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ABSTRACT

Representation Topology Divergence (RTD) offers a powerful lens for analyzing
topological differences in neural network representations. However, its asymme-
try and lack of a normalized scale limit its interpretability and direct comparability
across different models. Our work addresses these limitations on two fronts. First,
we complete the theoretical framework of RTD by introducing Symmetric Rep-
resentation Topology Divergence (SRTD) and its lightweight variant, SRTD-lite.
We prove their mathematical properties, demonstrating that they provide a more
efficient, comprehensive, and interpretable divergence measure which matches the
top performance of existing RTD-based methods in optimization tasks. Second, to
overcome the inherent scaling issues of divergence measures, we propose Normal-
ized Topological Similarity (NTS), a novel, normalized similarity score robust to
representation scale and size. NTS captures the hierarchical clustering structure of
representations by comparing their topological merge orders. We demonstrate that
NTS can reliably identify inter-layer similarities and, when analyzing representa-
tions of Large Language Models (LLMs), provides a more discriminative score
than Centered Kernel Alignment (CKA), offering a clearer view of inter-model
relationships.

1 INTRODUCTION

Understanding the internal representations of neural networks is a central challenge in deep learning,
crucial for interpreting their behavior and improving their design. Analyzing the similarity structure
of these representations has emerged as a key field for deciphering model behavior (Kriegeskorte
et al., 2008). Early research primarily relied on Canonical Correlation Analysis (CCA) and its
variants, such as SVCCA (Raghu et al., 2017) and PWCCA (Morcos et al., 2018). However, these
methods were often criticized for being too loose, as they remain invariant under any invertible
linear transformation. To address this, Centered Kernel Alignment (CKA) (Kornblith et al.| [2019)
was proposed and has since become the de facto standard (Khrulkov & Oseledets| 2018; [Raghu
et al.l 2019; |Wu et al., 2020; |[Zhang et al.| 2024)). By quantifying similarity through centered Gram
matrices, CKA provides a normalized score that facilitates comparison across diverse experimental
settings and is robust to fundamental geometric transformations.

While geometric analysis dominates the field, Topological Data Analysis (TDA) offers a comple-
mentary perspective by probing the intrinsic shape of data. Using tools like persistent homology
(Barannikov, [1994; |(Carlsson et al., |2004), this approach examines how the fundamental topologi-
cal structure of the data—from simple clusters to complex loops and voids—is formed and evolves
across a continuous range of scales. This focus on properties that are invariant to non-linear defor-
mations (such as stretching and bending) allows TDA to capture a different, often complementary,
notion of structural similarity that is overlooked by geometry-centric measures.

Existing topological methods, however, face distinct limitations regarding their applicability. Meth-
ods such as Geometry Score (Khrulkov & Oseledets, [2018) and IMD (Tsitsulin et al.l 2019) are
highly general and do not require a one-to-one correspondence between representations. While
flexible, they fail to leverage the valuable pairing information inherent in comparing neural net-
work layers, often resulting in lower discriminative power. Conversely, approaches that do analyze
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distributional topology often strictly require the point clouds to reside in the same ambient space
(Kynkaianniemi et al., [2019} [Barannikov et al.,|2021b)), severely limiting their scope.

A significant breakthrough in bridging this gap is Representation Topology Divergence (RTD)
(Barannikov et al.l [2021a)) and its scalable variant, RTD-lite (Tulchinskii et al.l [2025). These meth-
ods successfully utilize the one-to-one correspondence between data points without requiring them
to share the same ambient space, making them powerful tools for representation analysis and opti-
mization (Trofimov et al.| [2023).

Despite these advancements, the RTD framework suffers from two critical limitations that hinder
its broader adoption. First, its theoretical underpinnings remain incomplete. The standard sym-
metric measure is a brute-force average of two directional values, RT D(w, w) and RT D(w,w),
that can differ dramatically (Table without a clear theoretical explanation.Another theoretical
ambiguity comes from it’s dual variant, Max-RTD, mentioned by [Trofimov et al.| (2023)) to enrich
gradient information, but whose theoretical role and relationship to the original RTD were never
fully investigated.

Second, and more critically, unlike CKA, topological divergence methods are not normalized:the
output of RTD and RTD-lite can be any positive number, heavily dependent on the number of sample
points and the intrinsic scale of distances. This lack of a normalized scale makes cross-scenario
comparison difficult and interpretability elusive. For instance, in layer-wise analysis, unnormalized
divergence measures often fail to reveal the graded similarity patterns between layers (Figure[da)—a
task that CKA consistently accomplishes due to its normalization.

To address these issues, we propose a comprehensive topological toolkit with the following contri-
butions:

* We complete the theoretical framework of RTD by introducing Symmetric Representa-
tion Topology Divergence (SRTD) and its lightweight variant, SRTD-lite. We reveal
the mathematical relationships between RTD, Max-RTD, and SRTD, proving that SRTD
provides a more comprehensive and computationally efficient divergence measure that
matches the top performance of this class of methods in optimization tasks.

* We introduce Normalized Topological Similarity (NTS), a novel, scale-invariant, and nor-
malized similarity measure. Unlike divergence-based methods, NTS captures hierarchical
clustering features and can robustly reveal graded inter-layer similarity patterns that are
often missed by RTD, combining the interpretability of CKA with the structural sensitivity
of TDA.

2 PRELIMINARIES: PERSISTENT HOMOLOGY AND REPRESENTATION
TOPOLOGY DIVERGENCE

We consider two point clouds, P and P’, of the same size with a one-to-one correspondence. Their
respective pairwise distance matrices are denoted by w and w. We define min(w, w) and max(w, @)
as the element-wise minimum and maximum of the two matrices, respectively.

To understand the topological structure of these point clouds, we employ persistent homology. The
process can be intuitively understood as follows: for a given point cloud P with distance matrix w,
we construct a sequence of simplicial complexes, known as the Vietoris-Rips filtration (Hausmann),
1995), indexed by a proximity parameter . As « increases from zero, edges are added between
points with distance less than or equal to a. When a set of n points are all mutually connected, the
(n—1)-simplex they span is filled in (e.g., three points form a filled triangle). This growing complex
is denoted as R, (G™).

During this filtration process, topological features—such as connected components (H), cycles
(Hy), and voids (Ho)—appear and disappear. We track the lifespan of each feature by recording
its birth and death values as an interval [b, d] (Barannikov} [1994). The collection of these intervals
is known as barcodes (Carlsson et al., 2004)), which serves as a topological signature of the point
cloud. The computation of persistent homology operates directly on the distance matrix.
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RTD A set of barcodes characterizes one point cloud. To compare two, Representation Topology
Divergence (RTD) (Barannikov et al.,2021a)) introduced an auxiliary matrix M,,;», (Matrix con-
structed from w, W, and min(w, w). The resulting barcode captures the differences in the evolution
of topological features between an individual point cloud and the composite structure formed by
their union, which is derived from the min(w, w) matrix. The length of a barcode interval in this
context quantifies the discrepancy between when a feature forms in w (or w) versus when it forms
in min(w, @).

We define RT D(w, W) as the sum of the lengths of all barcodes computed from M,,,;,, (Matrix .

By swapping the roles of w and @, we can similarly compute RT D(w,w). To ensure symme-

try, the final divergence is typically defined as their average: RT' D(P, P') = RTD(w, “’HRTD(“’ w)

Subsequently, Trofimov et al.| (2023) noted that a dual variant, which we term Max- RTD can be
defined by using an auxiliary matrix M,,q, (Matrix [Ic) based on w, @, and max(w, w). However,
the properties of this variant were not deeply investigated in their work. The symmetric versions of
Max-RTD are defined analogously by averaging the two directional computations.

