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Abstract

A recent theory shows that a multi-player decen-
tralized partially observable Markov decision pro-
cess can be transformed into an equivalent single-
player game, enabling the application of Bell-
man’s principle of optimality to solve the single-
player game by breaking it down into single-
stage subgames. However, this approach en-
tangles the decision variables of all players at
each single-stage subgame, resulting in backups
with a double-exponential complexity. This paper
demonstrates how to disentangle these decision
variables while maintaining optimality under hi-
erarchical information sharing, a prominent man-
agement style in our society. To achieve this,
we apply the principle of optimality to solve any
single-stage subgame by breaking it down fur-
ther into smaller subgames, enabling us to make
single-player decisions at a time. Our approach re-
veals that extensive-form games always exist with
solutions to a single-stage subgame, significantly
reducing time complexity. Our experimental re-
sults show that the algorithms leveraging these
findings can scale up to much larger multi-player
games without compromising optimality.

The multi-player decentralized partially observable Markov
decision process (Dec-POMDP) is a general game-theoretic
setting for decision-making by a team of collaborative play-
ers (Amato et al., 2013). In this multi-player game, players
must coordinate while they can neither see the actual state
of the world nor explicitly share what they see or do with
each other due to communication costs, latency, or noise.
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This so-called silent coordination dilemma provides a par-
tial explanation of the worst-case complexity results—i.e.,
infinite-horizon cases are undecidable, finite-horizon ones
are NEXP-hard, and finding ϵ-approximations remains hard
(Bernstein et al., 2002; Rabinovich et al., 2003). Methods
for Dec-POMDPs are split between local and global, each
with strengths and weaknesses.

Local methods trade global optima, or ϵ-approximations
for weaker solution concepts, e.g., local optima, Nash equi-
libria, or any arbitrary feasible solution. While they share
core ideas with global methods, their primary focus is on
solving relaxations of the original multi-player game, e.g.,
independent planners reason in isolation, policy gradient
targets first-order solutions of non-convex functions (Tan,
1998; Peshkin et al., 2001; Bono et al., 2018). Of particular
attention, local methods using deep neural networks can
apply effectively to virtually any non-critical application,
e.g., online services, logistics, or board games (Lowe et al.,
2017; Foerster et al., 2018; Rashid et al., 2018).

On the other hand, in many critical and high-stakes appli-
cations, e.g., search and rescue, security, and healthcare,
global methods can find solutions with the required theoret-
ical guarantees, but scalability remains a significant issue.
These algorithms recast the original multi-player game into
an equivalent single-player one, which overcomes the silent
coordination dilemma and allows the principle of optimality
to apply. Intuitively, this principle decomposes the single-
player game into single-stage subgames and solves them
recursively. Yet, doing so, in return, virtually entangles
decision variables of all players at each single-stage sub-
game, resulting in double-exponential complexity. Because
they update decision variables of all players in sync at ev-
ery single-stage subgame, even a single update can be pro-
hibitively expensive (Szer & Charpillet, 2005; MacDermed
& Isbell, 2013; Nayyar et al., 2013; Oliehoek, 2013). To
somewhat mitigate this burden, branch-and-bound search
algorithms and mixed-integer linear programs were intro-
duced, but the limitation remains (Oliehoek et al., 2010;
Dibangoye et al., 2009; 2013; 2016). In many cases, how-
ever, real-world environments contain significant structure
that can be exploited (Amato et al., 2013).

Indeed, several forms of structure have been investigated in
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the past—e.g., dynamics independence (Becker et al., 2004;
Dibangoye et al., 2012), weak-separability (Nair et al., 2005;
Dibangoye et al., 2014), and delayed information-sharing
(Nayyar et al., 2010). Algorithms that use such structures
can optimally solve structured multi-player games much
faster than generic ones. This paper exploits HIS structure, a
dominant management style in our society for corporations,
governments, criminal enterprises, armies, and religions.
This management style involves each player being aware of
what its subordinate knows, and this knowledge is passed
down the chain of command. In other words, player n at
the top of the hierarchy knows all that player n ´ 1 knows;
player n´2 knows all that player n´3 knows, and so forth.
Moreover, HIS is equivalent to one-sidedness when only
two players are involved, which was previously recognized
as a tractable structure for two-person partially observable
stochastic games (Horák et al., 2017; Horák & Bošanskỳ,
2019; Hadfield-Menell et al., 2016; Malik et al., 2018; Xie
et al., 2020). Still, little is known about how HIS affects
existing theory and algorithms.

The main contribution of this paper is the proof that un-
der the HIS assumption, perfect-information extensive-form
games always exist with solutions to single-stage subgames,
resulting in a significant reduction in time complexity. When
expressed as extensive-form games, one can optimize all
decision variables in isolation while preserving optimality,
resulting in an exponential drop in time complexity, hence
generalizing to multiple players a similar property to that
available under one-sidedness (Xie et al., 2020). To show
this result, we apply the principle of optimality to solve
any single-stage subgame by breaking it down further into
smaller subgames, enabling us to make one-player decisions
at a time. In the resulting perfect-information extensive-
form game, we exhibit concise representations of states and
actions along with Bellman’s optimality equations to solve
the game. Finally, we present a point-based value-iteration
algorithm for solving the original multi-player game lever-
aging HIS properties. Experiments show that algorithms ex-
ploiting these findings scale up to much larger multi-player
games without compromising optimality.

1. Background
This section presents state-of-the-art multi- and single-
player formulations for Dec-POMDPs under HIS.

Notations. For integers t1 ď t2, κt1:t2 is a shorthand for
pκt1 , κt1`1, . . . , κt2q. Let κt1:t2 be a complete vector, short-
hands κt1: and κ:t2 denote suffix and prefix, respectively.
For two variables a and b, we denote by δba the Kronecker
delta, which is 1 if a equals b, and 0 otherwise.

1.1. Multi-Player Formulation

An n-player Dec-POMDP is given by tuple M
.
“

xn,X,U, Z, p, r, s0, γ, ℓy, where X is a finite set of hid-
den states; U i is the finite actions set for player i, where
U “ U1 ˆ ¨ ¨ ¨ ˆ Un specifies the set of joint actions
u “ pu1, . . . , unq; Zi is the finite observation set for player
i, where Z “ Z1 ˆ ¨ ¨ ¨ ˆZn specifies the set of joint obser-
vations z “ pz1, . . . , znq; function p : XˆU Ñ △pXˆZq

describes a transition function with conditional probability
distribution ppy, z|x, uq defining the probability of transi-
tioning from state x to y after taking joint action u and
seeing z; function r : X ˆ U Ñ R is a reward model with
rpx, uq being the immediate reward received after taking
joint action u from state x; s0 is the initial state distribution,
γ is the discount factor, and ℓ is the number of stages.

In the remainder, we consider M under the HIS assump-
tion. That is, every player 0 ă i ď n has instantaneous and
cost-free access to its subordinate’s action ui´1

τ´1 and obser-
vation zi´1

τ at every stage τ . Consequently, there exists a
function ζi that maps ziτ to ζipziτ q “ pui´1

τ´1, z
i´1
τ q. Player

1 is at the bottom of the hierarchy, i.e., the player whose
actions and observations are public to all other players, and
player n is at the top of the hierarchy, i.e., the player that
sees all actions and observations. These characteristics are
embodied in many real-world applications, including au-
tonomous vehicle platooning, assembly line optimization,
or railway traffic control. Consider an autonomous vehicle
platooning that relies on a leading vehicle followed by a
group of autonomous vehicles; see Figure 1. Autonomous
vehicles involved in platooning can exchange information
between vehicles using Vehicle-to-Everything (V2X) com-
munications in an HIS fashion (Wang et al., 2015) . That
is the total data transit from each autonomous vehicle i to
its following autonomous vehicle i ` 1. The objective of
platoon control is to determine the control input of the fol-
lowing autonomous vehicles so that all the vehicles move
at the same speed while maintaining the desired distances
between each pair of preceding and following vehicles. Pla-
tooning constitutes an efficient technique for increasing road
capacity, reducing fuel consumption, and enhancing driving
safety and comfort.

1.2. Limitations of Multi-Player Formulations

While HIS is a dominant management style in our society,
little is known about how HIS affects existing theories and
algorithms. In general, solving M aims at finding optimal
joint policy a0:

.
“ pa0, . . . , aℓ´1q, i.e., an n-tuple of se-

quences of private decision rules ai0:
.
“ pai0, . . . , a

i
ℓ´1q, one

per player. For each player i, private decision rule aiτ : o
i
τ ÞÑ

ui
τ depends on τ -step histories oiτ

.
“ pui

0:τ´1, z
i
1:τ q, with 0-

step private history being oi0
.
“ H. A joint policy is optimal

if it maximizes the expected cumulative reward starting at
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n ì 2 ì 1 i 1

˝ ˝ ˝ ˝ ˝ ˝

Figure 1. V2X information transmitted to vehicles in the platooning.

initial state distribution s0 onward and given by υa0:
0 ps0q

.
“

Epx0,o0q„Prt¨|s0,a0:utαa0:
0 px0, o0qu where αaτ:

τ pxτ , oτ q
.
“

Epxτ:ℓ´1,uτ:ℓ´1q„Prt¨|xτ ,oτ ,aτ:ut
řℓ´1

t“τ γτ´t ¨ rpxt, utqu for
any game stage τ . Unfortunately, optimally solving M in its
multi-player formulation is non-trivial because of the silent
coordination dilemma (Rabinovich et al., 2003). Indeed, no
statistics on what the players see and do are sufficient to
solve M optimally. Private histories oiτ are not geared to
perform policy evaluation, let alone policy ordering. In addi-
tion, joint histories oτ

.
“ po1τ , . . . , o

n
τ q cannot ensure policy

disentanglement, i.e., an individual policy per player. To
better understand this, notice that multi-player coordination
is based on common ground, i.e., knowledge, beliefs, and
assumptions shared among players about the environment
at each stage, making it possible to perform policy ordering
and disentanglement. Paradoxically, M aims to coordinate
agents without common ground, thus explaining the silent
coordination dilemma. The motivation for a single-player
reformulation is twofold: first, to provide the central plan-
ner with the common ground at the offline planning phase,
which achieves policy ordering and disentanglement, then
to ease the transfer of theories and algorithms from single-
to multi-player formulations.

1.3. Single-Player Reformulation

The single-player reformulation describes M from the per-
spective of an offline central planner (Szer & Charpillet,
2005; Nayyar et al., 2013; Oliehoek, 2013; Dibangoye et al.,
2013; 2016). This planner reasons for all players in sync,
prescribing a joint decision rule and receiving rewards and
public observations. Game M lies in some underlying state
and players have experienced a joint history at each plan-
time stage. Unfortunately, the central planner can see neither
the state nor the joint history. Yet, it can still prescribe to
players what joint decision rule to follow based only upon
the joint policy it has prescribed to players so far. Upon
executing the prescribed joint decision rule, the central plan-
ner receives the expected immediate reward and the next
public observation, i.e., the information of player 1. This
process follows at the next plan-time stage, but the game
has another underlying state, and players are experiencing
another joint history. This process repeats until the num-
ber of stages is exhausted. The summary of the history of
prescribed joint decision rules and received public obser-
vations, i.e., occupancy state, describes a Markov decision
process. Occupancy states proved to be common ground for
coordinating players under the silent coordination dilemma,

i.e., occupancy states are sufficient statistics for optimal
decision-making in Dec-POMDPs (Dibangoye et al., 2013;
2016).

