

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM DIVERGENCE TO NORMALIZED SIMILARITY: A SYMMETRIC AND SCALABLE TOPOLOGICAL TOOLKIT FOR REPRESENTATION ANALYSIS

Anonymous authors

Paper under double-blind review

ABSTRACT

Representation Topology Divergence (RTD) offers a powerful lens for analyzing topological differences in neural network representations. However, its asymmetry and lack of a normalized scale limit its interpretability and direct comparability across different models. Our work addresses these limitations on two fronts. First, we complete the theoretical framework of RTD by introducing Symmetric Representation Topology Divergence (SRTD) and its lightweight variant, SRTD-lite. We prove their mathematical properties, demonstrating that they provide a more efficient, comprehensive, and interpretable divergence measure which matches the top performance of existing RTD-based methods in optimization tasks. Second, to overcome the inherent scaling issues of divergence measures, we propose Normalized Topological Similarity (NTS), a novel, normalized similarity score robust to representation scale and size. NTS captures the hierarchical clustering structure of representations by comparing their topological merge orders. We demonstrate that NTS can reliably identify inter-layer similarities and, when analyzing representations of Large Language Models (LLMs), provides a more discriminative score than Centered Kernel Alignment (CKA), offering a clearer view of inter-model relationships.

1 INTRODUCTION

Understanding the internal representations of neural networks is a central challenge in deep learning, crucial for interpreting their behavior and improving their design. Analyzing the similarity structure of these representations has emerged as a key field for deciphering model behavior (Kriegeskorte et al., 2008). Early research primarily relied on Canonical Correlation Analysis (CCA) and its variants, such as SVCCA (Raghu et al., 2017) and PWCCA (Morcos et al., 2018). However, these methods were often criticized for being too loose, as they remain invariant under any invertible linear transformation. To address this, Centered Kernel Alignment (CKA) (Kornblith et al., 2019) was proposed and has since become the de facto standard (Khrulkov & Oseledets, 2018; Raghu et al., 2019; Wu et al., 2020; Zhang et al., 2024). By quantifying similarity through centered Gram matrices, CKA provides a normalized score that facilitates comparison across diverse experimental settings and is robust to fundamental geometric transformations.

While geometric analysis dominates the field, Topological Data Analysis (TDA) offers a complementary perspective by probing the intrinsic shape of data. Using tools like persistent homology (Barannikov, 1994; Carlsson et al., 2004), this approach examines how the fundamental topological structure of the data—from simple clusters to complex loops and voids—is formed and evolves across a continuous range of scales. This focus on properties that are invariant to non-linear deformations (such as stretching and bending) allows TDA to capture a different, often complementary, notion of structural similarity that is overlooked by geometry-centric measures.

Existing topological methods, however, face distinct limitations regarding their applicability. Methods such as Geometry Score (Khrulkov & Oseledets, 2018) and IMD (Tsitsulin et al., 2019) are highly general and do not require a one-to-one correspondence between representations. While flexible, they fail to leverage the valuable pairing information inherent in comparing neural network layers, often resulting in lower discriminative power. Conversely, approaches that do analyze

054 distributional topology often strictly require the point clouds to reside in the same ambient space
 055 (Kynkänniemi et al., 2019; Barannikov et al., 2021b), severely limiting their scope.
 056

057 A significant breakthrough in bridging this gap is Representation Topology Divergence (RTD)
 058 (Barannikov et al., 2021a) and its scalable variant, RTD-lite (Tulchinskii et al., 2025). These meth-
 059 ods successfully utilize the one-to-one correspondence between data points without requiring them
 060 to share the same ambient space, making them powerful tools for representation analysis and opti-
 061 mization (Trofimov et al., 2023).

062 Despite these advancements, the RTD framework suffers from two critical limitations that hinder
 063 its broader adoption. First, its theoretical underpinnings remain incomplete. The standard sym-
 064 metric measure is a brute-force average of two directional values, $RTD(w, \tilde{w})$ and $RTD(\tilde{w}, w)$,
 065 that can differ dramatically (Table 2f) without a clear theoretical explanation. Another theoretical
 066 ambiguity comes from its dual variant, Max-RTD, mentioned by Trofimov et al. (2023) to enrich
 067 gradient information, but whose theoretical role and relationship to the original RTD were never
 068 fully investigated.

