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ABSTRACT

Representation Topology Divergence (RTD) offers a powerful lens for analyzing
topological differences in neural network representations. However, its asymme-
try and lack of a normalized scale limit its interpretability and direct comparability
across different models. Our work addresses these limitations on two fronts. First,
we complete the theoretical framework of RTD by introducing Symmetric Rep-
resentation Topology Divergence (SRTD) and its lightweight variant, SRTD-lite.
We prove their mathematical properties, demonstrating that they provide a more
efficient, comprehensive, and interpretable divergence measure which matches the
top performance of existing RTD-based methods in optimization tasks. Second, to
overcome the inherent scaling issues of divergence measures, we propose Normal-
ized Topological Similarity (NTS), a novel, normalized similarity score robust to
representation scale and size. NTS captures the hierarchical clustering structure of
representations by comparing their topological merge orders. We demonstrate that
NTS can reliably identify inter-layer similarities and, when analyzing representa-
tions of Large Language Models (LLMs), provides a more discriminative score
than Centered Kernel Alignment (CKA), offering a clearer view of inter-model
relationships.

1 INTRODUCTION

Understanding the internal representations of neural networks is a central challenge in deep learning,
crucial for interpreting their behavior and improving their design. A prevalent approach is rooted in
geometric analysis, where Centered Kernel Alignment (CKA) (Kornblith et al., 2019) has become
the de facto standard baseline. It quantifies the similarity between two sets of representations by
comparing their centered Gram matrices (equivalent to a normalized Hilbert-Schmidt Independence
Criterion, or HSIC). This appropriate invariance to fundamental geometric transformations allows
CKA to perform robustly in representation comparisons across different layers, models, and even
dimensionalities (Chen et al., [2023} |[Zhang et al., [2024)).

In contrast to this geometric viewpoint, the path of topological analysis offers a complementary
perspective by probing the intrinsic data shape. Using tools like persistent homology (Barannikov,
1994; |Carlsson et al., [2004), this approach examines how the fundamental topological structure
of the data—from simple clusters to complex loops and voids—is formed and evolves across a
continuous range of scales. This focus on properties that are invariant to non-linear deformations
(such as stretching and bending) allows TDA to capture a different, often complementary, notion of
structural similarity that is overlooked by geometry-centric measures.

A significant breakthrough came with Representation Topology Divergence (RTD), the first TDA-
based method designed to compare point clouds with a one-to-one correspondence, such as neural
network representations across different models or layers (Barannikov et al.| 2021). The versatility
of this framework was quickly extended; RTD-AE adapted it as a differentiable loss for autoencoder
training (Trofimov et al.| [2023), while RTD-lite addressed the computational bottleneck for large-
scale datasets (Tulchinskii et al.| [2025)). The RTD family of methods has thus emerged as a powerful
toolkit for both representation analysis and model optimization.
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However, the current RTD framework suffers from two critical limitations. First, its theoretical un-
derpinnings are incomplete, leading to poor interpretability. The standard symmetric measure is a
brute-force average of two directional values, RT'D(w, @) and RT D(w, w), that can differ dramat-
ically (Table 2f) without a clear theoretical explanation. This theoretical ambiguity is compounded
by a dual variant, Max-RTD, mentioned by [Trofimov et al. (2023) to enrich gradient information,
but whose theoretical role and relationship to the original RTD were never fully investigated. The
result is a toolkit of ad-hoc computations, not a cohesive and interpretable framework.

Second, and more critically, RTD is not a normalized measure. Its raw value is meaningless with-
out context, as it depends on both the number of points (as larger clouds naturally yield greater
divergence) and the intrinsic scale of the distances within the cloud. This dependency on distance
scale becomes a crucial obstacle when comparing models. While heuristic rescaling offers a partial
remedy, it is often insufficient. A telling example arises in layer analysis, where their unresolved
scale-dependency prevents divergence measures like RTD and RTD-lite from revealing the graded
similarity patterns between layers (Figure [fa)) — a task that CKA consistently accomplishes.

To address these issues, we propose a comprehensive topological toolkit with the following contri-
butions:

* We complete the theoretical framework of RTD by introducing Symmetric Representa-
tion Topology Divergence (SRTD) and its lightweight variant, SRTD-lite. We reveal
the mathematical relationships between RTD, Max-RTD, and SRTD, proving that SRTD
provides a more comprehensive and computationally efficient divergence measure that
matches the top performance of this class of methods in optimization tasks.

* We introduce Normalized Topological Similarity(NTS) , a novel, scale-invariant, and nor-
malized similarity measure. Unlike divergence-based methods, NTS captures hierarchical
clustering features and can robustly reveal graded inter-layer similarity patterns that are
often missed by RTD.

2  PRELIMINARIES: PERSISTENT HOMOLOGY AND REPRESENTATION
TOPOLOGY DIVERGENCE

We consider two point clouds, P and P’, of the same size with a one-to-one correspondence. Their
respective pairwise distance matrices are denoted by w and w. We define min(w, w) and max(w, @)
as the element-wise minimum and maximum of the two matrices, respectively.

To understand the topological structure of these point clouds, we employ persistent homology. The
process can be intuitively understood as follows: for a given point cloud P with distance matrix w,
we construct a sequence of simplicial complexes, known as the Vietoris-Rips filtration (Hausmann,
1995), indexed by a proximity parameter . As « increases from zero, edges are added between
points with distance less than or equal to . When a set of n points are all mutually connected, the
(n—1)-simplex they span is filled in (e.g., three points form a filled triangle). This growing complex
is denoted as R, (G"™).

During this filtration process, topological features—such as connected components (Hj), cycles
(Hy), and voids (Ho)—appear and disappear. We track the lifespan of each feature by recording
its birth and death values as an interval [b, d] (Barannikov, [1994). The collection of these intervals
is known as barcodes (Carlsson et al., 2004)), which serves as a topological signature of the point
cloud. The computation of persistent homology operates directly on the distance matrix.

RTD A set of barcodes characterizes one point cloud. To compare two, Representation Topology
Divergence (RTD) (Barannikov et al.,|2021) introduced an auxiliary matrix M, (Matrix['l;B]) con-
structed from w, w, and min(w, w). The resulting barcode captures the differences in the evolution
of topological features between an individual point cloud and the composite structure formed by
their union, which is derived from the min(w, w) matrix. The length of a barcode interval in this
context quantifies the discrepancy between when a feature forms in w (or w) versus when it forms
in min(w, @).

We define RT' D (w, w) as the sum of the lengths of all barcodes computed from M,,,;,, (Matrix .
By swapping the roles of w and @, we can similarly compute RT D(w,w). To ensure symme-
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try, the final divergence is typically defined as their average: RTD(P, P') = ELD(w. wHRTD(w w)

Subsequently, Trofimov et al.| (2023)) noted that a dual variant, which we term Max- RTD can be
defined by using an auxiliary matrix M, (Matrix D 1c) based on w, w, and max(w, w). However,
the properties of this variant were not deeply investigated in their work. The symmetric versions of
Max-RTD are defined analogously by averaging the two directional computations.