Markov decision process M 1 .
“ xS,A,TTT ,RRR, s0, γ, ℓy

w.r.t. M consists of the occupancy-state space S, where
occupancy states are conditional probability distribution
over hidden states and joint histories; the action space
A prescribing joint decision rules; the transition proba-
bility TTT : S ˆ A Ñ △pSq, where TTT psτ , aτ , sτ`1q

.
“

ř

o,z δ
sτ`1

ρpsτ ,aτ ,z1q

ř

x,y sτ px, oq ¨ppy, z|x, aτ poqq, where the
next occupancy state sτ`1

.
“ ρpsτ , aτ , z

1
τ`1q follows from

taking joint decision rule aτ in occupancy state sτ and
then receiving public observation z1τ`1, i.e., for any ar-
bitrary hidden state y and joint history po, u, zq, we have
sτ`1py, po, u, zqq9

ř

x sτ px, oq¨δz
1

z1
τ`1

¨δuaτ poq
¨ppy, z|x, uq;

and finally, RRR : S ˆ A Ñ R is the expected immediate re-
ward function, i.e., RRRpsτ , aτ q

.
“

ř

x,o sτ px, oq ¨ rpx, aτ poqq.
Recasting the original multi-player game into an equiva-
lent single-player one allows the principle of optimality to
solve the single-player game by breaking it down into single-
stage subgames and solving them recursively. Consequently,
optimally solving M aims at finding solutions V ˚

τ psτ q

of single-stage subgame for every occupancy state sτ ,
i.e., V ˚

τ psτ q “ maxaτ Q
˚
τ psτ , aτ q, where Q˚

τ psτ , aτ q
.
“

RRRpsτ , aτ q ` γ
ř

sτ`1
TTT psτ , aτ , sτ`1q ¨ V ˚

τ`1psτ`1q with
boundary condition V ˚

ℓ p¨q
.
“ 0. Each occupancy state

sτ has its corresponding single-stage subgame Gsτ
.
“

xn,A,Q˚
τ psτ , ¨qy, whose solution is V ˚

τ psτ q. Optimally
solving single-stage subgame Gsτ is significantly more ef-
ficient by leveraging the piecewise-linearity and convexity
property of action-value functions Q˚

τ .

Lemma 1.1. For every game stage τ , the optimal value func-
tion Q˚

τ : SˆA Ñ R is piecewise-linear and convex over oc-
cupancy states and joint decision rules. Alternatively, there
exists a finite collection Qτ Ď tβ

aτ`1:
τ |aτ`1: P Aτ`1:u of

action-value functions βaτ`1:
τ under joint policy aτ`1:, such

that: for occupancy state sτ and joint decision rule aτ ,

Q˚
τ psτ , aτ q “ maxβτ PQτ Epx,o,uq„Prt¨|sτ ,aτ utβτ px, o, uqu

βaτ`1:
τ px, o, uq “ rpx, uq`γEpy,zq„pp¨|x,uqtα

aτ`1:

t`1 py, po, zqqu

with boundary condition α¨
ℓp¨q “ β¨

ℓp¨q
.
“ 0.

Lemma 1.1 allows us to optimally solve a single-stage sub-
game Gsτ by taking the best among solutions of single-stage
subgames Gβτ

sτ

.
“ xn,A,Qβτ

psτ , ¨qy induced by action-
value function βτ P Qτ under a fixed joint policy, where
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Qβτ
psτ , ¨q : aτ ÞÑ Epx,o,uq„Prt¨|sτ ,aτ utβτ px, o, uqu. In par-

ticular, the linearity of Qβτ psτ , ¨q over joint decision rules
will play a crucial role in disentangling decision variables.

1.4. Limitations of Single-Player Reformulations

The single-player reformulation applies under HIS, but the
curse of dimensionality restricts its scalability in the face
of games with many players. To better understand this, no-
tice that the complexity of optimally solving a single-player
reformulation depends on two operators: the point-based
backup operator, which optimally solves single-stage sub-
game Gβτ

sτ , and the estimation operator, which updates all
decision variables involved in the common ground, i.e., oc-
cupancy states. In either case, the single-player reformula-
tion is not geared to exploit HIS. State-of-the-art approaches
to solving Gβτ

sτ perform either brute-force or implicit enu-
meration and evaluation of double-exponentially many joint
decision rules (Oliehoek et al., 2010; Dibangoye et al., 2009;
2013; 2016). This provides an intuitive explanation for the
negative complexity results: optimally solving Gβτ

sτ is NP-
hard, and finding ϵ-approximations remains hard (Tsitsiklis,
1984). The estimation operator also suffers from the curse
of dimensionality. Indeed, the number of decision variables
of all players in the common ground under the silent coor-
dination dilemma grows exponentially with time and team
size. In this paper, we investigate the following question.

How can we improve the representations of common
ground and Bellman optimality equations to scale-up
point-based backup and estimation operators to optimally
solving Gβτ

sτ and eventually M 1 (resp. M ) under HIS?

2. Hierarchical Information Sharing
This section explores the ramifications of HIS assumption
in achieving an optimal solution for a single-stage subgame,
specifically, Gβτ

sτ .

2.1. From Single-Stage to Extensive-Form Games

While the principle of optimality allows us to break down
the single-player reformulation M 1 into smaller subgames
Gβτ

sτ per stage, an alternative approach is to segment single-
stage subgames Gβτ

sτ per player further. That allows the
centralized planner to act sequentially for each player, start-
ing from player 1 up to player n. In addition, instead of
choosing a decision rule for each player based on the cur-
rent occupancy state and decision rules selected thus far, the
planner can independently branch over each history that HIS
makes available to the current player, without compromising
optimality. A formal description of this process follows.

Starting from player 1 at the bottom of the hierarchy, cf. Fig-

ure 2, the planner chooses action u1
τ according to its total

available information ς1τ “ psτ , o
1
τ q. It then moves to player

2, the next player in the reversed order of the hierarchy, but
now it randomly lands on total available information ς2τ “

pς1τ , u
1
τ , o

2
τ q and chooses action u2

τ . The process continues
until the planner reaches player n at the top of the hierar-
chy, where it randomly lands on total available information
ςnτ “ pςn´1

τ , un´1
τ , onτ q and chooses action un

τ and receives
expected rewards Rpςnτ , u

n
τ q

.
“ Ex„Prt¨|ςnτ ,un

τ utβτ px, o, uqu

upon taking action un
τ in information state ςnτ . Upon acting

sequentially for i players, the total information available
to the planner denoted ςi`1

τ
.
“ pςiτ , u

i
τ , o

i`1
τ q, is the current

occupancy state sτ of the single-stage subgame Gβτ
sτ along

with the sequence of actions that the planner selected and
private histories that the planner received according to prob-
ability T pςi`1

τ |ςiτ q
.
“ Prtoi`1

τ |sτ , o
1
τ , . . . , o

i
τu ¨ δ

ςi`1
τ

ςiτ ,u
i
τ ,o

i`1
τ

.

ς1

u1

ςτς2˝ ςτς2˝

¨ ¨ ¨

¨ ¨ ¨

u1

ςτς2˝ςτς2˝

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

u1 u1

˝ ˝ ˝˝

Figure 2. The search space for a single-stage subgame from a cen-
tralized planner acting sequentially one player at a time, illustrated
as an AND/OR tree. OR nodes (triangle) represent alternative
ways to solve Ḡβτ

sτ . AND nodes (circle) represent subproblem
alternatives to be solved. Best viewed in color.

The total available information of the sequential-move cen-
tral planner when solving a single-stage subgame describes
a common-payoff perfect-information extensive-form game
(Shoham & Leyton-Brown, 2008).

Definition 2.1. The common-payoff perfect-information
extensive-form game1 w.r.t. Gβτ

sτ is a tuple Ḡβτ
sτ

.
“

xn,Σ,Ψ, T,Ry where: n is the number of players; Σ is
the set of nodes that occupancy state sτ induces; Ψ: Σ Ñ

2Y
n
i“1U

i

is a function that specifies the allowed actions from
each node ς P Σ; transition function T : Σ ˆ pYn

i“1U
iq ˆ

Σ Ñ r0, 1s specifies the probability of a successor node; re-
ward function R : ΣˆpYn

i“1U
iq Ñ R specifies the common

payoff received upon taking an action in a node.
1 This definition differs from the formal definition of an exten-

sive form game (EFG). To recover the standard EFG formalism,
note that: i) agents act in sequence, ii) rewards are zero everywhere
except at the leaves of the game tree, iii) stochastic transitions cor-
respond to the presence of a chance player between two agents.

4



Solving Hierarchical Information-Sharing Dec-POMDPs

2.2. Optimally Solving Gβτ
sτ As Ḡβτ

sτ

Optimally solving a common-payoff perfect-information
extensive-form game aims at finding the action-value func-
tions β1:n,˚

τ mapping nodes and actions to optimal values.
Unlike the original single-stage subgame Gβτ

sτ , the perfect
information extensive form game Ḡβτ

sτ makes the HIS struc-
ture explicit. Every time the planner acts on behalf of a
player, that player is perfectly informed about all the histo-
ries that have previously occurred—i.e., all histories of its
subordinates. Hence, the total information nodes include
the actions the planner selected for the subordinates of the
current player, along with the histories of its subordinates.
Nonetheless, both games yield the same solution.

Theorem 2.2. Any optimal solution for Ḡβτ
sτ is also an

optimal solution for Gβτ
sτ . Besides, the optimal action-value

functions β1:n,˚
τ of Ḡβτ

sτ is the solution of the Bellman’s
optimality equations: at any i, ςiτ , and ui

τ ,

βi,˚
τ pςiτ , u

i
τ q “ Eςi`1

τ „T p¨|ςiτ ,u
i
τ q

tmax
ui`1
τ

βi`1,˚
τ pςi`1

τ , ui`1
τ qu,

with boundary condition βn,˚
τ : pςnτ , u

n
τ q ÞÑ Rpςnτ , u

n
τ q.

Also, greedy decision rule ai,˚τ for any player i at oiτ is:

ai,˚τ poiτ q P argmaxui
τ
βi,˚
τ pςiτ , u

i
τ q,

where ςiτ
.
“ xsτ , o

1:i
τ , a1:i´1,˚

τ po1:i´1
τ qy.

Proof. The proof proceeds in two steps. First, it shows
that the original game Gβτ

sτ can alternatively be solved via a
sequential-move central planner, which breaks Gβτ

sτ down
into smaller subgames xGβτ

sτ ,H
, Gβτ

sτ ,a1
τ
, . . . , Gβτ

sτ ,a
1:n´1
τ

y,
one subgame per player. To this end, recall the goal
of optimally solving Gβτ

sτ , i.e., finding a joint deci-
sion rule which yields the highest performance index,
Vβτ psτ q

.
“ maxaτ Qβτ psτ , aτ q. The expansion of joint

decision rule aτ as a n-tuple of private decision rules
pa1τ , a

2
τ , . . . , a

n
τ q allows to rewite the objectif of Gβτ

sτ as
follows, Vβτ

psτ q “ maxa1
τ
maxa2

τ
. . .maxan

τ
Qβτ

psτ , aτ q.
Let Qi

βτ
psτ , ¨q : a1:iτ ÞÑ maxai`1:n

τ
Qβτ

psτ , aτ q be a se-
quential action-value function. Then, it follows that

Vβτ
psτ q “ max

a1
τ

max
a2
τ

. . .max
an
τ

Qβτ
psτ , aτ q,

“ max
a1
τ

„

max
a2
τ

. . .max
an
τ

Qβτ
psτ , aτ q

ȷ

,

“ max
a1
τ

Q1
βτ

psτ , a
1
τ q.

Interestingly, for every player i P t1, 2, . . . , n ´ 1u, the
action-value functions Qi

βτ
psτ , a

1:i
τ q satisfy the following

recursion

Qi
βτ

psτ , a
1:i
τ q “ max

ai`1
τ

max
ai`2
τ

. . .max
an
τ

Qβτ
psτ , aτ q,

“ max
ai`1
τ

„

max
ai`2
τ

. . .max
an
τ

Qβτ psτ , aτ q

ȷ

,

“ max
ai`1
τ

Qi`1
βτ

psτ , a
1:i`1
τ q,

with boundary condition Qn
βτ

psτ , aτ q
.
“ Qβτ

psτ , aτ q.
For any arbitrary player i P t2, 3, . . . , nu, define game
Gβτ

sτ ,a
1:i´1
τ

.
“ xi, Ai, Qi

βτ
psτ , a

1:i´1
τ , ¨qy to be the sub-

game upon the sequential-move central planner selected
decision rules a1:i´1

τ starting in game Gβτ
sτ , with bound-

ary condition Gβτ

sτ ,H
.
“ x1, A1, Q1

βτ
psτ , ¨qy. Conse-

quently, optimally solving the original game Gβτ
sτ can

be performed by optimally solving smaller subgames
xGβτ

sτ ,H
, Gβτ

sτ ,a1
τ
, . . . , Gβτ

sτ ,a
1:n´1
τ

y, one subgame per player,
recursvively.

