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Abstract001

While numerous works have assessed the gen-002
erative performance of language models (LMs)003
on tasks requiring Theory of Mind reasoning,004
research into the models’ internal representa-005
tion of mental states remains limited. Recent006
work has used probing to demonstrate that LMs007
can represent beliefs of themselves and oth-008
ers. However, these claims are accompanied009
by limited evaluation, making it difficult to as-010
sess how mental state representations are af-011
fected by model design and training choices.012
We report extensive experiments with different013
LMs and prompt designs to study the robust-014
ness of mental state representations. Our results015
show that the quality of models’ internal rep-016
resentations of the beliefs of others increases017
with model size and, more crucially, with fine-018
tuning. We are the first to study how prompt019
variations impact probing performance on The-020
ory of Mind tasks. We find that models’ rep-021
resentations are sensitive to prompt variations,022
even when such variations should be beneficial.023
Finally, we complement previous activation024
editing experiments on Theory of Mind tasks025
and show that it is possible to improve mod-026
els’ reasoning performance by steering their027
activations without the need to train any probe.028

1 Introduction029

Modern language models (LMs) trained on next to-030

ken prediction have demonstrated impressive capa-031

bilities, spanning coding, mathematical reasoning,032

fact verification, and embodied interaction (Wei033

et al., 2022; Bubeck et al., 2023). As these mod-034

els are designed with the ultimate goal of collab-035

orating with humans, it becomes imperative that036

they complement these skills with an understand-037

ing of humans. Core to this understanding is The-038

ory of Mind (ToM) – the ability to attribute mental039

states to oneself and others (Premack and Woodruff,040

1978). ToM is essential for effective communica-041

tion and cooperation with other agents, facilitating042

interaction and learning from feedback and demon- 043

strations (Saha et al., 2023). Given its significance, 044

ToM has emerged as a critical milestone in AI and 045

an important capability when evaluating cutting- 046

edge LMs (Bubeck et al., 2023). Interest in LMs’ 047

generative performance on tasks requiring ToM rea- 048

soning has resulted in a wide variety of benchmark 049

datasets, framed as question-answering tasks (Le 050

et al., 2019; Gandhi et al., 2023; Kim et al., 2023; 051

He et al., 2023; Tan et al., 2024; Xu et al., 2024). 052

Despite showing improved performance on ToM 053

benchmarks compared to earlier models, modern 054

LMs are still far from perfect (Sap et al., 2022). 055

Text generated by LMs often contains errors that 056

limit their performance on ToM tasks (Martindale 057

et al., 2019). Previous work has shown that it is 058

sometimes possible to still obtain correct predic- 059

tions by probing LMs’ internal representations (Li 060

et al., 2021; Liu et al., 2023; Gurnee et al., 2023). In 061

particular, Zhu et al. (2024) have shown that LMs, 062

when prompted with a story and a belief statement, 063

can represent beliefs from their own perspective 064

and, to a lesser extent, from the perspective of a 065

character in the story. However, this work is lim- 066

ited in the number settings studied, leaving several 067

questions unanswered. 068

We explore belief representations of self and 069

others in language models through extensive ex- 070

periments of different LM families, model sizes, 071

fine-tuning approaches, and prompts. Specifically, 072

we design a set of experiments to address the fol- 073

lowing research questions: RQ1. What is the re- 074

lation between model size and probing accuracy? 075

RQ2. Does supervised fine tuning (Wei et al., 2021, 076

SFT) and/or reinforcement learning from human 077

feedback (Christiano et al., 2017; Ouyang et al., 078

2022, RLHF) have an effect on probing accuracy? 079

RQ3. Are models’ internal representations of be- 080

liefs sensitive to prompt variations? RQ4. Due to 081

the large dimensionality of LM representations, 082

are the probes just fitting irrelevant patterns in the 083
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data? RQ5. Can we enhance LMs’ performance by084