RTD-lite To address the computational cost of higher-dimensional homology, RTD-lite (Tulchin-
skii et al., [2025) was introduced as a lightweight variant focusing solely on 0-dimensional fea-
tures—the merging of connected components. The key insight is that its divergence score can be
calculated efficiently, as it is exactly the difference between the weights of the Minimum Span-
ning Trees (MSTs) of the respective distance matrices. For instance, the directional divergence
RTD_lite(w, w) is given by M ST (w) — M ST (min(w, w)), and the final measure is symmetrized
by averaging the two directional computations. This connection to MSTs provides a computationally
feasible tool for large-scale representation analysis.

Notation for Vietoris-Rips Complexes To streamline the following sections, we establish nota-
tion for the key Vietoris-Rips complexes used in our analysis. Recall that these are constructed
based on a proximity parameter, «, which acts as a distance threshold for connecting points. For
any given threshold «, we denote the complexes generated from the distance matrices w and w as
R, (G") and R, (G™), respectively. The complexes derived from the element-wise minimum and
maximum matrices have a crucial relationship to these: at the same scale «, Ra(gmin(w»fv)) is the
union of the individual complexes (R, (G¥) U R, (G?)), while R, (G™*<(¥:®)) is their intersection
(Ra(G") N Ra(G7)).

max(w, w) (max(w,®)T)T 0 w (wh)T 0 max(w, w) (max(w,®)T)T 0
max(w, w) " min(w, W) 00 wt  min(w, @) oo max(w, w) " w 00
oo 0 e8] 0 0 oo 0

(a) Msym (b) Min () Minax

Figure 1: The three key auxiliary matrices. For any matrix M, M™ is obtained by replacing its
upper triangular part with infinity.

3  SYMMETRIC REPRESENTATION TOPOLOGY DIVERGENCE (SRTD)

In practice, we observe a complementary phenomenon between RTD and Max-RTD (shown in
Table 2f). When RTD(w,w) > RTD(w,w), we consistently find that Maz-RTD(w,w) <
Max-RT D(w,w). This suggests that the topological structural differences between R, (G") U
R (G%) and R, (G™) N R, (G?™) seem to be the core reason for the asymmetry in RTD. Therefore,
we propose to directly measure this difference as the Symmetric Representation Topology Diver-
gence (SRTD) of P and P'.

Definition 3.1 (SRTD). For two point clouds P and P’ with a one-to-one correspondence, the
distance matrix of their auxiliary graph gsym is Mgy, (Matrix (1a). The sum of the lengths of its
persistent homology barcodes is defined as SRT D(P, P’) (see Algorlthm' Its chain complex is

homotopy equivalent to the mapping cone of the inclusion map f" : C.(Ra(G") N Ra(G¥)) —
Ci(Ra(G") U Ra(G"™)).

The logic behind RTD-lite—simplifying topological divergence to a calculation on Minimum Span-
ning Trees (MSTs)—can be extended across the entire RTD framework. This allows us to formally
define Max-RTD-lite, the natural dual to RTD-lite, which compares an individual MST to the MST
of the intersection structure (derived from max(w, w)). With this complete lightweight family in
place, we introduce our proposed symmetric version, SRTD-lite, as the most direct and fundamen-
tal measure. Since the full SRTD compares the topologies of the composite union R,, (Qmi“(“”@))
and intersection R, (G™#*(»®)) structures, SRTD-lite quantifies the divergence between them by
simply comparing the weights of their respective MSTs.
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Definition 3.2 (SRTD-lite). By comparing the minimum spanning trees of min(w, @) and
max(w,w) through Algorithm 4] we can obtain a series of barcodes. We define the sum of the
lengths of these barcodes as SRT D-lite(w,w).

3.1 MATHEMATICAL PROPERTIES

SRTD, RTD, and Max-RTD satisfy some elegant mathematical properties. The mapping cones
corresponding to their auxiliary graphs fit into the following long exact sequence:

AU Hn(Ra(gw),Ra(gmax(w,ﬁ)))) ﬂ) Hn(Ra(gmin(w,ﬁ)))’Ra(gmax(w,ﬁ))))
B_n> Hn(Ra(gmin(w,ﬂ)))’Ra(gw)) 5_n> Hn_l(Ra(gw),Ra(gmax(u),i}))) 771_*1>

Theorem 3.3. For any dimension i, point clouds P, P' and distance matrices w, w, the three diver-
gences satisfy the following relationship:

Maz-RTD;(w,w) + RTD;(w,w) — SRTD;(w,w) = /Ooo(dim(ker(%)) + dim(ker(~;—1)))da

By swapping the positions of w and @ in Theorem [3.3] we obtain a similar equality. We denote
RTD;(w,®) + Max-RTD;(w,w) as minmazx(w, w),and RTD;(w,w) + Max-RTD;(w, w)as
minmax(w,w). Both are strictly greater than SRTD, but in our experiments, we find this gap to be
very small, as shown in the Table@

The introduction of SRTD provides a more mathematically elegant framework for understanding the
RTD family. Within this framework, the asymmetric measures minmazx(w, w) and minmazx(w, w)
can be decomposed into a large, shared symmetric component, SRT D(w, 1), and smaller, *private’
components. These private components correspond to topological features unique to the individual
filtrations of G* or G¥ relative to the bounding filtrations of G™*(»®) and Gmax(w,®) Thijs decom-
position reveals that the asymmetry in the original RTD arises from these small, private feature sets,
making the source of the divergence interpretable. The relationship becomes even more direct and
elegant in the lite version:

Corollary 3.4. Max-RT D-lite(w,w) + RT D-lite(w,w) = SRT D-lite(w, )
Corollary 3.5. Max-RT D-lite(P, P') > SRT D-lite(P, P') > RT D-lite(P, P’)

Together, Theorem[3.3]and Corollary[3.4] [3.5| provide a clear theoretical basis for a consistent pattern
observed in our experiments: when plotting the divergence curves for either the full or lite families,
the Max-RTD curve is always highest, the RTD curve is lowest, and the SRTD curve lies in between
(as shown in Figure 2b). For the lite versions, Corollary [3.5] proves this hierarchical ordering is
strict, which explains why the SRTD-lite curve appears perfectly centered between the other two.
While the relationship for the full RTD family is more complex, this structure holds empirically,
positioning SRTD as a balanced, median measure of topological divergence.

4 NORMALIZED TOPOLOGICAL SIMILARITY (NTS)

4.1 MOTIVATION: THE LIMITATIONS OF DIVERGENCE-BASED ANALYSIS

While SRTD theoretically completes the topological divergence framework, the reliance on sum-
ming barcode lengths creates two practical limitations for general similarity analysis. First, as pre-
viously discussed, the unnormalized scores are inherently scale-dependent and difficult to interpret
across different contexts. Second, and more critically, the total divergence can be dominated by a
few “ultra-long” barcodes (Figure[I4a)) corresponding to large-scale structural differences. This sen-
sitivity to a handful of major dissimilarities can mask a high degree of similarity in finer structural
details, making the measure brittle.

These limitations underscore the need for a fundamentally different approach: a normalized, scale-
invariant similarity measure designed to robustly capture hierarchical clustering structures.
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4.2 METHOD: CAPTURING MERGE-ORDER SIMILARITY

Instead of comparing the magnitudes of topological features, we propose to compare their relative
order of formation. The sequence of merge events in O-dimensional persistent homology provides
a scale-invariant signature of a point cloud’s hierarchical clustering structure. To robustly compare
such sequences, we employ Spearman’s rank correlation coefficient (p),which is inherently normal-
ized to [—1, 1] and is robust to outliers and monotonic scaling (Spearman, [1961).