Next, we shall prove that the best decision rule in any arbi-
trary sequential-move subgame Gβτ

sτ ,a
1:i´1
τ

depends on the
current occupancy state sτ along with previously selected
decision rules a1:i´1

τ , only through the corresponding nodes
ςiτ

.
“ psτ , u

1:i´1
τ , o1:iτ q of the perfect information extensive

form game Ḡβτ
sτ . In other words, instead of selecting actions

for all private histories of player i in sync, one can choose
the best action for each private history independently with-
out compromising optimality. The proof of this statement
proceeds by induction from player n to player 1. At player
n, the greedy decision rule ânτ satisfies the following:

ânτ P argmaxan
τ
Qn

βτ
psτ , aτ q,

P argmaxan
τ
Qβτ

psτ , aτ q,

P argmaxan
τ

Epx,o,uq„Prt¨|sτ ,aτ utβτ px, o, uqu.

Expanding over private histories of player n, we have that

ânτ ponτ q P argmaxun
τ

Epx,o,uq„Prt¨|sτ ,onτ ,aτ utβτ px, o, uqu.

Leveraging information available to player n as provided by
the HIS assumption, we know that the knowledge of private
history onτ implies the knowledge of histories of all other
players o1:n´1

τ , hence the joint history oτ , i.e.,

ânτ ponτ q P argmaxun
τ

Ex„Prt¨|sτ ,oτ ,aτ utβτ px, o, uqu.

In addition, the knowledge of o1:n´1
τ together with the

decision rules a1:n´1
τ the sequential-move central plan-

ner selected previously, makes it possible to access node
ςnτ

.
“ xsτ , o

1:n
τ , a1:n´1

τ po1:n´1
τ qy such that:

ânτ ponτ q P argmaxun
τ
βn
τ pςnτ , u

n
τ q,

where βn
τ : pςnτ , u

n
τ q ÞÑ Ex„Prt¨|ςnτ ,un

τ utβτ px, o, uqu, which
proves the statement holds at player n. Define function

5
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αn
τ : ς

n
τ ÞÑ maxun

τ
βn
τ pςnτ , u

n
τ q at player n. Notice that the

value of the sequential-move subgame Gβτ

sτ ,a
1:n´1
τ

can be
rewritten as follows:

Qn´1
βτ

psτ , a
1:n´1
τ q “ max

an
τ

Qn
βτ

psτ , aτ q

“ Eςnτ „Prt¨|sτ ,a
1:n´1
τ u

tmax
un
τ

βn
τ pςnτ , u

n
τ qu

“ Eςnτ „Prt¨|sτ ,a
1:n´1
τ u

tαn
τ pςnτ qu.

Suppose the statement holds for any player i ą 1, with
greedy decision rule âiτ poiτ q P argmaxui

τ
βi
τ pςiτ , u

i
τ q. De-

fine function αi
τ : ς

i
τ ÞÑ maxui

τ
βi
τ pςiτ , u

i
τ q at player i. Also,

the value of the sequential-move subgame Gβτ

sτ ,a
1:i´1
τ

can
be rewritten by expanding over the sequential-move nodes
ςiτ

.
“ xsτ , o

1:i
τ , a1:i´1

τ po1:i´1
τ qy, i.e.,

Qi´1
βτ

psτ , a
1:i´1
τ q “ Eςiτ „Prt¨|sτ ,a

1:i´1
τ u

tαi
τ pςiτ qu.

We are now ready to prove the statement also holds at player
i´1. From the sequential-move central planner’s viewpoint,
decision rule âi´1

τ satisfies the following expression:

âi´1
τ P argmaxai´1

τ
Qi´1

βτ
psτ , a

1:i´1
τ q,

P argmaxai´1
τ

Eςiτ „Prt¨|sτ ,a
1:i´1
τ u

tαi
τ pςiτ qu.

Similarly to player n, the knowledge of o1:i´1
τ together

with the decision rules a1:i´2
τ the sequential-move central

planner selected previously, makes it possible to access node
ςi´1
τ

.
“ xsτ , o

1:i´1
τ , a1:i´2

τ po1:i´2
τ qy such that:

âi´1
τ poi´1

τ q P argmaxui´1
τ

βi´1
τ pςi´1

τ , ui´1
τ q,

where βi´1
τ : pςi´1

τ , ui´1
τ q ÞÑ Eςiτ „Prt¨|ςi´1

τ ,ui´1
τ u

tαi
τ pςiτ qu,

which proves the statement holds at player i ´ 1. De-
fine function αi´1

τ : ςi´1
τ ÞÑ maxui´1

τ
βi´1
τ pςi´1

τ , ui´1
τ q at

player i ´ 1. Consequently, the value of the sequential-
move subgame Gβτ

sτ ,H
can be rewritten by expanding over

the sequential-move nodes ς1τ
.
“ xsτ , o

1
τ y, i.e.,

Vβτ
psτ q “ Eς1τ „Prt¨|sτ utα1

τ pς1τ qu.

The value of a cooperative game being unique, we know
the optimal solution for Ḡβτ

sτ is also an optimal solution for
Gβτ

sτ . In demonstrating this statement, we also exhibited
Bellman’s optimality equations, providing the solution of
the perfect-information extensive-form game Ḡβτ

sτ , i.e., at
any player i, node ςiτ , and action ui

τ ,

βi,˚
τ pςiτ , u

i
τ q “ Eςi`1

τ „T p¨|ςiτ ,u
i
τ q

tmax
ui`1
τ

βi`1,˚
τ pςi`1

τ , ui`1
τ qu,

with boundary condition βn,˚
τ : pςnτ , u

n
τ q ÞÑ Rpςnτ , u

n
τ q.

Which ends the proof.

Theorem 2.2 introduces Bellman’s optimality equations that
enable us to find a greedy joint decision at single-stage
subgame Gβτ

sτ by solving the corresponding extensive-form
game Ḡβτ

sτ . It proceeds in two phases. From player n at the
top of the hierarchy to player 1 at the bottom, a backward
pass computes optimal action-values βi,˚

τ pςiτ , u
i
τ q for each

player i, each node ςiτ , and each action ui
τ . Then, from

player 1 at the bottom of the hierarchy to player n at the top,
a forward pass selects a greedy decision rule independently
for each player i, and each node ςiτ . This backward induction
algorithm requires a linear time complexity with the number
of players, nodes, and actions Opn|Σ||U˚|q instead of dou-
ble exponential Op|O˚||U

˚
|
n

q where O˚ .
“ argmaxOi |Oi|

with Oi being the set of reachable histories of player i in
sτ and U˚ .

“ argmaxUi |U i|. A careful reader would no-
tice that the linearity of βτ over occupancy states and joint
decision rules is key in demonstrating Theorem 2.2.

2.3. Nested-Occupancy States

Upon inspection of perfect-information extensive-form
game Ḡβτ

sτ , one can see that despite the polynomial-time
complexity of the point-based backup, Ḡβτ

sτ may contain
a significant number of nodes. That is because nodes in
Ḡβτ

sτ provide total information available to the planner at
any player i—i.e., ςiτ

.
“ xsτ , o

i
τ , u

:i´1
τ y, which may result

in redundant and unnecessary computations. To address this
challenge, we propose the introduction of a statistic referred
to as nested-occupancy state that we shall maintain in place
of the total information available to the planner.

At player i, a nested-occupancy state siτ
.
“ pbiτ , o

i
τ , u

:i´1
τ q

consists of a private history oiτ of player i, the actions of
its subordinates u:i´1

τ , and a nested-belief state biτ . Besides,
the nested-belief state biτ at player i is a posterior distribu-
tion over histories oi`1

τ and nested-belief states bi`1
τ of the

immediate superior player i ` 1. This distribution is condi-
tional on the total data available to the planner at player i,
i.e., biτ poi`1

τ , bi`1
τ q

.
“ Prtoi`1

τ , bi`1
τ |ςiτu, for any histories

oi`1
τ and nested-belief states bi`1

τ ; with boundary condition
bnτ pxτ q

.
“ Prtxτ |ςnτ u, for any hidden state xτ . Interestingly,

the nested-occupancy state has many important properties.
First, it is a sufficient statistic for optimally solving Ḡβτ

sτ .

Theorem 2.3 (Proof in Appendix B). At player i, the nested-
occupancy state siτ is a sufficient statistic of the total data
ςiτ available to the planner for optimally solving the perfect-
information extensive-form game Ḡβτ

sτ .

Theorem 2.3 suggests using a nested-occupancy state as an
alternative to the total data available to the planner with-
out compromising optimality. This statistic facilitates the
aggregation of histories of a player that convey the same
information about the game, thus effectively reducing the
dimensionality of the game. Prior to delving further, it is
necessary to introduce three equivalence relations. First, two

6
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nested-occupancy states at player i, represented as si,‚τ
.
“

pbi,‚τ , oi,‚τ , u:i´1,‚
τ q and si,˝τ

.
“ pbi,˝τ , oi,˝τ , u:i´1,˝

τ q, are con-
sidered B1-equivalent if they differ only through their his-
tories, i.e., whenever pbi,˝τ , u:i´1,˝

τ q “ pbi,‚τ , u:i´1,‚
τ q then

si,‚τ „B1
si,˝τ . Similarly, they are considered B2-equivalent

if they share the same nested-belief state and histories of sub-
ordinates, i.e., whenever pbi,˝τ , oi´1,˝

τ q “ pbi,‚τ , oi´1,‚
τ q then

si,‚τ „B2 si,˝τ . Last, two private histories are considered
P-equivalent if their optimal actions or, more generally,
policies are interchangeable.

Theorem 2.4 (Proof in Appendix C.4). Let Ḡβτ
sτ be a perfect-

information extensive-form game. Let si,‚τ and si,˝τ be two
nested-occupancy states induced by occupancy state sτ at
player i. The following properties hold.

1. If si,‚τ „B1
si,˝τ then βi,˚

τ psi,‚τ , ui
τ q “ βi,˚

τ psi,˝τ , ui
τ q.

2. If si,‚τ „B2
si,˝τ then oi,‚τ „P oi,˝τ .

Theorem 2.4 establishes that two B1-equivalent nested-
occupancy states have the same optimal actions, resulting in
significant computational savings. Moreover, it showcases
that two B2-equivalent nested-occupancy states have their
corresponding histories following the same policy. This
insight allows for compact occupancy states, wherein only
one history per equivalent class is retained, leading to faster
estimations. Similarly, Dibangoye et al. (2016) employed
compact occupancy states while utilizing the complete dis-
tribution over hidden states and histories of all teammates
to determine when two histories are equivalent. Our equiva-
lence relations, however, are based on nested belief states
that are more concise than occupancy states, resulting in a
more aggressive compression. At player n, for instance, the
planner groups together histories that share the belief state,
and this process continues down the hierarchy.

3. Near-Optimally Solving M 1 Under HIS
This section adapts the point-based value-iteration (PBVI)
algorithm (Pineau et al., 2003) to compute ϵ-optimal joint
policy for M 1 (resp. M ) under HIS starting at initial state
distribution s0 for planning horizon ℓ. We chose the PBVI al-
gorithm because it leverages the linear functions βτ involved
in the optimal value function. Besides, it is guaranteed to
find near-optimal solutions asymptotically. Notice that al-
gorithms that do not leverage the linear functions βτ , e.g.,
feature-based heuristic search value iteration (Dibangoye
et al., 2013; 2016), cannot benefit from our findings.