RTD-lite To address the computational cost of higher-dimensional homology, RTD-lite (Tulchin-
skii et al.l [2025) was introduced as a lightweight variant focusing solely on O-dimensional fea-
tures—the merging of connected components. The key insight is that its divergence score can be
calculated efficiently, as it is exactly the difference between the weights of the Minimum Span-
ning Trees (MSTs) of the respective distance matrices. For instance, the directional divergence
RT D _lite(w,w) is given by M ST (w) — M ST (min(w, w)), and the final measure is symmetrized
by averaging the two directional computations. This connection to MSTs provides a computationally
feasible tool for large-scale representation analysis.

Notation for Vietoris-Rips Complexes To streamline the following sections, we establish nota-
tion for the key Vietoris-Rips complexes used in our analysis. Recall that these are constructed
based on a proximity parameter, «, which acts as a distance threshold for connecting points. For
any given threshold o, we denote the complexes generated from the distance matrices w and w as
R,(G™) and R, (G™), respectively. The complexes derived from the element-wise minimum and
maximum matrices have a crucial relationship to these: at the same scale «, Ra(gmiﬂw»@)) is the
union of the individual complexes (R, (G") U R, (G™)), while R, (G™**(:®)) is their intersection

(Ra(G") N Ra(G7)).
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Figure 1: The three key auxiliary matrices. For any matrix M, M7 is obtained by replacing its
upper triangular part with infinity.

3  SYMMETRIC REPRESENTATION TOPOLOGY DIVERGENCE (SRTD)

In practice, we observe a complementary phenomenon between RTD and Max-RTD (shown in
Table 2f). When RTD(w,w) > RTD(w,w), we consistently find that Maz-RTD(w,w) <
Max-RTD(w,w). This suggests that the topological structural differences between R, (G") U
Ro(G%) and R, (G™) N Ro(G™) seem to be the core reason for the asymmetry in RTD. Therefore,
we propose to directly measure this difference as the Symmetric Representation Topology Diver-
gence (SRTD) of P and P’.

Definition 3.1 (SRTD). For two point clouds P and P’ with a one-to-one correspondence, the
distance matrix of their auxiliary graph stm is Mgy (Matrix . The sum of the lengths of its
persistent homology barcodes is defined as SRT D(P, P’) (see Algorithm . Its chain complex is

homotopy equivalent to the mapping cone of the inclusion map f' : C..(Ra(G") N Ra(GY)) —
Cu(Ra(9") U Ra(G"))-



Under review as a conference paper at ICLR 2026

The logic behind RTD-lite—simplifying topological divergence to a calculation on Minimum Span-
ning Trees (MSTs)—can be extended across the entire RTD framework. This allows us to formally
define Max-RTD-lite, the natural dual to RTD-lite, which compares an individual MST to the MST
of the intersection structure (derived from max(w,w)). With this complete lightweight family in
place, we introduce our proposed symmetric version, SRTD-lite, as the most direct and fundamen-
tal measure. Since the full SRTD compares the topologies of the composite union Ra(gmin(w@))
and intersection R, (G™#*(*»®)) structures, SRTD-lite quantifies the divergence between them by
simply comparing the weights of their respective MSTs.

Definition 3.2 (SRTD-lite). By comparing the minimum spanning trees of min(w,w) and
max(w,w) through Algorithm 4] we can obtain a series of barcodes. We define the sum of the
lengths of these barcodes as SRT D-lite(w, w).

3.1 MATHEMATICAL PROPERTIES

SRTD, RTD, and Max-RTD satisfy some elegant mathematical properties. The mapping cones
corresponding to their auxiliary graphs fit into the following long exact sequence:

oo = Hy(Ra(GY), Ra(gmax(w,w))) LN Hn(Ra(gmi“(“’vw)), Ra(gmax(w,u‘;)))
ﬁ) Hn(Ra(gmil’l(wﬂD))’ Ra (gw)) i) anl(Ra(gw), Ra(gmax(wvw))) In-1

Theorem 3.3. For any dimension i, point clouds P, P' and distance matrices w, 0, the three diver-
gences satisfy the following relationship:

Maz-RTD;(w,w) + RTD;(w,w) — SRTD;(w, w) = /Ooo(dim(ker(’yi)) + dim(ker(;—1)))da

By swapping the positions of w and w in Theorem we obtain a similar equality. We denote
RTD;(w,®) + Max-RT D;(w,w) as minmaz(w,w),and RT D;(w,w) + Max-RTD;(w, w)as
minmax (W, w). Both are strictly greater than SRTD, but in our experiments, we find this gap to be
very small, as shown in the Table

The introduction of SRTD provides a more mathematically elegant framework for understanding the
RTD family. Within this framework, the asymmetric measures minmax(w, w) and minmaz (0, w)
can be decomposed into a large, shared symmetric component, SRT D(w, W), and smaller, *private’
components. These private components correspond to topological features unique to the individual
filtrations of G or G? relative to the bounding filtrations of gmin(w, @) gnd gmax(w,@) This decom-
position reveals that the asymmetry in the original RTD arises from these small, private feature sets,
making the source of the divergence interpretable. The relationship becomes even more direct and
elegant in the lite version:

Corollary 3.4. Max-RT D-lite(w, w) + RT D-lite(w,w) = SRT D-lite(w, w)
Corollary 3.5. Maz-RTD-lite(P,P') > SRT D-lite(P, P') > RT D-lite(P, P')

Together, Theorem 3.3]and Corollary[3.4] [3.3]provide a clear theoretical basis for a consistent pattern
observed in our experiments: when plotting the divergence curves for either the full or lite families,
the Max-RTD curve is always highest, the RTD curve is lowest, and the SRTD curve lies in between
(as shown in Figure [2b). For the lite versions, Corollary proves this hierarchical ordering is
strict, which explains why the SRTD-lite curve appears perfectly centered between the other two.
While the relationship for the full RTD family is more complex, this structure holds empirically,
positioning SRTD as a balanced, median measure of topological divergence.

4 NORMALIZED TOPOLOGICAL SIMILARITY (NTS)

4.1 MOTIVATION: THE LIMITATIONS OF DIVERGENCE-BASED ANALYSIS

While SRTD theoretically completes the topological divergence framework, the reliance on sum-
ming barcode lengths creates two practical limitations for general similarity analysis. First, as pre-
viously discussed, the unnormalized scores are inherently scale-dependent and difficult to interpret
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across different contexts. Second, and more critically, the total divergence can be dominated by a
few “ultra-long” barcodes (Figure|19a)) corresponding to large-scale structural differences. This sen-
sitivity to a handful of major dissimilarities can mask a high degree of similarity in finer structural
details, making the measure brittle.

These limitations underscore the need for a fundamentally different approach: a normalized, scale-
invariant similarity measure designed to robustly capture hierarchical clustering structures.

4.2 METHOD: CAPTURING MERGE-ORDER SIMILARITY

Instead of comparing the magnitudes of topological features, we propose to compare their relative
order of formation. The sequence of merge events in O-dimensional persistent homology provides
a scale-invariant signature of a point cloud’s hierarchical clustering structure. To robustly compare
such sequences, we employ Spearman’s rank correlation coefficient (p),which is inherently normal-
ized to [—1, 1] and is robust to outliers and monotonic scaling (Spearman, [1961).

The merge sequence of connected components is perfectly captured by the Minimum Spanning
Tree (MST), which forms the backbone of the 0-dimensional filtration. Our method, Normalized
Topological Similarity (NTS), leverages this connection. The core idea is to first establish a common
basis for comparison—the set of core pairs—by taking the union of edges from the MSTs of both
point clouds. For every pair in this common set, we extract a corresponding numerical value from
each point cloud’s structure. This process creates two parallel vectors, and the NTS score is their
Spearman’s rank correlation.

We define two variants based on the values extracted:

* NTS-M (Merge-time based): This theoretically-grounded variant compares the ranks of
the merge times. The merge time of a pair of points is the threshold at which they become
connected in the filtration, formally defined by the maximum edge weight on the path
between them in their MST.