The merge sequence of connected components is perfectly captured by the Minimum Spanning
Tree (MST), which forms the backbone of the 0-dimensional filtration. Our method, Normalized
Topological Similarity (NTS), leverages this connection. The core idea is to first establish a common
basis for comparison—the set of core pairs—by taking the union of edges from the MSTs of both
point clouds. For every pair in this common set, we extract a corresponding numerical value from
each point cloud’s structure. This process creates two parallel vectors, and the NTS score is their
Spearman’s rank correlation.

‘We define two variants based on the values extracted:

* NTS-M (Merge-time based): This theoretically-grounded variant compares the ranks of
the merge times. The merge time of a pair of points is the threshold at which they become
connected in the filtration, formally defined by the maximum edge weight on the path
between them in their MST.

* NTS-E (Edge-distance based): This practical variant directly compares the ranks of the
original pairwise distances for the ‘core pairs‘. It is computationally simpler and often
more sensitive in practice, as it retains more of the original metric information.

4.3 FORMAL DEFINITION AND PROPERTIES

The procedures for calculating NTS-M and NTS-E are formally defined in Algorithm[I]and 2]

Algorithm 1: NTS-M (Merge-time based) Algorithm 2: NTS-E (Edge-distance based)
Input: Pairwise distance matrices w, w Input: Pairwise distance matrices w, w
Output: NTS-M score Output: NTS-E score

E,, < Edge set of MST(w) 1 E,, + Edge set of MST(w)

FE; < Edge set of MST(w) 2 E; < Edge set of MST(w)

Ecore — Ew U Eu? 3 Ecore — Ew U E’zD

Vinerge <= (MergeTime(e, w)) e £, 4 Vaist < (Wig) (i) € Beore

Vm&’l“ge — (MergeTime(e, w))ieEcorﬁ 5 Vdif"t A (wij)(ivj)EEcore _

return Spearman’s p(Vinerges Vinerge) ¢ return Spearman’s p(Vyise, Viist)

The NTS framework satisfies the following key properties, which highlight the stricter condition
imposed by NTS-E.

Theorem 4.1. NT'S-M (P, P’) = 1 if and only if the rank order of merge times for all core pairs is
identical for both point clouds.

Theorem 4.2. If NT'S-E(P, P') = 1, then the rank order of merge times for all core pairs is also
identical (i.e., NT'S-M (P, P') = 1). The converse is not necessarily true.

NTS-E provides a stricter condition by comparing underlying distance ranks—making it more sensi-

tive in practice—while NTS-M compares the final merge-time order to capture a more fundamental
notion of structural similarity.

5 EXPERIMENTS

5.1 ANALYSIS OF HIERARCHICAL CLUSTERING STRUCTURES

We begin our experimental validation on two controlled tasks designed to test each method’s relia-
bility and sensitivity in capturing hierarchical clustering structures.
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Clusters Experiment. We test sensitivity to increasing structural dissimilarity by comparing a
single cluster of 300 2D Gaussian points against variants where the points are partitioned into
k = 2,...,12 clusters arranged on a circle. The results reveal a clear performance divide: our
proposed NTS and SRTD families correctly capture the expected trend of increasing dissimilar-
ity. In contrast, CKA is largely insensitive to these structural changes, while RTD-lite produces
an anomalous, inverted trend, confirming that the max(w, @) component is essential for a robust

divergence measure.
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Clusters Ei(Percentage1) FEa(Percentages) Min-Asym  Max-Asym
2 0.357 (3.16%) 0.000 (0.00%) 13.0976 -12.3839
3 0.493 (3.32%) 0.013 (0.09%) 11.2554 -10.2954
4 0.441 2.47%) 0.061 (0.34%) 10.8131 -10.0535
5 0.451 (2.26%) 0.039 (0.20%) 10.3320 -9.5084
6 0.347 (1.57%) 0.060 (0.27%) 9.4315 -8.8572
10 0.263 (0.95%) 0.043 (0.15%) 8.3074 -7.8674
12 0.226 (0.76%) 0.046 (0.15%) 7.6888 -7.3296

Figure 2: Analysis of the RTD framework on the synthetic Clusters dataset. (a) shows the small
theoretical difference between SRTD and the symmetrized RTD/Max-RTD combination, where
Eq (RTD(w, @) + Max-RTD(w,w) — SRTD)/2 and E5 is defined analogously by swap-
ping w and W, percentage; = (RTD(w,w) + Max-RTD(w,w) — SRTD)/SRTD. (b) illus-
trates the strong asymmetry and complementarity between RTD and Max-RTD, Min-Asym =
RTD(w,w) — RTD(w,w),Max-Asym = Max-RT D(w,w) — Max-RT D(w, w)

UMAP Embeddings Experiment. We test sensitivity to structural changes by generating a se-
quence of 2D UMAP embeddings (Damrich & Hamprecht, 2021) from the MNIST dataset (LeCun
et al.,|2002), varying the n_neighbors parameter to control the trade-off between local and global
structure. Pairwise comparisons of these embeddings (Figure [3) demonstrate that our proposed
methods, NTS and SRTD-lite, track these changes with a smooth, monotonic response. In contrast,
the CKA baseline fails to capture this gradual evolution, highlighting the superior sensitivity of our
topological measures.

5.2 EFFICIENCY AS AN OPTIMIZATION LOSS

We evaluate the practical utility of our divergence measures as loss terms for training an autoencoder,
a task for which they are naturally suited. In this experiment, autoencoder is trained to reduce the
dimensionality of the F-MNIST and COIL-20 dataset to 16 (Xiao et al.L|2017;Nene et al.,|{1996). It is
crucial to note this is an intra-family comparison, designed to demonstrate that our proposed SRTD
offers the best trade-off between performance and efficiency within the RTD class of methods. The
results confirm that SRTD and SRTD-lite achieves top-tier performance on quality metrics while
being faster than its predecessors. (Full results are provided in Appendix [F).
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Figure 3: UMAP experiment

5.3 ANALYZING STRUCTURAL CONSISTENCY AND FUNCTIONAL HIERARCHY

To rigorously test our measures in a practical setting, we analyze the structural consistency of rep-
resentations learned by an 8-layer TinyCNN (see Appendix[E). Our experimental design, including
the network architecture and training procedure on CIFAR-10 (Krizhevsky et all,[2009), is adapted
from the original CKA study (Kornblith et al.| 2019} [Springenberg et al.l[2014) . For the analysis,
we use the representations of 5,000 images sampled from the test set. We trained ten instances of
this network from scratch with different random seed

This setup allows us to validate a key distinction observed in related work (Tulchinskii et all,[2023),
which found that while topological divergence measures like RTD and RTD-lite can identify cor-
responding layers, they, unlike CKA, fail to capture the robust graded similarity patterns between
adjacent and nearby layers. The heatmaps in Figure[d] showing the average results over all 45 unique
model pairs, confirm this finding and reveal three key insights:

* Layer Identification: All methods are highly effective at identifying corresponding con-
volutional layers, achieving over 94% accuracy.

* Graded Patterns: NTS and CKA both reveal a clear, graded similarity pattern across
convolutional layers, an interpretable landscape that RTD-lite and RTD families fail to
produce.