editing their activations without training dedicated085

probes?086

To answer these research questions, we perform087

experiments on two families of LMs, Llama-2 (Tou-088

vron et al., 2023), and Pythia (Biderman et al.,089

2023). We first compare the probing performance090

of pre-trained models with models that have been091

fine-tuned using SFT and/or RLHF. Our experi-092

ments reveal that when predicting others’ belief,093

probing accuracy increases with model size and,094

more crucially for smaller models, with fine-tuning095

(RQ1, RQ2). We then explore, for the first time, the096

sensitivity of LMs’ representations to prompting097

in the context of ToM. Our experiments with four098

different prompt variations (Random, Misleading,099

Time Specification, and Initial Belief ) demonstrate100

that models’ representations are sensitive to prompt101

variations (RQ3). We also find no strong evidence102

of spurious memorisation in the probes, as it is pos-103

sible to recover most of the accuracy by training104

probes on a much small subset of principal com-105

ponents of models’ representations (RQ4). Finally,106

we show that by using contrastive activation ad-107

dition (Rimsky et al., 2023, CAA), we can steer108

models’ activations without the need to train any109

probe and, in a generalisable way, obtain signifi-110

cant performance improvements across different111

ToM tasks (RQ5).112

In summary, our work makes the following con-113

tributions:114

1. We report extensive probing experiments with115

various types of LMs with different model116

sizes and fine-tuning approaches, showing that117

the quality of models’ internal representations118

of the beliefs of others increases with model119

size and, more crucially, fine-tuning.120

2. We are the first to study how prompt variations121

impact belief probing performance, showing122

that models’ representations are sensitive to123

prompt variations.124

3. We show that by using contrastive activation125

addition it is possible to improve models’ rea-126

soning performance by steering their activa-127

tions without the need to train any probe.128

2 Related Work129

Machine Theory of Mind Theory of mind has130

been studied in AI for more than a decade (Baker131

et al., 2009; Rabinowitz et al., 2018; Bara et al.,132

2021; Bortoletto et al., 2024a,b,c). Recent advances 133

in LMs have sparked interest in evaluating their 134

ToM capabilities. Various benchmarks have been 135

proposed, aiming to measure LMs’ ability to under- 136

stand and reason about the beliefs, goals, and inten- 137

tions of others (Le et al., 2019; He et al., 2023; Kim 138

et al., 2023; Gandhi et al., 2023; Xu et al., 2024; 139

Tan et al., 2024; Sclar et al., 2023; Ma et al., 2023b; 140

Wu et al., 2023). Additionally, efforts have been 141

made to enhance LMs’ ToM through prompting 142

techniques (Zhou et al., 2023b; Moghaddam and 143

Honey, 2023; Wilf et al., 2023). A new direction 144

of research explores LMs’ internal representation 145

of mental states. Zhu et al. (2024) demonstrated 146

that LMs linearly encode beliefs from different 147

agents’ perspectives, and manipulating these repre- 148

sentations can enhance ToM task performance. Our 149

work dives deeper into LMs’ internal belief rep- 150

resentations, offering a broader insight into these 151

mechanisms. 152

Probing Neural Representations Initially pro- 153

posed by Alain and Bengio (2017), probing has 154

emerged as a common method for determining if 155

models represent particular features or concepts. 156

In the realm of LMs, numerous works used prob- 157

ing to demonstrate that these models acquire rich 158

linguistic representations – spanning semantic con- 159

cepts such as syntactic categories, dependency re- 160

lations, co-reference, and word meaning (Conneau 161

et al., 2018; Tenney et al., 2018, 2019; Rogers 162

et al., 2021; Li et al., 2021; Hernandez and Andreas, 163

2021; Marks and Tegmark, 2023; Liu et al., 2023). 164

A separate line of work explored if LMs possess a 165

world model (Li et al., 2021; Abdou et al., 2021; Pa- 166

tel and Pavlick, 2022; Li et al., 2023a; Nanda et al., 167

2023). An emergent line of work that is relevant 168

to our work used probing to explore if LMs have 169

agent models, for example, if they can represent be- 170

liefs of self and others (Zhu et al., 2024; Bortoletto 171

et al., 2024a). While representing an important first 172

step towards understanding the internals of ToM in 173

LMs, experiments in (Zhu et al., 2024) are limited 174

in settings and models considered. In this work, 175

we contribute with extensive experiments that em- 176

ploy a wider variety of LMs and a wider range of 177

settings. 178

Prompt Analysis Previous work has shown that 179

LMs are vulnerable to prompt alterations like to- 180

ken deletion or reordering (Ishibashi et al., 2023), 181

biased or toxic prompts (Shaikh et al., 2023) and 182

similarity to training data (Razeghi et al., 2022). 183
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On the other hand, instruction-tuned models have184

proved to be more robust against prompt variation,185

even when using misleading instructions (Web-186

son and Pavlick, 2022). Other works have shown187

the importance of input-output format (Min et al.,188

2022) and of demonstration example ordering for189

few-shot performance (Zhao et al., 2021; Lu et al.,190

2022; Zhou et al., 2023a). In this work, we shift191

our focus from analysing how sensitive model out-192

puts are to how model representations change. Our193

work, along with (Gurnee et al., 2023), is one of194

the first to explore how prompt design affects how195

accurately models represent concepts. In partic-196

ular, Gurnee et al. (2023) have studied whether197

LMs’ representations of space and time are robust198

to prompt variations. In stark contrast, we explore199

for the first time the effect of prompt variations on200

how models represent mental states internally.201

Activation Editing Activation editing has202

emerged as an alternative way to influence model203

behaviour without any additional fine-tuning204

(Li et al., 2023a; Hernandez et al., 2023). This205

approach involves manipulating the internal206

representations of models to direct their outputs207

towards desired outcomes. One notable method in208

this domain is inference-time intervention (Li et al.,209

2023b, ITI), which has been proposed to enhance210

truthfulness in LMs. ITI involves training linear211

probes on contrastive question-answering datasets212

to identify “truthful” attention heads and then213

shifting attention head activations during inference214

along the identified truthful directions. In contrast,215

activation addition (Turner et al., 2023, AA) and216

contrastive activation addition (Rimsky et al., 2023,217

CAA) generate steering vectors by only using218

LMs’ activations. Zhu et al. have used ITI to show219

that it is possible to manipulate LMs’ internal220

representations of mental states. In this work, we221

show that using CAA can further improve LMs’222

ToM capabilities while eliminating the need for a223

fine-grained search over attention heads.224

3 Experimental Setup225

3.1 Probing226

We linearly decode belief status from the perspec-227

tive of different agents by using probing (Alain and228

Bengio, 2017). Probing involves localising specific229

concepts in a neural model by training a simple230

classifier (called a probe) on model activations to231

predict a target label associated with the input data.232

To provide a formal definition, we adopt a similar233

notation to the one introduced in (Belinkov, 2022). 234

Let us define an original model f : x 7→ ŷ that is 235

trained on a dataset DO = {x(i), y(i)} to map in- 236

put x to output ŷ. Model performance is evaluated 237

by some measure, denoted PERF(f,DO). A probe 238

gl : fl(x) 7→ ẑ maps intermediate representations 239

of x in f at layer l to some property ẑ, which is the 240

label of interest. The probe gl is trained on a prob- 241

ing dataset DP = {x(i), z(i)} and evaluated using 242

some performance measure PERF(gl, f,DO,DP ). 243

In our case, f is an autoregressive language model 244

that given a sequence of tokens x outputs a prob- 245

ability distribution over the token vocabulary to 246

predict the next token in the sequence. Our probe 247

is a logistic regression model gl : ẑ = Wal + b 248

trained on neural activations fl(x) = al to predict 249

binary belief labels y = {0, 1}. 250

3.2 Dataset 251

Following Zhu et al. (2024) we use the BigToM 252

benchmark (Gandhi et al., 2023). BigToM is con- 253

structed using GPT-4 (Achiam et al., 2023) to pop- 254

ulate causal templates and combine elements from 255

these templates. Each causal template is set up 256

with a context and a description of the protago- 257

nist (e.g. “Noor is working as a barista [. . . ]”), 258

a desire (“Noor wants to make a cappuccino”), a 259

percept (“Noor grabs a milk pitcher and fills it with 260

oat milk”), and a belief (“Noor believes that the 261

pitcher contains oat milk”). The state of the world 262

is changed by a causal event (“A coworker swaps 263

the oat milk in the pitcher with almond milk”). The 264

dataset constructs different conditions by chang- 265

ing the percepts of the protagonist after the causal 266

event, which will result in different beliefs. In this 267

work, we focus on the Forward Belief setting pro- 268

posed by (Zhu et al., 2024) in which models have 269

to infer the belief of the protagonist given the per- 270

cepts of the causal event, P (belief|percepts). We 271

report additional details in Appendix A.1.1 272

Probing Datasets We consider two probing 273

datasets: DP
p = {x(i)p , z

(i)
p }, where the labels z(i)p 274

correspond to ground-truth beliefs from the protag- 275

onist perspective, and DP
o = {x(i)o , z

(i)
o }, where 276

the labels z
(i)
o reflect the perspective of an om- 277

niscient oracle. DP
p and DP

o are built by pairing 278

each story in BigToM with a belief statement, as 279

shown in Figure 1. After prompting the model with 280

a story-belief pair x we cache the residual stream 281

activations fl(x) at the final token position for all 282

residual streams (see Figure 5). 283
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Story: Noor is working as a barista at a busy coffee
shop. Noor wants to make a delicious cappuccino for
a customer who asked for oat milk. Noor grabs a milk
pitcher and �lls it with oat milk. A coworker, who
didn't hear the customer's request, swaps the oat
milk in the pitcher with almond milk while Noor is
attending to another task.

Noor does not see her coworker swapping the milk.
Belief: The milk pitcher contains almond milk. 

 True,  False

Noor sees her coworker swapping the milk.
Belief: The milk pitcher contains almond milk. 