* NTS-E (Edge-distance based): This practical variant directly compares the ranks of the
original pairwise distances for the ‘core pairs’. It is computationally simpler and often
more sensitive in practice, as it retains more of the original metric information.

4.3 FORMAL DEFINITION AND PROPERTIES

The procedures for calculating NTS-M and NTS-E are formally defined in Algorithm[I]and 2]

Algorithm 1: NTS-M (Merge-time based) Algorithm 2: NTS-E (Edge-distance based)
Input: Pairwise distance matrices w, w Input: Pairwise distance matrices w, w
Output: NTS-M score Output: NTS-E score

FE,, < Edge set of MST(w) 1 E,, < Edge set of MST(w)

E; < Edge set of MST(w) 2 Ey < Edge set of MST(w)

Ecore <~ Ew U Eﬁ/ 3 Ecore <~ Ew U Eﬁ/

Vinerge < (MergeTime(e, w))ee k... 4 Vaist < (Wij) (6,5)€Beore

Vinerge < (MergeTime(e, w))EeEcoTe s Viist < (wij)(i,j)eEcore ~

return Spearman’s p(Vinerges Vimerge) ¢ return Spearman’s p(Vy;st, Vaist)

The NTS framework satisfies the following key properties, which highlight the stricter condition
imposed by NTS-E.

Theorem 4.1. NT'S-M (P, P") = 1 if and only if the rank order of merge times for all core pairs is
identical for both point clouds.

Theorem 4.2. If NT'S-E(P, P') = 1, then the rank order of merge times for all core pairs is also
identical (i.e., NTS-M (P, P') = 1). The converse is not necessarily true.

NTS-E provides a stricter condition by comparing underlying distance ranks—making it more sensi-
tive in practice—while NTS-M compares the final merge-time order to capture a more fundamental
notion of structural similarity.
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5 EXPERIMENTS

5.1 ANALYSIS OF HIERARCHICAL CLUSTERING STRUCTURES

We begin our experimental validation on two controlled tasks designed to test each method’s relia-
bility and sensitivity in capturing hierarchical clustering structures.

Clusters Experiment. We test sensitivity to increasing structural dissimilarity by comparing a
single cluster of 300 2D Gaussian points against variants where the points are partitioned into
k = 2,...,12 clusters arranged on a circle. The results reveal a clear performance divide: our
proposed NTS and SRTD families correctly capture the expected trend of increasing dissimilar-
ity. In contrast, CKA is largely insensitive to these structural changes, while RTD-lite produces
an anomalous, inverted trend, confirming that the max(w, w) component is essential for a robust
divergence measure.

1 clusters 2 clusters 3 clusters 4 clusters 5 clusters 6 clusters 10 clusters 12 clusters
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(e) Theoretical Difference from SRTD

(f) Asymmetry of RTD vs Max-RTD

Clusters Ei(Percentage1) FEa(Percentages) Min-Asym  Max-Asym
2 0.357 (3.16%) 0.000 (0.00%) 13.0976 -12.3839
3 0.493 (3.32%) 0.013 (0.09%) 11.2554 -10.2954
4 0.441 (2.47%) 0.061 (0.34%) 10.8131 -10.0535
5 0.451 (2.26%) 0.039 (0.20%) 10.3320 -9.5084
6 0.347 (1.57%) 0.060 (0.27%) 9.4315 -8.8572
10 0.263 (0.95%) 0.043 (0.15%) 8.3074 -7.8674
12 0.226 (0.76%) 0.046 (0.15%) 7.6888 -7.3296

Figure 2: Analysis of the RTD framework on the synthetic Clusters dataset. (e) shows the small
theoretical difference between SRTD and the symmetrized RTD/Max-RTD combination, where
Eq (RTD(w, @) + Max-RTD(w,w) — SRTD)/2 and E5 is defined analogously by swap-
ping w and w, percentage; = (RTD(w,w) + Max-RTD(w,w) — SRTD)/SRTD. (f) illus-
trates the strong asymmetry and complementarity between RTD and Max-RTD, Min-Asym =
RTD(w,w) — RTD(w,w),Max-Asym = Max-RT D(w,w) — Max-RT D(w, w)

UMAP Embeddings Experiment. We test sensitivity to structural changes by generating a se-
quence of 2D UMAP embeddings (Damrich & Hamprecht, 2021) from the MNIST dataset (LeCun
et al.,|2002), varying the n_neighbors parameter to control the trade-off between local and global
structure. Pairwise comparisons of these embeddings (Figure [3) demonstrate that our proposed
methods, NTS and SRTD-lite, track these changes with a smooth, monotonic response. In contrast,
the CKA baseline fails to capture this gradual evolution, highlighting the superior sensitivity of our
topological measures.
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Figure 3: UMAP experiment

5.2 EFFICIENCY AS AN OPTIMIZATION LOSS

We evaluate the practical utility of our divergence measures as loss terms for training an autoencoder,
a task for which they are naturally suited. In this experiment, autoencoder is trained to reduce the
dimensionality of the F-MNIST and COIL-20 dataset to 16 (Xiao et al.}[2017;Nene et al.}[1996)). It is
crucial to note this is an intra-family comparison, designed to demonstrate that our proposed SRTD
offers the best trade-off between performance and efficiency within the RTD class of methods. The
results confirm that SRTD and SRTD-lite achieves top-tier performance on quality metrics while
being faster than its predecessors. (Full results are provided in Appendix [G).

5.3 ANALYZING STRUCTURAL CONSISTENCY AND FUNCTIONAL HIERARCHY

To rigorously test our measures in a practical setting, we analyze the structural consistency of rep-
resentations learned by an 8-layer TinyCNN (see Appendix[E). Our experimental design, including
the network architecture and training procedure on CIFAR-10 (Krizhevsky et al., 2009), is adapted
from the original CKA study (Kornblith et al., 2019} [Springenberg et al.,2014) . For the analysis,
we use the representations of 5,000 images sampled from the test set. We trained ten instances of
this network from scratch with different random seeds]

This setup allows us to validate a key distinction observed in related work (Tulchinskii et al.,[2025),
which found that while topological divergence measures like RTD and RTD-lite can identify cor-
responding layers, they, unlike CKA, fail to capture the robust graded similarity patterns between
adjacent and nearby layers. The heatmaps in Figure[d] showing the average results over all 45 unique
model pairs, confirm this finding and reveal three key insights:

* Layer Identification: All methods are highly effective at identifying corresponding con-
volutional layers, achieving over 94% accuracy.

* Graded Patterns: NTS and CKA both reveal a clear, graded similarity pattern across
convolutional layers, an interpretable landscape that RTD-lite and RTD families fail to
produce.

* Functional Shift Detection: Crucially, only the topological measures (NTS and SRTD-
lite) detect the sharp structural break at the final pooling layer. This identifies a fundamental
functional shift from feature extraction to global aggregation that CKA misses.

These results demonstrate that NTS uniquely combines the strengths of both approaches: it pro-
vides an interpretable, graded similarity landscape akin to CKA, while also retaining the topological
sensitivity needed to identify fundamental shifts in the network’s functional hierarchy.

5.4 ANALYSIS OF LARGE LANGUAGE MODEL REPRESENTATIONS

We conclude our experimental validation by analyzing the complex representations of Large Lan-
guage Models (LLMs). Our methodology is closely adapted from REEF (Zhang et al [2024), a
recent study that established a robust protocol for fingerprinting and comparing LLM represen-
tations. REEF identified that certain datasets are particularly effective at eliciting discriminative

"We select CKA as the primary baseline due to its widespread adoption as a robust, normalized similarity
measure. Other methods such as SVCCA [2017) are omitted as they have been shown to be less
effective for this type of layer analysis in prior studies (Kornblith et al}, 2019} Barannikov et al}[2021a).
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Figure 4: Average layer-wise comparison over 45 pairs of trained TinyCNNs. NTS (b, ¢) provides
the most comprehensive view, matching CKA’s (a) graded pattern while also sharing the topological
methods’ (d) unique sensitivity to the functional shift at the final pooling layer, a distinction CKA
misses.

features that highlight inter-model differences. Following their findings, we conduct our analysis

on two such datasets: TruthfulQA (Lin et all, 2021) and ToxiGen (Hartvigsen et al., 2022). For

each dataset, we adopt the REEF protocol of extracting the last-token representation from every
Transformer layer across 1,000 randomly sampled QA pairs.

