tasks upon receiving a clear instruction. This paradigm restricts
their ability to proactively offer task suggestions and assistance in the absence of direct human
instructions. If users have to formulate detailed instructions for every intent when interacting with
mobile LLM agents, it will significantly increase the cognitive burden of mobile phone usage.
Moreover, humans sometimes may not clearly express some latent needs. Therefore, mobile LLM
agents need to be more proactive to provide users with more comprehensive and seamless services.
Furthermore, the existing agents utilize almost exclusively user instructions as textual information
when performing tasks, without taking into account any additional user-related information (e.g., time
and location, user profile, user historical intents and actions), thus failing to provide personalized
services to users. We argue that these limitations stem largely from the lack of suitable training data
and standardized evaluation benchmarks that incorporate rich user-related information.
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Figure 1: An overview task example in FingerTip 20K.

To comprehensively evaluate the proactive and personalized capabilities of mobile LLM agents, we
propose the FingerTip 20K benchmark, which includes two new tracks: (i) proactive task suggestion,
where the agent needs to integrate the user’s past intents and the current environmental state to infer
the user’s potential current intent; (ii) personalized task execution, where the agent needs to refer
to the user’s past action preferences to execute current instructions. The overall task scenario we
envision is shown in Figure 1. Since existing benchmarks do not provide such user-related contextual
information, we spent two months collecting new diverse data from 95 users in their daily mobile
phone usage, including 21,437 episodes covering 506 apps. We then conducted experiments on the
FingerTip 20K benchmark to evaluate the capabilities of generalist models and GUI-control agents
built on specifically designed models and found that there is still much room for improvement in their
proactive and personalized capabilities. Current agents still find it hard to reach or surpass the human
level. The best-performing model achieved a success rate of 7.2%, while humans reached 30.3%. We
fine-tuned a small model using the collected data and achieved better results.

In summary, the main contributions of this work include:

• We propose the FingerTip 20K benchmark, which includes two brand-new tracks, to evaluate
the ability of mobile LLM agents to proactively predict user intents and offer suggestions,
as well as their ability to personalize task execution in accordance with user preferences.

• We collect large-scale user-oriented mobile GUI-control data, derived from scenarios in
users’ daily lives, which includes user-related contextual information and users’ long-term
mobile phone usage patterns.

• We evaluated the capabilities of generalist models and GUI-control-specific models on
the FingerTip 20K benchmark, demonstrating the difficulty of the tracks we propose. The
excellent performance of the model fine-tuned with our collected data highlights the potential
of our approach in building more proactive and personalized mobile agents.

2 RELATED WORK

2.1 MOBILE GUI-CONTROL DATASETS AND BENCHMARKS

Table 1 compares FingerTip 20K to existing mobile GUI-control datasets and benchmarks (Xu et al.,
2024a; Chai et al., 2024; Li et al., 2024; Rawles et al., 2023; Chai et al., 2025; Ran et al., 2025; Chen
et al., 2024). These datasets typically represent each data instance through two core components:
a textual task instruction and its corresponding operational demonstration. The demonstration is
encoded as a sequence of interface interactions (e.g., clicking, typing, scrolling) accompanied by
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relevant screenshots. What differentiates them is mainly whether they are single-step (grounding
instructions to UI elements on the screen), and whether they have supplemental View Hierarchy
(VH) data for each screenshot. These datasets share some common drawbacks. Firstly, their task
instructions are either pre-defined by authors or generated by LLMs, and it is questionable to what
extent they can reflect the real intents of people using mobile phones in their daily lives. Additionally,
they collect task demonstrations mainly by having annotators operate simulators on computers, which
is not the real scenario of people using mobile phones. Finally, each data instance is isolated, lacking
temporal correlation and contextual information related to the user.

Table 1: Comparison of FingerTip 20K to existing mobile GUI-control datasets and benchmarks.

Dataset &
Benchmark #Episode #Apps #Avg

steps
User-defined
tasks?

Contextual
info?

Historical
data?