 True,  True

Figure 1: Example of false belief from our probing
datasets. The labels yp and yo correspond to DP

p and
DP

o , respectively. By manipulating the protagonist’s per-
cepts after the causal event we obtain two scenarios:
true belief and false belief.

3.3 Models284

We study two families of LMs that offer us options285

in model sizes and fine-tuning: Pythia (Biderman286

et al., 2023) and Llama-2 (Touvron et al., 2023).287

While Llama-2 offers “chat” versions first trained288

with supervised fine-tuning (SFT) and then RLHF,289

Pythia’s open-source training set (Gao et al., 2020)290

ensures that there is no data leakage.1 Additionally,291

we consider a SFT version of Pythia-6.9B trained292

on open-source instruction datasets (Wang et al.,293

2024), which we refer to as Pythia-6.9B-chat.2 We294

provide a summary of the models in Table 2.295

3.4 Probing Experiments296

We aim to study how LMs represent beliefs of self297

and others by proposing a set of extensive prob-298

ing experiments across LMs that differ in architec-299

ture, size, and fine-tuning approach. Our approach300

is generally similar to the one used by previous301

work (Zhu et al., 2024), but we make a different302

operational choice: We train probes on the residual303

stream instead of attention heads. We opted to use304

the residual stream as it integrates information from305

both the attention and feed-forward components,306

potentially encoding richer representations. Addi-307

tionally, since the residual activations directly con-308

tribute to the final output predictions, probing them309

may better align with understanding the model’s310

1Llama-2 was released later than BigToM.
2https://huggingface.co/allenai/

open-instruct-pythia-6.9b-tulu

behaviour for downstream tasks. 311

Model Size and Fine-tuning We first report ex- 312

periments to better understand the effect of model 313

size and fine-tuning on belief probing accuracy. 314

Specifically, we ask the following questions: Is 315

there a relation between model size and probing 316

accuracy? (RQ1) Does fine-tuning an LM with 317

instruction-tuning or RLHF have an effect on prob- 318

ing accuracy? (RQ2) To answer these questions we 319

performed the same probing experiment across all 320

our models and compared the results. 321

Sensitivity to Prompting By using a single 322

prompt design, previous work left the impact of 323

prompt design on probing accuracy unclear (Zhu 324

et al., 2024). Our second set of experiments aims 325

to explore how belief representations are sensi- 326

tive to different prompts. Research on prompt ro- 327

bustness in language models is still in its infancy 328

and focused mainly on revealing vulnerability to 329

prompt alternations on downstream performance 330

(Min et al., 2022; Ishibashi et al., 2023; Shaikh 331

et al., 2023; Leidinger et al., 2023; Sclar et al., 332

2024). In contrast, we study how the input influ- 333

ences models’ representations by asking: Are mod- 334

els’ internal belief representations robust to prompt 335

variations? (RQ3) To answer this question we de- 336

fine four prompt variations: 337

• Random: Following Gurnee and Tegmark (2024), 338

we add 10 random tokens to the belief statement. 339

• Misleading: Each story is followed by two belief 340

statements, one pertinent to the story and one 341

randomly chosen from another. 342

• Time Specification: The prompt specifies that the 343

belief statement refers to the end of the story. We 344

study this variation because some belief state- 345

ments can be true (false) at the story’s beginning 346

but false (true) at the end. For example, consider 347

the story in Figure 1: if Noor does not witness 348

the swap, in the end, she will believe the pitcher 349

contains almond milk (yp = True). However, if 350

the same belief is referred to at the beginning of 351

the story, then it is false (yp = False). 352

• Initial Belief : We explicitly reveal the protago- 353

nist’s initial belief (e.g. “Noor believes that the 354

pitcher contains oat milk”) in the story to test 355

whether it biases the representations of LMs. 356

While all maintaining conceptual and semantic par- 357

ity with the Original prompt used in (Zhu et al., 358
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2024), Random and Misleading are expected to neg-359