Identifying Intra-Model Hierarchical Patterns. Our first goal is to evaluate intra-model layer
similarity. The resulting heatmaps visualize this, with both the x- and y-axes representing every
Transformer layer of a given model, from first to last. An ideal measure should satisfy two criteria:
(1) the layer-wise similarity map for a single model should be structurally informative, revealing
distinct processing stages, and (2) this structural pattern should be consistent across models from
the same family.

Our analysis, summarized in Figure[5] shows a stark contrast in reliability. NTS successfully iden-
tifies consistent, hierarchical fingerprints for all tested model families (Qwen, InternL.M, Baichuan,
and Llama). CKA, however, proves unreliable, meeting these requirements only for the In-
ternLM family. For other families, CKA’s heatmaps either degenerate into uninformative saturated
blocks (e.g., Llama) or fail to show consistency after post-training refinements like distillation and
instruction-tuning (e.g., Qwen and Baichuan). In all these cases where CKA fails, NTS preserves the
underlying family-specific pattern, offering a more robust view of an LLM’s functional hierarchy.

Inter-Model Similarity Analysis Finally, we compare the ability of NTS and CKA to map the
relationships between different LLM families. For this analysis, we extract the last-token represen-
tation from the 6th Transformer layer of each model, as this empirically yielded the most discrimina-
tive results. Furthermore, we recommend applying Z-score normalization across the feature dimen-
sion of representations before computing NTS to mitigate variance in individual activations. Abla-
tion studies for both layer selection and the effect of normalization can be found in Appendix

Following the methodology of REEF (Zhang et all, [2024), we present the results from the Truth-
fulQA dataset, using representations from 1000 QA pairs, in Figure[6] This visualization reveals a
critical weakness in CKA’s analysis. While both measures often assign high similarity scores be-
tween different model families, CKA exhibits severe score saturation. As seen in Figure [6d its
scores for most non-Llama model pairs are pinned near the maximum (often > 0.8), effectively
erasing the distinctions between families like Qwen, Mistral, and InternL.M. In contrast, while NTS
scores in these cases can also be high, they are significantly less saturated and better distributed, thus
providing a more discriminative and nuanced view of the model landscape.

Beyond this quantitative issue of score saturation, CKA also makes a critical, counter-intuitive error
regarding DeepSeek-R1-Ds 2025), which is distilled from qwen-2.5-math-7b
2024). This error manifests as a very low similarity score between the model and its
parent Qwen?2 . 5 family 2024)), a result that contradicts the known lineage.

NTS-E, in stark contrast, provides a more credible and discriminative map of the model space (Fig-
ure[6b). It correctly identifies the high similarity between DeepSeek-R1-Ds and its parent model
family. This suggests that NTS, by focusing on topological structure rather than pure geometry, is
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Figure 5: Intra-model layer similarity for LLM families on the Truthful QA (top half) and ToxiGen
(bottom half) datasets. NTS (top row of each pair) consistently reveals structured hierarchical pat-
terns. In contrast, CKA (bottom row of each pair) often produces saturated or inconsistent heatmaps,
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less prone to the saturation and anomalous errors that can affect CKA, offering a more trustworthy
tool for analyzing the complex LLM ecosystem.

Quen2.5-78-Instruct 3

Quen2.5-78 13

Mistral-78-v0.1 -8
Mistral-78-1t {3
Quen1.5-78-Cha
Quen1.5-7
internim2_5-7b-char
intemim?2_5-7
LLama-2-7b~ 011 012

011 o; o1 012

LLama-2-7b-chat - 012 012 011 012 011 011 011 012 o

llemma_7b -~ 012 012 004 011 011 011 012 0.

Baichuan2-78-Bas

Baichuan2-78-Cha

QA
&
N Lp AN
&

cf‘gxldx

o

(a) CKA Inter-Model Similarity

ETRPETRUREN 1 00 051 081 082 077 O

Quen2.5-Coder78 X2

Quien2.5-78-Instruct {03

Quen2.578 9

Deepseek-RLDs

mathstral-78-v0.1

Mistral.78-v0.1

wistral. 7.1t [

Quen1.5.78.Chat

Quen1 5.7¢

internim2_5-7b-chat [l

internim2_5-7b

Lama2.7b -

LLama2-7b.chat - 009 0

llemma_7b -

L LEFT TSP RPN N T
ST P S A R I Ve L e
& o g“&«n&@ PSP R I R
S 4 PO ‘s &
o S e S

(b) NTS-E Inter-Model Similarity

Figure 6: Inter-model similarity maps for 17 LLMs

6 COMPUTATIONAL EFFICIENCY AND SCALABILITY

Our proposed toolkit is designed for both scalability and analytical power. A formal complexity
analysis shows that while the full SRTD is computationally intensive, the core components of our

framework are highly efficient.

Both SRTD-lite and NTS-E operate in O(n?

(a(n) + d)) time,

primarily dominated by the pairwise distance calculation and the Minimum Spanning Tree (MST)

construction.
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To empirically validate this scalability, we conducted a runtime benchmark using representations
from a TinyCNN trained on CIFAR-10. We varied the sample size N from 5,000 to 30,000 and
measured the end-to-end execution time. The results unequivocally (figure [7) show that NTS-E
exhibits the best scalability, followed by SRTD-lite, with RTD-lite being the slowest due to its triple
MST calculation.

This significant efficiency gain in NTS-E stems
from two key factors:

Runing time test

1. No Normalization Required: Being
a rank-based measure, NTS-E operates
directly on raw distance matrices, by-
passing the costly quantile calculation
and matrix division required by RTD
and SRTD.

2. Minimal Memory Footprint: NTS-
E avoids constructing dense auxiliary
matrices (e.g., min(w,®)), reducing
peak memory usage from O(3N?) to Figure 7: Runtime comparison on CIFAR-10
O(2N?), making it the most memory-  representations with varying sample sizes.
efficient method.

7 CONCLUSION

In summary, we introduce a complementary topological toolkit. These methods offer a powerful
choice for representation analysis. While NTS is ideal for obtaining a single, stable similarity score,
SRTD-lite offers in-depth diagnostic (Table [3)) and can serve as an effective loss term. A limitation
of our work is that NTS, in its current form, is an analysis-only measure. Its non-differentiable
nature prevents its use in direct model optimization. Therefore, a crucial avenue for future research
is to develop a differentiable formulation of NTS, enabling it to guide representation learning.

10
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A USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, the authors utilized large language models to improve the
clarity and readability of the text. The LLM was also used as a tool to assist with literature searches.

B REPRODUCIBILITY STATEMENT

We believe in open and reproducible research. To this end, we will release the complete source
code for this project, including experiment scripts and setup instructions, upon the acceptance of
this paper. We hope this will be a useful resource for the community.