Task
setting

Android Instruct 10.5k - 9.0 ✗ ✗ ✗ execution
AMEX 3046 192 12.8 ✗ ✗ ✗ execution
AndroidControl 15283 833 5.5 ✗ ✗ ✗ execution
AitW 715142 357 6.5 ✗ ✗ ✗ execution
AndroidLab 138 9 - ✗ ✗ ✗ execution
A3 201 20 - ✗ ✗ ✗ execution
SPHINX - 100 8.1 ✗ ✗ ✗ execution
SPA-Bench 340 58 - ✗ ✗ ✗ execution

FingerTip 20K 21437 506 11.1 ✓ ✓ ✓
proactive task suggestion &
personalized task execution

For benchmarks, the success rate is the most commonly used metric, and some studies also consider
efficiency and cost. A common approach to assessing the success of a task is to determine whether
essential states have been reached (Rawles et al., 2024; Zhang et al., 2024; Lee et al., 2024). Some
studies also compare agents’ actions to golden actions (Xing et al., 2024). However, these golden
actions do not take into account potentially vast differences in user preferences, that is, the action
sequences of different users to complete similar tasks may be very different. In addition, current
benchmarks have similar task forms, that is, given an existing instruction, how to perform actions to
complete it. To the best of our knowledge, there is no mobile LLM agent benchmark that discusses
how to proactively suggest tasks based on user-related information when instructions are unknown.

2.2 MOBILE GUI-CONTROL AGENTS

Mobile GUI agents are designed to understand the UI and automate tasks on mobile apps in a manner
similar to that of humans. Current agents leverage the extensive world knowledge and powerful
embodied capabilities of multimodal large language models (MLLMs) for complex task planning
and reasoning in multi-step GUI-control tasks. One notable approach is to directly guide generalist
models like GPT-4v to perform tasks through extensive prompt engineering (Yan et al., 2023; Rawles
et al., 2023; He et al., 2024; Koh et al., 2024; Kim et al., 2023; Zheng et al., 2023). However,
these methods require meticulously designed prompts to achieve the best results. Another research
direction focuses on fine-tuning smaller models (Nakano et al., 2022; Qin et al., 2025; Hong et al.,
2024; Xu et al., 2024b; Gur et al., 2023) on GUI-specific datasets to endow them with GUI grounding
capabilities and the ability to break down high-level instructions, thereby enhancing their operational
efficiency. Despite these advancements, most current agents are still confined to passively following
explicit instructions and are unable to proactively predict user needs. Moreover, they do not take into
account any user preferences when performing tasks. Some studies focus on proactively clarifying
users’ ambiguous instructions (Wu et al., 2021; Chen et al., 2020; Qian et al., 2024); however, these
studies still require users to provide initial instructions. Proactive Agent (Lu et al., 2024) predicts
potential tasks by monitoring user activities and environmental states, but the input is text-only, and
the task scenarios are mainly limited to computer or web environments rather than mobile ones.

3 PROBLEM FORMULATION

3.1 PROACTIVE TASK SUGGESTION

In the FingerTip 20K benchmark we propose, unlike the evaluation tasks of traditional mobile LLM
agent benchmarks that rely entirely on explicit instructions, we introduce a new task where the agent
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Figure 2: Demonstration of proactive task suggestion and personalized task execution.

proactively predicts the user’s current intent and proposes tasks suggestion that the user might want
to perform, as shown in Figure 2. The agent’s task is to generate an intent prediction I based on the
user profile U , the current time T , the current scenario S, the user’s historical intents Ihistory, and the
partial screenshots O observed at present. This can be formalized as:

I = f (U, T, S, Ihistory, O) (1)

where f represents the agent. I is a sentence that unambiguously predicts the intent of the user.
It should clearly state the name of the app that the user wants to use, and the final effect that the
user wants to achieve. U includes common user attributes such as age, sex, occupation, etc. T
represents the current timestamp, accurate to the second. S represents the current scenario, expressed
in common location categories. Ihistory contains the user’s historical intents in the recent period, up
to 20 items, which may include the potential patterns and preferences of the user’s mobile phone
usage. O includes the first few screenshots of the user’s current actions (e.g., opening the home page
of a certain app). We hope that the agent can utilize the above-mentioned user-related contextual
information to infer the user’s potential intents, and thereby proactively offer helpful task suggestions.