atively impact LMs’ representations, while Time360

Specification and Initial Belief are supposed to361

have a positive influence. Robust representations of362

beliefs should exhibit minimal sensitivity to these363

alterations. Our experiments compare probe accu-364

racy across different model sizes, fine-tuning, and365

prompt variations. Examples of prompts are re-366

ported in Appendix A.1.4.367

Dimensionality Reduction The probes we train368

have a significant number of learnable parameters –369

up to 16, 385 for Llama-2-70B. This raises the con-370

cern that probes might learn to rely on irrelevant371

patterns in the data instead of capturing meaningful372

relationships (Alain and Bengio, 2017). Our final373

set of probing experiments answers the following374

question: Are the probes memorising irrelevant pat-375

terns in the training data? (RQ4) To answer this376

question, before training the probes, we project the377

probing datasets DP
p and DP

o onto their k largest378

principal components using PCA. This procedure379

significantly reduces the number of learnable pa-380

rameters in the probes, minimizing the risk of them381

relying on spurious patterns in the data.382

3.5 Contrastive Activation Addition383

Our final set of experiments builds upon the find-384

ings of Zhu et al. (2024), who showed that employ-385

ing trained probes with inference time intervention386

(Li et al., 2023b, ITI) could enhance LMs’ perfor-387

mance on ToM tasks. We take a step further and388

ask: Can we enhance LMs’ performance by ma-389

nipulating their activations without the need for390

training dedicated probes? (RQ5) To find an an-391

swer we use contrastive activation addition (Rim-392

sky et al., 2023, CAA), an extension of activation393

addition (Turner et al., 2023, AA) that computes394

steering vectors to control LMs’ behaviour. Steer-395

ing vectors are computed as the average difference396

in residual stream activations between pairs of pos-397

itive and negative instances of a specific behaviour.398

Formally, given a dataset D of triplets (p, cp, cn),399

where p is a prompt, cp is a positive completion,400

and cn is a negative completion, CAA computes a401

mean difference vector vmd
l for layer l as:402

vmd
l =

1

|D|
∑

p,cp,cn

al(p, cp)− al(p, cn)403

During inference, these steering vectors are multi-404

plied with an appropriate coefficient α and added at405

every token position of the generated text after the406

prompt. CAA has two main advantages over ITI: 407

First, it eliminates the need to train probes. Second, 408

it operates at the residual stream level, making it 409

easier to use than methods that intervene on spe- 410

cific attention heads like ITI. While CAA has been 411

used to control alignment-relevant behaviour, such 412

as hallucinations, refusal, and sycophancy (Rimsky 413

et al., 2023), we are the first to apply it to enhance 414

LMs’ ToM reasoning. This can be understood as 415

isolating the direction in the LMs’ latent space 416

corresponding to taking the perspective of another 417

agent. To evaluate both base and fine-tuned LMs, 418

we rank their answers to the ToM questions accord- 419

ing to pLM (a|q) (Petroni et al., 2019). We adopt the 420

Forward Belief task split used in (Zhu et al., 2024) 421

to compute the steering vectors. Additionally, we 422

evaluate the transferability of the CAA steering vec- 423

tors by applying them to two other BigToM tasks: 424

Forward Action and Backward Belief. We provide 425

details about these tasks in Appendix A.1.1, and 426

a more detailed explanation of how ITI works in 427

Appendix A.5. 428

4 Results 429

Effect of Model Size and Fine-tuning Results 430

from our study on model size and fine-tuning 431

are shown in Figure 2. When considering ora- 432

cle beliefs, probing accuracy rapidly converges 433

to 100, with larger models showing faster conver- 434

gence rates. The smallest Pythia-70m that performs 435

slightly worse but still achieves 95% accuracy de- 436

spite having less than 0.6% of the parameters of 437

Pythia-12B. This finding suggests that even small 438

LMs can effectively represent beliefs from an om- 439

niscient perspective. 440

For protagonist beliefs, accuracy also increases 441

with model size, although there is a performance 442

gap between Llama-2 and Pythia. For example, 443

Llama2-13B reaches around 80%, while Pythia- 444

12B achieves approximately 60%. This gap is likely 445

due to Llama-2 being trained on nearly seven times 446

more tokens than Pythia. The figure also shows 447

that accuracy at early layers is particularly low 448

across all models. We speculate that this is due 449

to the initial coding strategy of LMs that uses the 450

first layers to combine individual tokens into more 451

semantically meaningful representations (Gurnee 452

et al., 2023). Probes on fine-tuned LMs show sig- 453

nificantly better accuracy with improvements of up 454

to 29% for Llama2-7B-chat and 26% for Pythia- 455

6.9B-chat with respect to their base version. Fine- 456
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Figure 2: Belief probing accuracy across models with different architecture, size and fine-tuning.
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Figure 3: Sensitivity of protagonist belief probing accuracy to different prompt variations.

tuned 7B LMs outperform (Llama-2) or are on par457

(Pythia) with twice as large base models (12/13B),458

highlighting the importance of fine-tuning in de-459

veloping representations of others’ beliefs. This460

resonates with cognitive psychology findings that461

ToM development is closely linked to social com-462

munication (Tomasello, 2010; Sidera et al., 2018;463

Ma et al., 2023a), which instruction-tuning and464

RLHF may help induce in LMs. For larger LMs,465

the improvements from fine-tuning decrease as466

model size increases (Figure 6a). We characterise467

the relationship between probe accuracy and model468

size in Figure 6, where we consider the best probe469

accuracy for every LM, i.e. the highest accuracy470

among probes {gl} trained on {al} for a LM f .471

For Llama-2 base, the best probe accuracy scales472

logarithmically with model size (R2 = 0.98, cf.473

Figure 6b), whereas for fine-tuned models it scales474

linearly (R2 = 1.0, cf. Figure 6c). For Pythia base,475

the best probe accuracy also scales logarithmically476

with model size (R2 = 0.96, cf. Figure 6d).477

Sensitivity to Prompting Figure 3 compares pro-478

tagonist probe accuracy across various prompt vari-479

ations for Llama2 models. As can be seen from the480

figure, providing the protagonist’s Initial Belief in481

the story yields higher probe accuracy compared482

to the Original prompt (Figure 1). Accuracy for483

all the other prompt variations is generally lower484

than Original. On one hand, misleading prompts485

hurt performance across all models. This finding 486

resonates with Webson and Pavlick (2022) who 487

found that instruction-tuned models, despite be- 488

ing more robust, are still sensitive to misleading 489

prompts. On the other hand, Time Specification un- 490

expectedly does not help in disambiguating belief 491

states in different time frames, as we hypothesised 492

in §3.4. Additionally, models show sensitivity to 493

Random tokens placed before the belief statement. 494

Pythia models show similar patterns results, pro- 495

vided in Figure 7. Results for oracle beliefs are 496

reported in Figure 8 and indicate that models main- 497

tain high accuracy. Misleading prompts slightly 498

reduce performance to around 95%. In summary, 499

these experiments show that LMs possess robust 500

belief representations when taking an omniscient 501

perspective, whereas their representations of others’ 502

beliefs are more susceptible to prompt variations. 503

Dimensionality Reduction Figure 4 shows the 504

probe accuracy on protagonist when training the 505

probes on the top k principal components of Llama- 506

2’s internal activations. We provide results for 507

Pythia in Figure 9, and for all models on or- 508

acle settings in Figure 10. We consider k = 509

{2, 10, 100, 1000}, spanning several orders of mag- 510

nitude.3 For all models, it is generally possible to 511

recover most of the original accuracy by training 512

3For models with hidden dimensions smaller than 1000,
we skip this value.
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Figure 4: We compare the probing accuracy obtained by using the original set of activations (All) with the accuracy
obtained by considering only the first n = {2, 10, 100, 1000} principal components. For Llama2: All(7b) = 4096,
All(13b) = 5120, All(70b) = 8192. We report results for protagonist beliefs. Results for oracle are shown in
Figure 10.