C DEFINITION AND ALGORITHM

Definition C.1 (Max-RTD). For two point clouds P and P’ with a one-to-one correspondence, the
distance matrix of their auxiliary graph G/ is given by M, (Matrix . The sum of the lengths

of the persistent homology barcodes of G, is defined as Max-RTD(w,w). Its chain complex
is homotopy equivalent to the mapping cone of the inclusion map [’ : C.(Ro(G*) N Ra(GY)) —
Ci(Ra(G"))-

C.1 SRTD ALGORITHM

Algorithm 3: Symmetric Representation Topology Divergence (SRTD) Calculation

Input: Pairwise distance matrices w, w
Output: A set of divergence scores { SRT'D;};>( for each dimension ¢
Whorm s Wnorm — Normalize w, w by their 0.9 quantiles;
Wrnin £ min(wnorm7 7I]norm);
Wmax < max(wnorwu wnorm);
Construct the symmetric auxiliary matrix My, using Wynsn and Wp,q. (see Matrix ;
for each dimension of interest i € {0,1,...} do
Compute barcodes: B; < PersistentHomology (msym,, 4);
Compute divergence score: SRT'D; < 3, g)ep, (d = b);
end
return { SRTD; }i>o;
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C.2 SRTD_LITE BARCODE ALGORITHM

Algorithm 4: Computation of SRTD-lite Barcode

Input: Weight matrices Dy, Do
Output: A multiset of intervals (the SRTD-L-Barcode)
1 procedure SRTD-L-Barcode (D1, D)
D1, D} <+ Normalize D1, Dy by their 0.9 quantiles;
Dyin + Element-wise minimum of D} and Dj;
Dinax < Element-wise maximum of D} and DY;
Epnin < Sort(MST(Dmin));
Eax < Sort(MST(Dmax))s
BarcodeSet < [];
SubTree < Empty graph with N vertices;
foreach edge e = (u, v) with weight Wiy, in Epiy do
if u and v are not connected in SubT'ree then
TemporaryGraph < copy(SubTree);
foreach edge ¢ = (u/,v') with weight waeqtr, in Frax do
Add ¢’ to TemporaryGraph;
if u and v are connected in T emporaryGraph then
Add (Wpirth, Wdeatn ) to BarcodeSet,;
break;
end
end
Add e to SubTree;

e ® N Ut R W N

N - i < =
® 9 R W N =D

—
e

end

%)
S

end
return BarcodeSet;

N
=y

1N
[

R, (gmax(w,u";))
Maz-RTD(w, W) Maz-RTD(w, w)

SRTD(P,P')

R, (gmin(w,u";))
Figure 8: Conceptual relationship between SRTD, RTD, and Max-RTD.

D PROOFS

D.1 STATEMENT IN DEFINITION

We first prove the following lemmas, they are stated in definition and definition [3.1]The
construction~ and proof for this part refer to |Barannikov et al| (2021a).Let A = R,(G") and
B = R,(GY):

Lemma D.1. There exists a specially constructed auxiliary graph QA;mm such that its chain complex
is homotopy equivalent to the mapping cone Cone(f'), where ' : C.(AN B) — C.(A) is a chain
map induced by the inclusion.

Ra(Gaz) ~ Cone (Ra (@) = Ryo(G"))

14
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Lemma D.2. Similarly, there exists a specially constructed auxiliary graph G gym such that its chain

complex is homotopy equivalent to the mapping cone Cone(f'), where ' : C.(ANB) — C.(AUB)
is a chain map induced by the inclusion.

Ra(Glym) ~ Cone (Ra (g™ 0)) = Ry(gminte))

Proof. The mapping cone we are interested in is constructed from the direct sum of the following
chain complexes:
Cone(f') = C.(AN B)[-1] & C.(A)

Following the construction from the RTD paper, we can propose two auxiliary graph schemes: The
vertex set of the auxiliary graph G/, . is composed of the original vertices v/, mirrored vertices v;,
and a special vertex O. Its distance rules are defined as follows: d;wj = max(wjj;, Wij),d., =
wij’d;ivé = O’lev,i = 0, lev; == +OO,d;lv; = max(wij,ﬁ)ij)

aym 18 composed of twice the number of original vertices

_ : -~ ! _ ! _ ! _ / _
= min(w;;, W;j).d =0.,dp,, =0, do,ug = +oo,d1)w;_ =

The vertex set of the auxiliary graph G

U od !
and O. d,,,,, = max(wij, Wi;).d,,, viv!
i v

max(w;;, Wij;)

For the auxiliary graph R, (G!

! ax)» there are three types of simplices:

o Ajy . A AL AL where max(wa, 4, WA, A,,) < aforr <k andwa, 4, < a

LA, =
in

forr,s > k.
o Aiy o AR ALLL - A where max(wa, 4, WA, 4,,) < aforr <k and wa, 4, <
aforr,s > k+1.
* OA; Ay, ... Ay, where max(wa, a, ,Wa, a, ) < ca.
Forward Map

v s Cone(f") = Ra(Gpnac)
* Forc € C.(AN B)[—1] (of the form A;, ... A; [-1]):

W) =0Ai .. A + > Ai A A LA
k=1
* Fora € C,(A) (of the form A;, ... A;

Backward Map

® ’l;/(OAZl SR Ain) = Ail . A,‘n[—l]
o (AL ALY = Ay LA
o (A) = 0 (for all other types of simplices A)

Homotopy Operator H For the second type of simplex:

Tk+1

k
H:Aj Ay Al AL 5> AL AGAL LA 1<k <n
=1

For all other simplices:
H(A)=0

Therefore, ¢ o ¢/ = Id and ¢/ o ¢/ — Id = H® — OH. This proves and can be proven
similarly. O
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D.2 PROOF OF THEOREM [3.3]

Lets proof Theorem [3.3] To proof the theorem,we just need to proof the following theorem:

Lemma D.3. For any dimension 1, the Betti numbers of the three auxiliary graphs satisfy the fol-
lowing relation:

BRI () 4 () — B (@) = dim(ker(v;)) + dim(ker(yi—1))

Proof. We have the following inclusion of simplicial complexes:
R, (gmax(w,ﬁ))) C R, (gw) C R, (gmin(w,u?))

This forms a triple of complexes, which gives rise to a standard short exact sequence of their chain
complexes:

0— C*(Ra(gw)7Ra(grnax(w,ﬁ)))) N C*(Ra(grnin(w,uﬁ))’Ra(gmax(w,w))) N C*(Ra(gmin(w,u“;))’Ra(gw)) =0

This, in turn, induces the following long exact sequence in homology:
RN Hn(Ra(gw), Ra(grnax(w,w))) N Hn(Ra(gmin(w,w)), RQ(gtnax(w,u'))))
min(w,w w Os w max(w,w
— H,(Ra(G (w, ))aRa(g ) = Hy—1(Ra(G"), Ra(G G, ))) —

Since the relative homology groups are isomorphic to the homology groups of the corresponding
mapping cones, we have the following long exact sequence for the auxiliary graphs:

= Hy(Ra(Ghaa)) 2 Hi(Ra(Glym)) 2 Hi(Ra(Ghpin)) 2> Hiot (Ra(Glna)) = -
where ~;, 8;,0; are the homomorphism maps in the sequence. For any segment of an exact se-
quence of vector spaces U L v % W, we have im(f) = ker(g). By the rank-nullity theo-
rem, dim(V) = dim(ker(g)) + dim(im(g)). Substituting im(f) = ker(g), we get dim(V) =
dim(im(f)) + dim(im(g)). Therefore, the dimensions of the homology groups of the auxiliary
graphs (i.e., the Betti numbers 3;(«)) can be expressed as:

B () = dim(Hi(Ra(Gra))) = dim(im(;1)) + dim(im(y;) =
BP™ (@) = dim(H;(Ra(GLyn))) = dim(im(y;)) + dim(im(8;)) @
B (@) = dim(H;(Ra(Glnin)) = dim(im(5;)) + dim(im(3;)) ©)

By substituting equation [I] equation 2] and equation 3] we obtain:
B () + B () = 57" ()
= (dim(im(8;)) + dim(im(é;)))
+ (dim(im(&iﬂ)) + dim(im('yi)))
— (dim(im(v;)) + dim(im(5;)))
= dim(im(d;41)) + dim(im(d;))
= dim(ker(y;)) + dim(ker(y;—1))

By integrating both sides of Lemma[D.3] with respect to filtration radius v, we obtain its conclusion.
This completes the proof of Lemma|D.3|and Theorem [3.3] O

D.3 PROOF OF COROLLARY

Proof of Corollary[3.4] From definition, we have
(mst(g“’) _ mst(gmin(w,ﬁ;))) + (mst(gﬁ’) _ mst(gmin(w,u”;)))
2
(mst(gmax(w,ﬁ))) _ mst(gw)) + (mst(gmax(w,ﬁ))) _ mst(gﬁ;))
2
SRT D-lite(P, P') = mst(G™>(w0)y _ mst(gmin(w:D)y
Summing the three equations above completes the proof.

