

000 001 002 003 004 005 FINGERTip 20K: A BENCHMARK FOR PROACTIVE AND 006 PERSONALIZED MOBILE LLM AGENTS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Mobile GUI agents are becoming critical tools to improve user experience on smart devices, with multimodal large language models (MLLMs) emerging as the dominant paradigms in this domain. Current agents, however, rely on explicit human instructions, overlooking the potential to leverage the contextual information (like location, time, user profile) and historical data for proactive task suggestions. Besides, previous works focus on optimizing the success rate during task execution, but pay less attention to the personalized execution trajectory, thereby neglecting potentially vast differences in user preferences. To address these challenges, we introduce the FingerTip 20K benchmark. We collected 20K unique human demonstrations of multi-step Android device interactions across a variety of everyday apps. These demonstrations are not isolated but are continuously acquired from the users' long-term usage in their real lives, and encompass essential user-related contextual information. The benchmark contains two new tracks: proactive task suggestions by analyzing environment observation and users' previous intents, and personalized task execution by catering to users' action preferences. Our experiments reveal that the tracks we propose pose significant challenges for leveraging user-related information in GUI tasks. We also performed a human study to show that there exists a huge gap between existing agents and humans. The model fine-tuned with the data we collected effectively utilized user information and achieved good results, highlighting the potential of our approach in building more user-oriented mobile LLM agents. Our code is open-source at <https://anonymous.4open.science/r/FingerTip-57B8> for reproducibility.

1 INTRODUCTION

Recent studies have explored how to utilize multimodal large language models (MLLMs) to build graphical user interface (GUI) control agents (Koh et al., 2024; Zheng et al., 2024; Yan et al., 2023; Kim et al., 2023; Deng et al., 2023), with a significant direction being mobile phone GUI control agents. These mobile LLM agents have the potential to tremendously improve user experience with mobile devices, since GUI is a universal interface across various applications. These agents receive a natural language task instruction, such as "Set an alarm for 7:30 for me", and then perceive the device state by observing the device screen (via screenshots or textual UI trees), and generate actions (click, type, scroll, etc.) to interact with the device environment to fulfill human instructions.

Despite rapid progress, currently, most existing mobile LLM agents are confined to a completely passive paradigm: they only perform tasks upon receiving a clear instruction. This paradigm restricts their ability to proactively offer task suggestions and assistance in the absence of direct human instructions. If users have to formulate detailed instructions for every intent when interacting with mobile LLM agents, it will significantly increase the cognitive burden of mobile phone usage. Moreover, humans sometimes may not clearly express some latent needs. Therefore, mobile LLM agents need to be more proactive to provide users with more comprehensive and seamless services. Furthermore, the existing agents utilize almost exclusively user instructions as textual information when performing tasks, without taking into account any additional user-related information (e.g., time and location, user profile, user historical intents and actions), thus failing to provide personalized services to users. We argue that these limitations stem largely from the lack of suitable training data and standardized evaluation benchmarks that incorporate rich user-related information.

Figure 1: An overview task example in FingerTip 20K. The agent proactively offers task suggestions to the user and personalizes the execution of tasks in a way that aligns with the user’s preferences.

To comprehensively evaluate the proactive and personalized capabilities of mobile LLM agents, we propose the FingerTip 20K benchmark, which includes two new tracks: (i) proactive task suggestion, where the agent needs to integrate the user’s past intents and the current environmental state to infer the user’s potential current intent; (ii) personalized task execution, where the agent needs to refer to the user’s past action preferences to execute current instructions. The overall task scenario we envision is shown in Figure 1. Since existing benchmarks do not provide user-related contextual information and historical data, we spent over one month collecting new diverse data from 95 users in their daily mobile phone usage, including 21,437 episodes covering 506 apps. We then conducted experiments on the FingerTip 20K benchmark to evaluate the capabilities of generalist models and GUI-control agents built on specifically designed models and found that there is still much room for improvement in their proactive and personalized capabilities. Current agents still find it hard to reach or surpass the human level. The best-performing model achieved a success rate of 12.8%, while humans reached 30.3%. We fine-tuned a small model using the collected data and achieved better results.

In summary, the main contributions of this work include:

- We propose the FingerTip 20K benchmark, which includes two brand-new tracks, to evaluate the ability of mobile LLM agents to proactively predict user intents and offer suggestions, as well as their ability to personalize task execution in accordance with user preferences.
- We collect large-scale user-oriented mobile GUI-control data, derived from scenarios in users’ daily lives, which includes user-related contextual information and users’ long-term mobile phone usage patterns.
- We evaluated the capabilities of generalist models and GUI-control-specific models on the FingerTip 20K benchmark, demonstrating the difficulty of the tracks we propose. The excellent performance of the model fine-tuned with our collected data highlights the potential of our approach in building more proactive and personalized mobile agents.

108

2 RELATED WORK

110

2.1 MOBILE GUI-CONTROL DATASETS AND BENCHMARKS

112 Table 1 compares FingerTip 20K to existing mobile GUI-control datasets and benchmarks (Chai
 113 et al., 2024; Li et al., 2024; Rawles et al., 2023; 2024; Xu et al., 2024a; Chai et al., 2025; Ran
 114 et al., 2025; Chen et al., 2024). These datasets typically represent each data instance through two
 115 core components: a textual task instruction and its corresponding operational demonstration. The
 116 demonstration is encoded as a sequence of interface interactions (e.g., clicking, typing, scrolling)
 117 accompanied by relevant screenshots. What differentiates them is mainly whether they are single-step
 118 (grounding instructions to UI elements on the screen), and whether they have supplemental View
 119 Hierarchy (VH) data for each screenshot. These datasets share some common drawbacks. Firstly,
 120 their task instructions are either pre-defined by authors or generated by LLMs, and it is questionable
 121 to what extent they can reflect the real intents of people using mobile phones in their daily lives.
 122 Additionally, they collect task demonstrations mainly by having annotators operate simulators on
 123 computers, which is not the real scenario of people using mobile phones. Finally, each data instance
 124 is isolated, lacking temporal correlation and contextual information related to the user.

125 Table 1: Comparison of FingerTip 20K to existing mobile GUI-control datasets and benchmarks.

Dataset & Benchmark	#Episode	#Apps	#Avg steps	User-defined tasks?	Contextual info?	Historical data?	Task setting
Android Instruct	10.5k	-	9.0	✗	✗	✗	execution
AMEX	3046	192	12.8	✗	✗	✗	execution
AndroidControl	15283	833	5.5	✗	✗	✗	execution
AitW	715142	357	6.5	✗	✗	✗	execution
AndroidWorld	116	20	-	✗	✗	✗	execution
AndroidLab	138	9	-	✗	✗	✗	execution
A3	201	20	-	✗	✗	✗	execution
SPHINX	-	100	8.1	✗	✗	✗	execution
SPA-Bench	340	58	-	✗	✗	✗	execution
FingerTip 20K	21437	506	11.1	✓	✓	✓	proactive task suggestion & personalized task execution

137 For benchmarks, the success rate is the most commonly used metric, and some studies also consider
 138 efficiency and cost. A common approach to assessing the success of a task is to determine whether
 139 essential states have been reached (Rawles et al., 2024; Zhang et al., 2024; Lee et al., 2024). Some
 140 studies also compare agents’ actions to golden actions (Xing et al., 2024). However, these golden
 141 actions do not take into account potentially vast differences in user preferences, that is, the action
 142 sequences of different users to complete similar tasks may be very different. In addition, current
 143 benchmarks have similar task forms, that is, given an existing instruction, how to perform actions to
 144 complete it. To the best of our knowledge, there is no mobile LLM agent benchmark that discusses
 145 how to proactively suggest tasks based on user-related information when instructions are unknown.

