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Abstract

The task of Few-shot Learning (FSL) aims to do the inference on novel categories containing
only few labeled examples, with the help of knowledge learned from base categories containing
abundant labeled training samples. While there are numerous works into FSL task, Vision
Transformers (ViTs) have rarely been taken as the backbone to FSL with few trials (Hu
et al., 2022; Evci et al., 2022; Abnar et al.) focusing on naïve finetuning of whole backbone
or classification layer. Essentially, despite ViTs have been shown to enjoy comparable
or even better performance on other vision tasks, it is still very nontrivial to efficiently
finetune the ViTs in real-world FSL scenarios. To this end, we propose a novel efficient
Transformer Tuning (eTT) method that facilitates finetuning ViTs in the FSL tasks. The
key novelties come from the newly presented Attentive Prefix Tuning (APT) and Domain
Residual Adapter (DRA) for the task and backbone tuning, individually. Specifically, in APT,
the prefix is projected to new key and value pairs that are attached to each self-attention
layer to provide the model with task-specific information. Moreover, we design the DRA in
the form of learnable offset vectors to handle the potential domain gaps between base and
novel data. To ensure the APT would not deviate from the initial task-specific information
much, we further propose a novel prototypical regularization, which minimizes the similarity
between the projected distribution of prefix and initial prototypes, regularizing the update
procedure. Our method receives outstanding performance on the challenging Meta-Dataset.
We conduct extensive experiments to show the efficacy of our model. Our code is available
at https://github.com/loadder/eTT_TMLR2022.

1 Introduction

Modern computer vision models such as ResNet (He et al., 2016) and Faster R-CNN (Ren et al., 2015)
are trained on large-scale training sets, and not well generalize to handle the long tail categories with few
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labeled samples. Few-shot Learning (FSL) has thus been studied to make inference on insufficiently-labeled
novel categories typically with the transferable knowledge learned from base categories which are provided
with abundant labeled training samples. Essentially, the FSL can be taken as representation learning, as its
backbones should ideally extract features representative and generalizable to various novel tasks. Currently
Convolutional Neural Networks (CNNs), especially ResNet, are the predominant backbone and widely utilized
in most existing FSL works (Ravi & Larochelle, 2017; Finn et al., 2017; Nichol et al., 2018; Li et al., 2017;
Sun et al., 2019).

Recently, by taking the merits of Multi-headed Self-Attention (MSA) mechanism and Feed Forward Net-
work (FFN), the transformers have been widely used in the recognition (Alexey et al.; Liu et al., 2021b),
detection (Beal et al., 2020) and image editing (Cao et al., 2021). The general pipeline of Pretrain-(Meta-
train)-Finetune has been explored in few ViTs on FSL (Hu et al., 2022; Evci et al., 2022; Abnar et al.),
recently. Particularly, the ViT models are first pretrained/meta-trained on a large-scale dataset. Then
a test-time finetune procedure is set up for each target task on novel data. The finetuning strategy can
be generally categorized into linear classifier probing and backbone tuning: the former one optimizes the
reasonable decision boundaries by the fixed embeddings, while the latter one considers the adaptation of
both embedding space and classifier.

In this paper we focus on the backbone tuning method. (Hu et al., 2022) shows that the naïve Pretrain-Meta-
train-Finetune (P>M>F) baseline can generally have satisfactory performance in FSL. Unfortunately, it
involves heavy computations and potential overfitting in FSL setting. Particularly, (1) It typically demands
extraordinary computing power to formulate episodes from a large number of support classes to update
the whole network parameters. Thus it is less efficient in many real-case applications. For example, the
edge devices such as mobiles donot have enough computational power to adapt all model parameters by
personalized/specialized data collected on these devices. (2) It is very subtle and difficult to directly fine-tune
trained deep models on one or two labeled instances per class, as such few-shot models will suffer from severe
overfitting (Snell et al., 2017; Fei-Fei et al., 2006; Brian et al.). By contrast, humans have the ability of
conducting few-shot recognition from even single example of unseen novel category with very high confidence.

Such problems may be the culprit of the phenomenon that their proposed finetune strategy only works on
part of datasets and has less effect to the others. This suggests their limited usage of ViT backbone for any
potential FSL applications. An alternative choice is to finetune specific layers in a ViT model with much
smaller tunable parameters (ViT-s block in Fig. 1(a)). Such a strategy nevertheless can only finetune either
low-level or high-level features, leading to inferior performance in many cases. Therefore it is desirable to
have an efficient and light-weighted ViT tuning method that shall not only avoid overfitting to small training
samples, but also achieve high performance of FSL.

In this paper, we present a novel efficient Transformer Tuning (eTT) for few-shot learning task, which adopts
a pretrain-finetune pipeline. To pretrain our transformer, we advocate utilizing the recent self-supervised
method – DINO (Caron et al., 2021). Our key novelties are in the finetuning stage. As illustrated in Fig. 1(b),
we propose Attentive Prefix Tuning (APT) and Domain Residual Adapter (DRA) as the key components to
our eTT, to efficiently learn the newly-introduced tunable parameters over novel support sets. Specifically, we
formulate the attentive prototypes by aggregating patch embeddings with the corresponding attention weights
of the class token for each image, so as to provide the model with abundant task-specific information and
guide each self-attention layer to aggregate more class-related features. To encourage the prefix to keep the
prior knowledge from initial prototypes, we further propose a novel prototypical regularization which restricts
the relationship between the prefix and prototypes by optimizing the similarity of their projected distributions.
Moreover, we propose to additionally adopt a light-weighted domain residual adapter in the form of learnable
offset to deal with the potential failure of APT on large domain gaps. Extensive experiments are conducted to
evaluate our eTT: we use the ViT-tiny and ViT-small backbones on the large-scale Meta-Dataset (Triantafillou
et al., 2019) consisting of ten sub-datasets from different domains; and the results show that our model can
achieve outstanding performance with comparable or even much fewer model parameters. Thus our eTT is a
promising method on efficiently finetuning ViTs on the FSL tasks.