PBVI, cf. Algorithm 1 in Appendix A, has two main parts
for solving M 1 (resp. M ) under HIS. First, it bounds
the size of the value function at each stage τ of the
game by representing the value only at a finite, reach-
able occupancy subset S̃τ . Next, it optimizes the value
function represented as a collection Vτ at each stage τ
using point-based backup, i.e., at any stage τ , Vτ “

tbackuppsτ ,Vτ`1q : sτ P S̃τu, where backups are exe-
cuted in no particular order, i.e., backuppsτ ,Vτ`1q “

argmax
αaτ:

τ : aτ PA,α
aτ`1:
τ PVτ

Q
β
aτ`1:
τ

psτ , aτ q. Each iter-
ation traverses occupancy-state subsets bottom up. This
iterative process repeats until convergence or until a budget,
e.g., CPU time, memory, or number of iterations, has been
exhausted. The algorithm adds supplemental points into
occupancy subsets to improve the value functions further.
It selects candidate points using a portfolio of exploration
strategies, including random explorations and greedy w.r.t.
underlying (PO)MDP value functions. For every stage τ ,
the algorithm adds only candidate points beyond a certain
distance from the occupancy subset S̃τ to create a new
occupancy-state set S̃τ`1.

For any arbitrary occupancy-state subsets S̃0:, PBVI pro-
duces a value υ0ps0q. The error between υ0ps0q and υ˚

0 ps0q

is bounded. The bound depends on how S̃0: samples the
entire occupancy-state space; with denser sampling, the
estimate υ0ps0q converges to υ˚

0 ps0q. The remainder of
this section states and proves our error bound. It is also
shown that the PBVI algorithm under HIS allows an expo-
nential decrease in time complexity over standard versions
of PBVI.

Define the density δS̃0:
to be the maximum distance from any

reachable occupancy state to subsets S̃0:. More precisely,
δS̃0:

.
“ maxτPJ0:ℓ´1K maxsPSτ

mins1PS̃τ
}s ´ s1}1. Define

a positive scalar c such that }rp¨, ¨q}8 ď c.

Theorem 3.1 (Proof in Appendix D). For any occupancy
subsets S̃0:, the error of the PBVI algorithm is bounded by

υ˚
0 ps0q ´ υ0ps0q ď 2cδS̃0:

1 ` ℓγℓ`1 ´ pℓ ` 1qγℓ

p1 ´ γq2
.

It is worth noticing that whenever ℓ goes to infinity, our
bound meets that from Pineau et al. (2003) for infinite-
horizon partially observable Markov decision processes.

Theorem 3.2. Let |S̃˚| “ maxtP0,1,...,ℓ´1 |S̃t| be the max-
imum size of the selected spaces of occupancy states. The
complexity of the PBVI algorithm under HIS is about
OOO

´

nℓ|S̃˚|2|Z˚|nℓ|U˚|1`npℓ`1q

¯

.

Proof. As stated in Section 2.2, the complexity of solving
a single-stage subgame Gβτ

sτ is about OOOpn|Σ||U˚|q, where
|Σ| is the size of the extensive-form game. Since the set of
reachable histories for each player is bounded in size by
p|Z˚||U˚|qnℓ, we get |Σ| ď p|Z˚||U˚|qnℓ|U˚|n.
At stage τ a subgame is solved for each sτ P S̃τ and each
βτ (obtained from S̃τ`1q. Thus, at most ℓ|S̃˚|2 subgames
are solved on the whole horizon.
As a consequence, the total complexity is
about Opℓ|S̃˚|2p|Z˚||U˚|qnℓ|U˚|nn|U˚|q “

Opnℓ|S̃˚|2|Z˚|nℓ|U˚|1`npℓ`1qq.

7



Solving Hierarchical Information-Sharing Dec-POMDPs

As a comparison, the number of joint decision rules at step-
time τ is bounded by |U˚|p|Z˚

||U˚
|q

nℓ

. Thus, using similar
reasoning as in the proof of Theorem 3.2, the complexity of
the vanilla PBVI algorithm on the single-agent reformula-
tion is about OOO

´

ℓ|S̃˚|2|U˚|p|Z˚
||U˚

|q
nℓ

¯

4. Experiments
This section presents the outcomes of our experiments,
which were carried out to juxtapose our findings with the
leading-edge theory employed in global methods, encom-
passing the utilization of the PBVI algorithm as a standard
algorithmic scheme. Our analysis involves three variants
of the PBVI algorithm, namely PBVIenum, PBVImilp, and
hPBVI, each employing distinct methods of performing
point-based backups. PBVIenum relies on brute-force enu-
meration of joint decision rules. At the same time, PBVImilp

utilizes mixed-integer linear programs (MILPs) for implicit
enumeration following the state-of-art approach for gen-
eral Dec-POMDPs (Dibangoye et al., 2016). In contrast,
hPBVI leverages the subgame solving methods described
above. We used ILOG CPLEX Optimization Studio to
solve the MILPs. Finally, hPBVI incorporates our findings
to facilitate point-based backups under hierarchical infor-
mation sharing. Global methods are not designed to scale
up with players. To present a comprehensive view, we have
also compared our results against local policy- and value-
based methods, i.e., advantage actor-critic (A2C) (Konda
& Tsitsiklis, 1999) and independent Q-learning (IQL) (Tan,
1998), respectively. The experiments were executed on
an Ubuntu machine with 32GB of available RAM and a
2.5GHz processor, utilizing only one core, with a time limit
of 30 minutes.

We have comprehensively assessed various algorithms us-
ing several two-player benchmarks sourced from academic
literature, available at masplan.org. These benchmarks
encompass mabc, recycling, grid3x3, boxpushing, mars, and
tiger. To enable a comparison of multiple players, we have
also introduced the multi-player variants of these bench-
marks. Please refer to Appendix E for a detailed definition
of these multi-player benchmarks.

Our study aimed to assess the reduction in complexity
achieved by point-based backups and its effect on solving
larger multi-player games. Our findings show that hPBVI
performs point-based backups significantly faster than other
methods, which enables it to scale up to larger teams, as
illustrated in Table 4. Specifically, hPBVI was able to per-
form point-based backups for up to 10 players in about
139.82 seconds in mabcp10q at ℓ “ 30, while PBVIenum

ran out of time for 4 players, and PBVImilp for 5 players.
Additionally, hPBVI converges faster than PBVIenum and
PBVImilp in 2- to 3-player domains. For example, hPBVI

hPBVI PBVImilp PBVIenum A2C IQL

tiger(2) 0.18 112.50 1.63 91.81 OOT – 95.73 – 80.15
tiger(3) 1.05 262.50 141.72 218.81 OOT – 167.16 – 255.99
tiger(4) 6.28 393.75 OOT OOT – 207.70 – 218.47
tiger(6) 912.63 483.78 OOT OOT – 200.96 – -129.51
recycling(2) 0.02 93.73 0.78 93.73 0.04 93.73 – 93.34 – 93.02
recycling(3) 0.05 252.83 19.28 252.83 143.59 247.80 – 142.00 – 129.57
recycling(4) 0.19 310.07 835.96 283.05 OOT – 181.25 – 153.03
recycling(6) 1.91 459.78 OOT OOT – 186.11 – 197.93
recycling(8) 138.28 600.00 OOT OOT – 126.19 – 244.02
mabc(2) 0.05 27.42 0.15 27.40 0.04 27.42 – 27.18 – 27.2
mabc(3) 0.03 23.24 1.21 23.24 0.65 23.24 – 23.27 – 23.24
mabc(4) 0.07 24.94 223.26 24.94 OOT – 24.36 – 24.94
mabc(7) 1.66 27.25 OOT OOT – 16.72 – 26.82
mabc(10) 139.82 27.75 OOT OOT – 12.25 – 24.84
grid3x3(2) 0.61 24.44 1329.33 24.33 OOT – 22.93 – 24.35
grid3x3(3) 65.43 28.16 OOT OOT – 27.92 – 28.16
mars(2) 0.28 84.33 248.61 76.15 OOT – 43.20 – 52.86
boxpushing(2) 0.66 675.46 24.58 576.30 OOT – 180.11 – 614.6

Table 1. Snapshot of empirical results, cf. Appendix F. For each
game(n) and algorithm, we report time (in seconds) per backup
and the best value for horizon ℓ “ 30. OOT means time limit of 30
minutes has been exceeded and ’–’ is not applicable.

can converge in under 1 second in grid3x3p2q at ℓ “ 30,
while PBVImilp takes about 1329.33 seconds, not to men-
tion PBVIenum. Our results in Table 4 demonstrate that
hPBVI can scale up to larger teams of players where neither
PBVImilp nor PBVIenum can. Figure 4 illustrates the ca-
pacity of hPBVI to address larger problems when compared
to standard PBVI algorithms (a more extensive comparison
of computational times is proposed in Appendix F).

Local methods A2C and IQL do scale up to larger teams as
expected. Surprisingly, they perform very well on certain
domains with weakly coupled players, as shown in mabcp4q

and grid3x3p3q, cf. Table 4. However, hPBVI always
performs better A2C and IQL on all benchmarks except
mabcp4q and grid3x3p3q, which exhibit local behaviors
that are global optimal solutions. Moreover, it converges
faster than A2C and IQL on all tested benchmarks, Fig-
ure 4 illustrates anytime performances for the recycling
problem (Figures 13 to 16 in Appendix F provide more de-
tailed results for each benchmark). Although this observa-
tion goes beyond our original goal, it provides encouraging
insights when comparing local against global methods over
teams of medium sizes. Nonetheless, we caution readers
against drawing general conclusions from this observation,
as different local methods may yield different local optima
and convergence rates.

5. Discussion
This paper presents a point-based value iteration algorithm
for near-optimally solving Dec-POMDPs. It exploits a hi-
erarchical information-sharing structure, a dominant man-
agement style in our society for corporations, governments,
criminal enterprises, armies, and religions. Under this as-
sumption, it shows that point-based backup operations can
be solved as perfect-information extensive-form games with-
out compromising optimality. Doing so results in an expo-
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Figure 3. Average backup time for the recycling problem with
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Figure 4. Anytime values for the recycling problem with teams of
size n P t3, 4, 6, 8u and planning horizon ℓ “ 30.

nential complexity drop, allowing global methods to scale
up to larger teams of players. A thorough empirical analysis
reveals that algorithms utilizing our findings can scale up
to larger teams of players. In contrast, the state-of-the-art
global approaches quickly ran out of resources. Another
important empirical finding is that our approach scales to
all medium-sized tested domains while providing equal or
better performances than a state-of-the-art local method.

Traditionally, global methods have been considered ineffec-
tive in games that involve medium to large-sized teams of
players. For instance, state-of-the-art Dec-POMDP solvers
such as FB-HSVI were only designed for two players
(Oliehoek et al., 2010; Dibangoye et al., 2009; 2013; 2016).
However, we have presented a paper that puts forth several
propositions for developing global methods that possess
the scalability of local methods while maintaining global
guarantees. In applications where the stakes are high and
critical, such as search and rescue, security, and healthcare,
scalable global methods with more reliable solutions than
those from local methods are essential.

Similarly to Kovařı́k et al. (2022), our paper demonstrates
that simultaneous-move games can be solved sequentially
and centrally while allowing each player to act optimally
in a decentralized manner. This sequential and centralized
training for decentralized execution (SCTDE) approach en-
ables us to leverage private information available to players
in a simple manner. Additionally, the SCTDE approach
enables us to reason for each player individually in a way
that is similar to extensive-form games. This results in a
significant reduction in complexity, especially when faced
with public observations. This insight also allows us to
transfer theories and algorithms from extensive-form games
to simultaneous-move games. While our study demonstrates
how to optimally solve single-stage games as extensive-form
games, the principle we discussed also applies to planning
and learning to act in multi-stage general-sum games.