probes on a number k of principal components of513

the activations that is more than one order of mag-514

nitude smaller than the full dimensionality. This515

suggests that belief representations are embedded516

in a low-dimensional manifold B spanned by the517

top k eigenvectors {v1, . . . , vk} of the covariance518

matrix C = E[(a−E[a])(a−E[a])⊤], and provides519

a clear indication that the probes measure meaning-520

ful representations rather than spurious patterns.521

Contrastive Activation Addition We finally522

compare models’ accuracy on three BigToM tasks523

in Table 1. Each model has been evaluated three524

times: without any intervention, using ITI, and us-525

ing CAA. Hyperparameter details can be found in526

Appendix A.6. Note that we use steering vectors527

computed using the Forward Belief task for all528

three tasks to test their generalisability.529

Performance without intervention is generally530

lower across tasks and model sizes, with the larger531

Llama-2-70B and Llama-2-70B-chat models ex-532

hibiting higher accuracy. Performance for Pythia533

models of different sizes does not change much,534

with the fine-tuned Pythia-6.9B-chat often show-535

ing better performance on single true belief (TB)536

and false belief (FB) tasks but not on their con-537

junction (Both). ITI demonstrates modest improve-538

ments over no intervention for Llama-2 models.539

Improvements for Pythia models are consistent and540

higher, up to +17. The only exception is Pythia-541

6.9B-chat, for which ITI is not always beneficial.542

CAA consistently delivers the most substantial543

accuracy improvements across all models and tasks,544

up to +56 for Llama-2-13B-chat on the (Back-545

ward Belief ), which Gandhi et al. have identified546

as the hardest task. Despite its relatively small size,547

Llama-2-13B-chat excels in all three tasks when548

using CAA. Larger 70B models often achieve ac-549

curacies close to or exceeding 90%. Smaller mod- 550

els like Pythia-70M and Pythia-410M also show 551

significant gains with CAA, though the absolute 552

performance is still lower than Llama-2. Overall, 553

our results indicate that it is possible to effectively 554

enhance ToM reasoning in LMs without needing 555

to train any probe, which yields even improved 556

results. Furthermore, we show that CAA steering 557

vectors generalise well, yielding substantial per- 558

formance gains across all ToM tasks. To further 559

demonstrate CAA’s effectiveness, we applied it 560

while evaluating models on a control task where 561

the causal event is replaced by a random one that 562

does not change the environment (e.g., A musician 563

starts playing music while Noor is making the latte; 564

Gandhi et al. (2023)). Table 4 shows improved re- 565

sults for all models, indicating that CAA improves 566

performance on ToM tasks without compromising 567

the models’ ability on control tasks. 568

5 Discussion and Conclusion 569

In this work, we conducted extensive experiments 570

involving various LM types, sizes, fine-tuning ap- 571

proaches, and prompt designs to examine their in- 572

ternal representation of beliefs of self (oracle) and 573

others (protagonist). 574

Our experiments show that, when predicting 575

others’ belief, probing accuracy increases with 576

model size and, more crucially for smaller models, 577

with fine-tuning (Figure 2). Notably, fine-tuned 7B 578

LMs outperform (Llama-2 with SFT and RLHF) 579

or match the performance (Pythia with SFT) of 580

base models with double the parameter count. Our 581

experiments also reveal that the best probe accu- 582

racy scales with model size logarithmically for pre- 583

trained models (Figure 6b, Figure 6d), and linearly 584

with models fine-tuned with SFT and RLHF (Fig- 585

ure 6c). We then explore, for the first time, the 586

7



Model Method Forward Belief Forward Action Backward Belief

TB FB Both TB FB Both TB FB Both

Llama-2-7b No int. 44 44 44 44 44 44 44 44 44
ITI 44+0 44+0 44+0 54+10 54+10 54+10 54+10 54+10 54+10

CAA 66∗+22 71∗+27 54+10 66∗+22 57∗+13 54+10 60∗+16 74+30 54+10

Llama-2-7b-chat No int. 56 56 55 69 55 37 56 56 55
ITI 58+2 58+2 57+2 69+0 55+0 37+0 58+2 60+3 57+2

CAA 70+14 72∗+16 57+2 69+0 67+12 53+16 66+10 84∗+27 57∗+2

Llama-2-13b No int. 52 44 35 59 50 37 46 49 33
ITI 52+0 45+1 35+0 64+5 61+11 46+9 48+2 59+10 42+9

CAA 85∗+33 88∗+44 66∗+31 71∗+12 69∗+19 55∗+18 75∗+29 92∗+43 59∗+26

Llama-2-13b-chat No int. 84 56 47 78 51 38 72 48 31
ITI 84+0 65+9 59+12 78+0 58+7 47∗+9 72+0 60+12 48+17

CAA 97∗+13 94∗+38 91∗+44 80∗+2 71∗+20 54∗+16 97+25 94∗+46 87∗+56

Llama-2-70b No int. 90 87 78 93 52 48 73 53 32
ITI 90+0 90+3 78+0 94+1 55+3 50+2 77+4 58+5 37+5

CAA 99∗+9 97∗+10 95∗+17 94∗+1 80∗+28 73∗+25 94+21 92∗+39 83∗+51

Llama-2-70b-chat No int. 69 75 56 86 56 52 63 59 52
ITI 69+0 76+1 59+2 86+0 56+0 52+0 63+0 60+1 54+2

CAA 92∗+23 97∗+22 89∗+32 87∗+1 75∗+19 60∗+8 88+25 92∗+33 80+28

Pythia-70m No int. 41 41 37 46 45 41 44 41 37
ITI 54+13 54+13 54∗+17 54+8 54+9 54∗+13 54+10 54+13 54+17

CAA 62∗+21 56∗+15 54∗+17 59∗+13 60∗+15 58∗+17 63+19 56∗+15 54∗+17

Pythia-410m No int. 48 45 45 44 44 44 44 47 44
ITI 55+7 62∗+17 52+7 54∗+10 54∗+10 54+10 60+16 63+16 56+12

CAA 67∗+19 64∗+19 61∗+16 56∗+12 63∗+19 56∗+12 69+25 63∗+16 60+16

Pythia-1b No int. 44 44 44 44 44 44 44 44 44
ITI 54+10 54+10 54+10 54+10 54+10 54+10 54+10 54+10 54+10

CAA 59∗+15 62∗+18 54+10 57+13 59+15 56+12 57+13 60+16 54+10

Pythia-6.9b No int. 44 44 44 44 44 44 44 44 44
ITI 45+1 54+10 44+0 54+10 54+10 54+10 54+10 54+10 54+10

CAA 56+12 71∗+27 55+11 55+11 63+19 55+11 55+11 71∗+27 55+11

Pythia-6.9b-chat No int. 55 54 28 36 64 20 44 67 30
ITI 57+2 54+0 28+0 44+8 71+7 32+12 44+0 67+0 30∗+0

CAA 68+13 65+11 57∗+29 54+18 75+11 48∗+28 58∗+14 67+0 54∗+24

Pythia-12b No int. 44 44 44 44 44 44 44 44 44
ITI 54+10 54+10 54+10 54+10 54+10 54+10 54+10 54+10 54+10

CAA 54+10 64∗+20 54+10 60+16 58+14 55+11 54+10 67+23 54+10

Table 1: Comparison of the effects of ITI (Li et al., 2023b) and CAA (Rimsky et al., 2023) activation editing methods
on three tasks from BigToM (Gandhi et al., 2023). TB denotes a true belief task, whereas FB denotes a false belief
task. The numbers represent accuracy scores, with the difference in performance compared to no intervention (No
int.) indicated as subscripts (ITI − No int. and CAA − No int.). An asterisk (∗) denotes a statistically significant
difference from No int. based on a McNemar’s test (McNemar, 1947) with p < 0.05.

sensitivity of LMs’ representations to prompting587

in the context of ToM. Our experiments with dif-588

ferent prompt variations demonstrate not only that589

models’ representations degrade with the addition590

of random tokens or distractors in the prompt, but591

also when including time specifications that should592

make the prompt less ambiguous (Figure 3 and593

Figure 7). In contrast, including the protagonist’s594

initial belief in the prompt yields higher probe ac-595

curacy. We also verify that probes measure mean-596

ingful representations rather than spurious patterns,597

as it is possible to recover most of the accuracy by598

training probes on a much small subset of principal599

components of models’ representations (Figure 4,600

Figure 9, and Figure 10). Finally, we show that601

CAA can steer models’ activations in a general- 602

isable way, yielding significant performance im- 603

provements across different ToM tasks (Table 1). 604

Unlike ITI, which requires training a separate probe 605

for each attention head in a LM, CAA computes a 606

single vector per layer, dramatically reducing com- 607

putational overhead. For example, in the case of 608

Llama 2-70B, ITI requires training 5120 probes 609

(64 attention heads across 80 layers), while CAA 610

requires computing only 80 vectors, one per layer. 611

Overall, our work contributes valuable insights into 612

the factors influencing LMs’ mental state represen- 613

tations, shedding light on avenues for improving 614

their performance in ToM tasks. 615
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6 Limitations616