069 Second, and more critically, unlike CKA, topological divergence methods are not normalized: the
 070 output of RTD and RTD-lite can be any positive number, heavily dependent on the number of sample
 071 points and the intrinsic scale of distances. This lack of a normalized scale makes cross-scenario
 072 comparison difficult and interpretability elusive. For instance, in layer-wise analysis, unnormalized
 073 divergence measures often fail to reveal the graded similarity patterns between layers (Figure 4a)—a
 074 task that CKA consistently accomplishes due to its normalization.

075 To address these issues, we propose a comprehensive topological toolkit with the following contri-
 076 butions:

- 077 • We complete the theoretical framework of RTD by introducing **Symmetric Representa-
 078 tion Topology Divergence (SRTD)** and its lightweight variant, **SRTD-lite**. We reveal
 079 the mathematical relationships between RTD, Max-RTD, and SRTD, proving that SRTD
 080 provides a more comprehensive and computationally efficient divergence measure that
 081 matches the top performance of this class of methods in optimization tasks.
- 082 • We introduce **Normalized Topological Similarity (NTS)**, a novel, scale-invariant, and nor-
 083 malized similarity measure. Unlike divergence-based methods, NTS captures hierarchical
 084 clustering features and can robustly reveal graded inter-layer similarity patterns that are
 085 often missed by RTD, combining the interpretability of CKA with the structural sensitivity
 086 of TDA.

090 2 PRELIMINARIES: PERSISTENT HOMOLOGY AND REPRESENTATION 091 TOPOLOGY DIVERGENCE

093 We consider two point clouds, P and P' , of the same size with a one-to-one correspondence. Their
 094 respective pairwise distance matrices are denoted by w and \tilde{w} . We define $\min(w, \tilde{w})$ and $\max(w, \tilde{w})$
 095 as the element-wise minimum and maximum of the two matrices, respectively.

097 To understand the topological structure of these point clouds, we employ persistent homology. The
 098 process can be intuitively understood as follows: for a given point cloud P with distance matrix w ,
 099 we construct a sequence of simplicial complexes, known as the Vietoris-Rips filtration (Hausmann,
 100 1995), indexed by a proximity parameter α . As α increases from zero, edges are added between
 101 points with distance less than or equal to α . When a set of n points are all mutually connected, the
 102 $(n-1)$ -simplex they span is filled in (e.g., three points form a filled triangle). This growing complex
 103 is denoted as $R_\alpha(\mathcal{G}^w)$.

104 During this filtration process, topological features—such as connected components (H_0), cycles
 105 (H_1), and voids (H_2)—appear and disappear. We track the lifespan of each feature by recording
 106 its birth and death values as an interval $[b, d]$ (Barannikov, 1994). The collection of these intervals
 107 is known as **barcodes** (Carlsson et al., 2004), which serves as a topological signature of the point
 108 cloud. The computation of persistent homology operates directly on the distance matrix.

108 **RTD** A set of barcodes characterizes one point cloud. To compare two, Representation Topology
 109 Divergence (RTD) (Barannikov et al., 2021a) introduced an auxiliary matrix M_{min} (Matrix 1b) con-
 110 structed from w , \tilde{w} , and $\min(w, \tilde{w})$. The resulting barcode captures the differences in the evolution
 111 of topological features between an individual point cloud and the composite structure formed by
 112 their union, which is derived from the $\min(w, \tilde{w})$ matrix. The length of a barcode interval in this
 113 context quantifies the discrepancy between when a feature forms in w (or \tilde{w}) versus when it forms
 114 in $\min(w, \tilde{w})$.

115 We define $RTD(w, \tilde{w})$ as the sum of the lengths of all barcodes computed from M_{min} (Matrix 1b).
 116 By swapping the roles of w and \tilde{w} , we can similarly compute $RTD(\tilde{w}, w)$. To ensure symme-
 117 try, the final divergence is typically defined as their average: $RTD(P, P') = \frac{RTD(w, \tilde{w}) + RTD(\tilde{w}, w)}{2}$.
 118 Subsequently, Trofimov et al. (2023) noted that a dual variant, which we term Max-RTD, can be
 119 defined by using an auxiliary matrix M_{max} (Matrix 1c) based on w , \tilde{w} , and $\max(w, \tilde{w})$. However,
 120 the properties of this variant were not deeply investigated in their work. The symmetric versions of
 121 Max-RTD are defined analogously by averaging the two directional computations.