Our study focuses on analyzing the line hierarchical struc-
ture. Although previous studies, such as Xie et al. (2020),
have successfully applied the SCTDE approach in two-
player common-payoff games, our paper extends the re-
search to multiple players. Additionally, our research can
be further expanded to consider other structures, such as
a tree structure, where players at the same level are inde-
pendent. In the past, several forms of structure have been
investigated such as dynamics independence (Becker et al.,
2004), weak-separability (Nair et al., 2005), and delayed
information-sharing (Nayyar et al., 2010). However, it is not
clear how the hierarchical assumption affects these struc-
tures and the corresponding planning and learning theories.
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A. The PBVI Algorithm
This section presents a pseudocode for the point-based value iteration algorithm to solve decentralized, partially observable
Markov decision processes with hierarchical information sharing near-optimally.

Algorithm 1 PBVI for M 1 under HIS.
function PBVIpq

Initialize S̃0: and V0:.
while V0: has not converged do
improvepV0:, S̃0:q.
S̃0: Ð expandpS̃0:q.

end while
function improvepV0:, S̃0:q

for τ “ ℓ ´ 1 to 0 do
for sτ P S̃τ do
Vτ Ð Vτ Y tbackuppsτ ,Vτ`1qu.

end for
end for

B. Proof of Theorem 2.3
This section shows that the nested-occupancy state is a sufficient statistic for the central planner to optimally solve
perfect-information extensive-form game Ḡβτ

sτ for any player i.

Proof. The nested-occupancy state is a sufficiency statistic of the total data available to the planner at any player i for
optimally solving Ḡβτ

sτ , if it is sufficient to predict (1) the next nested-occupancy state and (2) the immediate reward. Let
the total data available to the planner at player i be ςiτ

.
“ psτ , o

i
τ , u

:i´1
τ q. Let ui

τ be the action chosen at player i after
experiencing total data ςiτ . The nested-occupancy state siτ

.
“ pbiτ , o

i
τ , u

:i´1
τ q summarizing ςiτ is sufficient to predict the next

nested-occupancy state si`1
τ , if and only if the following holds Prtsi`1

τ |ςiτ , u
i
τu “ Prtsi`1

τ |siτ , u
i
τu. To prove this property,

we start with the definition of a nested-belief state biτ associated with nested-occupancy state siτ , i.e.,

Prtsi`1
τ |ςiτ , u

i
τu

.
“ Prtbi`1

τ , oi`1
τ , u:i,‚

τ |sτ , o
i
τ , u

:i,˝
τ u, (by definition of ςiτ and siτ )

“ Prtbi`1
τ , oi`1

τ |sτ , o
i
τ , u

:i,˝
τ u ¨ Prtu:i,‚

τ |sτ , o
i
τ , u

:i,˝
τ u, (by application of the Bayes rule)

“ Prtbi`1
τ , oi`1

τ |ςiτu ¨ Prtu:i,‚
τ |u:i,˝

τ u, (by checking constraint u:i,‚
τ “ u:i,˝

τ )

“ biτ pbi`1
τ , oi`1

τ q ¨ 1tu:i,˝
τ “ u:i,‚

τ u, (by definition of biτ ).

It will prove useful to define transition rule T̃ : psi`1
τ |biτ , u

:i
τ q ÞÑ Prtsi`1

τ | biτ , u
:i
τ u, describing the probability to transitionning

into nested-occupancy state si`1
τ upon talking action ui

τ in nested-occupancy state siτ . Notice that the transition does not
depend on the current history oiτ , or it does so only through pbiτ , u

:i
τ q. Next, we show the sufficiency of nested-occupancy

states to predict immediate rewards. Since rewards occur only at player n, we shall only consider nested occupancy states at
that player. The nested-occupancy state snτ

.
“ pbnτ , o

n
τ , u

:n´1
τ q summarizing ςnτ is sufficient to predict the immediate reward

upon taking action un
τ , if and only if there exists a reward function psnτ , u

n
τ q ÞÑ R̃psnτ , u

n
τ q such that the following holds:

Rpςnτ , u
n
τ q “ R̃psnτ , u

n
τ q. To prove this statement, we start with the definition of Rpςnτ , u

n
τ q, i.e.,

Rpςnτ , u
n
τ q

.
“ Ex„Prt¨|ςnτ ,un

τ utβτ px, o, uqu, (by definition of Rpςnτ , u
n
τ q)

“ Ex„bnτ p¨qtβτ px, o, uqu, (by definition of bnτ ).

If we let R̃psnτ , u
n
τ q

.
“ Ex„bnτ p¨qtβτ px, o, uqu, then the statement holds.

Nested-occupancy states describe a perfect-information extensive-form game G̃βτ
sτ

.
“ xn, Σ̃, Ψ̃, T̃ , R̃y where nodes Σ̃ are

nested-occupancy states, Ψ̃ : Σ̃ Ñ 2pY
n
i“1U

i
q specifies the action set available to each nested-occupancy state, and T̃ and

R̃ are already defined. Clearly, any optimal solution for perfect-information extensive-form game G̃βτ
sτ is also optimal for
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perfect-information extensive-form game Ḡβτ
sτ . To prove this statement, we need to prove that the optimal action-value

functions β̃1:n,˚
τ of G̃βτ

sτ such that at any player i and node ςiτ (resp. nested-occupancy state siτ ) and action ui
τ the following

equality holds: βi,˚
τ pςiτ , u

i
τ q “ β̃i,˚

τ psiτ , u
i
τ q. We prove the statement by induction. The statement trivially holds at player n

since Rpςnτ , u
n
τ q “ R̃psnτ , u

n
τ q, then βn,˚

τ pςiτ , u
i
τ q

.
“ Rpςnτ , u

n
τ q “ R̃psnτ , u

n
τ q

.
“ β̃i,˚

τ psiτ , u
i
τ q. Suppose the statement hold at

player i ` 1 onward, i.e., βi`1,˚
τ pςi`1

τ , ui`1
τ q “ β̃i`1,˚

τ psi`1
τ , ui`1

τ q. We are now ready to show it also hold at player i. We
start with the expression of the optimal action-value function βi,˚

τ , i.e.,

βi,˚
τ pςiτ , u

i
τ q “ Eςi`1

τ „T p¨|ςiτ ,u
i
τ q

tmaxui`1
τ

βi`1,˚
τ pςi`1

τ , ui`1
τ qu, (by Theorem 2.2)

“ Esi`1
τ „Prt¨|ςiτ ,u

i
τ u

tmaxui`1
τ

β̃i`1,˚
τ psi`1

τ , ui`1
τ qu, (by induction hypothesis)

“ Esi`1
τ „T̃ p¨|biτ ,u

:i
τ q

tmaxui`1
τ

β̃i`1,˚
τ psi`1

τ , ui`1
τ qu, (by definition of T̃ p¨|biτ , u

:i
τ q)

“ β̃i,˚
τ psiτ , u

i
τ q, (by definition of β̃i,˚

τ ).

The statement holds for player i, thus for any arbitrary player. Consequently, one can use nested-occupancy states instead of
total data available to the planner without compromising optimality, which ends the proof.

C. Equivalence Relations
This section presents crucial properties necessary for grouping private histories that convey the same information about the
game. To cluster two private histories of a player and reason similarly for the entire cluster, it is imperative to ensure that
making identical immediate and future decisions for all members in the cluster does not compromise optimality. To do so,
we need to specify how the information we rely on to make decisions evolves over stages. In particular, we need to exhibit
rules for calculating the next-stage nested-occupancy state given the current one and decisions made at the current stage.

C.1. Predicting Next-Stage Observations

This subsection shows that the observation at stage τ ` 1 and player i can be accurately predicted using only the nested
occupancy states at stage τ and player i along with decision rules at stage τ and players i to n.

Lemma C.1. Let ςiτ
.
“ xsτ , o

i
τ , u

:i´1
τ y be total data available to the planner at stage τ and player i. Let ai:τ be the decision

rules for player i to player n at stage τ . Let siτ
.
“ xbiτ , o

i
τ , u

:i´1
τ y be the nested-occupancy state at stage τ and player i

summarizing total data ςiτ . The probability Prtziτ`1|ςiτ , a
i:
τ u that the planner receives observation ziτ`1 on behalf of player

i upon acting according to xui
τ , a

i`1:
τ y starting in total data ςiτ satisfies the following recursion:

Ωipziτ`1|biτ , u
:i
τ , a

i`1:
τ q “

ÿ

si`1
τ

T̃ psi`1
τ |biτ , u

:i
τ q

ÿ

zi`1
τ`1

1tziτ`1 Ď ζi`1pzi`1
τ`1qu ¨ Ωi`1pzi`1

τ`1|bi`1
τ , u:i

τ , a
i`1
τ poi`1

τ q, ai`2:
τ q, (1)

with boundary condition Ωnpznτ`1|bnτ , u
:n
τ q

.
“

ř

x

ř

y b
n
τ pxq ¨ ppy, znτ`1|x, u:n

τ q.

Proof. Starting from conditional probability distribution Prtziτ`1|ςiτ , u
i
τ , a

i`1:
τ u and expanding over nested-occupancy

states si`1
τ and observations zi`1

τ`1 of player i ` 1

Prtziτ`1|ςiτ , u
i
τ , a

i`1:
τ u “

ÿ

si`1
τ

ÿ

zi`1
τ`1

Prtsi`1
τ , zi`1

τ`1, z
i
τ`1|ςiτ , u

i
τ , a

i`1:
τ u.

The expansion of the joint probability into the product of conditional probabilities yields the following expression:

“
ÿ

si`1
τ

ÿ

zi`1
τ`1

Prtziτ`1|si`1
τ , zi`1

τ`1, ς
i
τ , u

i
τ , a

i`1:
τ u ¨ Prtzi`1

τ`1|si`1
τ , ςiτ , u

i
τ , a

i`1:
τ u ¨ Prtsi`1

τ |ςiτ , u
i
τ , a

i`1:
τ u. (2)

The first factor in (2) depends solely upon zi`1
τ`1 and not on the tuple psi`1

τ , ςiτ , u
i
τ , a

i`1:
τ q, i.e.,

Prtziτ`1|ςiτ , u
i
τ , a

i`1:
τ u “

ÿ

si`1
τ

ÿ

zi`1
τ`1

Prtziτ`1|zi`1
τ`1u ¨ Prtzi`1

τ`1|si`1
τ , ςiτ , u

i
τ , a

i`1:
τ u ¨ Prtsi`1

τ |ςiτ , u
i
τ , a

i`1:
τ u. (3)
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The last factor in (3) depends solely upon xbiτ , u
:i
τ y and not on tuple xςiτ , a

i`1:
τ y, which becomes after re-arranging terms:

Prtziτ`1|ςiτ , u
i
τ , a

i`1:
τ u “

ÿ

si`1
τ

T̃ psi`1
τ |biτ , u

:i
τ q

ÿ

zi`1
τ`1

Prtziτ`1|zi`1
τ`1u ¨ Prtzi`1

τ`1|si`1
τ , ςiτ , u

i
τ , a

i`1:
τ u. (4)

Equation (4) makes it possible to prove the statement, Equation (1), recursively. We start at player n ´ 1, i.e.,

Prtzn´1
τ`1 |ςn´1

τ , un´1
τ , anτ u “

ÿ

snτ

T̃ psnτ |bn´1
τ , u:n´1

τ q
ÿ

zn
τ`1

Prtzn´1
τ`1 |znτ`1u ¨ Prtznτ`1|snτ , ς

n´1
τ , un´1

τ , anτ u. (5)

The boundary condition gives the last factor in (5), i.e., for nested-occupancy state snτ
.
“ pbnτ , o

n
τ , u

:n´1
τ q,

Prtzn´1
τ`1 |ςn´1

τ , un´1
τ , anτ u “

ÿ

snτ

T̃ psnτ |bn´1
τ , u:n´1

τ q
ÿ

zn
τ`1

1tzn´1
τ`1 Ď znτ`1u ¨ Ωnpznτ`1|bnτ , xu:n´1

τ , anτ ponτ qyq. (6)

Let Ωn´1 : pzn´1
τ`1 |bn´1

τ , u:n´1
τ , anτ q ÞÑ

ř

snτ
T̃ psnτ |bn´1

τ , u:n´1
τ q

ř

zn
τ`1

1tzn´1
τ`1 Ď ζnpznτ`1qu ¨Ωnpznτ`1|bnτ , u

:n´1
τ , anτ ponτ qq

be the observation model for predicting next observation at stage τ and player n ´ 1. Then, statement (1) holds at stage τ
and player n ´ 1. Suppose the statement holds for any arbitrary stage τ and player i ` 1. We are ready to prove it also holds
at stage τ and player i. Starting at (4), the application of the induction hypothesis yields:

Prtziτ`1|ςiτ , u
i
τ , a

i`1:
τ u “

ÿ

si`1
τ

T̃ psi`1
τ |biτ , u

:i
τ q

ÿ

zi`1
τ`1

1tziτ`1 Ď ζi`1pzi`1
τ`1qu ¨ Ωi`1pzi`1

τ`1|bi`1
τ , u:i

τ , a
i`1:
τ q. (7)

If we let Ωi : pziτ`1|biτ , u
:i
τ , a

i`1:
τ q ÞÑ

ř

si`1
τ

T̃ psi`1
τ |biτ , u

:i
τ q

ř

zi`1
τ`1

1tziτ`1 Ď ζi`1pzi`1
τ`1qu ¨Ωi`1pzi`1

τ`1|bi`1
τ , u:i

τ , a
i`1:
τ q be

the observation model for predicting next observation at stage τ and player i, then statement (1) holds at stage τ and player
i. Thus, the statement holds for any stage and player, which ends the proof.