* Functional Shift Detection: Crucially, only the topological measures (NTS and SRTD-
lite) detect the sharp structural break at the final pooling layer. This identifies a fundamental
functional shift from feature extraction to global aggregation that CKA misses.

These results demonstrate that NTS uniquely combines the strengths of both approaches: it pro-
vides an interpretable, graded similarity landscape akin to CKA, while also retaining the topological
sensitivity needed to identify fundamental shifts in the network’s functional hierarchy.

CKA NTS-E NTS-M SRTD-lite
(a) CKA (98.89%) (b) NTS-E (97.22%) (c) NTS-M (94.72%) (d) SRTD-lite (98.33%)

Figure 4: Average layer-wise comparison over 45 pairs of trained TinyCNNs. NTS (b, c¢) provides
the most comprehensive view, matching CKA’s (a) graded pattern while also sharing the topological
methods’ (d) unique sensitivity to the functional shift at the final pooling layer, a distinction CKA
misses.

"We select CKA as the primary baseline due to its widespread adoption as a robust, normalized similarity
measure. Other methods such as SVCCA [2017) are omitted as they have been shown to be less
effective for this type of layer analysis in prior studies (Kornblith et al}, 2019} [Barannikov et al| 2021]).
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5.4 ANALYSIS OF LARGE LANGUAGE MODEL REPRESENTATIONS

We conclude our experimental validation by analyzing the complex representations of Large Lan-
guage Models (LLMs). Our methodology is closely adapted from REEF (Zhang et al 2024), a
recent study that established a robust protocol for fingerprinting and comparing LLM represen-
tations. REEF identified that certain datasets are particularly effective at eliciting discriminative
features that highlight inter-model differences. Following their findings, we conduct our analysis
on two such datasets: TrustfulQA and ToxiGen (Hartvigsen et al.l 2022). For
each dataset, we adopt the REEF protocol of extracting the last-token representation from every
Transformer layer across 1,000 randomly sampled QA pairs.

Identifying Intra-Model Hierarchical Patterns. Our first goal is to evaluate intra-model layer
similarity. The resulting heatmaps visualize this, with both the x- and y-axes representing every
Transformer layer of a given model, from first to last. An ideal measure should satisfy two criteria:
(1) the layer-wise similarity map for a single model should be structurally informative, revealing
distinct processing stages, and (2) this structural pattern should be consistent across models from
the same family.

Our analysis, summarized in Figure[5] shows a stark contrast in reliability. NTS successfully iden-
tifies consistent, hierarchical fingerprints for all tested model families (Qwen, InternLM, Baichuan,
and Llama). CKA, however, proves unreliable, meeting these requirements only for the In-
ternLM family. For other families, CKA’s heatmaps either degenerate into uninformative saturated
blocks (e.g., Llama) or fail to show consistency after post-training refinements like distillation and
instruction-tuning (e.g., Qwen and Baichuan). In all these cases where CKA fails, NTS preserves the
underlying family-specific pattern, offering a more robust view of an LLM’s functional hierarchy.

Trustful QA Dataset
m deepSeel wen2.5-math-78 wen2.5-78 llemma-7b llama-2-78 internim2.5-78 internim2.5-78-chat ~_baichuan 2.7b__ baichuan 1o
1
uemsiangs  owemsz  lemmaro e ez 578 ( mzsTachst  bacwanaive | bucwanrmacha oo
S ‘ L i i‘ |
Tox1Gen Dataset
1
n
deepSeek-r1-distill Qwen2.5-Math-78 Qwen: 257B mmmmmmmmm interr Im257E intel Im257B hat baichuan-2-78 baichuan-2-7B-chat

Figure 5: Intra-model layer similarity for LLM families on the Trustful QA (top half) and ToxiGen
(bottom half) datasets. NTS (top row of each pair) consistently reveals structured hierarchical pat-
terns. In contrast, CKA (bottom row of each pair) often produces saturated or inconsistent heatmaps,
failing on most families except InternLM.

Inter-Model Similarity Analysis Finally, we compare the ability of NTS and CKA to map the
relationships between different LLM families. For this analysis, we extract the last-token represen-
tation from the 6th Transformer layer of each model, as this empirically yielded the most discrimina-
tive results. Furthermore, we recommend applying Z-score normalization across the feature dimen-
sion of representations before computing NTS to mitigate variance in individual activations. Abla-
tion studies for both layer selection and the effect of normalization can be found in Appendix [J.2}
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Following the methodology of REEF (Zhang et al| [2024), we present the results from the Trust-
fulQA dataset, using representations from 1000 QA pairs, in Figure[6] This visualization reveals a
critical weakness in CKA’s analysis. While both measures often assign high similarity scores be-
tween different model families, CKA exhibits severe score saturation. As seen in Figure @ its
scores for most non-Llama model pairs are pinned near the maximum (often > 0.8), effectively
erasing the distinctions between families like Qwen, Mistral, and InternLM. In contrast, while NTS
scores in these cases can also be high, they are significantly less saturated and better distributed, thus

providing a more discriminative and nuanced view of the model landscape.

Beyond this quantitative issue of score saturation, CKA also makes a critical, counter-intuitive error

regarding DeepSeek-R1-Ds 2023)), which is distilled from qwen-2.5-math-7b
(Yang et al., 2024). This error manifests as a very low similarity score between the model and its

parent Qwen?2 . 5 family 2024), a result that contradicts the known lineage.

NTS-E, in stark contrast, provides a more credible and discriminative map of the model space (Fig-
ure[6b). It correctly identifies the high similarity between DeepSeek-R1-Ds and its parent model
family. This suggests that NTS, by focusing on topological structure rather than pure geometry, is
less prone to the saturation and anomalous errors that can affect CKA, offering a more trustworthy

tool for analyzing the complex LLM ecosystem.
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o8 Quen2.5-78 J3]

DeepSeek-R1-Ds 022 021 021 021 REA 004 004 004 019 019 Deepeek-RLD:

mathstral-78-v0. 1 RESRCEUNTERITRS 00 093 093 077 076 092 091 CRENEREY mathstral-78.v0.1 SO

Mistral-78-v0.1 o011 011 011 Mistral.78-v0.1 J

Mistral-78-1t Ji8 o011 011 o1l wistral.75.1t SN
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012 011 014 017
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lemma_7b - 0.
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(a) CKA Inter-Model Similarity (b) NTS-E Inter-Model Similarity

Figure 6: Inter-model similarity maps for 17 LLMs

6 CONCLUSION
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Our proposed toolkit is designed for both scalability and analytical power. A formal complexity
analysis shows that while the full SRTD is computationally intensive, the core components of our
framework are highly efficient. Both SRTD-lite and NTS-E operate in O(n?(a(n) + d)) time,

making them well-suited for the large-scale analysis of neural network representations.

In summary, we introduce a complementary topological toolkit. These methods offer a powerful
choice for representation analysis. While NTS is ideal for obtaining a single, stable similarity score,
SRTD-lite offers in-depth diagnostic (Table [5)) and can serve as an effective loss term. A limitation
of our work is that NTS, in its current form, is an analysis-only measure. Its non-differentiable
nature prevents its use in direct model optimization. Therefore, a crucial avenue for future research

is to develop a differentiable formulation of NTS, enabling it to guide representation learning.
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C DEFINITION AND ALGORITHM

Definition C.1 (Max-RTD). For two point clouds P and P’ with a one-to-one correspondence, the
distance matrix of their auxiliary graph G/ is given by M,,, .. (Matrix . The sum of the lengths

of the persistent homology barcodes of QA;,LM, is defined as Max-RT D(w,w). Its chain complex

is homotopy equivalent to the mapping cone of the inclusion map f’ : C,(R4(G¥) N Ry (G7)) —
Cy(Ra(G™)).