Our paper has the following contributions.
1. In order to solve the problem of inefficiency and make better use of ViT in FSL, we propose a novel
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Figure 1: (a) Comparing with other backbones, we propose the Domain Residual Adapter (DRA) to tune much
less parameters in our efficient Transformer Tuning (eTT); and effective for large-scale FSL. (b) The few-shot
support samples are first processed into attentive prototypes which are used to initialize the task-specific
visual prefix. Then the prefix together with the domain adapter are attached to each layer of the ViT to
finetune our ViTs.

finetuning method named efficient Transformer Tuning (eTT).
2. Inspired by recent advance in language model, a novel attentive prefix tuning is presented utilizing the
attentive prototypes to embed the task-specific knowledge into pretrained ViT model. Particularly, we propose
a new initialization strategy tailored for FSL by leveraging prototypical information from the self-attention
layers. Moreover, a novel domain residual adapter is repurposed to handle the various domain gaps between
training and testing data.
3. We introduce a prototypical regularization term which can constrain the update procedure of prefix during
finetuning to maintain the initial task-specific knowledge.
4. By utilizing the proposed eTT, our ViT models receive remarkable performance on Meta-Dataset,
overpassing the existing ResNet-based methods without using additional training data. More importantly,
both of the model scale and efficiency of our method are comparable with the other competitors, indicating
the promising application of ViTs in FSL.

2 Related Works

Few-shot recognition. FSL learns transferable knowledge from base classes and adapt it to a disjoint set
(novel classes) with limited training data. Among those FSL tasks, few-shot image recognition is the one with
most focus and researches. Existing works can be grouped into two main categories. One is optimization-based
methods (Ravi & Larochelle, 2017; Finn et al., 2017; Nichol et al., 2018; Li et al., 2017; Sun et al., 2019),
which learn parameters that can be better finetuned on few-shot support sets. The other is metric-based
methods such as ProtoNet (Snell et al., 2017), RelationNet (Sung et al., 2018), CAN (Hou et al., 2019),
DMF (Xu et al., 2021), COSOC (Luo et al., 2021) and CTX (Doersch et al., 2020), which solve FSL by
applying an existing or learned metric on the extracted features of images. Particularly, CTX (Doersch et al.,
2020) builds up a cross attention module which interacts between query and support images to adaptively
aggregate better prototypes than simply averaging all support features. While these methods perform well on
classical few-shot learning settings, most of them adopt convnet as backbone, especially ResNet (He et al.,
2016). We, on the opposite, try to make full use of another widely-applied structure, i.e. ViT, in FSL, which
requires extra design for training and finetuning strategy.

Transformer in vision tasks. Transformers widely utilize the self-attention mechanism which originally
are employed to process the feature sequence in Vaswani et al. (2017). Then large scale transformers become
increasingly popular in NLP tasks to build complex language models, and also extend to vision tasks (Alexey
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et al.; Yuan et al., 2021; Liu et al., 2021b) by formulating the token sequence with image patches processed
with position embedding. It has been shown the efficacy in various applications, such as (Liu et al., 2021a) for
image caption, (Sun et al., 2020) for multiple object tracking and (Esser et al., 2021; Cao et al., 2021) for image
inpainting and editing. Critically, ViTs is typically trained by very large-scale dataset, and few effort has
been dedicated in training or finetuning on few-shot supervision. We follow the pretrain-meta-train-finetune
pipeline (Hu et al., 2022), while their method finetune the whole ViTs on few-shot examples, and thus has
less efficiency and can easily overfit. In contrast, our proposed eTT has the key components of DRA and
APT, demanding much less tunable parameters with much better performance.

Finetuning algorithm for ViT. The idea of finetuning ViTs on small-scale datasets has been partly
investigated in Natural Language Processing (NLP) communities. Houlsby et al. (2019) proposed to attach
two learnable bottleneck adapters to each transformer layer. Other works (Xiang & Percy; Brian et al.)
make use of the prompt which trains a small task-specific prompt for each task so that the prompt can guide
the model with knowledge corresponding to the task. Such a prompting idea from NLP is inherited and
repurposed to finetune a learnable prefix for each novel episode in this paper. However, these works (Xiang
& Percy; Brian et al.; Houlsby et al., 2019) initialize the prefix or prompt with word embeddings which is
not available in our problem. Instead, we propose an attentive prototype with regularization initializing the
visual prefix with object-centric embeddings. Additionally, we notice that a very good concurrent technical
report (Jia et al., 2022) also studies finetuning visual prompt for pretrained ViTs in downstream tasks. We
highlight the two key differences from our eTT. The first is about the initialization. While initialization
strategy does not matter in their method and the corresponding tasks, we show in our experiments that
randomly initializing prefix does lead to sub-optimal performance in FSL, which leads to the necessity of a
well-designed initialization. The second is that we further propose a regularization term to restrict the prefix,
which has never been studied in existing works.

Task-specific Adapter. The idea of task-specific adapter has been explored in several works like (Li
et al., 2022; Rebuffi et al., 2017) to adapt CNNs to learn the whole information from support set. Besides,
(Requeima et al., 2019; Bateni et al., 2020) adopt Feature-wise Linear Modulation (FiLM) layers (Perez et al.,
2018) to adapt task-specific information into networks. In contrast, we repurpose the adapter as the domain
residual to update transformer blocks in a more light-weighted way with less learnable parameters. Beyond
different structures, our proposed DRA intrinsically serves as the domain adapter rather than meta-learner
for the FSL in Rusu et al. (2018); Sun et al. (2019); Li et al. (2022); Requeima et al. (2019). While these
previous works require meta-training to optimize their adaptation modules, our method simply utilizes the
novel support data to learn the DRA, thus reducing the training cost. Furthermore, our DRA is mostly tuned
to bridge the visual domain gap between base and novel categories, thus improving the learning of APT on
each episode task.

3 Methodology

3.1 Problem Setup

We formulate few-shot learning in the meta-learning paradigm. In general, we have two sets of data, namely
meta-train set Ds = {(Ii, yi) , yi ∈ Cs} and meta-test set Dt = {(Ii, yi) , yi ∈ Ct} which contain the base and
novel data respectively and are possibly collected from different domains. Cs and Ct (Cs ∩ Ct = ∅) denote
base and novel category sets. FSL aims to train a model on Ds which is generalizable enough on Dt. In the
testing phase, the model can learn from few labelled data from each category of Ct.

While most previous FSL works (Snell et al., 2017; Sung et al., 2018) utilize the setting of N -way K-shot in
mini-ImageNet, i.e., K training samples from N class, we follow CTX (Doersch et al., 2020) to adopt the
setting on the large-scale Meta-Dataset (Triantafillou et al., 2019). In each episode T , N is first uniformly
sampled from [5, Nmax] where Nmax equals to min(50, |Ct|) or min(50, |Cs|) on training or testing stage,
accordingly. N is supposed to be accessible knowledge during both training and testing. In the most naïve
case, one can get N by directly counting the number of support classes. From each of the sampled category,
M query samples per category are randomly selected, and thus constructing the query set Q = {(Iq

i , y
q
i )}NQ

i=1.
After that random amount of samples are taken from the rest of samples belonging to these categories to
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Figure 2: Schematic illustration of our proposed model. For each image, we first fetch its patch embedding
sequence and the attention score with regard to the last layer’s class token, from which the image embedding
can be computed. Then the visual prefix is initialized as the attentive prototypes of image embeddings. The
prefix, together with the proposed domain residual adapter are attached to the model. The final features are
processed with an extra linear transformation layer and predicted with ProtoNet. Dashed arrows denote
forward propagation before test-time finetuning.

form the support set S = {(Isupp
i , ysupp

i )}NS

i=1. Note that compared to the classical N -way K-shot setting,
such a setting generates class-imbalanced support sets, and different episodes contain different numbers of
support samples. This is much more challenging to the model and learning algorithms, as they shall handle
both extremely large and small support sets.