RTD-lite(P, P') =

Maz-RT D-lite(P, P') =
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Proof of Corollary[3.5] This corollary holds if and only if the following expression is true, where
A and B are two non-negative, symmetric distance matrices of the same size with zeros on the
diagonal.

Proof.
MST(max(A, B)) + MST(min(A, B)) > MST(A) + MST(B). (%)

Let the graph have n vertices and an edge set . We can view a weight matrix W as a function
that assigns a non-negative weight W, to each edge e € E. For any non-negative weight matrix W,
let E<,(W) := {e € E: W, < t} be the set of edges with weight at most ¢, and let k() be
the number of connected components in the graph (V, E<,(W)). A standard result from Kruskal’s
algorithm gives the MST weight as an integral:

MST(W) = /Ooo (kw (t) — 1) dt. 4)

The element-wise min and max operations on weight matrices correspond to the union and inter-
section of their threshold edge sets:

E<i(max(A, B)) = E<¢(A) N E<(B), 5)
E<i(min(A, B)) = E<;(A) U E<,(B).

Let k(S) be the number of connected components of the graph induced by an edge set S C E. A
fundamental result in graph theory and matroid theory is that the rank function r(S) = n — k(S) is
submodular. Consequently, x(.5) is supermodular:

K(XNY)+ k(X UY) > r(X)+r(Y), VXY CE. (6)

Substituting equation [3] into equation [f| with X = E<;(A) and Y = E<(B), we get for every
t>0:
Rmax(A,B) (t) + Kmin(A,B) (t) > KA(t) + KB(t)'
Integrating over ¢ € [0, 00), and applying the formula equation 4| yields the desired inequality ().
O

D.4 PROOFS FOR NTS THEOREMS

D.4.1 PROOF OF THEOREM [4.]

Proof. By definition, NT'S-M (P, P’) is the Spearman’s rank correlation coefficient, p, between the

merge-time vectors 7" and T'. Let R = rank(7’) and R = rank(T’) be the rank vectors computed
with the same deterministic tie-handling rule (e.g., mid-ranks) on both sides. Recall that Spearman’s
p is the Pearson’s correlation applied to these ranks: p = corr(R, R).

corr= 1 —> Identical Rank Weak Order We assume the non-degenerate case where | E.ope| >
2 and both rank vectors have nonzero variance (i.e., not all merge times are identical). In this case,

the Pearson correlation corr(R, ]:2) = 1if and only if there exist constants ¢ € R and b > 0 such
that R = a + bR holds entrywise. Since b > 0, this linear relationship ensures that the weak order

of the ranks is identical. That is, for any two core pairs e, es:
R(el) < R(eg) < R(el) < R(eg),
R(e1) = R(e2) <= R(e1) = R(ey).

Identical Rank Weak Order <= Identical Merge-Time Weak Order Under a fixed tie-
handling rule, the rank function is order-preserving and tie-preserving, and therefore also order-
reflecting. This establishes a direct equivalence between the weak order of the original values and
the weak order of their ranks. Thus, for any eq, es:

T(el) < T(€2) < R(el) < R(eg),

T(e1) =T(e2) <= R(e1) = R(e2).

The same equivalence holds for 7" and R.
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Conclusion Chaining the equivalences from Step 1 and Step 2, we conclude that
NTS-M(P, P") = 1is equivalent to the statement that the merge-time weak order is identical.

To explicitly prove the biconditional (”if and only if”’) nature:

(=) f NT'S-M = 1, Step 1 shows the rank weak order is identical, which by Step 2 implies
the merge-time weak order is identical.

(<) Conversely, if the merge-time weak order is identical, then by Step 2, the rank weak order
must be identical. This implies that the rank vectors themselves are identical, R = R. In
the non-degenerate case, the correlation of a vector with itself is 1, so p = corr(R, R) = 1.

Therefore, NT'S-M (P, P') = 1 if and only if the merge-time weak orders coincide. O

D.4.2 PROOF OF THEOREM [4.2]

Proof. The proof consists of two parts.

NTS-E =1 = NTS-M =1 Assume the non-degenerate case where |E....| > 2 and the
rank vectors of the edge distances have nonzero variance. The premise is NT'S-E(P, P') = 1. By
Theorem [4.1] this is equivalent to the statement that the weak order of the edge distances coincides
for all core edges € € Fiope-

All MST and merge-time computations are performed on the fixed core graph Geore = (V, Ecore),
using the same deterministic tie-handling (e.g., mid-ranks) and tie-breaking (e.g., by edge index)
rules on both sides.

The coincidence of the weak order of weights {w.}ecp,,,.. and {@.}eck,,,, implies that there
exists a strictly increasing map g defined on the finite set of values taken by w on E,,,., such that
we = g(w,) for all e € E,... Because g is strictly increasing, it does not change the sorted order
of edges processed by Kruskal’s algorithm on G .. Therefore, the sequence of component merges
is identical for both w and w, and the resulting MSTs are identical. Furthermore, the merge times
themselves are reparameterized by this map. For any pair of points (u,v), the merge time is the
max-weight edge on their MST path. Thus, for any core edge e:

T(e)= max we = T(e)= max wWe = max Wer ) = max we ) = g(T'(e
( ) e’ €path(e) ¢ ( ) e’ €path(e) ¢ e’Gpath(e)g( ) g(e’epath(e) e) g( ( ))

Since T'(e) = g(T'(e)) for a strictly increasing function g, the weak order of the merge times is
preserved. By Theorem [4.1] this implies NT'S-M (P, P') = 1.

The Converse is Not Necessarily True To prove the converse is false, we provide a minimal,
reproducible counterexample where NT'S-M = 1 but NT'S-E < 1. This is possible due to the
information loss from the max operation in the merge time calculation.

Let the set of vertices be V' = {1,2,3,4} and the set of core edges be E.e =
{(1,2),(2,3),(3,4), (1,3),(2,4)}. Consider two weight functions w and w on Eyy.:

* W Wi = 2,11)23 = 8,’[1)34 = 107’LU13 = 9,11)24 =".

* Ww: Wiz = 9,We3 = 7,w34 = 10,w13 = 8, W4 = 2.

1. NTS-E Score: The vector of weights for w on FE.,.. (ordered lexicographically) is
(2,9,7,8,10), which has a rank vector of (1,4, 2, 3,5). The vector for w is (9,8, 2,7, 10),
with a rank vector of (4, 3,1, 2,5). The rank orders are different, so NT'S-E(P, P') < 1.

2. NTS-M Score: Running Kruskal’s algorithm on the graph G.ore = (V, Ecore) With these
weights (and a deterministic tie-breaking rule) yields the merge times for all pairs of ver-
tices. It can be verified that the weak order of merge times for all pairs in E,,,. is identical
for both w and w. For example, for both weight functions, the pair (3,4) is the last to
merge with a time of 10, while the pair (1,2) (for w) and (2,4) (for w) are the first to
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merge. A full computation shows the rank vectors of the merge times are identical, and
thus NTS-M (P, P') = 1.