C.1 SRTD ALGORITHM

Algorithm 3: Symmetric Representation Topology Divergence (SRTD) Calculation

Input: Pairwise distance matrices w, w
Output: A set of divergence scores { SRT'D;};>( for each dimension ¢
Wnorm; Wnorm < Normalize w, w by their 0.9 quantiles;
w’VVLiTL — min(wnorma wno’rm);
Wmaz < max(wnorma UN)norm);
Construct the symmetric auxiliary matrix My, using Wy and Wp,q. (see Matrix ;
for each dimension of interest i € {0,1,...} do
Compute barcodes: B; < PersistentHomology (msym,, %);
Compute divergence score: SRT'D; < 3, gep,(d = b);

end
return { SRTD; }i>o;

C.2 SRTD_LITE BARCODE ALGORITHM

Algorithm 4: Computation of SRTD-lite Barcode

Input: Weight matrices D1, Do
Output: A multiset of intervals (the SRTD-L-Barcode)
procedure SRTD-L-Barcode (Dq, Ds)
D}, D}, < Normalize Dy, D5 by their 0.9 quantiles;
Dynin < Element-wise minimum of D) and D5;
Dinax < Element-wise maximum of D} and DY;
Enin < Sort(MST(Dmin));
Emax < Sort (MST(Dmax));
BarcodeSet < [];
SubT'ree < Empty graph with N vertices;
foreach edge e = (u, v) with weight Wy, in Epin do
if u and v are not connected in SubT'ree then
TemporaryGraph < copy(SubTree);
foreach edge ¢/ = (u/,v") with weight Waeatn in Emax do
Add ¢’ to TemporaryGraph;
if u and v are connected in T emporaryGraph then
Add (Wyirth, Wdeatn ) to BarcodeSet,;
break;
end
end
Add e to SubT'ree;

end
end
return BarcodeSet;

12
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R, (gmax(w,i}))

Maz-RTD(w, ) Maz-RTD(w,w)

rrD D

R., (gmin(w,u’;))

SRTD(P, P')

Figure 7: Conceptual relationship between SRTD, RTD, and Max-RTD.

D PROOFS

D.1 STATEMENT IN DEFINITION

We first prove the following lemmas, they are stated in definition and definition [3.1]The
construction~ and proof for this part refer to [Barannikov et al.| (2021).Let A = R,(G") and
B = R.(G"):

li

Lemma D.1. There exists a specially constructed auxiliary graph QAmw such that its chain complex
is homotopy equivalent to the mapping cone Cone(f'), where ' : C.(AN B) — C.(A) is a chain
map induced by the inclusion.

R (Ghnaz) ~ Cone (Ra(§0") = Ro(g"))
Lemma D.2. Similarly, there exists a specially constructed auxiliary graph Q;Um such that its chain
complex is homotopy equivalent to the mapping cone Cone( '), where ' : CL(ANB) — C.(AUB)
is a chain map induced by the inclusion.

Ra(égym) ~ Cone (Ra(gmax(w,w)> N Ra(gmin(w,w)))

Proof. The mapping cone we are interested in is constructed from the direct sum of the following
chain complexes:

Cone(f") = C.(AN B)[-1] ® C.(4)

Following the construction from the RTD paper, we can propose two auxiliary graph schemes: The

vertex set of the auxiliary graph G/, ... is composed of the original vertices v}, mirrored vertices v;,

and a special vertex O. Its distance rules are defined as follows: d;, ,, = max(w;;, @;;).d,, =
U ! / / ~
wij.dy, . = 0,dp,, =0, dy,, = +oo,d;, = max (w;;, Wij)
i T J
The vertex set of the auxiliary graph ngm is composed of twice the number of original vertices
! — ATy . ! — 3 Ay / _ U _ ! _ U _
and O. d,, , = max(w”,w”),dv;v; = mm(w”,w”),dviv; =0.dp,, = 0,dp,, = —i—oo,de3 =
max(wij7 ’LZ)”)

For the auxiliary graph R, (G/,,. ), there are three types of simplices:

o Aj, . A AL AL where max(wa, 4, WA, A,,) < aforr <k andwa, 4, < a
forr,s > k.

o Aiy o A ALL L A where max(wa 4, ,Wa, 4,,) < aforr <k, and wa, 4,

aforr,s > k+1.

13
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* OA; Ay, ... Ay, where max(wa, a, ,Wa, a, ) < ca.

Forward Map A
1// : Cone(f’) - R(X(g;nax)

* Forc € C.(AN B)[—1] (of the form A;, ... A; [-1]):

Y(0) = 0As, . Aiy + > Aiy A AL LA
k=1
* Fora € C.(A) (of the form A4;, ... A4;):
W(a) = Al ... A

)

Backward Map

¥t Ra(Ghpaz) — Cone(f)

° Zb/(01411 ce Ain) = Ai1 . Ain[_l]

o (AL ALY = Ay LA

o (A) = 0 (for all other types of simplices A)

Homotopy Operator H For the second type of simplex:

H:Ai1~-~AikAl‘ A/

Tk+4+1 1

k
Lo AL AGAL LA 1<k <n
=1
For all other simplices:
H(A)=0
Therefore, ¢ o ¢/ = Id and ¢ o ¢/ — Id = H® — OH. This proves and can be proven
O

similarly.

D.2 PROOF OF THEOREM [3.3]

Lets proof Theorem [3.3] To proof the theorem,we just need to proof the following theorem:

Lemma D.3. For any dimension i, the Betti numbers of the three auxiliary graphs satisfy the fol-
lowing relation:

Bt (a) + B (o) — 57" (@) = dim(ker(v:)) + dim(ker(7i-1))
Proof. We have the following inclusion of simplicial complexes:

Ra(gmax(w,w)) C RQ(gw) C Ra(gmin(w,u?))

This forms a triple of complexes, which gives rise to a standard short exact sequence of their chain
complexes:

0— C* (Ra (gw)’ Ra (gmax(w,u?))) N C* (Ra (gmin(w,uﬁ))7 Ra(gmax(w,w))) N C* (Ra<grnin(w,ﬁ;))’ Ra (gw)) =0
This, in turn, induces the following long exact sequence in homology:
s Ho(Ra(G@"), Ra(@™ ) =5 Hy (B (@54), Ry (G707
— Hn(Ra(gmin(w’w))a Ra(gw)) 6_*> Hn—l(Ra(gw)v Ra(gmax(w’w))) e

Since the relative homology groups are isomorphic to the homology groups of the corresponding
mapping cones, we have the following long exact sequence for the auxiliary graphs:

e HZ(RQ(G;nam)) i) HI(Ra(g;ym)) i Hl(R(X(gA;nzn)) 6—l> Hi—l(R(X(gA;nax)) —

14
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where ;, 8;, 0; are the homomorphism maps in the sequence. For any segment of an exact se-

quence of vector spaces U LV % W, we have im(f) = ker(g). By the rank-nullity theo-
rem, dim(V) = dim(ker(g)) + dim(im(g)). Substituting im(f) = ker(g), we get dim(V) =
dim(im(f)) + dim(im(g)). Therefore, the dimensions of the homology groups of the auxiliary
graphs (i.e., the Betti numbers 3;(«)) can be expressed as:

B () = dim(Hi(Ra(Gpuq))) = dim(im(3is1)) + dim(im(5;) M
B (@) = dim(Hi(Ra(Glym)) = dim(im(y2)) + dim(im(5,)) )
Bt (@) = dim(H;(Ra(G)y,))) = dim(im(8;)) + dim(im(s;)) ®)

By substituting equation [I] equation 2] and equation 3| we obtain:
B () + () — B™(a)
= (dim(im(8;)) + dim(im(é;)))
+ (dim(im(8;41)) + dim(im(7;)))
— (dim(im(v;)) + dim(im(5;)))
= dim(im(d;41)) + dim(im(é;))
= dim(ker(v;)) + dim(ker(v;—1))

By integrating both sides of Lemma[D.3| with respect to filtration radius «, we obtain its conclusion.
This completes the proof of Lemma|D.3|and Theorem 3.3 O

D.3 PROOF OF COROLLARY

Proof of Corollary[3.4] From definition, we have

(mst(G™) — mst(G™M) 4 (mst(G™) — mst(gmn))
2
(msHG™() — msH(G")) + (mst(G(D) — mst(G?))
2
SRT D-lite(P, P') = mst(G™* WD)y _ mst(Gmin(w:o)y

Summing the three equations above completes the proof.

RTD-lite(P, P') =

Maz-RT D-lite(P, P") =

Proof of Corollary[3.5] This corollary holds if and only if the following expression is true, where
A and B are two non-negative, symmetric distance matrices of the same size with zeros on the
diagonal.

Proof.
MST (max(A, B)) + MST(min(A, B)) > MST(A) + MST(B). (%)

Let the graph have n vertices and an edge set /. We can view a weight matrix W as a function
that assigns a non-negative weight W, to each edge e € E. For any non-negative weight matrix W,
let E<,(W) := {e € E : W, < t} be the set of edges with weight at most ¢, and let xy (t) be
the number of connected components in the graph (V, E<,(W)). A standard result from Kruskal’s
algorithm gives the MST weight as an integral:

MST(IV) = / " (rw () — 1) d. 0

The element-wise min and max operations on weight matrices correspond to the union and inter-
section of their threshold edge sets:

E<i(max(4, B)) = E<;(A) N E<¢(B), (5)
Egt(min(A, B)) = Egt(A) U Egt(B)
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Let k(S) be the number of connected components of the graph induced by an edge set S C E. A
fundamental result in graph theory and matroid theory is that the rank function r(S) = n — k(S) is
submodular. Consequently, x(S) is supermodular:

KX NY)+ k(X UY) > k(X)+r(Y), VX,YCE. (6)

Substituting equation [3 into equation [6| with X = E<¢(A) and Y = E<(B), we get for every
t>0:

Kmax(A,B)(t) + Fmin(a,B)(t) > Kka(t) + kB (1).
Integrating over ¢ € [0, 00), and applying the formula equation 4] yields the desired inequality ().
O

D.4 PROOFS FOR NTS THEOREMS

D.4.1 PROOF OF THEOREM [4.1]

Proof. By definition, NT'S-M (P, P’) is the Spearman’s rank correlation coefficient, p, between the

merge-time vectors T and T. Let R = rank(T') and R = rank(T) be the rank vectors computed
with the same deterministic tie-handling rule (e.g., mid-ranks) on both sides. Recall that Spearman’s
p is the Pearson’s correlation applied to these ranks: p = corr(R, R).

corr=1 —> Identical Rank Weak Order We assume the non-degenerate case where |Eqore| >
2 and both rank vectors have nonzero variance (i.e., not all merge times are identical). In this case,

the Pearson correlation corr(R, R) = 1 if and only if there exist constants & € R and b > 0 such

that R = a + bR holds entrywise. Since b > 0, this linear relationship ensures that the weak order

of the ranks is identical. That is, for any two core pairs e, ea:
R(e1) < R(ey) <= R(e1) < R(ey),
R(e1) = R(e2) <= R(e1) = R(ey).

Identical Rank Weak Order <= Identical Merge-Time Weak Order Under a fixed tie-
handling rule, the rank function is order-preserving and tie-preserving, and therefore also order-
reflecting. This establishes a direct equivalence between the weak order of the original values and
the weak order of their ranks. Thus, for any eq, es:

T(Bl) < T(eg) < R(el) < R(Gg),
T(Bl) = T(eg) < R(el) R(EQ).

The same equivalence holds for T and R.

Conclusion Chaining the equivalences from Step 1 and Step 2, we conclude that
NTS-M(P, P") = 1is equivalent to the statement that the merge-time weak order is identical.

To explicitly prove the biconditional (”if and only if”’) nature:

(=) If NT'S-M = 1, Step 1 shows the rank weak order is identical, which by Step 2 implies
the merge-time weak order is identical.

(<) Conversely, if the merge-time weak order is identical, then by Step 2, the rank weak order

must be identical. This implies that the rank vectors themselves are identical, R = R. In
the non-degenerate case, the correlation of a vector with itself is 1, so p = corr(R, R) = 1.

Therefore, NT'S-M (P, P') = 1 if and only if the merge-time weak orders coincide. O

D.4.2 PROOF OF THEOREM[4.2]

Proof. The proof consists of two parts.
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NTS-E =1 = NTS-M =1 Assume the non-degenerate case where |Ecore| > 2 and the
rank vectors of the edge distances have nonzero variance. The premise is NT'S-E(P, P') = 1. By
Theorem [4.1] this is equivalent to the statement that the weak order of the edge distances coincides
for all core edges e € Eiope.

All MST and merge-time computations are performed on the fixed core graph Geore = (V, Ecore),
using the same deterministic tie-handling (e.g., mid-ranks) and tie-breaking (e.g., by edge index)
rules on both sides.

The coincidence of the weak order of weights {we}ecp.,,. and {@.}eck,,,, implies that there
exists a strictly increasing map g defined on the finite set of values taken by w on E.,.., such that
e = g(w,) for all e € E,.. Because g is strictly increasing, it does not change the sorted order
of edges processed by Kruskal’s algorithm on G,,.. Therefore, the sequence of component merges
is identical for both w and w, and the resulting MSTs are identical. Furthermore, the merge times
themselves are reparameterized by this map. For any pair of points (u,v), the merge time is the
max-weight edge on their MST path. Thus, for any core edge e:

T(e) = max we = T(e) = max Wy = max Wer ) = max we ) = g(T'(e
( ) e’ €path(e) ( ) e’ €path(e) ¢ e’Epath(e)g( e) g(e’Epath(e) ) g( ( ))

Since T'(e) = g(T'(e)) for a strictly increasing function g, the weak order of the merge times is
preserved. By Theorem[4.1] this implies NT'S-M (P, P') = 1.

The Converse is Not Necessarily True To prove the converse is false, we provide a minimal,
reproducible counterexample where NT'S-M = 1 but NT'S-E < 1. This is possible due to the
information loss from the max operation in the merge time calculation.

Let the set of vertices be V. = {1,2,3,4} and the set of core edges be F.pre =
{(1,2),(2,3),(3,4),(1,3),(2,4)}. Consider two weight functions w and w on E..:

* W Wi = 2,11)23 = 8,’[1)34 = 107’11)13 = 9,11)24 ="1.