147

2.2 MOBILE GUI-CONTROL AGENTS

149 Mobile GUI agents are designed to understand the UI and automate tasks on mobile apps in a manner
 150 similar to that of humans. Current agents leverage the extensive world knowledge and powerful
 151 embodied capabilities of multimodal large language models (MLLMs) for complex task planning
 152 and reasoning in multi-step GUI-control tasks. One notable approach is to directly guide generalist
 153 models like GPT-4v to perform tasks through extensive prompt engineering (Yan et al., 2023; Rawles
 154 et al., 2023; He et al., 2024; Koh et al., 2024; Kim et al., 2023; Zheng et al., 2023; Zhang et al., 2025;
 155 Wen et al., 2024). However, these methods require meticulously designed prompts to achieve the best
 156 results. Another research direction focuses on fine-tuning smaller models (Nakano et al., 2022; Qin
 157 et al., 2025; Hong et al., 2024; Xu et al., 2024b; Gur et al., 2023) on GUI-specific datasets to endow
 158 them with GUI grounding capabilities and the ability to break down high-level instructions, thereby
 159 enhancing their operational efficiency. Despite these advancements, most current agents are still
 160 confined to passively following explicit instructions and are unable to proactively predict user needs.
 161 Moreover, they do not take into account any user preferences when performing tasks. Some studies
 focus on proactively clarifying users’ ambiguous instructions (Wu et al., 2021; Chen et al., 2020;
 Qian et al., 2024); however, these studies still require users to provide initial instructions. Proactive

162 Agent (Lu et al., 2024) predicts potential tasks by monitoring user activities and environmental states,
 163 but the input is text-only, and the task scenarios are mainly limited to computer or web environments
 164 rather than mobile ones.

165

166 3 PROBLEM FORMULATION

168 3.1 PROACTIVE TASK SUGGESTION

191 Figure 2: Demonstration of proactive task suggestion and personalized task execution.
 192

193 In the FingerTip 20K benchmark we propose, unlike the evaluation tasks of traditional mobile LLM
 194 agent benchmarks that rely entirely on explicit instructions, we introduce a new task where the agent
 195 proactively predicts the user’s current intent and proposes tasks suggestion that the user might want
 196 to perform, as shown in Figure 2. The agent’s task is to generate an intent prediction I based on the
 197 user profile U , the current time T , the current scenario S , the user’s historical intents I_{history} , and the
 198 partial screenshots O observed at present. This can be formalized as:

$$199 \quad I = f(U, T, S, I_{\text{history}}, O) \quad (1)$$

200 where f represents the agent. I is a sentence that unambiguously predicts the intent of the user.
 201 It should clearly state the name of the app that the user wants to use, and the final effect that the
 202 user wants to achieve. U includes common user attributes such as age, sex, occupation, etc. T
 203 represents the current timestamp, accurate to the second. S represents the current scenario, expressed
 204 in common location categories. I_{history} contains the user’s historical intents in the recent period, up
 205 to 20 items, which may include the potential patterns and preferences of the user’s mobile phone
 206 usage. O includes the first few screenshots of the user’s current actions (e.g., opening the home page
 207 of a certain app). We hope that the agent can utilize the above-mentioned user-related contextual
 208 information and historical intents to infer the user’s potential intents, and thereby proactively offer
 209 helpful task suggestions.

210

211 3.2 PERSONALIZED TASK EXECUTION

212

213 In addition to proactive task suggestion, we also aim to evaluate the agent’s ability to carry out tasks
 214 under the condition of explicit instructions, that is, when the user’s intent is known. The setting of
 215 this part is similar to the existing benchmarks. The difference lies in that we additionally assess the
 agent’s ability to execute tasks in a personalized manner specifically catering to the action preferences

of different users. Given user profile U , user intent I_{true} , user's historical actions A_{history} , agent's action sequence A_{agent} , and the current screenshot O_t and the corresponding accessibility tree AT_t , the agent needs to perform the next action A_{t+1} , and then observe O_{t+1} and AT_{t+1} . This can be formalized as:

$$A_{t+1}, O_{t+1}, AT_{t+1} = f(U, I_{\text{true}}, A_{\text{history}}, A_{\text{agent}}, O_t, AT_t) \quad (2)$$

where f represents the agent. I_{true} is equivalent to the user's true intent that needs to be predicted in proactive task suggestion, and here it serves as the instruction to be executed. A_{history} is the complete action sequence of the user when performing a similar task in the past, provided to the agent for in-context learning to imitate the user's action preferences. A_{agent} , on the other hand, is the action sequence $\{A_1, \dots, A_t\}$ that the agent has already executed in the current task, helping the agent determine the progress of the task. The agent needs to constantly interact with the mobile phone environment until it believes that I_{true} has been fulfilled. We hope that the final sequence of agent actions A_{agent} can reflect the user's action preferences.

4 THE FINGERTIP 20K BENCHMARK

4.1 OVERVIEW

The motivation for FingerTip 20K data collection is to evaluate the dual tracks we have proposed, namely proactive task suggestion and personalized task execution. To this end, the most distinctive feature of the data should be user-oriented, containing sufficient user-related contextual information and being able to reflect the patterns and preferences of users in terms of intents and actions.

Figure 3: Data collection pipeline. Users record their intents and demonstrate actions by using the FingerTip APP in their daily mobile phone usage.

4.2 DATA COLLECTION

The data collection pipeline is shown in Figure 3. We first recruited 95 data collectors (hereinafter referred to as users) using Android phones through crowdsourcing, covering a wide range of device types and Android versions. Users were required to download an APP developed by us on their own daily used phones and use it to collect data. Specifically, whenever users had a real intent to use their phones in their daily lives, they could open the FingerTip APP, record their intent at that moment in one sentence, and select the location category they were in. Then, users needed to switch to the app involved in the intent they recorded and demonstrate the specific action sequence to complete this intent.

270 The FingerTip APP will automatically upload the intent they fill in (including time and location) and
 271 the demonstration process they provide (including screenshot sequences, corresponding accessibility
 272 tree XML file sequences, and UI action sequences) to the cloud server. This is regarded as the user
 273 collecting one piece of data. The APP may remind the user to collect data when they wake up the
 274 phone screen to prevent them from forgetting. Each user is required to use their phone to collect data
 275 for one month, with a maximum of 12 pieces of data uploaded per day. In this way, users can fully
 276 customize the data they upload. See Appendix A.3 and A.4 for more details on data collection and
 277 data format.

278 FingerTip APP is developed based on the accessibility features of the Android system. It can
 279 automatically record the type and coordinates, as well as optional text descriptions of each user action.
 280 The actions we collect are unified into an action space, as shown in Table 2. Among them, *finish* is
 281 uniformly added to the last screenshot of all episodes.

309 Figure 4: Dataset statistics and distribution. (a) The length distribution of the natural language intents
 310 recorded by users. (b) The distribution of the number of screenshots contained in each episode (i.e.,
 311 the distribution of the number of action steps of users). (c) The distribution of all categories to which
 312 the intents belong. (d) The distribution of all apps involved in the data.