Our study focused on expanding experiments from617

the model perspective, examining architectures,618

sizes, fine-tuning, and prompt design, all within619

the same dataset. A natural extension of our work620

is replicating these experiments across multiple621

datasets and more model families. Given the rapid622

pace of new language model releases, studying all623

available models is impractical, particularly con-624

sidering computational resource constraints. Nev-625

ertheless, our approach can be adopted to support626

new benchmarks or to evaluate newly released mod-627

els as they become available. Finally, while in this628

work we focused on beliefs, our experimental ap-629

proach can be adapted to investigate how LMs rep-630

resent desires, emotions, intentions, or preferences.631

Future research exploring other types of mental632

states can use our findings to determine whether633

similar or distinct patterns emerge.634
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A Appendix 1005

A.1 Experimental setup 1006

A.1.1 BigToM 1007

BigToM (Gandhi et al., 2023) is constructed using 1008

GPT-4 (Achiam et al., 2023) to populate causal 1009

templates and combine elements from these tem- 1010

plates. Each causal template is set up with a context 1011

and a description of the protagonist (e.g. “Noor 1012

is working as a barista [. . . ]”), a desire (“Noor 1013

wants to make a cappuccino”), a percept (“Noor 1014

grabs a milk pitcher and fills it with oat milk”), and 1015

a belief (“Noor believes that the pitcher contains 1016

oat milk”). The state of the world is changed by a 1017

causal event (“A coworker swaps the oat milk in the 1018

pitcher with almond milk”). The dataset constructs 1019

different conditions by changing the percepts of 1020

the protagonist after the causal event, which will re- 1021

sult in different beliefs – true or false. Gandhi et al. 1022

(2023) generated 200 templates and extracted 25 1023

conditions from each template, resulting in 5,000 1024

test samples. In this work, following Zhu et al. 1025

(2024) and Gandhi et al. (2023) we focused on 1026

the 6 most important conditions, corresponding to 1027

true and false beliefs on the following three tasks: 1028

• Forward Belief : given the protagonist’s per- 1029

cepts of the causal event, infer their belief: 1030

P (belief|percept). 1031

• Forward Action: infer the protagonist’s action 1032

given their desire and percepts of the causal 1033

event. Before inferring the action, one would 1034

need to first implicitly infer the protagonist’s be- 1035

lief:
∑

belief P (action|percept,belief, desire). 1036

• Backward Belief : infer the protagonist’s be- 1037

lief from observed actions. This requires to 1038

first implicitly infer the protagonist’s percepts: 1039∑
percepts P (belief|action,percept, desire). 1040

The dataset was released under the MIT license 1041

and can be accessed at https://github.com/ 1042

cicl-stanford/procedural-evals-tom. We re- 1043

port one example for each task in Example 1, 2, 1044

and 3, where the text defining true belief or false 1045

belief task is shown in blue and red, respectively. 1046
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A.1.2 Linear probes1047

Our probing approach is illustrated in Figure 5. For1048

our experiments, we cache activations at the resid-1049

ual stream level. To perform ITI and compare it1050

to CAA, we also cache attention heads activations.1051

We trained the probes using the L-BFGS solver1052

(Liu and Nocedal, 1989) with L2 penalty with in-1053

verse of regularisation strength 10 for a maximum1054

of 1000 iterations. We use zero as random seed.1055

A.1.3 Language models1056

A detailed summary of the models we use in this1057

work is shown in Table 2. Pythia was released un-1058

der the Apache 2.0 license. Llama-2 is licensed by1059

Meta for both researchers and commercial entities1060

(Touvron et al., 2023). For all the models, we set1061

the temperature to zero.1062

A.1.4 Examples of prompt variations1063

We provide examples of variations for a prompt1064

(Example 4) in Example 5 (random), Example 61065

(misleading), Example 7, and Example 8.1066

A.2 Model size and fine-tuning1067

To characterise the relationship between probe ac-1068

curacy and model size we consider the best probe1069

accuracy for every LM, i.e. the highest accuracy1070

among probes {gl} trained on {al} for a LM f .1071

For Llama-2 base, the best probe accuracy scales1072

logarithmically with model size (R2 = 0.98, Fig-1073

ure 6b), whereas for fine-tuned models it scales1074

linearly (R = 1.0, cf. Figure 6c). For Pythia base,1075

the best probe accuracy also scales logarithmically1076

with model size (R2 = 0.96, Figure 6d).1077

A.3 Sensitivity to prompting1078

Accuracy on protagonist belief probing for Pythia1079

models is shown in Figure 7.1080

Accuracy on oracle belief probing for different1081

prompt variations are reported in Figure 8.1082

A.4 Dimensionality reduction1083

Probing accuracy obtained by Pythia models for1084

the protagonist setting is reported in Figure 9.1085

Oracle probe accuracy obtained by consider-1086

ing only the first n = {2, 10, 100, 1000} principal1087

components are shown in Figure 10.1088

A.5 Inference-time intervention1089

Inference-time intervention (Li et al., 2023b, ITI)1090

employs a two-step process. First, it trains a probe1091

for each attention head across all layers of a LM.1092

These probes are evaluated on a validation set, and 1093

the top-k heads with the highest accuracy are se- 1094

lected. Subsequently, during inference, ITI steers 1095

the activations of these top heads along the direc- 1096

tions defined by their corresponding probes. For- 1097

mally, ITI can be defined as an additional term to 1098

the multi-head attention: 1099

xl+1 = xl +
H∑

h=1

Qh
l

(
Atthl (P

h
l xl) + ασh

l θ
h
l

)
1100

where xl is the residual stream at layer l, H is the 1101

number of attention heads, α ∈ R+ is a coeffi- 1102

cient, σh
l is the standard deviation of activations 1103

along the direction identified by the probe trained 1104

on attention head h at layer l, and θhl is zero ofr 1105

not-selected attention heads. 1106

A.6 Activation editing 1107

Table 3 reports results obtained on the three Big- 1108

ToM tasks with the hyperparameters used for ITI 1109

(Li et al., 2023b) and CAA (Rimsky et al., 2023). 1110

We report an example of prompt used for evalu- 1111

ation in Example 9. Table 4 shows the accuracy 1112

obtained by using CAA on the Forward Belief True 1113

Control task in BigToM. On this control task, CAA 1114

produced improved results for all model, proving 1115

that CAA not only improves performance on ToM 1116

tasks, but also does not degrades the models’ ability 1117

to perform other tasks. 1118

A.7 Compute resources 1119

We ran our experiments on a server running Ubuntu 1120

22.04, equipped with eight NVIDIA Tesla V100- 1121

SXM2 GPUs with 32GB of memory and Intel Xeon 1122

Platinum 8260 CPUs. 1123

A.8 Code 1124

Our code is provided as supplementary material 1125

and it will be made public under the MIT licence 1126

at www.example.com. 1127

A.9 Societal impact 1128

While our work is foundational and remains dis- 1129

tant from specific applications with direct societal 1130

impact, it’s important to recognise the ethical impli- 1131

cations of modelling and predicting mental states. 1132

Handling sensitive aspects of individuals’ inner ex- 1133

periences and emotions requires careful considera- 1134

tion to avoid reinforcing biases or misunderstand- 1135

ing psychological nuances. 1136
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tokens embed +

...

unembed logits

MLP

+ ...

layer 

Story: Noor is working as a
barista at a busy coffee shop [...]