123 **RTD-lite** To address the computational cost of higher-dimensional homology, RTD-lite (Tulchin-
 124 skii et al., 2025) was introduced as a lightweight variant focusing solely on 0-dimensional fea-
 125 tures—the merging of connected components. The key insight is that its divergence score can be
 126 calculated efficiently, as it is exactly the difference between the weights of the Minimum Span-
 127 ning Trees (MSTs) of the respective distance matrices. For instance, the directional divergence
 128 $RTD_{lite}(w, \tilde{w})$ is given by $MST(w) - MST(\min(w, \tilde{w}))$, and the final measure is symmetrized
 129 by averaging the two directional computations. This connection to MSTs provides a computationally
 130 feasible tool for large-scale representation analysis.

131 **Notation for Vietoris-Rips Complexes** To streamline the following sections, we establish nota-
 132 tion for the key Vietoris-Rips complexes used in our analysis. Recall that these are constructed
 133 based on a proximity parameter, α , which acts as a distance threshold for connecting points. For
 134 any given threshold α , we denote the complexes generated from the distance matrices w and \tilde{w} as
 135 $R_\alpha(\mathcal{G}^w)$ and $R_\alpha(\mathcal{G}^{\tilde{w}})$, respectively. The complexes derived from the element-wise minimum and
 136 maximum matrices have a crucial relationship to these: at the same scale α , $R_\alpha(\mathcal{G}^{\min(w, \tilde{w})})$ is the
 137 union of the individual complexes $(R_\alpha(\mathcal{G}^w) \cup R_\alpha(\mathcal{G}^{\tilde{w}}))$, while $R_\alpha(\mathcal{G}^{\max(w, \tilde{w})})$ is their intersection
 138 $(R_\alpha(\mathcal{G}^w) \cap R_\alpha(\mathcal{G}^{\tilde{w}}))$.

$$\begin{array}{c} \left(\begin{array}{ccc} \max(w, \tilde{w}) & (\max(w, \tilde{w})^+)^T & 0 \\ \max(w, \tilde{w})^+ & \min(w, \tilde{w}) & \infty \\ 0 & \infty & 0 \end{array} \right) \quad \left(\begin{array}{ccc} w & (w^+)^T & 0 \\ w^+ & \min(w, \tilde{w}) & \infty \\ 0 & \infty & 0 \end{array} \right) \quad \left(\begin{array}{ccc} \max(w, \tilde{w}) & (\max(w, \tilde{w})^+)^T & 0 \\ \max(w, \tilde{w})^+ & w & \infty \\ 0 & \infty & 0 \end{array} \right) \\ (a) M_{sym} \qquad \qquad \qquad (b) M_{min} \qquad \qquad \qquad (c) M_{max} \end{array}$$

140 Figure 1: The three key auxiliary matrices. For any matrix M , M^+ is obtained by replacing its
 141 upper triangular part with infinity.
 142

143 3 SYMMETRIC REPRESENTATION TOPOLOGY DIVERGENCE (SRTD)

144 In practice, we observe a complementary phenomenon between RTD and Max-RTD (shown in
 145 Table 2f). When $RTD(w, \tilde{w}) > RTD(\tilde{w}, w)$, we consistently find that $Max-RTD(w, \tilde{w}) <$
 146 $Max-RTD(\tilde{w}, w)$. This suggests that the topological structural differences between $R_\alpha(\mathcal{G}^w) \cup$
 147 $R_\alpha(\mathcal{G}^{\tilde{w}})$ and $R_\alpha(\mathcal{G}^w) \cap R_\alpha(\mathcal{G}^{\tilde{w}})$ seem to be the core reason for the asymmetry in RTD. Therefore,
 148 we propose to directly measure this difference as the Symmetric Representation Topology Diver-
 149 gence (SRTD) of P and P' .

150 **Definition 3.1** (SRTD). For two point clouds P and P' with a one-to-one correspondence, the
 151 distance matrix of their auxiliary graph $\hat{\mathcal{G}}'_{sym}$ is M_{sym} (Matrix 1a). The sum of the lengths of its
 152 persistent homology barcodes is defined as $SRTD(P, P')$ (see Algorithm 3). Its chain complex is
 153 homotopy equivalent to the mapping cone of the inclusion map $f' : C_*(R_\alpha(\mathcal{G}^w) \cap R_\alpha(\mathcal{G}^{\tilde{w}})) \rightarrow$
 154 $C_*(R_\alpha(\mathcal{G}^w) \cup R_\alpha(\mathcal{G}^{\tilde{w}}))$.