3.2 PERSONALIZED TASK EXECUTION

In addition to proactive task suggestion, we also aim to evaluate the agent’s ability to carry out tasks
under the condition of explicit instructions, that is, when the user’s intent is known. The setting of
this part is similar to the existing benchmarks. The difference lies in that we additionally assess the
agent’s ability to execute tasks in a personalized manner specifically catering to the action preferences
of different users. Given user profile U , user intent Itrue, user’s historical actions Ahistory, agent’s
action sequence Aagent, and the current screenshot Ot and the corresponding accessibility tree ATt,
the agent needs to perform the next action At+1, and then observe Ot+1 and ATt+1. This can be
formalized as:

At+1, Ot+1, ATt+1 = f (U, Itrue, Ahistory, Aagent, Ot, ATt) (2)

where f represents the agent. Itrue is equivalent to the user’s true intent that needs to be predicted in
proactive task suggestion, and here it serves as the instruction to be executed. Ahistory is the complete
action sequence of the user when performing a similar task in the past, provided to the agent for
in-context learning to imitate the user’s action preferences. Aagent, on the other hand, is the action
sequence {A1, ..., At} that the agent has already executed in the current task, helping the agent
determine the progress of the task. The agent needs to constantly interact with the mobile phone
environment until it believes that Itrue has been fulfilled. We hope that the final sequence of agent
actions Aagent can reflect the user’s action preferences.
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4 THE FINGERTIP 20K BENCHMARK

4.1 OVERVIEW

The motivation for FingerTip 20K data collection is to evaluate the dual tracks we have proposed,
namely proactive task suggestion and personalized task execution. To this end, the most distinctive
feature of the data should be user-oriented, containing sufficient user-related contextual information
and being able to reflect the patterns and preferences of users in terms of intents and actions.

Figure 3: Data collection pipeline.

4.2 DATA COLLECTION

The data collection pipeline is shown in Figure 3. We first recruited 95 data collectors (hereinafter
referred to as users) using Android phones through crowdsourcing, covering a wide range of device
types and Android versions. Users were required to download an APP developed by us on their own
daily used phones and use it to collect data. Specifically, whenever users had a real intent to use their
phones in their daily lives, they could open the FingerTip APP, record their intent at that moment in
one sentence, and select the location category they were in. Then, users needed to switch to the app
involved in the intent they recorded and demonstrate the specific action sequence to complete this
intent.

The FingerTip APP will automatically upload the intent they fill in (including time and location) and
the demonstration process they provide (including screenshot sequences, corresponding accessibility
tree XML file sequences, and UI action sequences) to the cloud server. This is regarded as the user
collecting one piece of data. The APP may remind the user to collect data when they wake up the
phone screen to prevent them from forgetting. Each user is required to use their phone to collect data
for one month, with a maximum of 12 pieces of data uploaded per day. In this way, users can fully
customize the data they upload. See Appendix A.3 and A.4 for more details on data collection and
data format.

FingerTip APP is developed based on the accessibility features of the Android system. It can
automatically record the type and coordinates, as well as optional text descriptions of each user action.
The actions we collect are unified into an action space, as shown in Table 2. Among them, finish is
uniformly added to the last screenshot of all episodes.

4.3 DATA STATISTICS

The summary of data statistics is presented in Table 1. Additionally, Figure 4 reports the distribution
of user intent length, episode length, intent categories, and app name in all data. The intent categories
are determined by DeepSeek-V3 (Liu et al., 2024).
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Figure 4: Dataset statistics and distribution.

4.4 PERSONALIZED ACTION ANALYSIS

Table 2: Action space.

Action Parameter

click coordinates=(x,y),
content=”

long_click coordinates=(x,y),
content=”

type text=”

scroll coordinates=(x,y),
direction=”

press_back -
press_home -
press_recent -
wait -
finish - Figure 5: Personalized action analysis.

To verify the personalized differences in actions among different types of users, we first simply
classified users into different categories based on age groups. Then, we randomly sampled one piece
of data from each of the 40 intent categories. For the action sequence of such a piece of data, we
calculated the Levenshtein similarity with the action sequence of the most intent-similar data from
(i) the same user, (ii) the same type of users, and (iii) different type of users. All similarities were
normalized to [0, 100] and plotted in Figure 5. It can be seen that even when performing similar
intents, the similarity of action sequences with different types of users is significantly lower than that
of the same user or the same type of users, indicating that user preferences on action sequences do
exist and are measurable.

5 EXPERIMENTS

We conducted experiments on some generalist models and some GUI-control agents built on specif-
ically designed models, evaluating their capabilities on the two tracks proposed in the FingerTip
20K benchmark and assessing their performance under different task difficulties. Additionally, we
fine-tuned a model using the collected data. For details on the data splits (including the training set,
validation set, and two test sets), please refer to Appendix A.5.
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5.1 EXPERIMENTAL SETUP

Proactive task suggestion The LLMs we experiment with in this track include GPT-4.1, Qwen-
VL-Max, DeepSeek-VL2 (Wu et al., 2024) and Qwen-2.5-VL-7B (Bai et al., 2025). We set the
temperature to zero for all models. For proactive task suggestion, the agent only needs one query
to output the predicted intent. Since this is a brand new track proposed in our benchmark, there is
no mature agent design available for direct use. We have designed a simple prompt to provide to
all models evaluated in this track. This prompt contains all necessary inputs (see Section 3.1 and
Appendix A.7.1).