314 4.3 DATA STATISTICS

316 The summary of data statistics is presented in Table 1. Additionally, Figure 4 reports the distribution
 317 of user intent length, episode length, intent categories, and app name in all data. The intent categories
 318 are determined by DeepSeek-V3 (Liu et al., 2024).

320 4.4 PERSONALIZED ACTION ANALYSIS

322 To verify the personalized differences in actions among users of different types, we first simply
 323 classified users into different categories based on age groups. Then, we randomly sampled one piece
 of data from each of the 40 intent categories. For the action sequence of such a piece of data, we

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 2: The action space of an agent when interacting with a mobile phone environment.

Action	Parameter
click	coordinates=(x,y), content="
long_click	coordinates=(x,y), content="
type	text="
scroll	coordinates=(x,y), direction="
press_back	-
press_home	-
press_recent	-
wait	-
finish	-

calculated the Levenshtein similarity with the action sequence of the most intent-similar data from (i) the same user, (ii) users of the same type, and (iii) users of different type. All similarities were normalized to [0, 100] and plotted in Figure 5. It can be seen that even when performing similar intents, the similarity of action sequences with users of different type is significantly lower than that of the same user or users of the same type, indicating that user preferences on action sequences do exist and are measurable.

5 EXPERIMENTS

We conducted experiments on some generalist models and some GUI-control agents built on specifically designed models, evaluating their capabilities on the two tracks proposed in the FingerTip 20K benchmark and assessing their performance under different task difficulties. Additionally, we fine-tuned a model using the collected data. For details on the data splits (including the training set, validation set, and two test sets), please refer to Appendix A.5.

5.1 EXPERIMENTAL SETUP

Proactive task suggestion The LLMs we experiment with in this track include GPT-4.1, Qwen-VL-Max, DeepSeek-VL2 (Wu et al., 2024) and Qwen-2.5-VL-7B (Bai et al., 2025). We also introduce Qwen-2.5-VL-72B (Bai et al., 2025) to compare with the 7B version; and Qwen-QVQ-Max (thinking model) to compare with other non-thinking models. We set the temperature to zero for all models. For proactive task suggestion, the agent only needs one query to output the predicted intent. Since this is a brand new track proposed in our benchmark, there is no mature agent design available for direct use. We have designed a simple prompt to provide to all models evaluated in this track. This prompt contains all necessary inputs (see Section 3.1 and Appendix A.7.1).

Personalized task execution In this track, in addition to the generalist models mentioned above, we also experiment with three GUI-control agents built on specifically designed models, including Aguvis-7B (Xu et al., 2024b), CogAgent-9B (Hong et al., 2024) and UI-TARS-1.5-7B (Qin et al., 2025). We also introduce AutoDroid Wen et al. (2024) and AppAgent Zhang et al. (2025), two GUI-control agents based on prompt engineering (using GPT4.1 as the base model). For personalized task execution, the agent needs to interact with the environment in multiple steps to fulfill the user’s instructions. We connect a physical phone to the computer via USB and use Android Debug Bridge (ADB) to provide this environment. Using an emulator would be a more convenient approach, but due to strict app control measures, most Chinese apps can only run on physical phones rather than emulators. For the generalist models, we designed a simple prompt to guide their output of the next action, with the action space consistent with Table 2. This prompt contains all necessary inputs (see Section 3.2 and Appendix A.7.2). For the GUI-control agents, they have specific format requirements

Figure 5: Personalized action analysis. We demonstrated the similarities of user action sequences in six intent categories. The similarities were higher among the same users or users of the same type, while the similarities between users of different types were lower.

378 for input and output. To ensure normal output effects, their original prompts were used, and the input
 379 information in Section 3.2 was uniformly integrated into these original prompts. Their output was
 380 converted into a form consistent with the action space.
 381

382 **Metrics** In proactive task suggestion track, the goal of the agent is to maximize the textual similarity
 383 between the output and the user’s true intent. We use a pre-trained model, paraphrase-multilingual-
 384 MiniLM-L12-v2 (Reimers & Gurevych, 2019), to convert the agent’s output and the user’s true intent
 385 into embedding vectors and calculate their cosine similarity S_1 . And, we calculate the Levenshtein
 386 similarity S_2 of these two strings. Both similarities are normalized to the range of [0, 1]. Finally,
 387 we take $Sim_1 = (S_1 + S_2)/2$ to comprehensively represent the text similarity. In addition to this
 388 numerical metric, we also use DeepSeek-V3 (Liu et al., 2024) to directly determine whether the
 389 agent’s output and the user’s true intent can be regarded as the same intent and provide a binary value
 390 to evaluate whether the agent successfully predicted the user’s intent, thereby calculating the success
 391 rate SR_1 .
 392

393 In personalized task execution track, the primary goal of the agent is to execute user instructions in
 394 a personalized manner. We calculate the final success rate SR_2 by manually checking whether the
 395 environment state when the agent outputs *finished()* matches the user’s instructions. In addition,
 396 when the agent steps exceed 2.5 times the golden steps, the task is automatically considered a failure.
 397 Note that the path to successfully execute the user’s instructions is not unique. The agent should
 398 also make the action sequence reflect the user’s action preferences as much as possible. We do not
 399 require the agent’s action at each step to be exactly the same as the user’s golden action. Instead,
 400 we calculate the Levenshtein similarity S_I of the agent’s complete action sequence and the user’s
 401 complete action sequence as two strings. Then, following the approach in Section 4.4, we take the
 402 data that is most similar to the current user’s intent from the users of different type, and calculate the
 403 Levenshtein similarity S_{II} of the agent’s complete action sequence and this data’s complete action
 404 sequence. Finally, we take the value $Sim_2 = S_I/S_{II}$. It is obvious that the larger this value is, the
 405 more similar the agent’s action sequence is to that of the current user, and the more different it is
 406 from that of users of different type. In addition, we measure execution efficiency by comparing the
 407 agent steps with the user’s golden steps to calculate the step ratio when the agent successfully execute
 408 the user’s instructions. For the two tracks, we also tallied the average time and token count consumed
 409 per query to assess the model’s cost.
 410

408 5.2 OVERALL PERFORMANCE

411 The overall performance of the models we evaluated in proactive task suggestion is shown in Table 3.
 412 Note that here we set the number of O (the first few screenshots of the user’s current actions) to 0.
 413 This makes the task quite challenging. The thinking model Qwen-QVQ-Max surpassed GPT-4.1,
 414 achieving the best performance among the generalist models with $SR_1 = 12.8$ and $Sim_1 = 0.39$,
 415 but also took the longest time and the most tokens. From SR_1 , it can be intuitively seen that the
 416 success rate of all models in predicting the user’s intent is very low. Additionally, we conducted a
 417 user study where 20 human annotators (distinct from the users who collected the data) labeled a
 418 subset of the test set (a total of 400 episodes), achieving a success rate of 30.3%. This highlights the
 419 significant gap between the existing models and human in proactive task suggestion capabilities.
 420

421 Table 3: Overall performance of proactive task suggestion.

422 Model	423 SR_1 (%)	424 Sim_1	425 Time (sec)	426 Token
427 GPT-4.1	428 7.2	429 0.35	430 5.64	431 796
432 Qwen-VL-Max	433 6.9	434 0.33	435 1.98	436 950
437 Deepseek-VL2	438 4.3	439 0.25	440 0.71	441 743
442 Qwen-2.5-VL-7B	443 3.1	444 0.25	445 0.78	446 943
447 Qwen-2.5-VL-72B	448 7.0	449 0.31	450 5.45	451 963
452 Qwen-QVQ-Max	453 12.8	454 0.39	455 10.60	456 2335
458 Human	459 30.3	460 0.57	461 -	462 -