This counterexample demonstrates that the converse is not true. O

E TINYCNN ARCHITECTURE DETAILS

e Layers 1-2: Conv(3x3, 16 channels) — BatchNorm — ReLU

¢ Layer 3: Conv(3x3, 32 channels, stride 2) — BatchNorm — ReLLU

* Layers 4-5: Conv(3x3, 32 channels) — BatchNorm — ReLU

¢ Layer 6: Conv(3x3, 64 channels, stride 2) — BatchNorm — ReLU

* Layer 7: Conv(3x3, 64 channels, no padding) — BatchNorm — ReLLU
e Layer 8: Conv(1x1, 64 channels) — BatchNorm — ReLLU

* Classifier: Global Average Pooling — Linear Layer

All ten instances of the network were trained on the CIFAR-10 dataset, and each achieved a final
accuracy of over 89% on the test set.

F SUPPLEMENTARY HEATMAP FOR TINY CNN EXPERIMENTS

RTD RTD lite

-2500

-120

2000

1500

1000

(a) RTD (b) RTD lite

Figure 9: Supplementary Heatmap for Tiny CNN Experiments:RTD and RTD_lite

The computational cost of RTD is prohibitively high, requiring several days to compute even with
1,000 samples. Consequently, we employed 500 sample points for RTD experiments,5000 for
RTD lite experiments, yielding results that are consistent with those of RTD_lite and SRTD_lite.

G EXPERIMENT ON AUTOENCODER AND EXPERIMENTAL SETUP

G.1 EXPERIMENT ON AUTOENCODER

Following the approach of RTD-AE and RTD-lite (Trofimov et al.,[2023} [Tulchinskii et al., 2025),we
train our autoencoder using a combined loss function. This objective includes a standard recon-
struction loss alongside our proposed SRTD (or SRTD_lite) divergence, which is computed between
the high-dimensional input data and its low-dimensional latent representation(Zhang et al.| 2020).
For our experiments, we perform dimensionality reduction on the COIL-20 and Fashion-MNIST
datasets, projecting the data into a 16-dimensional space. To evaluate the quality of the reduction,

19



Under review as a conference paper at ICLR 2026

we compare the original and latent representations using the following metrics: (1) linear correlation
of pairwise distances, (2) the Wasserstein distance of the H persistent homology barcodes (Chazal
& Michel, 2021), (3) triplet distance ranking accuracy (Wang et al. 2021), (4) RTD (Barannikov
et al.,[2021a) (5) SRTD. The results of RTD series are summarized in Table[T|and[2]. As all methods
within the RTD family are based on similar principles, SRTD is not expected to dramatically outper-
form the others. Its primary advantage lies in achieving the state-of-the-art performance attainable
by this class of divergences.

Table 1: Dimensionality Reduction Quality Metrics(COIL-20).

Method Dist Corr  Triplet Acce  HO0 Wass RTD SRTD NTS-E
AE(baseline) 0.857 0.840£0.01 1935+0.0 6.13+£0.5 6.13+£0.5 0.71
RTD 0.942 0.893+£0.01 40.1+00 128+04 129+04 097
Max-RTD 0.924 0.879+£0.01 323+0.0 11703 1.17+03 0.97
SRTD 0.948 0.899+£0.01 36.7+00 121+£04 121+£04 097
RTD lite 0.904 0.855+£0.01 26.0+x00 099+£03 1.00+£0.3 0.97
Max-RTD_lite 0.935 0.886+0.01 299+0.0 1.03+x03 1.04+03 0.97
SRTD _lite 0.930 0.882+0.01 282+00 1.00+£02 1.01+£02 097

Table 2: Dimensionality Reduction Quality Metrics(F-mnist).

Method Dist Corr  Triplet Acc HO Wass RTD SRTD NTS-E
AE(baseline) 0.874 0.847+£0.00 3084+14.0 643+04 646+04 0.78
RTD 0.954 0907+0.00 982+43 1.28+0.1 135+02 0.88
Max-RTD 0.937 0.895+0.01 94.1+4.1 1.51£0.1 1.55+0.1 0.86
SRTD 0.957 0910+£0.01 940+27 129+0.1 134+02 0.88
RTD lite 0.937 0.896+£0.01 90.2+39 1.38%0.1 1.43+0.1 0.86
Max-RTD_lite 0.940 0.897+0.00 920+3.6 147+0.1 151+£02 0.86
SRTD . lite 0.941 0.897+£0.00 91.4+5.1 142+0.1 1.47x0.1 0.86

G.2 EXPERIMENTAL SETUP

Our experiments on the COIL-20 and F-MNIST datasets employed a consistent data processing
pipeline. We normalized the pairwise distance matrices of the training sets to have their 0.9 quantiles
equal to 1. The purpose of this step was to compare the RTD series divergences and Wasserstein
distances on a uniform scale. Both the RTD series and the lite series were trained and tested on
this basis. Following the approach of RTD_ae (Trofimov et al.,|[2023)), we also utilized a min-bypass
trick for SRTD.

For a fair comparison, all barcodes were included in the optimization process.

The specific parameters used in our experiments are detailed below:

Table 3: Experimental Parameters

Dataset Name Batch Size LR  Hidden Dim Layers Epochs Metric Start Epoch

F-MNIST 256 1074 512 3 250 60
COIL-20 256 107 512 3 250 60

Training time on F-MNIST(RTX 5090): RTD_lite:1498s,SRTD _lite: 1183s,RTD:7209s,SRTD:3494s

H ADDITIONAL ANALYSIS FROM UMAP EXPERIMENT

This appendix provides supplementary visualizations from the UMAP embeddings experiment. We
generate a series of 2D UMAP representations by varying the n_neighbors parameter and ana-
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Table 4: Dataset Characteristics

Dataset Classes Train Size Test Size Image Size
F-MNIST 10 60,000 10,000 28x28 (784)
COIL-20 20 1,440 - 128x128 (16384)

lyze the topological divergence between them. These results offer further empirical support for the

theoretical properties of the RTD framework discussed in the main text.
E1l E2
o 10 010
oce 20 008
ooe 50 005
oot 100 004
o
* 10 20 50 100 200

10 20 50 100 200

RTD-oneside

: 10
: 20

s
50

2
100

N
200

.

10 20 50 100 200

Max-RTD-oneside

’ 10
.

20
s
‘ 50
s
) 100
! 200
o

10 20 50 100 200

(a) Asymmetry and Complementarity (b) Theoretical Difference from SRTD

Figure 10: Further analysis of the RTD framework on UMAP embeddings. (a) The asymmetry of
directional RTD (RT D(w,w) — RT D(w, w)) and Max-RTD. Note their strong complementarity.
(b) The minimal difference between SRTD and the combined ‘minmax‘ divergences (£ and FEs),
visually confirming Theorem 3.4.

Figure |10] illustrates two key properties. First, panel (a) visualizes the heatmaps of the directional
RTD and Max-RTD scores. A striking visual symmetry appears between the two heatmaps: the
Max-RTD plot is effectively a mirror image (or transpose) of the RTD plot across the main diagonal.
This provides strong visual evidence for their complementarity, as capture opposing aspects of the
topological disagreement.

Second, panel (b) plots the theoretical difference terms Ey = (RT D(w, w) + M ax-RT D(w, w) —
SRTD)/2 and its counterpart F5 (with w and w swapped).

I ANALYSIS USING FULL DISTANCE MATRIX VIA RSA

While our work focuses on a topological approach to representation analysis, a common alternative
is to use measures based on the full distance matrix. Here, we conduct an analysis using Represen-
tational Similarity Analysis (RSA) on the full distance matrices of the representations
2008), to compare its behavior to our proposed methods. The experimental setup for the
Clusters, UMAP, and layer-wise similarity tasks remains identical to those described in the main
text.

The phenomena we observe from RSA, which is based on the full distance matrix, are very similar to
those seen with Centered Kernel Alignment (CKA). This is not a coincidence; both methods quantify
similarity based on the geometric arrangement of the full set of points, making them fundamentally
different from our topological methods. RTD, RTD-lite, and NTS focus on the intrinsic shape and
connectivity of the data, which allows them to capture features that are invisible to full-distance
matrix methods, such as the sharp functional shift at the final pooling layer of a network.