Personalized task execution In this track, in addition to the four generalist models mentioned
above, we also experiment with three GUI-control agents built on specifically designed models,
including Aguvis-7B (Xu et al., 2024b), CogAgent-9B (Hong et al., 2024) and UI-TARS-1.5-7B (Qin
et al., 2025). For personalized task execution, the agent needs to interact with the environment in
multiple steps to fulfill the user’s instructions. We connect a physical phone to the computer via USB
and use Android Debug Bridge (ADB) to provide this environment. Using an emulator would be a
more convenient approach, but due to strict app control measures, most Chinese apps can only run
on physical phones rather than emulators. For the generalist models, we designed a simple prompt
to guide their output of the next action, with the action space consistent with Table 2. This prompt
contains all necessary inputs (see Section 3.2 and Appendix A.7.2). For the three GUI-control agents,
they have specific format requirements for input and output. To ensure normal output effects, their
original prompts were used, and the input information in Section 3.2 was uniformly integrated into
these original prompts. Their output was converted into a form consistent with the action space.

Metrics In proactive task suggestion track, the goal of the agent is to maximize the textual similarity
between the output and the user’s true intent. We use a pre-trained model, paraphrase-multilingual-
MiniLM-L12-v2 (Reimers & Gurevych, 2019), to convert the agent’s output and the user’s true intent
into embedding vectors and calculate their cosine similarity S1. And, we calculate the Levenshtein
similarity S2 of these two strings. Both similarities are normalized to the range of [0, 1]. Finally,
we take Sim1 = (S1 + S2)/2 to comprehensively represent the text similarity. In addition to this
numerical metric, we also use DeepSeek-V3 (Liu et al., 2024) to directly determine whether the
agent’s output and the user’s true intent can be regarded as the same intent and provide a binary value
to evaluate whether the agent successfully predicted the user’s intent, thereby calculating the success
rate SR1.

In personalized task execution track, the primary goal of the agent is to successfully execute the user’s
instructions. We calculate the final success rate SR2 by manually checking whether the environment
state when the agent outputs finished() matches the user’s instructions. In addition, when the agent
steps exceed 2.5 times the golden steps, the task is automatically considered a failure. Note that
the path to successfully execute the user’s instructions is not unique. The agent should also make
the action sequence reflect the user’s action preferences as much as possible. We do not require the
agent’s action at each step to be exactly the same as the user’s golden action. Instead, we calculate
the Levenshtein similarity SI of the agent’s complete action sequence and the user’s complete action
sequence as two strings. Then, following the approach in Section 4.4, we take the data from the
different type of users that is most similar to the current user’s intent, and calculate the Levenshtein
similarity SII of the agent’s complete action sequence and this data’s complete action sequence.
Finally, we take the value Sim2 = SI/SII. It is obvious that the larger this value is, the more similar
the agent’s action sequence is to that of the current user, and the more different it is from that of
different type of users. In addition, we measure execution efficiency by comparing the agent steps
with the user’s golden steps to calculate the step ratio when the agent successfully execute the user’s
instructions. For the two tracks, we also tallied the average time and token count consumed per query
to assess the model’s cost.

5.2 OVERALL PERFORMANCE

The overall performance of the models we evaluated in proactive task suggestion is shown in Table 3.
Note that here we set the number of O (the first few screenshots of the user’s current actions) to 0.
This makes the task quite challenging. GPT-4.1 performed the best among the generalist models,
achieving SR1 = 7.2 and Sim1 = 0.35, but it also took the longest time. From SR1, it can be
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intuitively seen that the success rate of all models in predicting the user’s intent is very low, less
than 10%. Additionally, we conducted a user study where 20 human annotators (distinct from the
users who collected the data) labeled a subset of the test set (a total of 400 episodes), achieving a
success rate of 30.3%. This highlights the significant gap between the existing models and human in
proactive task suggestion capabilities.

Table 3: Overall performance of proactive task suggestion. Bold indicates the best performance
among models.