C.2. Predicting Next-Stage Nested-Occupancy States

This subsection proves the nested-occupancy states describe a Markovian process, i.e., the next-stage nested-occupancy state
depends only upon the current one. Notice that nested-occupancy states have three components. Only the nested belief
states are nonobservable and need to be estimated. If we know how to estimate the nested belief state, we can add the history
and actions of subordinates, thereby constructing a nested-occupancy state.

Lemma C.2. Let ςiτ
.
“ xsτ , o

i
τ , u

:i´1
τ y be total data available to the planner at stage τ and player i. Let ai:τ be the decision

rules for player i to player n at stage τ . Let siτ
.
“ xbiτ , o

i
τ , u

:i´1
τ y be the nested-occupancy state at stage τ and player i

summarizing total data ςiτ . The next-stage nested-belief state biτ`1
.
“ T ipbiτ , xui

τ , a
i`1:
τ y, ziτ`1q, upon acting according to

xui
τ , a

i`1:
τ y in nested-occupancy state siτ and receiving observation ziτ`1, satisfies the following recursion: for any history

and nested-belief tuple poi`1
τ`1, b

i`1
τ`1q,

biτ`1poi`1
τ`1, b

i`1
τ`1q9

ř

si`1
τ

.
“pbi`1

τ ,oi`1
τ ,u:i

τ q
T̃ psi`1

τ |biτ , u
:i
τ q

ř

zi`1
τ`1

1tziτ`1 Ď ζi`1pzi`1
τ`1qu ¨ δ

oi`1
τ`1

xoi`1
τ ,ai`1

τ poi`1
τ q,zi`1

τ`1y

δ
bi`1
τ`1

T i`1pbi`1
τ ,xu:i

τ ,ai`1
τ poi`1

τ q,ai`2:
τ y,zi`1

τ`1q
¨ Ωi`1pzi`1

τ`1|bi`1
τ , xu:i

τ , a
i`1
τ poi`1

τ q, ai`2:
τ yq.

with boundary condition bnτ`1
.
“ Tnpbnτ , u

:n
τ , znτ`1q where bnτ`1pyq9

ř

x b
n
τ pxq ¨ ppy, znτ`1|x, u:n

τ q for any hidden state y.

Proof. The proof proceeds by induction. Starting with player n ´ 1, we define the nested-belief state bn´1
τ`1 at stage τ ` 1

and player n ´ 1 upon acting according to xun´1
τ , anτ y in total data available to the planner ςn´1

τ
.
“ xsτ , o

n´1
τ , u:n´2

τ y and
receiving observation zn´1

τ`1 , as follows: for any history and nested-belief tuple ponτ`1, b
n
τ`1q,

bn´1
τ`1ponτ`1, b

n
τ`1q

.
“ Prtonτ`1, b

n
τ`1|ςn´1

τ , un´1
τ , anτ , z

n´1
τ`1 u. (8)

The expansion of (8) over nested-occupancy states snτ at stage τ and player n and histories znτ`1 at stage τ ` 1 and player n,
result in the following expression:

bn´1
τ`1ponτ`1, b

n
τ`1q “

ÿ

snτ
.
“pbnτ ,o

n
τ ,u

:n´1
τ q

ÿ

zn
τ`1

Prtsnτ , z
n
τ`1, o

n
τ`1, b

n
τ`1|ςn´1

τ , un´1
τ , anτ , z

n´1
τ`1 u. (9)
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The application of Bayes’ rule in expression (9) yields the following expression:

bn´1
τ`1ponτ`1, b

n
τ`1q “

ÿ

snτ
.
“pbnτ ,o

n
τ ,u

:n´1
τ q

ÿ

zn
τ`1

Prtsnτ , z
n
τ`1, o

n
τ`1, b

n
τ`1, ς

n´1
τ , un´1

τ , anτ , z
n´1
τ`1 u

Prtςn´1
τ , un´1

τ , anτ , z
n´1
τ`1 u

. (10)

The expansion of the joint probability into the product of conditional probabilities and the application of Lemma C.1 yield
the following expression:

bn´1
τ`1ponτ`1, b

n
τ`1q “

ř

snτ
.
“pbnτ ,o

n
τ ,u

:n´1
τ q

ř

zn
τ`1

Prtzn´1
τ`1 |znτ`1u ¨ Prtonτ`1|onτ , a

n
τ ponτ q, znτ`1u ¨ Prtbnτ`1|bnτ , xu:n´1

τ , anτ ponτ qy, znτ`1u¨

Prtznτ`1|bnτ , xu:n´1
τ , anτ ponτ qyu ¨ Prtsnτ |ςn´1

τ , un´1
τ u{Prtzn´1

τ`1 |ςn´1
τ , un´1

τ , anτ u (11)

Using the boundary condition, we obtain the following expression, i.e.,

bn´1
τ`1ponτ`1, b

n
τ`1q9

ř

snτ
.
“pbnτ ,o

n
τ ,u

:n´1
τ q

ř

zn
τ`1

1tzn´1
τ`1 Ď ζnpznτ`1qu ¨ δ

onτ`1

xonτ ,a
n
τ ponτ q,zn

τ`1y

δ
bnτ`1

Tnpbnτ ,xu
:n´1
τ ,an

τ ponτ qy,zn
τ`1q

¨ Ωnpznτ`1|bnτ , xu:n´1
τ , anτ ponτ qyq ¨ T̃ psnτ |bn´1

τ , u:n´1
τ q (12)

Hence, the statement holds at stage τ and player n ´ 1. Suppose it holds at stage τ and player i ` 1. We are now ready to
show the statement also holds at stage τ and player i. We start with the definition the nested-belief state biτ`1 at stage τ ` 1
and player i upon acting according to xui

τ , a
i`1:
τ y in total data available to the planner ςiτ

.
“ xsτ , o

i
τ , u

:i´1
τ y and receiving

observation ziτ`1. The proof proceeds similarly to that of player n ´ 1, i.e.,

biτ`1poi`1
τ`1, b

i`1
τ`1q

.
“ Prtoi`1

τ`1, b
i`1
τ`1|ςiτ , u

i
τ , a

i`1:
τ , ziτ`1u. (13)

The expansion of (13) over nested-occupancy states si`1
τ at stage τ and player i ` 1 and histories zi`1

τ`1 at stage τ ` 1 and
player i ` 1, result in the following expression:

biτ`1poi`1
τ`1, b

i`1
τ`1q “

ř

si`1
τ

.
“pbi`1

τ ,oi`1
τ ,u:i

τ q

ř

zi`1
τ`1

Prtsi`1
τ , zi`1

τ`1, o
i`1
τ`1, b

i`1
τ`1|ςiτ , u

i
τ , a

i`1:
τ , ziτ`1u. (14)

The application of Bayes’ rule in expression (14) yields the following expression: for any pairs po1:i`1
τ`1 , bi`1

τ`1q,

biτ`1poi`1
τ`1, b

i`1
τ`1q “

ÿ

si`1
τ

.
“pbi`1

τ ,oi`1
τ ,u:i

τ q

ÿ

zi`1
τ`1

Prtsi`1
τ , zi`1

τ`1, o
i`1
τ`1, b

i`1
τ`1, ς

i
τ , u

i
τ , a

i`1:
τ , ziτ`1u{Prtςiτ , u

i
τ , a

i`1:
τ , ziτ`1u.

(15)

The expansion of the joint probability into the product of conditional probabilities and the application of Lemma C.1 yield
the following expression:

biτ`1poi`1
τ`1, b

i`1
τ`1q “

ř

si`1
τ

.
“pbi`1

τ ,oi`1
τ ,u:i

τ q

ř

zi`1
τ`1

Prtziτ`1|zi`1
τ`1u ¨ Prtoi`1

τ`1|oi`1
τ , ai`1

τ poi`1
τ q, zi`1

τ`1u¨

Prtbi`1
τ`1|bi`1

τ , xu:i
τ , a

i`1
τ poi`1

τ q, ai`2:
τ y, zi`1

τ`1u ¨ Prtzi`1
τ`1|bi`1

τ , xu:i
τ , a

i`1
τ poi`1

τ q, ai`2:
τ yu¨

Prtsi`1
τ |ςiτ , u

i
τu{Prtziτ`1|ςiτ , u

i
τ , a

i`1:
τ u (16)

Using the boundary condition and the induction hypothesis, we obtain the following expression, i.e.,

biτ`1poi`1
τ`1, b

i`1
τ`1q9

ř

si`1
τ

.
“pbi`1

τ ,oi`1
τ ,u:i

τ q
T̃ psi`1

τ |biτ , u
:i
τ q

ř

zi`1
τ`1

1tziτ`1 Ď ζi`1pzi`1
τ`1qu ¨ δ

oi`1
τ`1

xoi`1
τ ,ai`1

τ poi`1
τ q,zi`1

τ`1y

δ
bi`1
τ`1

T i`1pbi`1
τ ,xu:i

τ ,ai`1
τ poi`1

τ q,ai`2:
τ y,zi`1

τ`1q
¨ Ωi`1pzi`1

τ`1|bi`1
τ , xu:i

τ , a
i`1
τ poi`1

τ q, ai`2:
τ yq. (17)

Hence, the statement holds at any stage τ and player i, which ends the proof.
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C.3. Nested Belief States, Policies and Action-Value Functions At Player n

This section establishes many important properties regarding player n. First, it establishes that for any given stage and player
n, the planner can make decisions based on belief states instead of histories. To prove this statement, one must demonstrate
that belief states are capable of predicting (1) the next observation for the subsequent stage and player n; (2) the next belief
state for the subsequent stage and player n; and (3) the immediate reward. Next, it shows that belief-dependent policies are
optimal at player n. Finally, it describes the action-value functions under a history-dependent policy of player 1 to n ´ 1
and a belief-dependent policy of player n.

Lemma C.3. Let a:n´1
τ be a joint decision rule of player 1 to n ´ 1. Let bnτ be a nested belief state, o:n´1

τ be a joint
history of player 1 to n ´ 1, and a:n´1

τ po:n´1
τ q be a joint action of player 1 to n ´ 1 when following joint policy a:n´1

τ . Let
snτ

.
“ pbnτ , o

n
τ , a

:n´1
τ po:n´1

τ qq be a nested-occupancy state at stage τ and player n. Then, the following propositions hold for
any nested-occupancy state snτ at stage τ and player n.

1. For any action un
τ and observation znτ`1, we have Prtznτ`1|snτ , u

n
τ u “ Ωnpznτ`1|bnτ , xun

τ , a
:n´1
τ po:n´1

τ qyq.