3.2 Overview of Our Method

To handle the optimization of various episodes on large-scale dataset, we present our novel finetuning model –
efficient Transformer Tuning (eTT) as shown in Fig. 2. Our eTT follows the pipeline in Hu et al. (2022), and
has key stages of the pretraining and finetuning. We employ DINO as pretraining, and conduct the task
tuning by attentive prefix tuning (Sec. 3.4), and backbone tuning with domain residual adapter (Sec. 3.5).

Pre-training. As previous work (Hu et al., 2022) shows the importance of self-supervised pre-training to
learning vision transformer models, we adopt the same principle and introduce the self-supervised learning
model to pre-train our ViT backbone on base data. Specifically, we utilize the recent State-of-the-art
self-supervised ViT models – DINO (Caron et al., 2021) to pretrain our model. DINO builds up supervision
based on a self-distillation framework by using the multi-crop strategy (Caron et al., 2020). As we will show
in our experiments, such a pre-trained model shall have good cluster property even among cross domain
images, potentially benefiting our following FSL stages. Note that different from (Hu et al., 2022) which
takes an off-the-shelf model pretrained with DINO on full ImageNet, we strictly follow the FSL protocols to
retrain the DINO models on the meta-train split in the target dataset to avoid the abuse of extra data.

One would ask whether it is necessary to make use of the annotations for base data, since supervised pretrain
has been proven to be effective in many previous FSL works (Ye et al., 2020; Hou et al., 2019). As we will
show in the experiments, an additional finetuning with image labels on base data cannot bring consistent
improvement and even makes it worse on most datasets, which may be caused by the overfitting on the
image labels leads to less generalization ability across different domains. Moreover, compared with vanilla
supervised training, the attention maps for models trained by DINO contain more semantic information,
which we will utilize in the following context.

3.3 Preliminary: Vanilla Test-time Finetuning

Before fully developing our fine-tuning contributions, we review the simple and effective finetuning method
named LT+NCC (Li et al., 2021). The novel modules proposed by us in the following context are all adopted
together with this simple baseline method. Given a ViT backbone fθ that is parameterized by θ and an
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episode T , the support features {xsupp
i }NS

i=1, where xsupp
i = fθ(Isupp

i ), are extracted from the support set
{Isupp

i }NS
i=1. Then, a learnable linear transformation ϕ is added to the model to realize the adaptation, which

results in the final support features used for classification {x̂supp
i }NS

i=1, where x̂supp
i = ϕ(xsupp

i ). The prediction
of these support images can thus be calculated based on the similarity between the transformed features and
the aggregated prototypes as,

x̄c = 1∑Ns

i=1 1ysupp
i

=c

Ns∑
i=1

x̂supp
i 1ysupp

i
=c ŷsupp

i (c) = exp(d(x̂supp
i , x̄c))∑N

c=1 exp(d(x̂supp
i , x̄c))

(1)

where d denotes cosine similarity, i.e., d(a, b) = aT b
∥a∥∥b∥ . We fix all of the parameters in the original backbone,

and adopt the cross entropy loss to optimize the transformation ϕ. Precisely speaking, for each support image
Isupp together with its annotation ysupp, the objective function is as following:

ℓCE = −ysupp · log ŷsupp (2)

After finetuning, ϕ is applied to query features and the same procedure as above is performed between the
processed query features {x̂q

i } and prototypes {x̄c}N
c=1 for the inference of each episode.

3.4 Task Tuning by Attentive Prefix Tuning

We finetune the pre-trained ViT with support set via an attentive prefix tuning strategy. Specifically, a prefix
matrix θP ∈ RNP ×d is first initialized, where NP denotes the number of prefix. Then a bottleneck g is added
upon θP to produce θ̂P ∈ RNP ×(2Ld), where L denotes the number of backbone layers. The g plays the same
role as the projector in each self-attention layer, except that all layers share the same module. The produced
θ̂P can be reshaped and seen as L value and key pairs {θl

v, θ
l
k}L

l=1, θ
l
v, θ

l
k ∈ RNP ×d. The MSA block in the

L-th layer can then be reformed by attaching these new pairs to the original key and value sequences:

Al = Attn(Q,
[
K; θl

k

]
) output = Al

[
V ; θl

v

]
(3)

where [·; ·] denotes concatenation, Attn denotes the calculation of MSA matrices. In this way, the prefix can
affect the attention matrix Al and result in different output features from the original ones.

Remark. Compared with the naive strategy that finetunes specific layers in ViT (ViT-s block in Fig. 1(a))
which can only adjust part of blocks, the prefix can evenly adapt each layer’s image embedding with almost
the same parameter size as one transformer layer, as shown in Tab. 1(a). By fixing the model parameters and
optimizing the prefix θP and the transformation module g, the support knowledge can be smoothly embedded
into the prefix, which further helps the task adaptation.

Attentive Prototype. The initialization of the prefix is very important to our APT, as it greatly boosts
the performance. Critically, quite different from the prefix or prompt tuning in NLP and visual-context tasks
that have task-specific instructions explicitly as word embedding sequences, each episode in our FSL only
has the few support images and their labels. Thus, rather than steering the model with ’what should be
done’ as in Xiang & Percy, our APT shall provide the model with ’what we have globally’ by leveraging the
class-specific information. Thus, the attentive prototype is presented to aggregate the image embeddings
with object-centric attention, as the initialization of the prefix. Particularly, each support image Isupp is first
transformed to a patch embebdding sequence {x̃supp

m }P
m=1 with the starting patch embedding layer,

x̃supp
m = fθpe(Isupp

m ) + Epos
m (4)

where m = 1, · · · , P 2 is the patch index; fθpe
denotes the patch embedding layer which is typically a

convolutional layer whose kernel size equals to patch size; and Epos indicates the position embedding.
Meanwhile, we can get unnormalized attention score A ∈ Rh×P between the class token and image patches
from the last MSA layer, where h denotes number of heads in each MSA module. Such an attention vector
can focus on the foreground in the image, especially for models trained with DINO (Caron et al., 2021), with
each head indicating a particular part or an object. We can thus get the initial image-level representation

Â = σ(A) x̃supp = 1
h

h∑
n=1

P 2∑
m=1

Ânmx̃
supp
m (5)
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where σ is softmax function. Compared with simply averaging all patch embeddings, the attentive embeddings
can highlight the objects of interest and suppress the background information. Then the prototypes x̄ can
be calculated by averaging the attentive image embeddings belonging to each support category. We set the
number of prefix as N , which is available during testing for each episode, and initialize the prefix with x̄.