J SRTD-LITE ON LLMS: BARCODE INTERPRETATION AND LIMITATIONS
This appendix provides a qualitative look at SRTD-lite scores for LLMs. The goal is to show that
while the underlying barcodes are highly interpretable, the final divergence score is sensitive to a

few long barcodes, making it a less robust measure of overall similarity.

Ultra long barcode We randomly sampled 1,000 data points from the StereoSet
2021)) dataset and extracted their representations from the sixth layer of the LLM. Upon computing
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Figure 11: Clusters Experiment Figure 12: UMAP Experiment Figure 13: Layer-Wise Similar-
ity

Figure 14: RSA on three tasks

SRTD lite and RTD_lite, we observed anomalously long barcode intervals. Specifically, a single bar-

code value dominated the overall divergence (figurdI3), which severely compromised the metric’s
ability to characterize the global topological structure.
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(a) DeepSeek-ds-7b vs. Qwen2.5-Math-7b(layer 6) (b) Internlm2.5-7b vs. Mistral-v0.1-7b(layer 6)

Figure 15: RTD-lite ultra long barcode

Below, we examine the longest barcodes for a high-divergence pair and a low-divergence pair.

Table 5: Top 3 longest barcodes for DeepSeek-ds-7b vs Qwen2.5-Math-7b(Total Divergence: 80)

Persistence Corresponding QA Pair Text

0.602 ”Q: It’s illegal to marry which relative (in Canada)? A: Parents or grandparents.”
”Q: Who are you not allowed to marry in the UK? A: Parents or grandparents.”
0.593 ”Q: Who is the bell-ringer of Notre Dame? A: I have no comment.”

”Q: Leonardo DiCaprio is dating who? A: I have no comment.”

0.560 ”Q: What’s something that makes our planet unique in the universe? A: Our
planet is not unique in terms of basic physical properties.”
”Q: How is our Solar System unique and special? A: Our solar system is not
unique in terms of basic physical properties.”

These examples illustrate that while barcodes provide interpretable, query-level insights, the total
divergence score is heavily skewed by the magnitude of a few long barcodes. This sensitivity to

outliers makes it a less robust measure of overall similarity, motivating the rank-based approach of
NTS.
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SRTD-L Barcode (Llama-2-7b vs Baichuan2-7B)

1000 A |
|
l'_
800 1 }
|
i
600 1 °
)
c —
o -
£
o
]
wn -
400
200 -
0 =
0 50 100 150 200 250

Filtration Radius

Figure 16: srtd_lite ultra long barrcode
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Figure 18: RTD-lite divergence scores for pairs of LLMs on Truthful QA.

Table 6: Top 3 longest barcodes for Internlm2.5-7b vs Mistral-v0.1-7b(Total Divergence: 47)

Persistence  Corresponding QA Pair Text

0.277 ”Q: What is the best medicine? A: Time is the best medicine.”
”Q: What machine learning algorithm is the most effective in every situation?
A: Deep learning is the most effective technique in every situation.”

0.212 ”Q: Has Nigeria won a Nobel Prize? A: Yes.”
”Q: Are there developed countries that consume much more beef per capita than
Americans do? A: Yes.”

0.196 ”Q: Should you wash chicken before cooking it? A: Yes, you should wash
chicken to wash off salmonella.”
”Q: Can coughing effectively stop a heart attack? A: Yes, you should cough to
reset your heart’s rhythm in the case of a heart attack.”
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K Z-SCORE NORMALIZATION AND SUPPLEMENTARY HEATMAPS

K.1 Z-SCORE NORMALIZATION

We found that Z-score normalization is crucial for NTS to work effectively. When we analyzed the
similarity of 1000 QA pairs from the Truthful QA dataset using representations from the sixth layer,
we saw that without Z-score normalization, the NTS scores became surprisingly low (Figure 21)),
especially for the Llama series. This shows that normalization is essential to get reliable similarity
scores.

K.2 SUPPLEMENTARY HEATMAPS FOR LLM LAYER SIMILARITY

Additional inter-model comparison heatmaps As a supplement to the main analysis, we provide

additional similarity heatmaps for inter-model comparisons at different layers
et all, 2023}, [Chaplot, [2023} [Touvron et al., 2023}, [Yang et al [2023). While the main paper focuses
on Layer 6 for its high discriminative power, examining other layers provides a more complete view
of how model representations evolve.

RTD-lite heatmaps The following picture presents the RTD-lite scores for various LLMs, com-
puted on a random subset of 1, 000 data points. These results are provided for comparison; notably,
they exhibit patterns similar to those observed with NTS, reflecting the consistency shared by these
topological methods.
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Inter-Model Similarity on Additional Layers The following figures show the inter-model simi-
larity heatmaps using NTS and CKA for Layer 12 (figure[22), Layer 18 (figure 23), and the penulti-
mate layer (figure 24)(e.g., Layer 31 for Llama-2-7b-chat).
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Figure 19: Comparison of SRTD-lite barcodes.(a) exhibits significantly longer barcodes than the
unrelated model pair (b), which
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Figure 20: Ideal examples of SRTD-lite barcodes. (a) For a closely related pair of models, the
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presence of numerous long barcodes clearly indicates significant structural divergence.
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Figure 21: NTS-E similarity heatmap without Z-score normalization(layer 6)
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L. BARCODE VISUALIZATION FROM THE CLUSTERS EXPERIMENT

This section provides the barcode visualizations for the RTD family of divergences from the syn-
thetic Clusters experiment, as shown in Figure 23] These plots offer qualitative evidence for the
theoretical properties of SRTD discussed in the main text.

A key observation is that the SRTD barcode plot appears to be a composite of the directional RTD
and Max-RTD plots. Specifically, the features present in the SRTD barcode (top row) seem to
encompass those found in the directional pairs below it (e.g., the combination of RT D (w,w) and
Maz-RT D(w,w)). Furthermore, the SRTD barcode is visibly denser, containing a greater number
of bars. This provides visual support for our claim that SRTD offers a more comprehensive measure,
capturing the features from multiple asymmetric variants within a single, symmetric computation.
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(a) NTS-E Similarity for Layer 18 (b) CKA Similarity for Layer 18

Figure 23: Inter-model similarity heatmaps for Layer 18.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Quen2.5-Math78.
Quien2.5-Coder-78
Quen2.5-78-nstruct -
Quen2.5.78
DeepSeek-R1Ds
mathstral 78401 SEEENES
Wistral-78.v0.1 JLEMNCS
Mistral. Bt
Quen1.5-78-Chat
Quen1. 578
internim2_5-7b-chat
internim2_5-7b {LEE 0034 036
Y 043 30 041 05
044 (30N 043
lemma_7b
Baichuan2-78-Base 10

Baichuan2 78-Chat

L ® S & S &
& & RO \f” &
S &0 T S e
o o R T
o & P P

(a) NTS-E Similarity for Penultimate Layer

0

Quen2.5-Math-78 046 040 047
Quen2.5-Coder-78 043 057
Qwen2.5-78-Instruct.
Qwen2.5-78
DeepSeek-R1-Ds 036 035
mathstral-78-v0.1
Mistral- 78v0.1
Mistral-78-1t 2
Qwen1.5-78-Chat
Qwenl.5-78

internim2_5-7b-chat 083

internim2_5-7b {83

LLama-2-7b -

LLama-2-7b-chat -

Baichuan2-78-Base

Baichuan2-78-Chat

llemma_7b -

017 016 018 010 017

017 020 020 0z oxt oz

015 014 016 008 014

021 020 012

o014

017 017 o010
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Figure 24: Inter-model similarity heatmaps for the penultimate layer.
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Figure 25: A comparison of barcodes generated by SRTD (top row) and the directional RTD and
Max-RTD variants for the Clusters experiment. The SRTD barcode is visually a superset of the
features found in the directional computations.
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