2. For any action un
τ and observation znτ`1, we have Prtbnτ`1|snτ , u

n
τ , z

n
τ`1u “ δ

bnτ`1

Tnpbnτ ,xu
n
τ ,a

:n´1
τ po:n´1

τ qy,zn
τ`1q

.

3. For any action un
τ , we have Epxτ ,uτ q„Prt¨ |snτ ,u

n
τ utrpxτ , uτ qu “ E

pxτ ,uτ q„Prt¨ |bnτ ,u
n
τ ,a

:n´1
τ po:n´1

τ qu
trpxτ , uτ qu.

Proof. The two first propositions hold directly from Lemmas C.1 and C.2. The last proposition holds because the immediate
rewards depend on the histories of player n only through the corresponding belief states. Which ends the proof.

Lemma C.4. The optimal policy of player n depends only upon the belief state not on histories.

Proof. The proof proceeds by induction. Let a:n´1
0: be the joint policy of player 1 to n ´ 1. The best-response decision rule

of player n at stage ℓ ´ 1 is written as follows: for any history onℓ´1,

anℓ´1ponℓ´1q P argmaxun
ℓ´1

E
pxℓ´1,uℓ´1q„Prt¨ |bnℓ´1,o

n
ℓ´1,u

n
ℓ´1,a

:n´1
ℓ´1 po:n´1

ℓ´1 qu
trpxℓ´1, uℓ´1qu (by Definition)

P argmaxun
ℓ´1

E
pxℓ´1,uℓ´1q„Prt¨ |bnℓ´1,u

n
ℓ´1,a

:n´1
ℓ´1 po:n´1

ℓ´1 qu
trpxℓ´1, uℓ´1qu. (by Lemma C.3)

The statement holds at stage ℓ ´ 1. Define the value function α̃n
ℓ´1 under the joint policy a:n´1

0: of player 1 to n ´ 1,

ᾱn
ℓ´1 : pbnℓ´1, o

:n´1
ℓ´1 q ÞÑ maxun

ℓ´1
E

pxℓ´1,uℓ´1q„Prt¨ |bnℓ´1,u
n
ℓ´1,a

:n´1
ℓ´1 po:n´1

ℓ´1 qu
trpxℓ´1, uℓ´1qu.

Define the value function β̄n
ℓ´2 under the joint policy a:n´1

0: of player 1 to n ´ 1,

β̄n
ℓ´2 : pbnℓ´2, o

:n´1
ℓ´2 , uℓ´2q ÞÑ E

pxℓ´2,bnℓ´1,o
:n´1
ℓ´1 q„Prt¨ |bnℓ´2,uℓ´2,o

:n´1
ℓ´2 u

trpxℓ´2, uℓ´2q ` γᾱn
ℓ´1pbnℓ´1, o

:n´1
ℓ´1 qu.

The best-response decision rule of player n at stage ℓ ´ 2 is written as follows: for any history onℓ´2,

anℓ´2ponℓ´2q P argmaxun
ℓ´2

β̄n
ℓ´2pbnℓ´2, o

:n´1
ℓ´2 , xun

ℓ´2, a
:n´1
ℓ´2 po:n´1

ℓ´2 qyq.

Consequently, the statement holds for stages ℓ ´ 1 and ℓ ´ 2. Suppose the statement holds for stage τ ` 1, that is there
exists an action-value function β̄n

τ under the joint policy a:n´1
0: of player 1 to n ´ 1,

β̄n
τ : pbnτ , o

:n´1
τ , uτ q ÞÑ E

pxτ ,bnτ`1,o
:n´1
τ`1 q„Prt¨ |bnτ ,uτ ,o

:n´1
τ u

trpxτ , uτ q ` γᾱn
τ`1pbnτ`1, o

:n´1
τ`1 qu.

We are now ready to show the statement also holds at stage τ . The best-response decision rule of player n at stage τ is
written as follows: for any history onτ ,

anτ ponτ q P argmaxun
τ
β̄n
τ pbnτ , o

:n´1
τ , xun

τ , a
:n´1
τ po:n´1

τ qyq.

This proves the statement holds for stage τ , ending the proof.
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Lemma C.4 shows that the HIS assumption allows player n to act based solely upon belief states instead of histories
optimally. In other words, a belief-dependent policy exists as good or better than any history-dependent policy of player n.
The subsequent lemma shows how the use of belief-dependent policies for player n affects the description of the action-value
function under a joint history-dependent policy of player 1 to n ´ 1 and a belief-dependent policy for player n.

Lemma C.5. Let a:n´1
0: be the joint history-dependent policy of player 1 to n ´ 1, ãn0: be the belief-dependent policy of

player n. The action-value function under joint policy xa:n´1
0: , ãn0:y is given as follows:

β̄n
τ : pbnτ , o

:n´1
τ , u:n

τ q ÞÑ E
pxτ ,bnτ`1,o

:n´1
τ`1 q„Prt¨ |bnτ ,uτ ,o

:n´1
τ u

trpxτ , uτ q ` γβ̄n
τ`1pbnτ`1, o

:n´1
τ`1 , xa:n´1

τ`1 po:n´1
τ`1 q, ãnτ`1pbnτ`1qyqu

with boundary condition β̄n
ℓ p¨, ¨, ¨q

.
“ 0.

Proof. The proof follows directly from the proof of Lemma C.4.

C.4. Proof of Theorem 2.4

Proof. We shall treat each proposition separately.

Statement 1. We prove the first statement by induction. We begin the proof by demonstrating that the statement holds
at player n. Let sn,˝τ

.
“ pbn,˝τ , on,˝τ , u:n´1,˝

τ q and sn,‚τ
.
“ pbn,‚τ , on,‚τ , u:n´1,‚

τ q be two nested-occupancy states. Suppose
sn,˝τ „B1

sn,‚τ , that is pbn,˝τ , u:n´1,˝
τ q “ pbn,‚τ , u:n´1,‚

τ q. Consider the action-value function β̃n,˚
τ at stage τ , player n,

nested-occupancy state sn,˝τ and action un
τ , i.e.,

β̃n,˚
τ psn,˝τ , un

τ q
.
“ Ex„bn,˝

τ p¨qtβτ px, on,˝τ , xu:n´1,˝
τ , un

τ yqu

“ β̄n
τ pbn,˝τ , o:n´1,˝

τ , xu:n´1,˝
τ , un

τ yq (by Lemma C.5).

Since the action-value function β̄n
τ depends on the nested-occupancy state only through the belief state bn,˝τ , joint history

o:n´1,˝
τ , and joint action xu:n´1,˝

τ , un
τ y, not upon joint history on,˝τ , thus does the action-value function β̃n,˚

τ . Hence, the first
statement holds at player n. Suppose the statement holds for player i ` 1. We are now ready to show it also holds at player i.
We start with the expression of optimal action-value β̃i,˚

τ psi,˝τ , ui
τ q for nested-occupancy state si,˝τ and action ui

τ , i.e.,

β̃i,˚
τ psi,˝τ , ui

τ q “ Esi`1,˝
τ „T̃ p¨|bi,˝

τ ,xui
τ ,u

:i´1,˝
τ yq

tmaxui`1
τ

β̃i`1,˚
τ psi`1,˝

τ , ui`1
τ qu.

An inspection of the transition function T̃ p¨|bi,˝τ , u:i
τ q reveals that it depends on nested-occupancy state si,˝τ only though

nested-belief state bi,˝τ and joint action u:i
τ . Consequently, if we let si,˝τ „B1

si,‚τ then we know pbi,˝τ , u:i,˝
τ q “ pbi,‚τ , u:i,‚

τ q,
which leads to the statement:

β̃i,˚
τ psi,˝τ , ui

τ q “ Esi`1,‚
τ „T̃ p¨|bi,‚

τ ,xui
τ ,u

:i´1,‚
τ yq

tmaxui`1
τ

β̃i`1,˚
τ psi`1,‚

τ , ui`1
τ qu

“ β̃i,˚
τ psi,‚τ , ui

τ q.

This expression proves the first statement at any stage τ and player i.

Statement 2. To prove the second statement, we build upon the first statement. If we let si,˝τ „B2
si,‚τ , then for any

arbitrary joint action u:i´1
τ we know that pbi,˝τ , oi,˝τ , u:i´1

τ q „B1 pbi,‚τ , oi,‚τ , u:i´1
τ q. If si,˝τ „B2 si,‚τ , we know that histories

of subordinates are identical o:i´1,˝
τ “ o:i´1,‚

τ , then the following holds u:i´1
τ “ a:i´1,˚

τ po:i´1,‚
τ q “ a:i´1,˚

τ po:i´1,˝
τ q.

Consequently, by the application of the first statement, we have for any arbitrary action ui
τ ,

β̃i,˚
τ pxbi,˝τ , oi,˝τ , a:i´1,˚

τ po:i´1,˝
τ qy, ui

τ q “ β̃i,˚
τ pxbi,‚τ , oi,‚τ , a:i´1,˚

τ po:i´1,‚
τ qy, ui

τ q.

Consequently, the sets of optimal actions Ai,˚
τ poi,˝τ q

.
“ argmaxui

τ
β̃i,˚
τ pxbi,˝τ , oi,˝τ , a:i´1,˚

τ po:i´1,˝
τ qy, ui

τ q and Ai,˚
τ poi,‚τ q

.
“

argmaxui
τ
β̃i,˚
τ pxbi,‚τ , oi,‚τ , a:i´1,˚

τ po:i´1,‚
τ qy, ui

τ q at histories oi,˝τ and oi,‚τ , respectively, are equivalent, i.e., Ai,˚
τ poi,˝τ q “

Ai,˚
τ poi,‚τ q. Since ai,˚τ poi,‚τ q and ai,˚τ poi,˝τ q belong to the same set Ai,˚

τ poi,˝τ q “ Ai,˚
τ poi,‚τ q, they are interchangeable. In other

words, the optimal action for history oi,˝τ is also optimal for history oi,‚τ and vice versa. Interestingly, one can show that
the expansions xoi,˝τ , ui

τ , z
i
τ`1y and xoi,‚τ , ui

τ , z
i
τ`1y of histories oi,˝τ and oi,‚τ upon taking the same action ui

τ and receiving
the same observation ziτ`1, respectively, will also have equivalent optimal actions. Hence, essentially providing that the
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optimal policy for history oi,˝τ is also optimal for history oi,‚τ and vice versa. To show this statement, first notice that both
histories xoi,˝τ , ui

τ , z
i
τ`1y and xoi,‚τ , ui

τ , z
i
τ`1y will have the same histories of subordinates because original histories oi,˝τ and

oi,‚τ had the same histories of subordinates and original histories oi,˝τ and oi,‚τ were expanded using the same action and
observation. Next, we need to show that the nested-belief states associated with the expanded histories xoi,˝τ , ui

τ , z
i
τ`1y and

xoi,‚τ , ui
τ , z

i
τ`1y are also equivalent. The proof of this statement follows directly from the fact that the transition function

from one stage to the next one depends on T̃ , T ¨ and Ω¨. A careful inspection of these functions reveals that they depend on
nested-occupancy states at player i only through nested-belief states at player i, joint histories of superiors of player i, and
actions of subordinates as demonstrated in Lemmas C.2 and C.1. Histories of the current player are only used to select the
action for that player. However, our histories of interest have the same optimal action set. So, assuming these histories take
the same action does not hurt. Consequently, if we let si,˝τ „B2 si,‚τ then we know that oi,˝τ „P oi,‚τ , which ends the proof.
Which ends the proof for both propositions.