Remark. In this way, commonly-used prototypes can provide the model with comprehensive information
about the episode. Also such a first-order statistics is comparable with the normal patch features among
the layers. This can benefit the training with more stability. When N is large, more prefix are required
to fully learn the information included by each episode. On the other hand, when N is small so that the
episode is relatively easy, fewer prefix can handle the support knowledge without trouble while decreasing the
computing debt.

3.5 Backbone Tuning by Domain Residual Adapter

Finetuning few-shot tasks by APT will make a good balance between performance and efficiency. To further
improve the model generalization ability on different domains, we further propose the backbone tuning by
leveraging the Domain Residual Adapters (DRA), as illustrated in Fig. 2. Specifically, for the l-th transformer
layer, we attach two learnable offset vectors δl

a, δ
l
f ∈ Rd to the MSA and FFN. After features are processed

with MSA and FFN, the corresponding offsets are added to them so that the extreme domain gap can be
neutralized. These offsets are expected to represent the gap between source and target domains, and transfer
the original manifold to a more appropriate one.

3.6 Loss Functions

Prototypical Regularization. In addition to the cross entropy loss in Eq. 2, we propose a novel prototypical
regularization to ensure the class-specific information, which is embedded in the prefix via initialization,
can be maintained during update. The knowledge in attentive prototypes is distilled to the prefix during
finetuning. Concretely, in each iteration, the prototypes x̄ and prefix θP are first projected to a latent space
via a projector module ψ, which produces x̄′ and θ′

P respectively. Then the distillation loss is computed using
these two embeddings as,

ℓdist = 1
N

N∑
n=1

H(x̄′n, θ′n
P ) (6)

where H(a, b) = −a log b. The above objective function can ensure the prototype of each category and the
corresponding prefix contain consistent information, which is indicated by the similarity between distributions
after projection. To make training more stable and avoid collapse, for each episode we maintain an exponential
moving average (EMA) of x̄′ as the center variable ccenter. Before calculating ℓdist, we standardize x̄′ as
σ( x̄′−xcenter

τ ), where σ denotes softmax function and τ is the temperature typically set as 0.04.

Once having both of the above losses calculated, we can optimize the model parameters including the DRA,
the prefix together with the transformation g and the projector ψ, with the following objective function:

L = ℓCE + λℓdist (7)

where the scalar weight λ controls the strength of the regularization.

Remarks. For a ViT with L layers, nh heads and d feature dimension, the size of trainable parameters
is (N + d′ + dproj + d)d+ 2(d′ + 1)Ld, where d′ is the hidden dimension for transformation module g and
dproj denotes output dimension for the projector ψ, which is much smaller than that of the whole backbone
model. Specifically, the learnable modules during finetuning have only about 9% parameters with regard to
the whole transformer model when using ViT-small and ViT-tiny.
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4 Experiments

4.1 Experimental Setup

Datasets. We use Meta-Dataset (Triantafillou et al., 2019) – the most comprehensive and challenging
large-scale FSL benchmark. It has 10 sub-datasets such as ImageNet (Deng et al., 2009) and Omniglot (Lake
et al., 2015), with various domain gaps. Our experiments are conducted under the single training source
setting, i.e. only ImageNet is used for training, and the meta-test split of all ten datasets for evaluation. Some
of the test datasets such as CUB share similar or highly-related categories with ImageNet, while the others
have greater domain gaps. Note that Hu et al. (2022) claims pretraining on all images in the training set of
ImageNet is reasonable for introducing extra data and boosting the performance. However, such a strategy
utilizes much more training samples (1.28M images, 1000 classes in ImageNet v.s. 0.9M images, 712 classes
in meta-train split of ImageNet). Empirically so many additional images can greatly benefit generalization
ability of self-supervised learning methods. Therefore to make a more fair comparison, we strictly follow
the experiment protocol used in CTX (Doersch et al., 2020) and shall not use any extra data even in the
unsupervised pretraining stage. We resize all images to 224 × 224 for ViT-small and 84 × 84 for ViT-tiny.

Implementation details. We set the patch size as 8 for ViT-tiny (as it has small input image size), and
keep the other hyper-parameters as default. We adopt standard ViT-small with 12 layers, 6 attention heads,
feature dimension as 384 and patch size as 16. We strictly follow the hyper-parameter setting and data
augmentation in DINO (Caron et al., 2021) for pretraining. In test-time finetuning, we empirically set the
hidden dimension d′ of the transformation module as d/2, and output dimension dproj of the projector as 64
for all datasets. We utilize AdamW optimizer finetuning, with learning rate set as 1e− 3 for TrafficSign and
5e− 4 for other datasets. λ is set as 0.1. For simplicity, the selection of hyper-parameters is conducted on
the meta-validation set of ImageNet, which is the only within-domain setting in Meta-Dataset.

Evaluation benchmark. We report the accuracy of randomly sampled 600 episodes for each dataset and
the average accuracy when comparing with the existing methods. The comprehensive comparison of both
accuracy and 95% confidence interval is in Appendix.

Backbone Image size Params(M) FLOPs(G)
Res18 84×84 11.69 1.82
ViT-tiny 84×84 5.38 0.72
Res34 224×224 21.80 3.68
ViT-small 224×224 21.97 4.61

Table 1: Comparison of parameter size and FLOPs between different backbones.

4.2 Comparison with State-of-the-art Methods

Before the comprehensive comparison, it is necessary to show the comparison between different backbone
is fair enough since our backbone model is not the same as the existing method. Therefore we present the
comparison of size of model parameters and FLOPs in Tab. 1, in which the FLOPs of all models are computed
by fvcore1. The results show that (1) compared with Res18, ViT-tiny is a much smaller and efficient model,
and (2) ViT-small is approximately comparable to Res34. In this way, the comparison of our proposed
method with state-of-the-art methods is reasonable and fair.