Model SR1 (%) Sim1 Time (sec) Token
GPT-4.1 7.2 0.35 5.64 796
Qwen-VL-Max 6.9 0.33 1.98 950
Deepseek-VL2 4.3 0.25 0.71 743
Qwen-2.5-vl-7B 3.1 0.25 0.78 943
Human 30.3 0.57 - -

Table 4: Overall performance of personalized task execution. Bold indicate the best performance.

Model SR2 (%) Sim2 Step Ratio Time (sec) Token
GPT-4.1 5.5 0.98 1.98 8.02 2912
Qwen-VL-Max 4.5 1.07 2.06 4.17 2304
Deepseek-VL2 1.0 0.93 2.19 3.46 2130
Qwen-2.5-vl-7B 1.5 0.95 2.16 3.66 2213
Aguvis-7B 20.5 1.02 1.38 6.86 2494
CogAgent-7B 18.0 0.92 1.73 12.54 2808
UI-TARS-1.5-7B 38.5 1.06 1.22 10.15 2440

The overall performance of the models we evaluated in personalized task execution is shown in
Table 4. GPT-4.1 and UI-TARS-1.5-7B achieved the best performance among the generalist models
and GUI-control models respectively. The SR2 of the generalist models were all very low, mainly
due to their lack of precise GUI grounding ability, which led to incorrect UI coordinates being output
even when they could correctly analyze the next action, thus failing to interact with the environment
accurately. In contrast, the GUI-control models, having undergone targeted training, had stronger
abilities to execute instructions and interact with the UI environment, resulting in higher SR2, with
UI-TARS-1.5-7B having the highest at 38.5. However, the Sim2 of all models were approximately 1,
indicating that the agent’s action sequence did not favor either the current user or different types of
users. This might suggest that the agent tends to complete tasks in a general way without catering to
the specific action preferences of users, thus failing to complete tasks in a personalized manner.

5.3 EFFECT OF TASK DIFFICULTY

Figure 6: Performance under different task difficulties.

We experiment with the models’ performance under different task difficulty levels. For proactive task
suggestion (see Figure 6.a), we varied the number of O (the first few screenshots of the user’s current

8
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actions). The SR1 of all models increased as the number of screenshots increased. This was expected.
Clearly, if the agent knew the first screenshot of the user’s current action, it could basically infer
which app the user was using, thereby significantly narrowing the range of the user’s intent. With the
second and third screenshots, the agent could further narrow the user’s intent range by analyzing the
actions therein (e.g. clicking the search box).

For personalized task execution (see Figure 6.b), we calculated the SR2 of GUI-control models on
different subsets of action lengths in the test set (we did not calculate the SR2 of generalist models
because their SR2 were all too low). It can be seen that as the action length increases, the SR2

decreases. This is in line with expectations, as the greater the action length required to complete a
certain instruction, the more complex the instruction is, and the more difficult it is to complete.

5.4 EFFECT OF FINE-TUNING

Table 5: Performance of fine-tuned model. Bold indicate the best performance.

Model Proactive task suggestion Personalized task execution
SR1(%) Sim1 SR2(%) Sim2 Step Ratio

Qwen-2.5-vl-7B 3.1 0.25 1.5 0.95 2.16
Qwen-2.5-vl-7B-FT 9.7 [+6.6] 0.49 [+0.24] 12.5 [+11.0] 1.21 [+0.26] 1.17 [-0.99]
GPT-4.1 7.2 0.35 5.5 0.98 1.98
UI-TARS-1.5-7B - - 38.5 1.06 1.22

To save resources, we only fine-tuned Qwen-2.5-VL-7B and adopted the parameter-efficient fine-
tuning method of LoRA, with the LoRA rank set to 4. Following the method of sampling the test set,
we randomly sampled 1,000 data episodes from the training set for fine-tuning. These data covered
all users, and the proportion of data for each user was the same as their proportion in the training
set. These 1,000 data episodes were reorganized according to the input and output formats of the
two tracks, respectively. The prompts used in fine-tuning are the same as those we designed for
generalist models. Finally, we trained separately on two tracks and obtained two fine-tuned models,
each suitable for one of the two tracks.

The performance of the fine-tuned model on the two tracks is shown in Table 5. Despite using a smaller
model and less training data, the fine-tuned model achieved significant performance improvements in
all main metrics. In proactive task suggestion, compared with the best-performing generalist model
GPT-4.1, our fine-tuned model achieved better performance in both SR1 and Sim1. In proactive task
suggestion, compared with the best-performing UI-TARS-1.5-7B, our fine-tuned model had a lower
success rate SR2. We consider this acceptable because UI-TARS is a model specifically designed
and extensively trained for GUI grounding and GUI control, and thus has a more general instruction
execution capability. However, our fine-tuned model had a significantly higher Sim2, indicating that
the action paths it selects may not be optimal but are closer to the user’s action preferences. Overall,
the model fine-tuned on our collected data demonstrated stronger proactivity and personalization
capabilities, being able to utilize user-related contextual information to extract potential intent patterns
and action preferences from the user’s past intents and actions, which existing models have not or
find it difficult to consider.