D. Proof of Theorem 3.1
Proof. For simplicity, throughout the proof, we assume with no loss of generality that the central planner does not rely on
public observations, so transition function TTT is deterministic. Let a˚

0: be an optimal joint policy with value functions υ˚
0:. Let

s˚
τ be the occupancy state generated under joint policy a˚

0:, with boundary condition s˚
0

.
“ s0. Let υ0: be the value function

that the PBVI algorithm produced over occupancy subsets S̃0:. Then, it follows that:

υ˚
0 ps˚

0 q ´ υ0ps˚
0 q “ p

řℓ´1
τ“0 γ

τ ¨RRRps˚
τ , a

˚
τ qq ´ υ0ps˚

0 q, (definition of υ˚
0 ps˚

0 q)

“ p
řℓ´1

τ“0 γ
τ ¨RRRps˚

τ , a
˚
τ qq ´

řℓ´1
τ“0 γ

τ ¨ pυτ ps˚
τ q ´ υτ ps˚

τ qq ´ υ0ps˚
0 q, (adding zero).

Next, we use the fact that υℓp¨q
.
“ 0 to re-arrange terms:

“
řℓ´1

τ“0 γ
τ ¨RRRps˚

τ , a
˚
τ q `

´

γℓ ¨ υℓps
˚
ℓ q `

řℓ´1
τ“1 γ

τ ¨ υτ ps˚
τ q

¯

´

´

γ0 ¨ υ0ps˚
0 q `

řℓ´1
τ“1 γ

τ ¨ υτ ps˚
τ q

¯

,

“
řℓ´1

τ“0 γ
τ ¨RRRps˚

τ , a
˚
τ q `

řℓ´1
τ“0 γ

τ`1 ¨ υτ`1ps˚
τ`1q ´

řℓ´1
τ“0 γ

τ ¨ υτ ps˚
τ q,

“
řℓ´1

τ“0 γ
τ ¨

`

RRRps˚
τ , a

˚
τ q ` γ ¨ υτ`1ps˚

τ`1q ´ υτ ps˚
τ q

˘

.

Define υ¨
τ psτ q : aτ ÞÑ RRRpsτ , aτ q ` γ ¨ υτ`1pTTT psτ , aτ qq. It follows that

υ˚
0 ps˚

0 q ´ υ0ps˚
0 q “

řℓ´1
τ“0 γ

τ ¨

´

υ
a˚
τ

τ ps˚
τ q ´ υτ ps˚

τ q

¯

.

If we fix sτ
.
“ argmins̃τ PS̃τ

}s˚
τ ´ s̃τ }1, then we know that }s˚

τ ´ sτ }1 ď δS̃0:
by definition of δS̃0:

. Using action-values

υ
a˚
τ

τ psτ q to add zero into the previous error bound results in:

υ˚
0 ps˚

0 q ´ υ0ps˚
0 q “

řℓ´1
τ“0 γ

τ ¨

´

υ
a˚
τ

τ ps˚
τ qq ´ υ

a˚
τ

τ psτ q ` υ
a˚
τ

τ psτ q ´ υτ ps˚
τ q

¯

.

Taking the best joint decision rule for υ¨
τ psτ q results in value υτ psτ q greater or equal to υ

a˚
τ

τ psτ q, which leads to

υ˚
0 ps˚

0 q ´ υ0ps˚
0 q ď

řℓ´1
τ“0 γ

τ ¨

´

υ
a˚
τ

τ ps˚
τ q ´ υ

a˚
τ

τ psτ q ` υτ psτ q ´ υτ ps˚
τ q

¯

.

Recall that under a fixed joint policy, value functions are linear functions of occupancy states, which allows us to re-arrange
terms as follows:

υ˚
0 ps˚

0 q ´ υ0ps˚
0 q ď

řℓ´1
τ“0 γ

τ ¨

´

υ
a˚
τ

τ ps˚
τ q ´ υτ ps˚

τ q ` υτ psτ q ´ υ
a˚
τ

τ psτ q

¯

“
řℓ´1

τ“0 γ
τ ¨ pυ

a˚
τ

τ ´ υτ q ¨ ps˚
τ ´ sτ q.
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The application of the Hölder inegality, the use of the definition of δS̃0:
, and the use of the bounded reward function rp¨, ¨q,

permit us to conclude:

υ˚
0 ps˚

0 q ´ υ0ps˚
0 q ď

řℓ´1
τ“0 γ

τ ¨ }υ
a˚
τ

τ ´ υτ }8 ¨ }s˚
τ ´ sτ }1

“ δS̃0:

řℓ´1
τ“0 γ

τ ¨ }υ
a˚
τ

τ ´ υτ }8

ď 2cδS̃0:

řℓ´1
τ“0 γ

τ
řℓ´1

t“τ γ
t´τ

“ 2cδS̃0:

řℓ´1
τ“0

řℓ´1
t“τ γ

t

“ 2cδS̃0:

řℓ´1
τ“0

γτ
´γℓ

1´γ

“ 2cδS̃0:

1
1´γ

řℓ´1
τ“0pγτ ´ γℓq

“ 2cδS̃0:

1
1´γ

řℓ´1
τ“0

1`ℓγℓ`1
´pℓ`1qγℓ

1´γ

“ 2cδS̃0:

1`ℓγℓ`1
´pℓ`1qγℓ

p1´γq2
.

Which ends the proof.

E. Multi-Player Benchmarks
Multi-player Tiger. The 1-player tiger problem was first introduced by Kaelbling et al. (1998) and was later generalized
to a 2-player version by Nair et al. (2003). This game describes a scenario where players face two closed doors, one of
which conceals a treasure while the other hides a dangerous tiger. Neither player knows which door leads to the treasure and
which one to the tiger, but they can receive partial and noisy information about the tiger’s location by listening. At any given
time, each player can choose to open either the left or right door, which will either reveal the treasure or the tiger, and reset
the game. To gain more information about the tiger’s location, players can listen to hear the tiger on the left or right side, but
with uncertain accuracy.
We have extended this problem to an n-player version by incorporating hierarchical information-sharing and modifying the
transition, observation, and reward models following Nair et al. (2003), while ensuring that the original 2-player problem
can still be recovered. In this n-player version, only the reward function is not straightforwardly adapted. Listening still
costs 1 per player, as in the original problem, while the penalty for opening the wrong door is now set to ´100{nw (with nw

the number of players opening the bad door) and the reward for opening the good door is 10 per player.

Multi-player Recycling Robot. The recycling robot task was first introduced by Sutton & Barto (2018) as a single-player
problem. Later on, Amato et al. (2012) generalized it to a two-player version. The multi-player formulation requires robots
to work together to recycle soda cans. In this problem, both robots have a battery level, which can be either high or low.
They have to choose between collecting small or big cans and recharging their own battery level. Collecting small or big
cans can decrease the robot’s battery level, with a higher probability when collecting the big can. When a robot’s battery is
completely exhausted, it needs to be picked up and placed onto a recharging spot, which results in a negative reward. The
coordination problem arises since robots cannot pick up a big can independently. In our n-player version of the problem,
picking up small cans still rewards 2 per agent. A reward of 5 per agent is given if all agents synchronize to carry a big can,
while a penalty of 10 is given if some agents (but not all) try to carry a big can.

Multi-player Broadcast Channel. In 1996, Ooi & Wornell (1996) introduced a scenario in which a unique channel is
shared by n players, who aim at transmitting packets. The time is discretized, and only one packet can be transmitted at
each time step. If two or more players attempt to send a packet at the same time, the transmission fails due to a collision. In
2004, Hansen et al. extended this problem to a partially observable one, focusing on two players (Hansen et al., 2004). We
used similar adaptations to define a partially observable version of the original n-player broadcast channel.

Multi-player Grid3x3. This problem was first introduced by Bernstein et al. (2002). It involves two players who want to
meet each other as soon as possible on a two-dimensional grid. Each player has five possible actions: moving north, south,
west, east, or staying in place. To simulate an uncertain environment, each player’s action has a fixed probability of being
successful. Additionally, each player can only sense their own location and has no knowledge of the other player’s location.
To adapt the problem for multiple players, we placed M players on the grid, each with the same actions and perceptions
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as described above. The reward has been redefined as the largest number of players minus one present at one of the two
meeting points. This way, the original problem can be retrieved for two players.

F. Experiments
We conducted three sets of experiments to assess our findings:

1. To assess the exponential drop in time complexity of backups with respect to an increasing number of players, we
maintain the average time required to perform a single backup, cf. Section F.1 – Average Backup Time for Increasing
Players.

2. To assess the exponential drop in time complexity of backups with respect to increasing horizons, we maintain the
average time required to perform a single backup, cf. Section F.2 – Average Backup Time for Increasing Horizon.

3. To assess the superiority of our findings with respect to the state-of-the-art approach to solve general decentralized
partially Markov decision processes near-optimally, cf. Section F.3 – Against State-Of-The-Art Solvers.

F.1. Average Backup Time for Increasing Players

This section investigates the average computational time required to perform a single backup for increasing players, cf.
Figures F.1,F.1,F.1, and F.1. The experiments show that on all tested benchmarks, hPBVI exhibits a reduction in time
complexity compared to the other variants. Moreover, hPBVI can handle a larger number of agents (up to 9 for the Tiger,
MABC, and Recycling) compared to the other variants, which are limited to a maximum of 5 agents. This time-complexity
reduction in hPBVI is the result of our findings providing the ability to fully exploit the hierarchical information-sharing
structure.
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Figure 5. Average Backup Time for the tiger problem and different numbers of players.
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Figure 6. Average Backup Time for the recycling problem and different numbers of players.

F.2. Average Backup Time for Increasing Horizons

This section investigates the average computational time required to perform a single backup for increasing horizons, cf.
Figures F.2, F.2, 11, and 12. The experiments show once again that on all tested benchmarks, hPBVI exhibits an exponential

20



Solving Hierarchical Information-Sharing Dec-POMDPs

2 3 4 5 6 7 8 9 1010
3

10
1

10
1

10
3

tim
e 

(s
)

timeout

 = 3

2 3 4 5 6 7 8 9 10

 = 10

MABC

2 3 4 5 6 7 8 9 10

 = 30

Figure 7. Average Backup Time for the mabc problem and different numbers of players.

2 3 4 5 6 7 8 9 10
# agents

10
3

10
1

10
1

10
3

tim
e 

(s
)

timeout

 = 3

2 3 4 5 6 7 8 9 10
# agents

 = 10

Grid3x3

2 3 4 5 6 7 8 9 10
# agents

 = 30

hPBVI PBVIenum PBVImilp

Figure 8. Average Backup Time for the grid3x3 problem and different numbers of players.

drop in time complexity compared to the other variants. However, all three variants of the PBVI algorithm exhibit an
increase in time complexity with respect to the planning horizon. This increase in time complexity is expected since, as time
goes the number of backups also increases.

F.3. Against State-Of-The-Art Solvers

In this section, we compare our PBVI algorithm variants with two local algorithms, namely A2C and IQL, which are
state-of-the-art and can handle a large number of players, as shown in Figures 13, 14, 15, and 15. However, these algorithms
prioritize scalability over optimality and may get stuck in local optima. Our experiments demonstrate that hPBVI consistently
outperforms all competitors in nearly all tested benchmarks in terms of convergence time and the value of the solution found
within 30 minutes. In some weakly coupled domains, A2C and IQL find nearly optimal solutions close to those found by
hPBVI.
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Figure 9. Average backup time as a function of planning horizons for Tiger.

3 10 3010
3

10
1

10
1

10
3

tim
e 

(s
)

timeout

n = 2

3 10 30

n = 3

Recycling

3 10 30

n = 4

3 10 30
Horizon

10
3

10
1

10
1

10
3

tim
e 

(s
)

n = 6

3 10 30
Horizon

n = 7

3 10 30
Horizon

n = 8

hPBVI PBVIenum PBVImilp

Figure 10. Average backup time as a function of planning horizons for Recycling.
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Figure 11. Average backup time as a function of planning horizons for MABC.
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Figure 12. Average backup time as a function of planning horizons for Grid3x3, BoxPushing and Mars.
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Figure 13. Anytime values for Tiger and ℓ “ 30.
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Figure 14. Anytime values for Recycling and ℓ “ 30.
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Figure 15. Anytime values for Multi-agent broadcast channel and ℓ “ 30.
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Figure 16. Anytime values for Grid3x3, BoxPushing and Mars.
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