We compare our model with ProtoNet(Snell et al., 2017), CTX (Doersch et al., 2020), TSA (Li et al., 2022),
etc. These methods take the backbones of ResNet18 or ResNet34. Also, the pretrain-meta-train-finetune
baseline (P>M>F) (Hu et al., 2022) is not considered in computing average rank since extra data is used. As
in Tab. 2, when using ViT-small as backbone whose parameter size is comparable to that of ResNet34, our
model receives 1.6 average rank on all dataset. Specifically, on Texture and Fungi, our model outperforms the
strongest competitors CTX and TSA by about 8% and 10%, while on other datasets the performance of our
model is still comparable with or slight better than that of the existing methods. We notice that our model

1https://github.com/facebookresearch/fvcore
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Model Backbone ILSVRC Omni Acraft CUB DTD QDraw Fungi Flower Sign COCO Avg Rank
Finetune

Res18

45.78 60.85 68.69 57.31 69.05 42.60 38.20 85.51 66.79 34.86 56.96 10.2
Proto 50.50 59.98 53.10 68.79 66.56 48.96 39.71 85.27 47.12 41.00 56.10 10.5
Relation 34.69 45.35 40.73 49.51 52.97 43.30 30.55 68.76 33.67 29.15 42.87 14.6
P-MAML 49.53 63.37 55.95 68.66 66.49 51.52 39.96 87.15 48.83 43.74 57.52 9.2
BOHB 51.92 67.57 54.12 70.69 68.34 50.33 41.38 87.34 51.80 48.03 59.15 8.2
TSA 59.50 78.20 72.20 74.90 77.30 67.60 44.70 90.90 82.50 59.00 70.68 4.3
Ours ViT-t 56.40 72.52 72.84 73.79 77.57 67.97 51.23 93.30 84.09 55.68 70.54 4.1
Proto

Res34
53.70 68.50 58.00 74.10 68.80 53.30 40.70 87.00 58.10 41.70 60.39 7.4

CTX 62.76 82.21 79.49 80.63 75.57 72.68 51.58 95.34 82.65 59.90 74.28 2.8
TSA 63.73 82.58 80.13 83.39 79.61 71.03 51.38 94.05 81.71 61.67 74.93 2.5
P>M>F∗ 74.69 80.68 76.78 85.04 86.63 71.25 54.78 94.57 88.33 62.57 77.53 —
Ours

ViT-s
67.37 78.11 79.94 85.93 87.62 71.34 61.80 96.57 85.09 62.33 77.61 1.6

Table 2: Test accuracies and average rank on Meta-Dataset. Note that different backbones are adopted by
these methods. * denotes using extra data for training. The bolded items are the best ones with highest
accuracies.

is inferior to the best ones in Omniglot, while this is reasonable. Since Omniglot images represent simple
characters with monotone color patterns, each image patches contain less information than images in other
datasets. Vanilla ViTs have less efficiency in dealing with these image patches due to limited interaction
among patch embeddings. This problem can be solved with much sophisticated variants of ViT like Swin (Liu
et al., 2021b), and will be taken as future works. Moreover, our proposed method is better than P>M>F,
which not only utilizes extra data for training but also finetunes all model parameters during testing, on more
than half of the datasets, which strongly indicates the effectiveness of the proposed finetuning strategy in this
paper. As for using ViT-tiny which has much less parameter than Res18, our model is still comparable to the
state-of-the-art methods and outperforms many popular baselines. Particularly, compared with ProtoNet
which is one of the most famous and efficient methods in FSL, our eTT shows significant boost on Aircraft
by 19.74% and TrafficSign by 36.97%. The reason of the inferior results on several datasets against TSA can
be two folds. Firstly, the ViT-tiny intrinsically has smaller capacity than Res18. On the other hand, while it
is common to train ViT with large scale images and patches so that the images are splitted into abundant
patches and each patch-level token can receive enough information. In contrast, we adopt 84 × 84 images
with 8 × 8 patch size for ViT-tiny so that the comparison with Res18 is fair, which lead to less patches with
smaller size and may have negative influence on the performance. In general, the results indicate that our
proposed eTT can make ViT models a desirable choice for large scale FSL problems.

4.3 Model Analysis

To further validate the effectiveness of our method, we conduct a series of ablation studies on Meta-Dataset
using ViT-small below.

4.3.1 Design of Each Module

Can finetuning on meta-train set boost the performance? One would ask whether it is necessary to
make use of base annotations, as supervised pretraining is also effective in many FSL works (Ye et al., 2020;
Hou et al., 2019). To verify it, we finetune DINO-pre-trained ViT-small on meta-train split of ImageNet, in
which the options of all hyper-parameters and data augmentations follow DeiT (Touvron et al., 2021) using
either way of class token features or averaged patch features as image representations. After such a supervised
finetuning, we test the models both with the basic test-time finetuning method as in Sec. 3.3, which we
denote as LT+NCC, and with our proposed eTT. The results are shown in Fig. 3, from which we find out
that (1) Supervised finetuning does improve test accuracies on ImageNet, CUB and MSCOCO. Particularly,
the token finetune model receives 89.83% accuracy on CUB when testing with our eTT, which is remarkably
better than any other models. This is reasonable as similar images between ImageNet and these datasets. By
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Model ILSVRC Omni Acraft CUB DTD QDraw Fungi Flower Sign COCO Avg
Proto 63.37 65.86 45.11 72.01 83.50 60.88 51.02 92.39 49.23 54.99 63.84
LT+NCC 65.96 67.62 64.03 77.10 83.46 63.88 57.79 93.13 66.91 56.04 69.59
Last 66.32 71.04 78.04 86.25 86.67 64.22 55.69 94.44 65.55 55.94 72.42
First 61.54 50.46 69.23 79.17 83.10 68.69 49.93 93.50 54.28 58.45 66.84
LN 66.22 70.45 69.41 81.29 86.37 66.28 58.38 96.25 71.09 59.57 72.53
APT 66.75 75.16 75.41 84.25 86.47 69.55 60.03 96.38 78.20 61.10 75.33
Adapter 66.53 72.31 73.75 83.73 86.86 66.74 58.49 96.15 82.65 62.40 74.93
eTT 67.37 78.11 79.94 85.93 87.62 71.34 61.80 96.57 85.09 62.33 77.61

Random 66.12 76.33 78.35 84.77 86.78 70.13 59.25 96.00 82.28 59.59 75.96
Avg 66.11 75.06 77.07 85.16 87.35 70.72 61.79 96.54 84.28 62.18 76.73
Sampling 67.81 76.72 77.96 85.79 87.25 70.19 60.73 96.27 83.72 62.17 76.86
Full 67.37 78.11 79.94 85.93 87.62 71.34 61.80 96.57 85.09 62.33 77.61