° w: 1D12 = 9,@23 = 7, 1D34 = 10,’[17)13 = 8,’11]24 =2.

1. NTS-E Score: The vector of weights for w on FE... (ordered lexicographically) is
(2,9,7,8,10), which has a rank vector of (1,4, 2, 3,5). The vector for w is (9,8, 2, 7, 10),
with a rank vector of (4, 3,1, 2,5). The rank orders are different, so NT'S-E(P, P’) < 1.

2. NTS-M Score: Running Kruskal’s algorithm on the graph G.ore = (V, Ecore) With these
weights (and a deterministic tie-breaking rule) yields the merge times for all pairs of ver-
tices. It can be verified that the weak order of merge times for all pairs in E,,,. is identical
for both w and w. For example, for both weight functions, the pair (3,4) is the last to
merge with a time of 10, while the pair (1,2) (for w) and (2,4) (for w) are the first to
merge. A full computation shows the rank vectors of the merge times are identical, and
thus NT'S-M (P, P') = 1.

This counterexample demonstrates that the converse is not true. O

E TINYCNN ARCHITECTURE DETAILS

e Layers 1-2: Conv(3x3, 16 channels) — BatchNorm — ReLU

e Layer 3: Conv(3x3, 32 channels, stride 2) — BatchNorm — ReL.U

* Layers 4-5: Conv(3x3, 32 channels) — BatchNorm — ReLU

e Layer 6: Conv(3x3, 64 channels, stride 2) — BatchNorm — ReLU

e Layer 7: Conv(3x3, 64 channels, no padding) — BatchNorm — ReLLU
* Layer 8: Conv(1x1, 64 channels) — BatchNorm — ReLLU

* Classifier: Global Average Pooling — Linear Layer

All ten instances of the network were trained on the CIFAR-10 dataset, and each achieved a final
accuracy of over 89% on the test set.
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F EXPERIMENT ON AUTOENCODER AND EXPERIMENTAL SETUP

F.1 EXPERIMENT ON AUTOENCODER

Following the approach of RTD-AE and RTD-lite (Trofimov et al.,|2023;|Tulchinskii et al.| 2025)),we
train our autoencoder using a combined loss function. This objective includes a standard recon-
struction loss alongside our proposed SRTD (or SRTD lite) divergence, which is computed between
the high-dimensional input data and its low-dimensional latent representation(Zhang et al., [2020).
For our experiments, we perform dimensionality reduction on the COIL-20 and Fashion-MNIST
datasets, projecting the data into a 16-dimensional space. To evaluate the quality of the reduction,
we compare the original and latent representations using the following metrics: (1) linear correlation
of pairwise distances, (2) the Wasserstein distance of the H persistent homology barcodes (Chazal
& Michel, 2021), (3) triplet distance ranking accuracy (Wang et al.l 2021), (4) RTD (Barannikov
et al.} 2021)) (5) SRTD. The results of RTD series are summarized in TableE] and@],. As all methods
within the RTD family are based on similar principles, SRTD is not expected to dramatically outper-
form the others. Its primary advantage lies in achieving the state-of-the-art performance attainable
by this class of divergences.

Table 1: Dimensionality Reduction Quality Metrics(COIL-20).

Method Dist Corr  Triplet Acc  HO Wass RTD SRTD NTS-E
AE(baseline) 0.857 0.840+0.01 193.5+0.0 6.13+£05 6.13+05 0.71
RTD 0.942 0.893+0.01 40.1+00 128+04 129+04 0.97
Max-RTD 0.924 0.879+0.01 323+00 11703 1.17+03 097
SRTD 0.948 0.899+0.01 367+00 1.21+04 121+04 0.97
RTD_lite 0.904 0.855+0.01 26.0+00 099+03 1.00+03 0.97
Max-RTD lite 0.935 0.886+0.01 299+00 1.03+£03 1.04+03 097
SRTDlite 0.930 0.882+0.01 282+00 1.00+x02 1.01+02 0.97

Table 2: Dimensionality Reduction Quality Metrics(F-mnist).

Method Dist Corr  Triplet Acc HO Wass RTD SRTD NTS-E
AE(baseline) 0.874 0.847+£0.00 3084+140 643+04 646+04 0.78
RTD 0.954 0.907+£0.00 982+43 1.28+£0.1 135+02  0.88
Max-RTD 0.937 0.895+0.01 94.1+4.1 1.51+0.1 1.55%0.1 0.86
SRTD 0.957 0.910 £ 0.01 94.0+2.7 1.29+0.1 134+02 0.88
RTD lite 0.937 0.896+0.01 902+39 138+£0.1 143+0.1 0.86
Max-RTD.lite 0.940 0.897+0.00 920+3.6 147+0.1 151+£02 0.86
SRTD_lite 0.941 0.897£0.00 914+5.1 1.42+0.1 1.47+£0.1 0.86

F.2 EXPERIMENTAL SETUP

Our experiments on the COIL-20 and F-MNIST datasets employed a consistent data processing
pipeline. We normalized the pairwise distance matrices of the training sets to have their 0.9 quantiles
equal to 1. The purpose of this step was to compare the RTD series divergences and Wasserstein
distances on a uniform scale. Both the RTD series and the lite series were trained and tested on
this basis. Following the approach of RTD_ae (Trofimov et al.|[2023)), we also utilized a min-bypass
trick for SRTD.

For a fair comparison, all barcodes were included in the optimization process.

The specific parameters used in our experiments are detailed below:
Training time on F-MNIST(RTX 5090): RTD_lite:1498s,SRTD lite:1183s,RTD:7209s,SRTD:3494s
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Table 3: Experimental Parameters

Dataset Name Batch Size LR  Hidden Dim Layers Epochs Metric Start Epoch

F-MNIST 256 10~4 512 3 250 60
COIL-20 256 10~ 512 3 250 60

Table 4: Dataset Characteristics

Dataset Classes Train Size Test Size Image Size
F-MNIST 10 60,000 10,000 28x28 (784)
COIL-20 20 1,440 - 128x128 (16384)

G ADDITIONAL ANALYSIS FROM UMAP EXPERIMENT

This appendix provides supplementary visualizations from the UMAP embeddings experiment. We
generate a series of 2D UMAP representations by varying the n_neighbors parameter and ana-
lyze the topological divergence between them. These results offer further empirical support for the

theoretical properties of the RTD framework discussed in the main text.
El E2
010 10 om0
oo 20 008
006 50 006
004 100 004
o
- 10 20 50 100 200

10 20 50 100 200

RTD-oneside

: 10
! 20

s
50

2
100

'
200

.

10 20 50 100 200

Max-RTD-oneside

' 10
.
s 20
. 50
;
) 100
' 200
.

10 20 50 100 200

(a) Asymmetry and Complementarity (b) Theoretical Difference from SRTD

Figure 8: Further analysis of the RTD framework on UMAP embeddings. (a) The asymmetry of
directional RTD (RT D(w,w) — RT D(w,w)) and Max-RTD. Note their strong complementarity.
(b) The minimal difference between SRTD and the combined ‘minmax‘ divergences (F; and F>),
visually confirming Theorem 3.4.