More experiments In Appendix A.6 we conducted more experiments to study the influence of
other factors.

6 CONCLUSIONS

We present FingerTip 20K, a benchmark advancing mobile LLM agents toward proactive task
suggestion and personalized task execution. Our data captures longitudinal user interactions, enriched
with contextual information to model user-specific patterns. Experiments reveal significant gaps
in existing models’ ability to leverage such contextual information. Fine-tuning Qwen-2.5-VL-7B
on our data improved suggestion success rate while better aligning actions with user preferences,
demonstrating the value of user-oriented training. This work establishes critical infrastructure for
developing mobile agents that anticipate user needs and adapt to user action preferences.

9
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7 ETHICS STATEMENT

Our data collection involves human participants. We detail our data collection process and the
multiple measures we have taken to reduce the risk of privacy leakage in Appendix A.3. We also
discuss the broader impacts of this study in Appendix A.2.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide all the necessary resources and code used in this
paper. All adopted models are fully open source or publicly accessible. Our project code, including the
data format, data splits, and evaluation process of FingerTip 20K, can be publicly accessed via the fol-
lowing anonymous link: https://anonymous.4open.science/r/FingerTip-57B8.
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A APPENDIX

A.1 LIMITATIONS

Our study has several limitations. Firstly, all 91 contributors live in mainland China, and mainly
interact with Chinese third-party apps. The recorded linguistic habits, UI layouts and action patterns
may differ markedly from other regions. Secondly, our LoRA fine-tuning uses only 1000 episodes and
a single 7B model. Due to cost constraints, we did not conduct larger-scale fine-tuning experiments
nor verify its generalization. Finally, we assume that screenshots can be stored and shared after
anonymization. In practice, fine-grained UI traces can still contain unique visual features that allow
re-identification. Techniques such as selective redaction or synthetic replay should be explored before
large-scale deployment.

A.2 BROADER IMPACTS

FingerTip 20K aims to advance mobile agents that anticipate user needs and adapt to individual
preferences. If developed responsibly, such agents could reduce the interaction barrier for elderly
or motor-impaired users, reduce screen time by automating repetitive tasks, and serve as a test
bed for privacy-preserving personalization research. At the same time, the technology entails risks.
Continuous screen capture combined with explicit user profiles gives models an intimate view of
personal life. An attacker compromising the agent, or a service provider lacking strong governance,
could reconstruct sensitive behaviors, contacts or locations. We encourage future work on on-device
processing, differential privacy and audit mechanisms.

A.3 DATA COLLECTION

The data collection was carried out through crowdsourcing, and participants were paid in accordance
with the living wage laws of their country. Participants consist of one-third undergraduates, one-third
postgraduates, and one-third employed individuals, with an average age of 25.9. Participants filled
out a questionnaire, which collected their user profiles. Participants were informed of the expected
use of the collected data and signed a data usage agreement. They were asked not to upload any data
related to private information. We provided participants with detailed guidance documents and video
tutorials on how to operate the FingerTip APP for data collection. All participants went through a
training phase during which they became familiar with the FingerTip APP and received targeted
feedback from our manually checked data. They were encouraged to avoid using overly simplified
or ambiguous language to collect clear and useful intent descriptions. It should be noted that the
FingerTip APP only collects data when participants actively use it. It does not automatically collect
data at other times. Participants can check or delete the data they upload at any time. We manually
inspected the data and removed those that obviously involved privacy.

Our primary goal for collecting the data was to capture deep, longitudinal user interactions in daily life
settings. We believe this context-rich dataset, even from a single region, provides a crucial foundation
for the novel tasks of proactive task suggestion and personalized task execution. Considering the
cost and the instability of cross-regional data transmission, we did not collect data in other regions.
To our knowledge, the annotators of previous datasets or benchmarks such as Rawles et al. (2023);
Li et al. (2024); Chen et al. (2024) also came from a single region. We believe this is a sufficient
start for a first-of-its-kind study. To facilitate broader research, we plan to open source our APP for
data collection. It can run on any (new version) Android personal phones, providing support for data
collection in other regions.