430 The overall performance of the models we evaluated in personalized task execution is shown in
 431 Table 4. Qwen-QVQ-Max and UI-TARS-1.5-7B achieved the best performance among the generalist
 432 models and GUI-control models respectively. AppAgent achieved the best performance among all
 433

432
433
Table 4: Overall performance of personalized task execution.
434

Model	SR_2 (%)	Sim_2	Step Ratio	Time (sec)	Token
GPT-4.1	5.5	0.98	1.98	8.02	2912
Qwen-VL-Max	4.5	1.07	2.06	4.17	2304
Deepseek-VL2	1.0	0.93	2.19	3.46	2130
Qwen-2.5-VL-7B	1.5	0.95	2.16	3.66	2213
Qwen-2.5-VL-72B	4.0	0.96	2.05	9.31	2018
Qwen-QVQ-Max	9.5	1.04	1.94	15.60	3048
AutoDroid	10.5	1.08	1.29	22.20	3123
AppAgent	11.0	1.12	1.13	19.74	3853
Aguvis-7B	20.5	1.02	1.38	6.86	2494
CogAgent-9B	18.0	0.92	1.73	12.54	2808
UI-TARS-1.5-7B	38.5	1.06	1.22	10.15	2440

447 models in Sim_2 and step ratio, possibly due to its proficiency in learning from human demonstrations,
448 but time and token costs also increased significantly. The SR_2 of the generalist models were all very
449 low, mainly due to their lack of precise GUI grounding ability, which led to incorrect UI coordinates
450 being output even when they could correctly analyze the next action, thus failing to interact with the
451 environment accurately. In contrast, the GUI-control models, having undergone targeted training, had
452 stronger abilities to execute instructions and interact with the UI environment, resulting in higher
453 SR_2 , with UI-TARS-1.5-7B having the highest at 38.5. However, the Sim_2 of all models were
454 approximately 1, indicating that the agent’s action sequence did not favor either the current user
455 or users of different type. This might suggest that the agent tends to complete tasks in a general
456 way without catering to the specific action preferences of users, thus failing to complete tasks in a
457 personalized manner.

458
5.3 EFFECT OF TASK DIFFICULTY
459471
Figure 6: Performance under different task difficulties. (a) The variation of SR_1 under different
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
14

486 5.4 EFFECT OF FINE-TUNING
487

488 We fine-tuned Qwen-2.5-VL-7B and adopted the parameter-efficient fine-tuning method of LoRA,
489 with the LoRA rank set to 4 or 64. Following the method of sampling the test set, we randomly
490 sampled 1,000 data episodes from the training set for fine-tuning. These data covered all users, and
491 the proportion of data for each user was the same as their proportion in the training set. We also
492 used the complete training set (16,000 episodes) for fine-tuning. The data episodes were reorganized
493 according to the input and output formats of the two tracks, respectively. The prompts used in
494 fine-tuning are the same as those we designed for generalist models. Finally, we trained separately on
495 two tracks and obtained two fine-tuned models, each suitable for one of the two tracks.
496

497 Table 5: Performance of fine-tuned models. In square brackets [X] we report the performance increase
498 from the un-fine-tuned Qwen-2.5-VL-7B.
499

500 Model	501 Proactive task suggestion		502 Personalized task execution		
	503 $SR_1(\%)$	504 Sim_1	505 $SR_2(\%)$	506 Sim_2	507 Step Ratio
508 Qwen-2.5-VL-7B	509 3.1	510 0.25	511 1.5	512 0.95	513 2.16
514 Qwen-2.5-VL-7B-FT-1k-r4	515 9.7 [+6.6]	516 0.49 [+0.24]	517 12.5 [+11.0]	518 1.21 [+0.26]	519 1.17 [-0.99]
520 Qwen-2.5-VL-7B-FT-1k-r64	521 11.8 [+8.7]	522 0.50 [+0.25]	523 12.5 [+11.0]	524 1.26 [+0.31]	525 1.17 [-0.99]
526 Qwen-2.5-VL-7B-FT-all-r4	527 20.3 [+17.2]	528 0.52 [+0.27]	529 15.0 [+13.5]	530 1.32 [+0.37]	531 1.15 [-1.01]
532 Qwen-2.5-VL-7B-FT-all-r64	533 26.0 [+22.9]	534 0.55 [+0.30]	535 15.5 [+14.0]	536 1.42 [+0.47]	537 1.13 [-1.03]
538 Qwen-QVQ-Max	539 12.8	540 0.39	541 9.5	542 1.04	543 1.94
544 UI-TARS-1.5-7B	545 -	546 -	547 38.5	548 1.06	549 1.22

550 The performance of fine-tuned models on the two tracks is shown in Table 5. Despite using a smaller
551 model and less training data, the fine-tuned models achieved significant performance improvements
552 in all main metrics. Increasing the LoRA rank or the amount of training data both improve the
553 model’s performance, with the increase in training data having a particularly significant effect. In
554 proactive task suggestion, compared with the best-performing generalist model Qwen-QVQ-Max,
555 our fine-tuned models achieved better performance in both SR_1 and Sim_1 . In personalized task
556 execution, compared with the best-performing UI-TARS-1.5-7B, our fine-tuned models had a lower
557 success rate SR_2 . We consider this acceptable because UI-TARS is a model specifically designed
558 and extensively trained for GUI grounding and GUI control, and thus has a more general instruction
559 execution capability. However, our fine-tuned models had a significantly higher Sim_2 , indicating
560 that the action paths they select may not be optimal but are closer to the user’s action preferences.
561 When trained on the entire training set with a LoRA rank of 64, Qwen-2.5-VL-7B outperforms all
562 the un-fine-tuned models in the experiment in terms of SR_1 , Sim_1 , and Sim_2 , achieving the best
563 performance. Overall, the models fine-tuned on our collected data demonstrated stronger proactivity
564 and personalization capabilities, being able to utilize user-related contextual information to extract
565 potential intent patterns and action preferences from the user’s past intents and actions, which existing
566 models have not or find it difficult to consider.
567

568 **More experiments** In Appendix A.6 we conducted more experiments to study the influence of
569 other factors.
570

571 6 CONCLUSIONS
572

573 We present FingerTip 20K, a benchmark advancing mobile LLM agents toward proactive task
574 suggestion and personalized task execution. Our data captures longitudinal user interactions, enriched
575 with contextual information to model user-specific patterns. Experiments reveal significant gaps in
576 existing models’ ability to mine such patterns. Fine-tuning Qwen-2.5-VL-7B on our data improved
577 suggestion success rate while better aligning actions with user preferences, demonstrating the value
578 of user-oriented training. This work establishes critical infrastructure for developing mobile agents
579 that anticipate user needs and adapt to user action preferences.
580