The logic behind RTD-lite—simplifying topological divergence to a calculation on Minimum Spanning Trees (MSTs)—can be extended across the entire RTD framework. This allows us to formally define **Max-RTD-lite**, the natural dual to RTD-lite, which compares an individual MST to the MST of the intersection structure (derived from $\max(w, \tilde{w})$). With this complete lightweight family in place, we introduce our proposed symmetric version, **SRTD-lite**, as the most direct and fundamental measure. Since the full SRTD compares the topologies of the composite union $R_\alpha(\mathcal{G}^{\min(w, \tilde{w})})$ and intersection $R_\alpha(\mathcal{G}^{\max(w, \tilde{w})})$ structures, SRTD-lite quantifies the divergence between them by simply comparing the weights of their respective MSTs.

Definition 3.2 (SRTD-lite). By comparing the minimum spanning trees of $\min(w, \tilde{w})$ and $\max(w, \tilde{w})$ through Algorithm 4, we can obtain a series of barcodes. We define the sum of the lengths of these barcodes as *SRTD-lite*(w, \tilde{w}).

3.1 MATHEMATICAL PROPERTIES

SRTD, RTD, and Max-RTD satisfy some elegant mathematical properties. The mapping cones corresponding to their auxiliary graphs fit into the following long exact sequence:

$$\cdots \rightarrow H_n(R_\alpha(\mathcal{G}^w), R_\alpha(\mathcal{G}^{\max(w, \tilde{w})})) \xrightarrow{\gamma_n} H_n(R_\alpha(\mathcal{G}^{\min(w, \tilde{w})}), R_\alpha(\mathcal{G}^{\max(w, \tilde{w})})) \\ \xrightarrow{\beta_n} H_n(R_\alpha(\mathcal{G}^{\min(w, \tilde{w})}), R_\alpha(\mathcal{G}^w)) \xrightarrow{\delta_n} H_{n-1}(R_\alpha(\mathcal{G}^w), R_\alpha(\mathcal{G}^{\max(w, \tilde{w})})) \xrightarrow{\gamma_{n-1}} \cdots$$

Theorem 3.3. For any dimension i , point clouds P, P' and distance matrices w, \tilde{w} , the three divergences satisfy the following relationship:

$$\text{Max-RTD}_i(w, \tilde{w}) + \text{RTD}_i(w, \tilde{w}) - \text{SRTD}_i(w, \tilde{w}) = \int_0^\infty (\dim(\ker(\gamma_i)) + \dim(\ker(\gamma_{i-1}))) d\alpha$$

By swapping the positions of w and \tilde{w} in Theorem 3.3, we obtain a similar equality. We denote $\text{RTD}_i(w, \tilde{w}) + \text{Max-RTD}_i(w, \tilde{w})$ as $\text{minmax}(w, \tilde{w})$, and $\text{RTD}_i(\tilde{w}, w) + \text{Max-RTD}_i(\tilde{w}, w)$ as $\text{minmax}(\tilde{w}, w)$. Both are strictly greater than SRTD, but in our experiments, we find this gap to be very small, as shown in the Table 2e.

The introduction of SRTD provides a more mathematically elegant framework for understanding the RTD family. Within this framework, the asymmetric measures $\text{minmax}(w, \tilde{w})$ and $\text{minmax}(\tilde{w}, w)$ can be decomposed into a large, shared symmetric component, $\text{SRTD}(w, \tilde{w})$, and smaller, 'private' components. These private components correspond to topological features unique to the individual filtrations of \mathcal{G}^w or $\mathcal{G}^{\tilde{w}}$ relative to the bounding filtrations of $\mathcal{G}^{\min(w, \tilde{w})}$ and $\mathcal{G}^{\max(w, \tilde{w})}$. This decomposition reveals that the asymmetry in the original RTD arises from these small, private feature sets, making the source of the divergence interpretable. The relationship becomes even more direct and elegant in the lite version:

Corollary 3.4. $\text{Max-RTD-lite}(w, \tilde{w}) + \text{RTD-lite}(w, \tilde{w}) = \text{SRTD-lite}(w, \tilde{w})$

Corollary 3.5. $\text{Max-RTD-lite}(P, P') \geq \text{SRTD-lite}(P, P') \geq \text{RTD-lite}(P, P')$

Together, Theorem 3.3 and Corollary 3.4, 3.5 provide a clear theoretical basis for a consistent pattern observed in our experiments: when plotting the divergence curves for either the full or lite families, the Max-RTD curve is always highest, the RTD curve is lowest, and the SRTD curve lies in between (as shown in Figure 2b). For the lite versions, Corollary 3.5 proves this hierarchical ordering is strict, which explains why the SRTD-lite curve appears perfectly centered between the other two. While the relationship for the full RTD family is more complex, this structure holds empirically, positioning SRTD as a balanced, median measure of topological divergence.