A.4 DATA FORMAT

Our data is publicly released at https://anonymous.4open.science/r/
FingerTip-57B8. The data contains several folders named with numbers (i.e. user IDs), and
each of these folders contains multiple folders named with timestamps (e.g., 20250309_133115),
representing all the data episodes submitted by that user. For each data episode, the following
information is included:

• screenshots: a list of screenshots for each observation encoded as JPGs.

13

https://anonymous.4open.science/r/FingerTip-57B8
https://anonymous.4open.science/r/FingerTip-57B8


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

• accessibility trees: a list of Android accessibility tree XML files for each observation.
• actions: a list of actions represented in the form of JSON dictionaries. Each screenshot

corresponds to an action.
• intent_description: the user’s true intent in this episode.
• user_id: the unique integer identifier of the user to whom this episode belongs. This

information can be used to retrieve the corresponding user’s user profile.
• time: the timestamp when this episode was collected.
• scenario: the category of location where the user was when this episode was collected.
• app: the name of the activity running when the episode was collected. This information is

only used to launch the corresponding app in personalized task execution and is not provided
to the LLM agent.

Figure 7: An example episode from FingerTip 20K.

The example of an episode from FingerTip 20K is shown in Figure 7.

Accessibility trees Note that when using accessibility trees, the LLM agent utilizes a list of all
accessible UI elements and their coordinates corresponding to a certain screenshot, which is extracted
from the metadata XML file through a Python function.

Table 6: User profile example.

Field user_id sex age occupation address marital_status phone_brand

Example 55 male 20 student Beijing single Huawei

User profile The types of information included in user profiles and an example can be seen in
Table 6.

Scenario When users record their intents with the FingerTip APP, they need to select the category
of the location they are in. Specifically, they can choose from the following 12 common categories:
residence, office, school, dining place, shopping mall, medical institution, entertainment and leisure
venue, sports venue, cultural venue, transportation, urban street, and natural outdoor spaces. If users
think that none of these categories can describe the location they are in, they can fill in a new category
on their own.
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A.5 DATA SPLITS

Table 7: Details on FingerTip 20K train, validation and test splits.

Split # Episodes # Screens # Apps # Categories

Train 16000 177674 460 40
Vali 4411 32859 41 27

Test-suggestion 1000 10412 155 38
Test-execution 200 2074 68 31

We created a training set, a validation set, and two test sets. The number of episodes and features
in these sets are detailed in Table 7. Please note that the two test sets contain partially overlapping
episodes. The test sets were formed by randomly sampling the last 20% of the data sorted by time
of each user, and then concatenated to ensure coverage of all users and that the proportion of data
from each user in the test sets is equal to their proportion in all data. These test sets were used in all
experiments. The collection method of the training set is similar to that of the test sets, except that it
is sampled from the first 60% of the data.

A.6 SUPPLEMENTARY EXPERIMENT RESULTS

A.6.1 CONTRIBUTION OF SCREENSHOTS AND HISTORICAL INTENTS

Our intention for the main results in Table 3 was to establish a baseline for the most challenging
version of proactive task suggestion, where the agent has zero screenshots and must rely solely on
historical and contextual data. This highlights the inherent difficulty of the task. To explore the
performance of the agent under more screenshots or more historical information, we supplemented
the experiments and obtained the following data in Table 8 (all using GPT4.1). Besides, we have
already demonstrated the variation of performance with the number of screenshots in Figure 6.a.

Table 8: Performance of proactive task suggestion under different number of input screenshots or
historical intents.

Setting SR1 (%) Sim1

0 screenshot + 20 Ihistory 7.2 0.35
0 screenshot + All Ihistory 9.6 0.38
3 screenshots + No Ihistory 4.3 0.45
3 screenshots + 20 Ihistory 9.9 0.53
3 screenshots + All Ihistory 13.8 0.55

0 screenshot + 20 Ihistory are the results we present in Table 3. For All Ihistory, we use DeepSeek-
V3 (Liu et al., 2024) to summarize the 20 most relevant historical intents of the user to the current
time and scenario among all historical intents. Additionally, we also tested the results of providing 3
initial screenshots and mixing them with All Ihistory. Both providing more screenshots and historical
information can improve performance, but there is still much room for improvement. Offering more
screenshots would lose the predictive meaning of this task and significantly increase costs. We hope
that the agent can complete proactive task suggestion by relying on as few screenshots and historical
information as possible. When Ihistory was removed (cold-start users) while keeping three screenshots
visible, the success rate dropped to 4.3%, indicating a significant performance decline. It is evident
that historical intents are crucial for predicting current intents, and relying solely on screenshots
cannot effectively accomplish proactive task suggestion.