Linear 66.35 74.26 79.42 83.65 86.02 71.11 55.73 95.89 82.73 59.90 75.51
Bottleneck 67.29 76.06 79.72 85.60 87.21 70.59 61.59 96.15 85.00 62.02 77.12
FiLM 66.91 75.32 78.26 85.78 86.83 70.29 61.65 96.50 84.48 61.75 76.78
Offset 67.37 78.11 79.94 85.93 87.62 71.34 61.80 96.57 85.09 62.33 77.61

w/o PR 66.72 74.20 78.42 85.06 87.01 70.34 61.64 96.51 84.23 61.08 76.52
w PR 67.37 78.11 79.94 85.93 87.62 71.34 61.80 96.57 85.09 62.33 77.61

w/o Stand 67.09 76.42 78.87 83.10 86.50 70.09 61.02 96.33 82.88 61.33 76.36
w Stand 67.37 78.11 79.94 85.93 87.62 71.34 61.80 96.57 85.09 62.33 77.61

Table 3: Test accuracies on Meta-Dataset of different variants of our proposed method. The bolded items
are the best ones with highest accuracies.

training on the image annotations of ImageNet, the model learns class-specific knowledge which cannot be
obtained during self-supervised learning. Since the categories are highly correlated and overlapped among
these datasets, the learned knowledge can also benefit the recognition on these novel datasets even though the
specific novel classes do not appear in the meta-train set. (2) Despite the improvement on the three datasets,
models with supervised finetuning degrade on the other datasets, especially on Traffic Sign and VGG Flower.
This is due to fitting class labels weakens the effect of these features and makes it harder to generalize to
novel domains. When taking into account the performance of all datasets, pretraining with DINO is generally
the much more desirable choice for better generalization over different domains. (3) The improvement of
our propose method against the basic LT+NCC is not consistent among three different kinds of pretraining
strategy. For example, while our method can boost the performance of DINO pre-trained model by 9.47% on
Aircraft and 4.83% on CUB, it can only bring much less advantage on models with supervised finetuning.

Effectiveness of APT and DRA. We test the DINO pre-trained model with different kinds of testing
strategies including (1) Proto: Directly generating predictions based on ProtoNet. The prototypes are
computed using averaged class token features from each category. (2) LT+NCC: The basic test-time
finetuning method in Sec. 3.3. (3) Last: Finetuning the last transformer layer during testing, together with
LT+NCC. which has similar parameter size to our method. (4) First: Finetuning the first transformer layer
during testing, together with LT+NCC. which has similar parameter size to our method. (5) LN: We try
to finetune the affinity parameter in each layer normalization as an alternative finetune strategy, which is
utilized in many cross-domain FSL works (Tseng et al.; Tsutsui et al., 2022). (6) APT: The model is finetuned
using APT together with LT+NCC, using cross entropy loss and the proposed prototypical regularization.
(7) Adapter: The model is finetuned using DRA together with LT+NCC, using cross entropy loss. (8) eTT:
The model is finetuned using our proposed APT, DRA and LT+NCC. The results in Tab. 3 show that while
LT+NCC can fundamentally improve the model which indicates the importance of test-time finetuning,
adding our proposed modules to the finetuning procedure can consistently bring higher performance. Also,
finetuning specific transformer layer can only bring limited improvement on few datasets: finetuning the last
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Figure 3: Test accuracy of different training strategy if testing with (a) LT+NCC or (b) our eTT.

Figure 4: Visualization of feature embeddings from a randomly sampled episode of TrafficSign.

layer leads to good performance on Aircraft, CUB and Texture, while updating the first layer leads to good
performance on Quickdraw and MSCOCO. However, this simple finetuning strategy cannot bring consistent
improvement on all datasets. This indicates that different data requires different levels of adaptation, and the
improvement is much smaller than that of our method. Moreover, we give the tSNE visualization of feature
embeddings of a randomly sampled episode from TrafficSign in Fig. 4, which demonstrates that utilizing our
proposed method can better regulate the feature embeddings into proper clusters.

Is prototypical initialization necessary? One of the most important parts of our APT is the attentive
prototypical initialization in which we use attentively aggregated patch embeddings to initialize the prefix
matrix. To verify this strategy, we compare several different choices of initialization, including (1) Random:
random initialization from normal distribution. (2) Avg: simply averaging all patch embeddings from each
category. (3) Sampling: randomly sampling one image for each category, and then initializing the prefix
matrix with the averaged patch embeddings of each image. (4) Full: computing prototypes with our proposed
attentive prototype. Results in Tab. 3 show that random initialization performs the worst, which can be
resulted from insufficient task-specific information provided by the prefix in this way. Meanwhile, among all
other strategies, using the attention map to aggregate patch embeddings as in Eq. 5 is better than simply
averaging, leading to about 1% improvement on average.

Do we need a more complex adapter structure? One would argue that our DRA structure is too simple
to learn the complex knowledge from support images. In Tab. 3 we compare three different instantiations of
adapters including (1) Linear: As in Li et al. (2022), we use a linear layer for each adapter, whose output
are than added to the original features in the MSA and FFN. (2) Bottleneck: We expand the linear layer
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to a bottleneck structure where two linear layers are used for each adapters. (3) FiLM: We compare DRA
with a FiLM-like variant, in which we add a scaling vector for each adapter as in FiLM layer Perez et al.
(2018). Note that such a method is similar to MTL (Sun et al., 2019) in FSL. The difference lies in that we
still use the original way to directly tune the parameters on the novel support sets, instead of using another
meta-trained module to generate the parameters. (4) Offset: Only an offset vector is adopted for each adapter.
The results reveals that the linear adapter performs the worst, which means such a structure is improper for
ViT in finetuning. Moreover, we also find that using the bottleneck adapter will result in a dilemma. If we
use small initial value for the adapter, the weights of each layer can only achieve gradient with extremely
small values. As the result, these weights, except the bias term of the last layer, can hardly be updated based
on the support knowledge, which means such an architecture almost equals to our design where only an offset
vector is utilized. On the other hand, if large initial values are adopted to avoid gradient diminishing, then
the output features from the adapters can make the predictions severely deviate from those without adapters,
thus leading to worse performance. As for the FiLM-like DRA, it is worse than offset DRA by about 0.8% on
average, while it doubles the parameter size based on offset DRA, leading to no significant additional efficacy.