Belief: The milk pitcher contains
almond milk.

Figure 5: Given a tokenised input, we cache the internal activations for all attention heads hi, i = 0, . . . ,H − 1, and
residual streams. In our experiments, we use residual stream activations.

LM Size + SFT + RLHF Tokens dmodel Layers

Llama-2
7B 2T 4096 32
13B 2T 5120 40
70B 2T 8192 80

Llama-2-chat
7B ✓ ✓ 2T 4096 32
13B ✓ ✓ 2T 5120 40
70B ✓ ✓ 2T 8192 80

Pythia

70M 300B 512 6
410M 300B 1024 24

1B 300B 2048 16
6.9B 300B 4096 32
12B 300B 5120 36
6.9B ✓ 300B 4096 32

Table 2: The 12 models used in this work..
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Figure 6: To characterise the relationship between probe accuracy and model size we consider the best probe
accuracy for every LM, i.e. the highest accuracy among probes {gl} trained on {al} for a LM f . (a) Best accuracy
for Llama-2 models of different size. Numbers on the vertical dotted lines indicate the gain in accuracy between base
and fine-tuned model of the same size. (b) Logarithmic fit for Llama-2 base. (c) Linear fit for Llama-2 fine-tuned
(chat). (d) Logarithmic fit for Pythia base.

2 4 6
Layer

0

25

50

75

100

Ac
cu

ra
cy

Pythia-70M

0 10 20
Layer

0

25

50

75

100
Pythia-410M

5 10 15
Layer

0

25

50

75

100
Pythia-1B

0 20
Layer

0

25

50

75

100
Pythia-6.9B

0 20
Layer

0

25

50

75

100
Pythia-6.9B-chat

0 20
Layer

0

25

50

75

100
Pythia-12B
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Figure 8: Sensitivity of protagonist belief probing accuracy to different prompt variations.
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Figure 9: We compare the probing accuracy obtained by using the original set of activations (All) with the accuracy
obtained by considering only the first n = {2, 10, 100, 1000} principal components. For Pythia: All(70m) = 512,
All(410m) = 1024, All(1b) = 2048, All(6.9b) = 4096, All(12b) = 5120. Results for oracle are shown in Figure 10.
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Figure 10: (Oracle) To investigate potential memorisation in the probes, we compare the probing accuracy ob-
tained by using the original set of activations (All) with the accuracy obtained by considering only the first
n = {2, 10, 100, 1000} principal components. For Llama2: All(7b) = 4096, All(13b) = 5120, All(70b) = 8192. For
Pythia: All(70m) = 512, All(410m) = 1024, All(1b) = 2048, All(6.9b) = 4096, All(12b) = 5120.
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Model Method Forward Belief Forward Action Backward Belief

TB FB Both TB FB Both TB FB Both

Llama-2-7b No int. 44 44 44 44 44 44 44 44 44
ITI 440.0 440.0 440.0 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0
CAA 662.0,11 711.0,31 542.0,0 662.0,11 572.0,12 542.0,2 602.0,11 741.0,31 542.0,2

Llama-2-7b-chat No int. 56 56 55 69 55 37 56 56 55
ITI 5815.0 5815.0 5715.0 690.0 550.0 370.0 5810.0 6010.0 5710.0
CAA 701.0,11 721.5,10 571.0,1 690.0,0 671.5,11 531.5,12 661.0,11 841.5,10 571.0,0

Llama-2-13b No int. 52 44 35 59 50 37 46 49 33
ITI 520.0 4515.0 350.0 6415.0 6120.0 4620.0 4820.0 5920.0 4220.0
CAA 852.0,12 882.0,14 662.0,12 711.5,10 692.0,13 551.0,39 752.0,10 922.0,13 591.5,12

Llama-2-13b-chat No int. 84 56 47 78 51 38 72 48 31
ITI 840.0 6515.0 5915.0 780.0 5815.0 4715.0 720.0 6015.0 4815.0
CAA 971.0,12 941.0,12 911.0,12 801.5,11 711.0,13 541.5,13 971.5,10 941.5,12 871.5,12

Llama-2-70b No int. 90 87 78 93 52 48 73 53 32
ITI 900.0 9020.0 780.0 9415.0 5520.0 5015.0 7710.0 5815.0 3710.0
CAA 992.0,16 971.5,19 951.5,18 941.5,2 802.0,19 731.5,18 942.0,18 922.0,19 831.5,19

Llama-2-70b-chat No int. 69 75 56 86 56 52 63 59 52
ITI 690.0 7610.0 5910.0 860.0 560.0 520.0 630.0 6010.0 5410.0
CAA 921.5,18 971.5,25 891.5,18 871.5,17 751.0,19 601.0,19 881.5,18 921.0,19 801.5,18

Pythia-70m No int. 41 41 37 46 45 41 44 41 37
ITI 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0
CAA 621.0,2 561.0,1 541.5,1 591.0,2 601.0,3 581.0,2 631.0,2 561.0,2 541.5,1

Pythia-410m No int. 48 45 45 44 44 44 44 47 44
ITI 5520.0 6220.0 5220.0 5420.0 5420.0 5420.0 6020.0 6320.0 5620.0
CAA 672.0,4 642.0,4 612.0,0 562.0,6 631.5,12 562.0,6 692.0,4 632.0,0 602.0,0

Pythia-1b No int. 44 44 44 44 44 44 44 44 44
ITI 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0
CAA 592.0,8 622.0,5 542.0,0 572.0,4 592.0,10 562.0,4 572.0,3 602.0,5 542.0,0

Pythia-6.9b No int. 44 44 44 44 44 44 44 44 44
ITI 4520.0 5420.0 440.0 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0
CAA 561.5,12 711.5,9 552.0,23 552.0,4 631.5,11 552.0,4 552.0,23 711.5,9 552.0,23

Pythia-6.9b-chat No int. 55 54 28 36 64 20 44 67 30
ITI 5715.0 540.0 280.0 4415.0 7115.0 3215.0 440.0 670.0 300.0
CAA 681.5,15 651.5,12 571.5,11 541.5,10 751.5,5 481.5,10 581.5,15 670.0,0 541.5,10