A.6.2 CONTRIBUTION OF CONTEXTUAL INFORMATION

To study the contribution of each contextual information in the input to the proactive task suggestion,
we supplemented the ablation study (all using GPT4.1) and obtained the following results in Table 9.

w/ User profile, Time, Scenario are the results we present in Table 3. Eliminating User profile,
Scenario, and Time all lead to performance degradation, among which the elimination of Time causes
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Table 9: Performance of proactive task suggestion under different contextual information.

Setting SR1 (%) Sim1

w/ User profile, Time, Scenario 7.2 0.35
w/o User profile 6.5 0.32
w/o Scenario 6.1 0.31
w/o Time 4.1 0.28

the most significant decline, indicating that time might be the most crucial factor in the patterns of
user intent.

A.6.3 PERFORMANCE OF PERSONALIZED TASK EXECUTION

In personalized task execution, we provide the agent with an action sequence of a similar task for
in-context learning. However, this similar task might be the same as the current one, as the user has
performed the same task before, and the agent might cheat on the same task. We used DeepSeek-
V3 (Liu et al., 2024) to determine whether the retrieved similar tasks and the current task could be
regarded as the same task. If they were the same, we moved on to the next similar task until they
could no longer be considered the same. Using this method, we re-conducted the experiment on
UI-TARS-1.5-7B, and the performance in Table 10 showed no significant difference from the original.
Therefore, we believe there is no obvious cheating phenomenon. While tasks may be the same, the
exact UI states are unlikely to be identical, so is the action sequence. The goal is for the agent to
generalize a user’s style of interaction, not replicate a specific trace.

Table 10: Performance of personalized task execution under different in-context learning.

Setting SR2 (%) Sim2 Step Ratio
most similar task 38.5 1.06 1.22
most similar (not the same) task 37.5 1.03 1.23
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A.7 PROMPTS FOR THE LLM AGENTS

A.7.1 PROMPT FOR PROACTIVE TASK SUGGESTION

You are an Android GUI agent. You are given the first few screenshots of
the user’s action (arranged in chronological order) and some
supplementary information. You need to infer the user’s intent.

## Input
User_profile: {profile}
Time: {time}
Scenario: {scenario}
Previous_intents: {previous_intents}

## Note
- Express the user’s intent unambiguously in one Chinese sentence,
including all necessary information.
- Clearly state the name of the app which the user is using, and the
final effect the user wants to achieve.
- Previous_intents contains the user’s intents at certain times and in
certain scenarios in the past.
- Do not output anything other than the user’s intent.

The user’s intent:

A.7.2 PROMPT FOR PERSONALIZED TASK EXECUTION

You are an Android GUI agent. You are given an instruction and current
screenshot and some supplementary information. You need to perform the
next action to complete the instruction.

## Input
User_instruction: {instruction}
User_profile: {profile}
Screen_width_height: {size}
Screen_description: {screen_description}
Actions_reference: {actions_reference}
Previous_actions: {previous_actions}

## Action Space
click(coordinates=(x,y), content=’’)
long_click(coordinates=(x,y), content=’’)
type(text=’’)
scroll(coordinates=(x,y), direction=’down or up or right or left’)
press_back()
press_home()
press_recent()
wait()
finished()

## Note
- ’coordinates’ should represent the coordinates of the click point. The
origin is the upper left corner of the screenshot, with x increasing to
the right and y increasing downward.
- ’content’ should represent the original text at the click point or the
description of the icon, usually in Chinese.
- ’text’ should represent all the original text that the user intends to
input. (usually in Chinese, and usually included in User_instruction)
- ’press_back()’, ’press_home()’, ’press_recent()’ means that go to
previous screen, home screen, recent apps screen, respectively.
- ’wait()’ means that wait until the next observation is received. This
usually occurs during loading or switching windows.
- ’finished()’ means that the instruction is completed.
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- Screen_description contains some correct ’content’ and ’coordinates’ of
the UI, which can be directly referenced.

- Actions_reference represents the complete sequence of actions that the
user performed when executing a similar instruction in the past, which
can be used for reference.
- Previous_actions contains the sequence of actions you have already
performed under the current instruction.
- Only one action in Action Space can be taken. Do not output anything
other than the action to take.

The action to take:
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