Effectiveness of prototypical regularization. We also validate this regularization. In Tab. 3 we present
the test accuracy when finetuning with and without this loss function. We can find that by applying this
objective function, the model can have higher results on most datasets. Besides, as described in Sec 3.6, we
use a standardization technique when computing the prototypical regularization. To verify its efficacy, we
compare the model with and without such a standardization. The results are shown in Tab. 3. When not
using standardization, the results are generally worse given comparable confidence intervals (Tab. 11). The
results verify that this strategy can help the model with more stable finetuning procedure.

dproj ILSVRC Omni Acraft CUB DTD QDraw Fungi Flower Sign COCO Avg
64 67.18 75.30 78.88 86.20 87.09 69.82 61.61 96.31 82.24 62.14 76.68
96 66.23 75.69 78.26 85.67 87.28 70.25 61.97 96.59 84.10 62.17 76.82
128 67.31 76.83 78.81 85.77 87.36 70.16 60.81 96.53 84.29 62.12 77.00
256 66.83 78.04 78.38 84.60 86.68 70.43 61.03 96.23 85.33 62.10 76.97
192 67.37 78.11 79.94 85.93 87.62 71.34 61.80 96.57 85.09 62.33 77.61

Table 4: Test accuracies on Meta-Dataset of different variants of our proposed method. The bolded items
are the best ones with highest accuracies.

4.3.2 Comparison among Different Hyper-parameter Settings

In additional to the ablation study about the proposed module, We further verify different choices of hyper-
parameters in our model. Especially, dproj for the transformation module in APT and λ for the prototypical
regularization are tested in Tab. 4 and Tab. 5 in the Appendix. In general, the improvement is not consistent.
For dproj , we can find that using 192-d hidden dimension can get globally better results, which indicates
that such a choice can make a good balance between the model capacity and scale so that the finetuning
can be conducted both efficiently and effectively. As for λ, 0.1 seems to be a desirable choice. Intuitively,
smaller λ leads to less control of the prefix from the proposed prototypical regularization. Therefore, the
prefix may lose the desired information during the optimization on the support set. On the other hand, when
λ is too large, the regularization overwhelms the label supervision, and thus the model can hardly adapt to
the support knowledge, leading to worse performance especially on Omniglot and Aircraft.

5 Conclusion

We propose a novel finetuning method named efficient Transformer Tuning (eTT) for few-shot learning with
ViT as our backbone. By fixing the parameters in the backbone and utilizing attentive prefix tuning and
domain residual adapter, our method can guide the ViT model with comprehensive task-specific information,
which leads to better representations and performance. This is demonstrated by the fact that we establish
new state-of-the-arts on the large-scale benchmark Meta-Dataset.
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A Appendix

A.1 Limitations and Future Work

Despite the marginal effectiveness and efficiency of our proposed eTT, we mainly notice two points that should
be explored in the future: (1) The plain ViT backbone utilized in this paper, may not be the best choice to
the simple dataset, e.g., Omniglot, while a well-designed ViT backbone may potentially better improve the
efficacy of our method on such dataset. (2) A flexible finetuning algorithm such as (Lee et al.) may have
better generalization ability when facing episodes with various shots and ways, than the commonly-used
methods that adopt fixed test-time finetuning iterations. However, it is non-trivial to directly merge such
methods with our proposed eTT due to different network structures and tuning strategies. It can be taken as
the future work to properly utilize these flexible finetuning algorithm to further improve the performance of
ViT in FSL.
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A.2 Additional Experiment Results

A.2.1 Full Comparison with state-of-the-art methods

We show the accuracies together with confidence interval in Tab. 6. Beyond the accuracies which is analyzed
in the main context, the confidence interval of our eTT on both ViT-tiny and ViT-small is comparable with
the other competitors, which reflects that our method is stable and robust enough among different testing
episodes.

A.2.2 Influence of Training set

As we have stated in the main context, our eTT is trained on the meta-train split of ImageNet to make fair
comparison with other methods. To show to what extent training on the full ImageNet training set instead of
the meta-train set can impact the performance, we test our eTT using off-the-shelf DINO ViT-s model. The
results are shown in Tab. 7. We can find that (1) For those datasets on which DINO meta-train performs
better than P>M>F, using full ImageNet to train DINO can bring further improvement. (2) With the help of
more data, our eTT overpasses P>M>F on ILSVRC and MSCOCO. (3) While more data does improve the
results on Omniglot and TrafficSign, the final results are still worse than those of P>M>F, which we think
may be correlated with the limitations of our method as analyzed above. Given all these results, as a lighter
model in that no meta-training phase is utilized and only few parameters are engaged in the test-time tuning,
our method can still enjoy comparable performance with P>M>F when training on same amount of data.

A.2.3 Influence of DINO

The DINO pretrain procedure is an important part of our method. To verify the effectiveness of DINO
pretrain so that the comparison with other methods is fair enough, we present in Tab. 8 the results of TSA
using DINO-pretrained ResNet-34 and eTT using supervised pretrained ViT-s. We can find that (1) The
effect of DINO is not consistent on two backbones. While DINO benifits our eTT with about 5% accuracy on
average, it severely weakens the performance of TSA with a large margin. It means that for FSL, different
backbones require different pretrain strategy respectively. (2) While supervised pretrained ViT-s performs
worse on most datasets, it is better on CUB and COCO, which indicates learning label information from
ImageNet can help the model understanding novel knowledge from these two datasets.

A.2.4 Verification of potential overfitting in finetuning

As we have stated in Sec. 1, finetuning the whole backbone model with few support data will meet potential
overfitting problem. To reveal if such a problem exists in Meta-Dataset, we conduct an experiment as follow:
during a normal testing phase, we select all episodes whose minimum shot (minimum number of support
images for each class) is no larger than 2 (extremely small number of labelled instances), and compare the
average accuracies of eTT and simple finetuning based on these episodes. Tab. 9 and Tab. 10 show the
accuracies on support sets and query sets respectively. We can find that most of the datasets both methods
receive nearly 100% accuracy, which means these two methods can well learn the support data. Given this
fact, finetuning is much worse than eTT in terms of query accuracies. The overfitting can be reflected given
high training accuracies and worse testing performance, and to some extent our proposed eTT can fix this
problem.

A.2.5 More Visualization

We visualize the self-attention map from models with and without DRA on ILSVRC and TraffignSign in
Fig. 5. Specifically, we randomly sample an episode from each dataset and use our eTT to tune the model
based on the support samples. Then we calculate the self-attention map of the last layer’s class token and
highlight the areas with top 20% attention scores. We can find that for the in-domain ILSVRC episode, the
model can attend to similar regions no matter whether DRA is used. In contrast, the model without DRA
can easily attend to background regions with less valuable information, which reveals a potential reason that
these two models has similar accuracies on ILSVRC but large performance gap on TrafficSign.
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Futhermore, we visualize more episodes from Aircraft, TrafficSign and MSCOCO in Fig. 6, Fig. 7 and Fig. 8,
which shows that our porposed eTT can remarkably improve the embedding space after test-time finetuning.