540
541 7 ETHICS STATEMENT542
543 Our data collection involves human participants. We detail our data collection process and the
544 multiple measures we have taken to reduce the risk of privacy leakage in Appendix A.3. We also
545 discuss the broader impacts of this study in Appendix A.2.546
547 8 REPRODUCIBILITY STATEMENT548
549 To ensure the reproducibility of our work, we provide all the necessary resources and code used in this
550 paper. All adopted models are fully open source or publicly accessible. Our project code, including the
551 data format, data splits, and evaluation process of FingerTip 20K, can be publicly accessed via the fol-
552 lowing anonymous link: <https://anonymous.4open.science/r/FingerTip-57B8>.553
554 REFERENCES555
556 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
557 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
558 2025.559
560 Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao, Liang Liu, Dingyu Zhang, Peng Gao, Shuai Ren,
561 and Hongsheng Li. Amex: Android multi-annotation expo dataset for mobile gui agents. *arXiv
562 preprint arXiv:2407.17490*, 2024.563
564 Yuxiang Chai, Hanhao Li, Jiayu Zhang, Liang Liu, Guangyi Liu, Guozhi Wang, Shuai Ren, Siyuan
565 Huang, and Hongsheng Li. A3: Android agent arena for mobile gui agents. *arXiv preprint
566 arXiv:2501.01149*, 2025.567
568 Jingxuan Chen, Derek Yuen, Bin Xie, Yuhao Yang, Gongwei Chen, Zhihao Wu, Li Yixing, Xurui
569 Zhou, Weiwen Liu, Shuai Wang, et al. Spa-bench: A comprehensive benchmark for smartphone
570 agent evaluation. In *NeurIPS 2024 Workshop on Open-World Agents*, 2024.571
572 Weiwen Chen, Mohammad Shidujaman, Jiangbo Jin, and Salah Uddin Ahmed. A methodological
573 approach to create interactive art in artificial intelligence. In *HCI International 2020–Late Break-
574 ing Papers: Cognition, Learning and Games: 22nd HCI International Conference, HCII 2020,
575 Copenhagen, Denmark, July 19–24, 2020, Proceedings 22*, pp. 13–31. Springer, 2020.576
577 Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
578 Mind2web: Towards a generalist agent for the web. *Advances in Neural Information Processing
579 Systems*, 36:28091–28114, 2023.580
581 Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
582 Aleksandra Faust. A real-world webagent with planning, long context understanding, and program
583 synthesis. *arXiv preprint arXiv:2307.12856*, 2023.584
585 Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
586 and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
587 *arXiv preprint arXiv:2401.13919*, 2024.588
589 Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
590 Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
591 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
592 14281–14290, 2024.593
594 Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
595 *Advances in Neural Information Processing Systems*, 36:39648–39677, 2023.596
597 Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
598 Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
599 multimodal agents on realistic visual web tasks. *arXiv preprint arXiv:2401.13649*, 2024.

594 Juyong Lee, Taywon Min, Minyong An, Dongyoong Hahm, Haeone Lee, Changyeon Kim, and Kimin
 595 Lee. Benchmarking mobile device control agents across diverse configurations. *arXiv preprint*
 596 *arXiv:2404.16660*, 2024.

597 Wei Li, William E Bishop, Alice Li, Christopher Rawles, Folawiyo Campbell-Ajala, Divya Tyama-
 598 gundlu, and Oriana Riva. On the effects of data scale on ui control agents. *Advances in Neural*
 599 *Information Processing Systems*, 37:92130–92154, 2024.

601 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 602 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 603 *arXiv:2412.19437*, 2024.

605 Yaxi Lu, Shenzhi Yang, Cheng Qian, Guirong Chen, Qinyu Luo, Yesai Wu, Huadong Wang, Xin
 606 Cong, Zhong Zhang, Yankai Lin, et al. Proactive agent: Shifting llm agents from reactive responses
 607 to active assistance. *arXiv preprint arXiv:2410.12361*, 2024.

608 Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
 609 Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
 610 question-answering with human feedback, 2022. *URL https://arxiv.org/abs/2112.09332*, 2022.

611 Cheng Qian, Bingxiang He, Zhong Zhuang, Jia Deng, Yujia Qin, Xin Cong, Zhong Zhang, Jie Zhou,
 612 Yankai Lin, Zhiyuan Liu, et al. Tell me more! towards implicit user intention understanding of
 613 language model driven agents. *arXiv preprint arXiv:2402.09205*, 2024.

614 Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
 615 Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
 616 agents. *arXiv preprint arXiv:2501.12326*, 2025.

617 Dezhi Ran, Mengzhou Wu, Hao Yu, Yuetong Li, Jun Ren, Yuan Cao, Xia Zeng, Haochuan Lu, Zexin
 618 Xu, Mengqian Xu, et al. Beyond pass or fail: A multi-dimensional benchmark for mobile ui
 619 navigation. *arXiv preprint arXiv:2501.02863*, 2025.

620 Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
 621 droidinthewild: A large-scale dataset for android device control. *Advances in Neural Information*
 622 *Processing Systems*, 36:59708–59728, 2023.

623 Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
 624 Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A dynamic
 625 benchmarking environment for autonomous agents. *arXiv preprint arXiv:2405.14573*, 2024.

626 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
 627 *arXiv preprint arXiv:1908.10084*, 2019.

628 Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao
 629 Liu, Yaqin Zhang, and Yunxin Liu. Autodroid: Llm-powered task automation in android. In
 630 *Proceedings of the 30th Annual International Conference on Mobile Computing and Networking*,
 631 pp. 543–557, 2024.

632 Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang
 633 Ma, Chengyue Wu, Bingxuan Wang, et al. Deepseek-vl2: Mixture-of-experts vision-language
 634 models for advanced multimodal understanding. *arXiv preprint arXiv:2412.10302*, 2024.

635 Zhuohao Wu, Danwen Ji, Kaiwen Yu, Xianxu Zeng, Dingming Wu, and Mohammad Shidujaman. Ai
 636 creativity and the human-ai co-creation model. In *Human-computer interaction. theory, methods*
 637 *and tools: thematic area, HCI 2021, held as part of the 23rd HCI international conference, hCII*
 638 *2021, virtual event, July 24–29, 2021, proceedings, part i 23*, pp. 171–190. Springer, 2021.

639 Mingzhe Xing, Rongkai Zhang, Hui Xue, Qi Chen, Fan Yang, and Zhen Xiao. Understanding the
 640 weakness of large language model agents within a complex android environment. In *Proceedings*
 641 *of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 6061–6072,
 642 2024.

648 Yifan Xu, Xiao Liu, Xueqiao Sun, Siyi Cheng, Hao Yu, Hanyu Lai, Shudan Zhang, Dan Zhang,
 649 Jie Tang, and Yuxiao Dong. Androidlab: Training and systematic benchmarking of android
 650 autonomous agents. *arXiv preprint arXiv:2410.24024*, 2024a.

651

652 Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
 653 and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. *arXiv*
 654 *preprint arXiv:2412.04454*, 2024b.

655

656 An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu
 657 Zhong, Julian McAuley, Jianfeng Gao, et al. Gpt-4v in wonderland: Large multimodal models for
 658 zero-shot smartphone gui navigation. *arXiv preprint arXiv:2311.07562*, 2023.

659

660 Chi Zhang, Zhao Yang, Jiaxuan Liu, Yanda Li, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and
 661 Gang Yu. Appagent: Multimodal agents as smartphone users. In *Proceedings of the 2025 CHI*
 662 Conference on Human Factors in Computing Systems

663 Li Zhang, Shihe Wang, Xianqing Jia, Zhihan Zheng, Yunhe Yan, Longxi Gao, Yuanchun Li, and
 664 Mengwei Xu. Llamatouch: A faithful and scalable testbed for mobile ui automation task evaluation.
 665 *arXiv e-prints*, pp. arXiv–2404, 2024.

666

667 Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web
 668 agent, if grounded. *arXiv preprint arXiv:2401.01614*, 2024.