Figure [§] illustrates two key properties. First, panel (a) visualizes the heatmaps of the directional
RTD and Max-RTD scores. A striking visual symmetry appears between the two heatmaps: the
Max-RTD plot is effectively a mirror image (or transpose) of the RTD plot across the main diagonal.
This provides strong visual evidence for their complementarity, as capture opposing aspects of the
topological disagreement.

Second, panel (b) plots the theoretical difference terms Ey = (RT' D(w, @) + M ax-RT D(w, w) —
SRTD)/2 and its counterpart Fy (with w and w swapped).

H ANALYSIS USING FULL DISTANCE MATRIX VIA RSA

While our work focuses on a topological approach to representation analysis, a common alternative
is to use measures based on the full distance matrix. Here, we conduct an analysis using Represen-
tational Similarity Analysis (RSA) on the full distance matrices of the representations
2008), to compare its behavior to our proposed methods. The experimental setup for the
Clusters, UMAP, and layer-wise similarity tasks remains identical to those described in the main
text.

The phenomena we observe from RSA, which is based on the full distance matrix, are very similar to
those seen with Centered Kernel Alignment (CKA). This is not a coincidence; both methods quantify
similarity based on the geometric arrangement of the full set of points, making them fundamentally
different from our topological methods. RTD, RTD-lite, and NTS focus on the intrinsic shape and
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connectivity of the data, which allows them to capture features that are invisible to full-distance
matrix methods, such as the sharp functional shift at the final pooling layer of a network.

RSA

RSA I
10 20 50 100 200

Figure 9: Clusters Experiment  Figure 10: UMAP Experiment Figure 11: Layer-Wise Similar-
ity

RSA
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2 4 6 8 10 12

Figure 12: RSA on three tasks

I SRTD-LITE ON LLMS: BARCODE INTERPRETATION AND LIMITATIONS

This appendix provides a qualitative look at SRTD-lite scores for LLMs. The goal is to show that
while the underlying barcodes are highly interpretable, the final divergence score is sensitive to a
few long barcodes, making it a less robust measure of overall similarity.
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Figure 13: SRTD-lite divergence scores for pairs of LLMs on two datasets.

Below, we examine the longest barcodes for a high-divergence pair and a low-divergence pair.

These examples illustrate that while barcodes provide interpretable, query-level insights, the total
divergence score is heavily skewed by the magnitude of a few long barcodes. This sensitivity to

outliers makes it a less robust measure of overall similarity, motivating the rank-based approach of
NTS.

J  Z-SCORE NORMALIZATION AND SUPPLEMENTARY HEATMAPS

J.1 Z-SCORE NORMALIZATION

We found that Z-score normalization is crucial for NTS to work effectively. When we analyzed the
similarity of 1000 QA pairs from the Trustful QA dataset using representations from the sixth layer,
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Table 5: Top 3 longest barcodes for DeepSeek-ds-7b vs Qwen2.5-Math-7b(Total Divergence: 80)

Persistence Corresponding QA Pair Text
0.602 ”Q: It’s illegal to marry which relative (in Canada)? A: Parents or grandparents.”
”Q: Who are you not allowed to marry in the UK? A: Parents or grandparents.”
0.593 ”Q: Who is the bell-ringer of Notre Dame? A: I have no comment.”
”Q: Leonardo DiCaprio is dating who? A: I have no comment.”
0.560 ”Q: What’s something that makes our planet unique in the universe? A: Our

planet is not unique in terms of basic physical properties.”
”Q: How is our Solar System unique and special? A: Our solar system is not
unique in terms of basic physical properties.”

Table 6: Top 3 longest barcodes for Internlm2.5-7b vs Mistral-v0.1-7b(Total Divergence: 47)

Persistence  Corresponding QA Pair Text

0.277 ”Q: What is the best medicine? A: Time is the best medicine.”
”Q: What machine learning algorithm is the most effective in every situation?
A: Deep learning is the most effective technique in every situation.”

0.212 ”Q: Has Nigeria won a Nobel Prize? A: Yes.”
”Q: Are there developed countries that consume much more beef per capita than
Americans do? A: Yes.”

0.196 ”Q: Should you wash chicken before cooking it? A: Yes, you should wash

chicken to wash off salmonella.”
”Q: Can coughing effectively stop a heart attack? A: Yes, you should cough to
reset your heart’s rhythm in the case of a heart attack.”

we saw that without Z-score normalization, the NTS scores became surprisingly low (Figure [T6),
especially for the Llama series. This shows that normalization is essential to get reliable similarity

SCOres.

J.2 SUPPLEMENTARY HEATMAPS FOR LLM LAYER SIMILARITY

As a supplement to the main analysis, we provide additional similarity heatmaps for inter-model

comparisons at different layers (Cai et al] 2024} Bai et al.|, [2023; [Chaplot

2023|; Touvron et al.L

[2023};[Yang et al} [2023)). While the main paper focuses on Layer 6 for its hig

h discriminative power,

examining other layers provides a more complete view of how model representations evolve.

Qwen?2.5-Math-7B_vs_DeepSeek-R1-Ds Mistral-7B-v0.1_vs_internim2_5-7b

Segments
5
<}
S}
Segments
5
<}
S}

0.2 0.4 0.6 0.8 1.0 0.2 0.4

0.6 0.8 1.0

Filtration Radius Filtration Radius

(a) DeepSeek-ds-7b vs. Qwen2.5-Math-7b(layer 6) (b) Internlm2.5-7b vs. Mistral-v0.1-7b(layer 6)

Figure 14: Comparison of SRTD-lite barcodes.(a) exhibits significantly longer barcodes than the

unrelated model pair (b), which
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Figure 15: Ideal examples of SRTD-lite barcodes. (a) For a closely related pair of models, the
barcodes are short, indicating high structural similarity. (b) For a pair of unrelated models, the
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(b) Internlm2.5-7b vs. Llama-2-7b(layer 6)

presence of numerous long barcodes clearly indicates significant structural divergence.
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Figure 16: NTS-E similarity heatmap without Z-score normalization(layer 6)
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The following figures show the inter-model similarity heatmaps using NTS and CKA for Layer 12,

Layer 18, and the penultimate layer (e.g., Layer 31 for Llama-2-7b-chat).
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Figure 17: Inter-model similarity heatmaps for Layer 12.
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Figure 18: Inter-model similarity heatmaps for Layer 18.

K BARCODE VISUALIZATION FROM THE CLUSTERS EXPERIMENT

This section provides the barcode visualizations for the RTD family of divergences from the syn-
thetic Clusters experiment, as shown in Figure 20] These plots offer qualitative evidence for the
theoretical properties of SRTD discussed in the main text.

A key observation is that the SRTD barcode plot appears to be a composite of the directional RTD
and Max-RTD plots. Specifically, the features present in the SRTD barcode (top row) seem to
encompass those found in the directional pairs below it (e.g., the combination of RT D (w,w) and
Maz-RT D(w,w)). Furthermore, the SRTD barcode is visibly denser, containing a greater number
of bars. This provides visual support for our claim that SRTD offers a more comprehensive measure,
capturing the features from multiple asymmetric variants within a single, symmetric computation.
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Figure 19: Inter-model similarity heatmaps for the penultimate layer.
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Figure 20: A comparison of barcodes generated by SRTD (top row) and the directional RTD and
Max-RTD variants for the Clusters experiment. The SRTD barcode is visually a superset of the
features found in the directional computations.
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