Pythia-12b No int. 44 44 44 44 44 44 44 44 44
ITI 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0 5420.0
CAA 542.0,0 642.0,9 542.0,0 602.0,11 582.0,11 552.0,12 542.0,0 672.0,10 542.0,0

Table 3: Activation intervention: comparison between ITI (Li et al., 2023b) and CAA (Rimsky et al., 2023). For ITI,
the subscript indicates the value of the coefficient αITI used: AccαITI

. For CAA, the subscript indicates first the
value of the coefficient α used and second the layer l at which intervention takes place: AccαCAA,l.
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Model Method Control CAA Parameters

Llama-2-7b No int. 44
CAA 66+22 2.0, 11

Llama-2-7b-chat No int. 56
CAA 70+14 1.0, 11

Llama-2-13b No int. 52
CAA 85+33 2.0, 12

Llama-2-13b-chat No int. 84
CAA 97+13 1.0, 12

Llama-2-70b No int. 90
CAA 99+9 2.0, 16

Llama-2-70b-chat No int. 69
CAA 92+23 1.5, 18

Pythia-70m No int. 41
CAA 62+21 1.0, 2

Pythia-410m No int. 48
CAA 67+19 2.0, 4

Pythia-1b No int. 44
CAA 59+15 2.0, 8

Pythia-6.9b No int. 44
CAA 56+12 1.5, 12

Pythia-6.9b-chat No int. 55
CAA 68+13 1.5, 15

Pythia-12b No int. 44
CAA 54+10 2.0, 0

Table 4: Results for CAA (Rimsky et al., 2023) on the Forward Belief True Control task in BigToM (Gandhi et al.,
2023). Numbers indicate accuracy scores, with differences (CAA − No int.) as subscripts.
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Example 1: Forward Belief

Noor is working as a barista at a busy coffee shop. Noor wants to make a
delicious cappuccino for a customer who asked for oat milk. Noor grabs a milk
pitcher and fills it with oat milk. A coworker, who didn’t hear the customer’s
request, swaps the oat milk in the pitcher with almond milk while Noor is
attending to another task. Noor sees her coworker swapping the milk. Noor does
not see her coworker swapping the milk.
Does Noor believe the milk pitcher contains oat milk or almond milk?
a) Noor believes the milk pitcher contains oat milk.
b) Noor believes the milk pitcher contains almond milk.

1137

Example 2: Forward Action

Noor is working as a barista at a busy coffee shop. Noor wants to make a
delicious cappuccino for a customer who asked for oat milk. Noor grabs a milk
pitcher and fills it with oat milk. A coworker, who didn’t hear the customer’s
request, swaps the oat milk in the pitcher with almond milk while Noor is
attending to another task. Noor sees her coworker swapping the milk. Noor does
not see her coworker swapping the milk.
What will Noor do?
a) Noor will make the cappuccino using the milk in the pitcher.
b) Noor will open the fridge once again to take out the oat milk and replace
the almond milk with oat milk.
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Example 3: Backward Belief

Noor is working as a barista at a busy coffee shop. Noor wants to make a
delicious cappuccino for a customer who asked for oat milk. Noor grabs a milk
pitcher and fills it with oat milk. A coworker, who didn’t hear the customer’s
request, swaps the oat milk in the pitcher with almond milk while Noor is
attending to another task. Noor opens the fridge again and reaches for the oat
milk. Noor makes the cappuccino using the milk in the pitcher.
Does Noor believe the milk pitcher contains oat milk or almond milk?
a) Noor believes the milk pitcher contains oat milk.
b) Noor believes the milk pitcher contains almond milk.

1139

Example 4: Default prompt

Story: Noor is working as a barista at a busy coffee shop. Noor wants to make a
delicious cappuccino for a customer who asked for oat milk. Noor grabs a milk
pitcher and fills it with oat milk. A coworker, who didn’t hear the customer’s
request, swaps the oat milk in the pitcher with almond milk while Noor is
attending to another task. Noor does not see her coworker swapping the milk.
Belief: Noor believes the milk pitcher contains oat milk.

1140
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Example 5: Prompt variation – Random

Story: Noor is working as a barista at a busy coffee shop. Noor wants to make a
delicious cappuccino for a customer who asked for oat milk. Noor grabs a milk
pitcher and fills it with oat milk. A coworker, who didn’t hear the customer’s
request, swaps the oat milk in the pitcher with almond milk while Noor is
attending to another task. Noor does not see her coworker swapping the milk.
Belief: 장士 decided [_ countries sections behoSOUR gminy bef Noor believes the
milk pitcher contains oat milk.
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Example 6: Prompt variation – Misleading

Story: Noor is working as a barista at a busy coffee shop. Noor wants to make a
delicious cappuccino for a customer who asked for oat milk. Noor grabs a milk
pitcher and fills it with oat milk. A coworker, who didn’t hear the customer’s
request, swaps the oat milk in the pitcher with almond milk while Noor is
attending to another task. Noor does not see her coworker swapping the milk.
Belief: Noor believes the milk pitcher contains oat milk.
Belief: The water valve is closed.
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Example 7: Prompt variation – Time specification

Story: Noor is working as a barista at a busy coffee shop. Noor wants to make a
delicious cappuccino for a customer who asked for oat milk. Noor grabs a milk
pitcher and fills it with oat milk. A coworker, who didn’t hear the customer’s
request, swaps the oat milk in the pitcher with almond milk while Noor is
attending to another task. Noor does not see her coworker swapping the milk.
Belief: In the end, Noor believes the milk pitcher contains oat milk.

1143

Example 8: Prompt variation – Initial belief

Story: Noor is working as a barista at a busy coffee shop. Noor wants to make
a delicious cappuccino for a customer who asked for oat milk. Noor grabs a
milk pitcher and fills it with oat milk. Noor believes that the milk pitcher
contains oatmilk. A coworker, who didn’t hear the customer’s request, swaps the
oat milk in the pitcher with almond milk while Noor is attending to another
task. Noor does not see her coworker swapping the milk.
Belief: Noor believes the milk pitcher contains oat milk.

1144
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Example 9: Prompt used for downstream evaluation

Answer the questions based on the context. Keep your answer concise, few words
are enough, maximum one sentence. Answer as ’Answer:<option>)<answer>’.

Story: Noor is working as a barista at a busy coffee shop. Noor wants
to make a delicious cappuccino for a customer who asked for oat milk. Noor
grabs a milk pitcher and fills it with oat milk. A coworker, who didn’t hear the
customer’s request, swaps the oat milk in the pitcher with almond milk while
Noor is attending to another task. Noor does not see her coworker swapping the
milk.
Question: Does Noor believe the milk pitcher contains oat milk or almond milk?
Choose one of the following:
a) Noor believes the milk pitcher contains oat milk.
b) Noor believes the milk pitcher contains almond milk.
Answer:

1145
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