669

670 Longtao Zheng, Rundong Wang, Xinrun Wang, and Bo An. Synapse: Trajectory-as-exemplar
 671 prompting with memory for computer control. *arXiv preprint arXiv:2306.07863*, 2023.

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A APPENDIX**
703704 **A.1 LIMITATIONS**
705706 Our study has several limitations. Firstly, all 95 contributors live in mainland China, and mainly
707 interact with Chinese third-party apps. The recorded linguistic habits, UI layouts and action patterns
708 may differ markedly from other regions. Secondly, our LoRA fine-tuning uses only a single 7B model.
709 Due to cost constraints, we did not conduct larger-scale fine-tuning experiments. Finally, we assume
710 that screenshots can be stored and shared after anonymization. In practice, fine-grained UI traces can
711 still contain unique visual features that allow re-identification. Techniques such as selective redaction
712 or synthetic replay should be explored before large-scale deployment.
713714 **A.2 BROADER IMPACTS**
715716 FingerTip 20K aims to advance mobile agents that anticipate user needs and adapt to individual
717 preferences. If developed responsibly, such agents could reduce the interaction barrier for elderly
718 or motor-impaired users, reduce screen time by automating repetitive tasks, and serve as a test
719 bed for privacy-preserving personalization research. At the same time, the technology entails risks.
720 Continuous screen capture combined with explicit user profiles gives models an intimate view of
721 personal life. An attacker compromising the agent, or a service provider lacking strong governance,
722 could reconstruct sensitive behaviors, contacts or locations. We encourage future work on on-device
723 processing, differential privacy and audit mechanisms.
724725 **A.3 DATA COLLECTION**
726727 The data collection was carried out through crowdsourcing, and participants were paid in accordance
728 with the living wage laws of their country. Participants consist of one-third undergraduates, one-third
729 postgraduates, and one-third employed individuals, including 54 males and 41 females, whose ages
730 range from 18 to 60, with an average age of 25.9. Participants filled out a questionnaire, which
731 collected their user profiles. Participants were informed of the expected use of the collected data and
732 signed a data usage agreement. They were asked not to upload any data related to private information.
733 We provided participants with detailed guidance documents and video tutorials on how to operate
734 the FingerTip APP for data collection. All participants went through a training phase during which
735 they became familiar with the FingerTip APP. They were encouraged to avoid using overly simplified
736 or ambiguous language to collect clear and useful intent descriptions. They were clearly informed
737 that they should not perform redundant or useless operations during the demonstration process, and
738 the operation speed should not be too fast to avoid frequent repetitive operations. However, minor
739 noisy operations (e.g., users making a typo or accidentally touching advertisements) are realistic
740 situations in human interaction. A robust agent must be able to handle such scenarios. Even if the
741 demonstrations are not collected from daily life but by recruiting annotators to perform operations
742 in a simulator like existing datasets, such noise cannot be completely avoided. Therefore, we allow
743 for its existence. During data collection, we conducted multiple timed quality checks on the data
744 submitted by each participant and manually deleted the low-quality data. We also provided quality
745 feedback to the corresponding participants, reminding them how to submit higher-quality data.
746747 It should be noted that the FingerTip APP only collects data when participants actively use it. It does
748 not automatically collect data at other times. Participants can check or delete the data they upload at
749 any time. We conducted two rounds of inspections. We first manually inspected the data and removed
750 those that obviously involved privacy. Then, we used Qwen-VL-Max to examine the first and last
751 screenshots of each episode and determine whether it involved privacy. Those episodes marked as
752 potentially involving privacy were then rechecked by humans.
753754 Our primary goal for collecting the data was to capture deep and longitudinal user interactions in
755 daily life settings. We believe that this context-rich dataset, even from a single region, provides a
756 crucial foundation for the novel tasks of proactive task suggestion and personalized task execution.
757 Considering the cost, we did not collect data in other regions. To our knowledge, previous datasets
758 such as Rawles et al. (2023); Li et al. (2024); Chen et al. (2024) also contain a single language
759 and UI ecosystem. We believe that this is a sufficient start for a first-of-its-kind study. However,
760 user diversity is a crucial aspect in ensuring the global generalizability of our findings. To facilitate
761

756 broader research, we plan to open source our APP for data collection. It can run on any (new version)
 757 Android personal phone, providing support for data collection in other regions and languages. We
 758 believe that our data collection methods and evaluation methods are universal.
 759

760 A.4 DATA FORMAT 761

762 Our data is released at <https://anonymous.4open.science/r/FingerTip-57B8>. The
 763 data contains several folders named with numbers (i.e. user IDs), and each of these folders contains
 764 multiple folders named with timestamps (e.g., 20250309_133115), representing all the data episodes
 765 submitted by that user. For each data episode, the following information is included:
 766

- 767 • *screenshots*: a list of screenshots for each observation encoded as JPGs.
 768
- 769 • *accessibility trees*: a list of Android accessibility tree XML files for each observation.
 770
- 771 • *actions*: a list of actions represented in the form of JSON dictionaries. Each screenshot
 772 corresponds to an action.
 773
- 774 • *intent_description*: the user’s true intent in this episode.
 775
- 776 • *user_id*: the unique integer identifier of the user to whom this episode belongs. This
 777 information can be used to retrieve the corresponding user’s user profile.
 778
- 779 • *time*: the timestamp when this episode was collected.
 780
- 781 • *scenario*: the category of location where the user was when this episode was collected.
 782
- 783 • *app*: the name of the activity running when the episode was collected. This information is
 784 only used to launch the corresponding app in personalized task execution and is not provided
 785 to the LLM agent.
 786

800 Figure 7: An example data episode from FingerTip 20K.
 801

803 The example of an episode from FingerTip 20K is shown in Figure 7.
 804

805 **Accessibility trees** Note that when using accessibility trees, the LLM agent utilizes a list of all
 806 accessible UI elements and their coordinates corresponding to a certain screenshot, which is extracted
 807 from the metadata XML file through a Python function.
 808

809 **User profile** The types of information included in user profiles and an example can be seen in
 810 Table 6.
 811

810
811
812 Table 6: User profile example.
813
814
815

Field	user_id	sex	age	occupation	address	marital_status	phone_brand
Example	55	male	20	student	Beijing	single	Huawei

816 **Scenario** When users record their intents with the FingerTip APP, they need to select the category
 817 of the location they are in. Specifically, they can choose from the following 12 common categories:
 818 residence, office, school, dining place, shopping mall, medical institution, entertainment and leisure
 819 venue, sports venue, cultural venue, transportation, urban street, and natural outdoor spaces. If users
 820 think that none of these categories can describe the location they are in, they can fill in a new category
 821 on their own.

822
823 **A.5 DATA SPLITS**
824825 Table 7: Details on FingerTip 20K train, validation and test splits. For each split, we report the number
 826 of episodes, the number of screenshots, the number of apps, and the number of intent categories it
 827 contains.

Split	# Episodes	# Screens	# Apps	# Categories
Train	16000	177674	460	40
Vali	4411	32859	41	27
Test-suggestion	1000	10412	155	38
Test-execution	200	2074	68	31

835 We created a training set, a validation set, and two test sets. The number of episodes and features
 836 in these sets are detailed in Table 7. Please note that the two test sets contain partially overlapping
 837 episodes. The test sets were formed by randomly sampling the last 20% of the data sorted by time of
 838 each user, and then concatenated to ensure coverage of all users and that the proportion of data from
 839 each user in the test sets is equal to their proportion in all data. These test sets were used in all main
 840 experiments. The collection method of the training set is similar to that of the test sets, except that it
 841 is sampled from the first 60% of the data.