A.3 Broader Impact

Our paper presents a more efficient and practical FSL pipeline utilizing ViT. We hope this work can shed
light on the broader usage of ViT in FSL tasks. On the other hand, the proposed method can provide
researchers with alternative choice for FSL applications in real-case scenarios with large-scale meta-train set
and challenging various test episodes.

dproj ILSVRC Omni Acraft CUB DTD QDraw Fungi Flower Sign COCO Avg
0.01 67.01 76.56 78.34 85.53 86.96 70.03 61.20 96.17 85.00 62.67 76.95
0.05 66.49 77.40 78.92 85.80 87.54 70.23 60.78 96.28 84.95 62.38 77.08
0.5 66.88 77.73 78.65 86.00 87.15 70.48 61.64 96.23 84.39 63.39 77.25
0.9 67.03 76.55 77.89 85.78 87.04 70.08 62.45 96.20 84.44 62.83 77.03
0.1 67.37 78.11 79.94 85.93 87.62 71.34 61.80 96.57 85.09 62.33 77.61

Table 5: Test accuracies on Meta-Dataset of different variants of our proposed method. The bolded items
are the best ones with highest accuracies.

Model Backbone ILSVRC Omni Acraft CUB DTD QDraw Fungi Flower Sign COCO Rank
Finetune

Res18

45.781.10 60.851.58 68.691.26 57.311.26 69.050.90 42.601.17 38.201.02 85.510.68 66.791.31 34.860.97 10.2
Proto 50.501.08 59.981.35 53.101.00 68.791.01 66.560.83 48.961.08 39.711.11 85.270.77 47.121.10 41.001.10 10.5
Relation 34.691.01 45.351.36 40.730.83 49.511.05 52.970.69 43.301.08 30.551.04 68.760.83 33.671.05 29.151.01 14.6
P-MAML 49.531.05 63.371.33 55.950.99 68.660.96 66.490.83 51.521.00 39.961.14 87.150.69 48.831.09 43.741.12 9.2
BOHB 51.921.05 67.571.21 54.120.90 70.690.90 68.340.76 50.331.04 41.381.12 87.340.59 51.801.04 48.030.99 8.2
TSA 59.501.10 78.201.20 72.201.00 74.900.90 77.300.70 67.600.90 44.701.00 90.900.60 82.500.80 59.001.00 4.3
Ours ViT-t 56.401.13 72.521.36 72.841.04 73.791.09 77.570.84 67.970.88 51.231.15 93.300.57 84.091.07 55.681.05 4.1
Proto

Res34
53.701.07 68.501.27 58.000.96 74.100.92 68.800.77 53.301.06 40.701.15 87.000.73 58.101.05 41.701.08 7.4

CTX 62.760.99 82.211.00 79.490.89 80.630.88 75.570.64 72.680.82 51.581.11 95.340.37 82.650.76 59.901.02 2.8
TSA 63.730.99 82.581.11 80.131.01 83.390.80 79.610.68 71.030.84 51.381.17 94.050.45 81.710.95 61.670.95 2.5
Ours ViT-s 67.370.97 78.111.22 79.941.06 85.930.91 87.620.57 71.340.87 61.801.06 96.570.46 85.090.90 62.330.99 1.6

Table 6: Test accuracies, confidence interval and average rank on Meta-Dataset. Note that different
backbones are adopted by these methods. The bolded items are the best ones with highest accuracies.

Model Train Set ILSVRC Omni Acraft CUB DTD QDraw Fungi Flower Sign COCO Avg
eTT meta-train 67.37 78.11 79.94 85.93 87.62 71.34 61.80 96.57 85.09 62.33 77.61
eTT full 74.76 78.73 80.10 86.99 87.72 71.20 61.95 96.66 85.83 64.25 78.82
P>M>F full 74.69 80.68 76.78 85.04 86.63 71.25 54.78 94.57 88.33 62.57 77.53

Table 7: Test accuracies on Meta-Dataset of different variants of our proposed method. The bolded items
are the best ones with highest accuracies. The highlighted rows denote the final model in our main paper.

17



Published in Transactions on Machine Learning Research (08/2022)

Model Pretrain ILSVRC Omni Acraft CUB DTD QDraw Fungi Flower Sign COCO Avg
TSA Sup. 59.50 78.20 72.20 74.90 77.30 67.60 44.70 90.90 82.50 59.00 70.68
TSA DINO 48.18 64.94 56.74 45.49 69.06 59.51 31.13 81.01 48.70 26.18 53.09
eTT Sup. 65.17 67.47 73.30 87.71 84.50 67.46 55.51 92.55 64.08 63.68 72.14
eTT DINO 67.37 78.11 79.94 85.93 87.62 71.34 61.80 96.57 85.09 62.33 77.61

Table 8: Test accuracies on Meta-Dataset of different variants of our proposed method. The bolded items
are the best ones with highest accuracies. The highlighted rows denote the final model in our main paper.

Model ILSVRC Omni Acraft CUB DTD QDraw Fungi Flower Sign COCO Avg
eTT 100.00 99.99 100.00 100.00 100.00 100.00 99.79 100.00 100.00 99.15 99.89
FT 100.00 99.87 100.00 100.00 100.00 100.00 96.95 100.00 100.00 95.20 99.20

Table 9: Support set accuracies of eTT and Finetune on testing episodes whose minimum shots is no larger
than 2.

Model ILSVRC Omni Acraft CUB DTD QDraw Fungi Flower Sign COCO Avg
FT 29.19 54.54 35.10 41.54 53.66 43.37 38.53 76.76 72.90 41.21 48.68
eTT 40.22 64.79 41.33 55.11 66.20 49.14 56.33 85.03 75.29 56.19 58.96

Table 10: Query set accuracies of eTT and Finetune on testing episodes whose minimum shots is no larger
than 2. The bolded items are the best ones with highest accuracies.

Model ILSVRC Omni Acraft CUB DTD QDraw Fungi Flower Sign COCO
w/o stand 1.06 1.25 1.05 0.89 0.64 0.92 1.05 0.38 0.96 0.96
w stand 0.97 1.22 1.06 0.91 0.57 0.87 1.06 0.46 0.90 0.99

Table 11: The corresponding confidence intervals of models in ablation study on standardization.
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w DRA w DRAw/o DRA w/o DRA

Figure 5: Visualization of self-attention from model with and without DRA on ILSVRC (left) and TrafficSign
(right). The white regions are those with top 20% attention scores
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Figure 6: More visualization of feature embeddings from a randomly sampled episode of TrafficSign.
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Figure 7: More visualization of feature embeddings from a randomly sampled episode of Aircraft.
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Figure 8: More visualization of feature embeddings from a randomly sampled episode of MSCOCO.
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