842
843 **A.6 SUPPLEMENTARY EXPERIMENT RESULTS**
844845 **A.6.1 OUT-OF-DOMAIN GENERALIZATION**

846 To explore generalizability, we randomly sampled from the original test set and obtained three small
 847 test subsets, which are: (1) User-unseen, containing 126 episodes from 3 users. All data of these 3
 848 users in the training set were removed. (2) App-unseen, containing 106 episodes from 7 apps. All
 849 data of these 7 apps in the training set were removed. (3) Intent-unseen, containing 99 episodes from
 850 4 intent categories. All data of these 4 intent categories in the training set were removed. The filtered
 851 training set has 14,706 episodes, and these data were used to re-fine-tune Qwen-2.5-VL-7B, with the
 852 LoRA rank set to 4. The fine-tuned model was tested on these three out-of-domain test sets and the
 853 original test set, and the results are shown in Table 8.

854
855 Table 8: Performance of the fine-tuned model on out-of-domain test sets.
856

Test set	Proactive task suggestion		Personalized task execution		
	$SR_1(\%)$	Sim_1	$SR_2(\%)$	Sim_2	Step Ratio
Original test set	19.9	0.51	13.5	1.29	1.18
User-unseen	15.1	0.50	13.2	1.29	1.21
App-unseen	14.2	0.49	12.7	1.22	1.23
Intent-unseen	15.2	0.51	13.1	1.27	1.21

862 When tested on new users, new apps, and new intent categories that have not been seen in the
 863 training set, the decline in model performance is not particularly severe. This indicates that the model

864 fine-tuned on partial data has certain generalization ability and robustness, and can maintain good
 865 proactive task suggestion and personalized task execution capabilities in unseen data as well.
 866

867 A.6.2 CONNECTION BETWEEN TWO TRACKS 868

869 We believe that proactive task suggestion and personalized task execution are both crucial capabilities
 870 for an agent to act as a user-oriented intelligent assistant. In practical applications, it first predicts
 871 the user's needs and then fulfills them in a way preferred by the user, thereby facilitating the user's
 872 more convenient use of the mobile phone and demonstrating a kind of collaborative connection.
 873 However, the two tracks are conceptually distinct and emphasize different capabilities. Proactive task
 874 suggestion places more emphasis on the agent's ability to predict the user's intents in advance, rather
 875 than passively responding to the user's clear instructions, that is, understanding "what the user wants
 876 to do". Personalized task execution places more emphasis on aligning the agent's behavior with the
 877 user's preferences during the known instruction execution process, rather than standardizing the task
 878 execution, that is, understanding "how the user does it". In the fine-tuning of Section 5.4, we trained
 879 separately on two tracks and obtained two fine-tuned models, each suitable for one of the two tracks.
 880 Now we test these two models on the opposite track from the training data. Additionally, we jointly
 881 fine-tuned a model (trained on both tracks), and the results are shown in Table 9.
 882

883 Table 9: Performance of the separately fine-tuned model and the jointly fine-tuned model.
 884

885 Model	886 Proactive task suggestion		887 Personalized task execution		
	888 $SR_1(\%)$	889 Sim_1	888 $SR_2(\%)$	889 Sim_2	889 Step Ratio
885 Qwen-2.5-VL-7B	886 3.1	887 0.25	888 1.5	889 0.95	889 2.16
885 Qwen-2.5-VL-7B-FT	886 9.7	887 0.49	888 12.5	889 1.21	889 1.17
885 Qwen-2.5-VL-7B-FT-proactive	886 9.7	887 0.49	888 1.0	889 0.97	889 2.20
885 Qwen-2.5-VL-7B-FT-personalized	886 2.9	887 0.25	888 12.5	889 1.21	889 1.17
885 Qwen-2.5-VL-7B-FT-joint	886 9.2	887 0.46	888 11.0	889 1.18	889 1.18

890 The model fine-tuned on one track did not bring about performance improvement when tested on
 891 the other track; instead, there was a performance decline. The performance of the jointly fine-tuned
 892 model also slightly declined compared to the separately fine-tuned models. This indicates that the
 893 two tracks test two different abilities, and it is necessary to train and evaluate them separately.
 894

895 A.6.3 CONTRIBUTION OF SCREENSHOTS AND HISTORICAL INTENTS 896

897 Our intention for the main results in Table 3 was to establish a baseline for the most challenging
 898 version of proactive task suggestion, where the agent has zero screenshots and must rely solely on
 899 historical and contextual data. This highlights the inherent difficulty of the task. To explore the
 900 performance of the agent under more screenshots or more historical information, we supplemented
 901 the experiments and obtained the following data in Table 10 (all using GPT4.1). Besides, we have
 902 already demonstrated the variation of performance with the number of screenshots in Figure 6.a.
 903

904 Table 10: Performance of proactive task suggestion under different number of input screenshots or
 905 historical intents.
 906

907 Setting	908 $SR_1(\%)$	909 Sim_1
908 0 screenshot + 20 $I_{history}$	909 7.2	909 0.35
909 0 screenshot + All $I_{history}$	910 9.6	910 0.38
910 3 screenshots + No $I_{history}$	911 4.3	911 0.45
911 3 screenshots + 20 $I_{history}$	912 9.9	912 0.53
912 3 screenshots + All $I_{history}$	913 13.8	913 0.55

913 0 screenshot + 20 $I_{history}$ are the results we present in Table 3. For All $I_{history}$, we use DeepSeek-V3
 914 to summarize the 20 most relevant historical intents of the user to the current time and scenario
 915 among all historical intents. Additionally, we also tested the results of providing 3 initial screenshots
 916 and mixing them with All $I_{history}$. Both providing more screenshots and historical information can
 917 improve performance, but there is still much room for improvement. Offering more screenshots
 918 would lose the predictive meaning of this task and significantly increase costs. We hope that the agent

918 can complete proactive task suggestion by relying on as few screenshots and historical information as
 919 possible. When I_{history} was removed (cold-start users) while keeping three screenshots visible, the
 920 success rate dropped to 4.3%, indicating a significant performance decline. It is evident that historical
 921 intents are crucial for predicting current intents, and relying solely on screenshots cannot effectively
 922 accomplish proactive task suggestion.

924 A.6.4 CONTRIBUTION OF CONTEXTUAL INFORMATION

925 To study the contribution of each contextual information in the input to the proactive task suggestion,
 926 we supplemented the ablation study (all using GPT4.1) and obtained the following results in Table 11.
 927

928 Table 11: Performance of proactive task suggestion under different contextual information.
 929

930 Setting	931 SR_1 (%)	932 Sim_1
931 w/ User profile, Time, Scenario	932 7.2	933 0.35
932 w/o User profile	6.5	0.32
933 w/o Scenario	6.1	0.31
934 w/o Time	4.1	0.28

935 w/ User profile, Time, Scenario are the results we present in Table 3. Eliminating User profile,
 936 Scenario, and Time all lead to performance degradation, among which the elimination of Time causes
 937 the most significant decline, indicating that time might be the most crucial factor in the patterns of
 938 user intent.
 939

940 A.6.5 EFFECT OF THE PROBABILITY SETTING

942 Our data is longitudinal and collected over one month. This means that we often capture multiple
 943 instances of similar intents from the same user. This structure is precisely what allows for modeling
 944 user preferences and "habitual" intents. That is to say, within a specific time period of a day, a specific
 945 user's intents roughly follow a fixed probability distribution. We first separate all the intents of the
 946 same user by time periods (e.g., dividing a day into 24 time periods by hour). Then, we convert all the
 947 intents within the same time period into embedding vectors using paraphrase-multilingual-MiniLM-
 948 L12-v2Reimers & Gurevych (2019) and cluster them based on distance. All semantically similar
 949 intents are regarded as one category. If the number of intents in a certain category is larger, it indicates
 950 that the probability of the user generating this type of intent during this time period is higher. In this
 951 way, we obtain the probability distribution of intents (e.g., the user has a 35% probability of ordering
 952 a hamburger for delivery and a 22% probability of playing music from a self-built playlist between
 953 12:00 and 13:00...). For each user, a unique probability distribution of intents can be calculated
 954 through the above method.

955 We re-executed the proactive task suggestion experiment by having GPT4.1 output the probability
 956 distribution of the user's intents instead of a single intent. The calculation method of SR_1 was
 957 changed to be successful as long as one of the top three intents in the output probability distribution
 958 could be regarded as the same as the user's true intent. The calculation method of Sim_1 was changed
 959 to the cosine similarity between the output probability distribution's embedding vector and the
 960 true probability distribution's embedding vector. It can be seen in Table 12 that by outputting the
 961 probability distribution, the agent provides multiple possible task suggestions, which is more likely
 962 to succeed than only outputting a single task suggestion.

963 Table 12: Performance of proactive task suggestion under a probability setting.
 964

965 Setting	966 SR_1 (%)	967 Sim_1
966 Output a single intent directly	7.2	0.35
967 Output the probability distribution of intents	11.1	0.42

968 A.6.6 VALIDITY OF Sim_2

969 Sim_2 is an automated metric for personalization. To quantitatively analyze the correlation between
 970 Sim_2 and users' subjective experience, we conducted a user study. Specifically, for four models

972 in Table 5, we combined their output (i.e., the complete action sequences output by the models) on
 973 the personalized task execution test set (200 episodes) with the users’ true action sequences. Each
 974 episode has one ground truth action sequence and four randomly ordered action sequences output by
 975 the models. Then, we asked the users corresponding to these 200 episodes to rate the four models’
 976 action sequences on a five-point scale. The rating principle was whether the action sequence was
 977 personalized to execute the task according to the user’s unique habits and preferences, even if it might
 978 not have been ultimately successful. Then, we calculated the average rating of the four models and
 979 compared it with their Sim_2 . The results are shown in Table 13.

980
981 Table 13: Comparison of Sim_2 and user ratings in personalized task execution.

982 Model	$983 Sim_2$	984 User Rating
984 Qwen-2.5-VL-7B	985 0.95	986 2.42
985 Qwen-2.5-VL-7B-FT	986 1.21	987 3.35
986 GPT-4.1	987 0.98	988 2.55
987 UI-TARS-1.5-7B	988 1.06	989 2.72

988 The user rating increases with the increase of Sim_2 , indicating a certain positive correlation between
 989 Sim_2 and users’ subjective personalized experience. The fine-tuned model has the highest Sim_2 and
 990 its user rating also reached the highest 3.35 points, indicating that fine-tuning on our data indeed
 991 improved the model’s personalization ability.

992
993 A.6.7 EFFECT OF SIMILAR OR SAME ACTION SEQUENCE

994 In personalized task execution, we provide the agent with an action sequence of a similar task for
 995 in-context learning. However, this similar task might be the same as the current one, as the user has
 996 performed the same task before, and the agent might cheat on the same task. We used DeepSeek-V3
 997 to determine whether the retrieved similar tasks and the current task could be regarded as the same
 998 task. If they were the same, we moved on to the next similar task until they could no longer be
 999 considered the same. Using this method, we re-conducted the experiment on UI-TARS-1.5-7B, and
 1000 the performance in Table 14 showed no significant difference from the original. Therefore, we believe
 1001 there is no obvious cheating phenomenon. While tasks may be the same, the exact UI states are
 1002 unlikely to be identical, so is the action sequence. The goal is for the agent to generalize a user’s style
 1003 of interaction, not replicate a specific trace.

1004
1005 Table 14: Performance of personalized task execution under different historical action sequences.

1006 Setting	$1007 SR_2$ (%)	$1008 Sim_2$	1009 Step Ratio
1008 most similar task	38.5	1.06	1.22
1009 most similar (not the same) task	37.5	1.03	1.23

1026 A.7 PROMPTS FOR THE LLM AGENTS
10271028 A.7.1 PROMPT FOR PROACTIVE TASK SUGGESTION
10291030 You are an Android GUI agent. You are given the first few screenshots of
1031 the user's action (arranged in chronological order) and some
1032 supplementary information. You need to infer the user's intent.1033 ## Input
1034 User_profile: {profile}
1035 Time: {time}
1036 Scenario: {scenario}
1037 Previous_intents: {previous_intents}
1038
1039 ## Note
1040 - Express the user's intent unambiguously in one Chinese sentence,
1041 including all necessary information.
1042 - Clearly state the name of the app which the user is using, and the
1043 final effect the user wants to achieve.
1044 - Previous_intents contains the user's intents at certain times and in
1045 certain scenarios in the past.
1046 - Do not output anything other than the user's intent.
1047
1048 The user's intent:1049 A.7.2 PROMPT FOR PERSONALIZED TASK EXECUTION
10501051 You are an Android GUI agent. You are given an instruction and current
1052 screenshot and some supplementary information. You need to perform the
1053 next action to complete the instruction.1054 ## Input
1055 User_instruction: {instruction}
1056 User_profile: {profile}
1057 Screen_width_height: {size}
1058 Screen_description: {screen_description}
1059 Actions_reference: {actions_reference}
1060 Previous_actions: {previous_actions}
1061
1062 ## Action Space
1063 click(coordinates=(x,y), content='')
1064 long_click(coordinates=(x,y), content='')
1065 type(text='')
1066 scroll(coordinates=(x,y), direction='down or up or right or left')
1067 press_back()
1068 press_home()
1069 press_recent()
1070 wait()
1071 finished()
1072
1073 ## Note
1074 - 'coordinates' should represent the coordinates of the click point. The
1075 origin is the upper left corner of the screenshot, with x increasing to
1076 the right and y increasing downward.
1077 - 'content' should represent the original text at the click point or the
1078 description of the icon, usually in Chinese.
1079 - 'text' should represent all the original text that the user intends to
1080 input. (usually in Chinese, and usually included in User_instruction)
1081 - 'press_back()', 'press_home()', 'press_recent()' means that go to
1082 previous screen, home screen, recent apps screen, respectively.
1083 - 'wait()' means that wait until the next observation is received. This
1084 usually occurs during loading or switching windows.
1085 - 'finished()' means that the instruction is completed.

1080 - Screen_description contains some correct 'content' and 'coordinates' of
1081 the UI, which can be directly referenced.
1082 - Actions_reference represents the complete sequence of actions that the
1083 user performed when executing a similar instruction in the past, which
1084 can be used for reference.
1085 - Previous_actions contains the sequence of actions you have already
1086 performed under the current instruction.
1087 - Only one action in Action Space can be taken. Do not output anything
1088 other than the action to take.

1089 The action to take:

1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133