4 NORMALIZED TOPOLOGICAL SIMILARITY (NTS)

4.1 MOTIVATION: THE LIMITATIONS OF DIVERGENCE-BASED ANALYSIS

While SRTD theoretically completes the topological divergence framework, the reliance on summing barcode lengths creates two practical limitations for general similarity analysis. First, as previously discussed, the unnormalized scores are inherently scale-dependent and difficult to interpret

216 across different contexts. Second, and more critically, the total divergence can be dominated by a
 217 few “ultra-long” barcodes (Figure 19a) corresponding to large-scale structural differences. This sensitivity
 218 to a handful of major dissimilarities can mask a high degree of similarity in finer structural
 219 details, making the measure brittle.

220 These limitations underscore the need for a fundamentally different approach: a normalized, scale-
 221 invariant similarity measure designed to robustly capture hierarchical clustering structures.
 222

223 **4.2 METHOD: CAPTURING MERGE-ORDER SIMILARITY**

225 Instead of comparing the *magnitudes* of topological features, we propose to compare their relative
 226 *order* of formation. The sequence of merge events in 0-dimensional persistent homology provides
 227 a scale-invariant signature of a point cloud’s hierarchical clustering structure. To robustly compare
 228 such sequences, we employ Spearman’s rank correlation coefficient (ρ), which is inherently normalized
 229 to $[-1, 1]$ and is robust to outliers and monotonic scaling (Spearman, 1961).

230 The merge sequence of connected components is perfectly captured by the Minimum Spanning
 231 Tree (MST), which forms the backbone of the 0-dimensional filtration. Our method, Normalized
 232 Topological Similarity (NTS), leverages this connection. The core idea is to first establish a common
 233 basis for comparison—the set of core pairs—by taking the union of edges from the MSTs of both
 234 point clouds. For every pair in this common set, we extract a corresponding numerical value from
 235 each point cloud’s structure. This process creates two parallel vectors, and the NTS score is their
 236 Spearman’s rank correlation.

237 We define two variants based on the values extracted:

- 239 • **NTS-M (Merge-time based):** This theoretically-grounded variant compares the ranks of
 240 the merge times. The merge time of a pair of points is the threshold at which they become
 241 connected in the filtration, formally defined by the maximum edge weight on the path
 242 between them in their MST.
- 243 • **NTS-E (Edge-distance based):** This practical variant directly compares the ranks of the
 244 original pairwise distances for the ‘core pairs’. It is computationally simpler and often
 245 more sensitive in practice, as it retains more of the original metric information.

246 **4.3 FORMAL DEFINITION AND PROPERTIES**

248 The procedures for calculating NTS-M and NTS-E are formally defined in Algorithm 1 and 2.

250 **Algorithm 1: NTS-M (Merge-time based)**

251 **Input:** Pairwise distance matrices w, \tilde{w}
 252 **Output:** NTS-M score
 253
 1 $E_w \leftarrow$ Edge set of $\text{MST}(w)$
 2 $E_{\tilde{w}} \leftarrow$ Edge set of $\text{MST}(\tilde{w})$
 3 $E_{\text{core}} \leftarrow E_w \cup E_{\tilde{w}}$
 4 $V_{\text{merge}} \leftarrow (\text{MergeTime}(e, w))_{e \in E_{\text{core}}}$
 5 $\tilde{V}_{\text{merge}} \leftarrow (\text{MergeTime}(e, \tilde{w}))_{e \in E_{\text{core}}}$
 6 **return** Spearman’s $\rho(V_{\text{merge}}, \tilde{V}_{\text{merge}})$

250 **Algorithm 2: NTS-E (Edge-distance based)**

251 **Input:** Pairwise distance matrices w, \tilde{w}
 252 **Output:** NTS-E score
 253
 1 $E_w \leftarrow$ Edge set of $\text{MST}(w)$
 2 $E_{\tilde{w}} \leftarrow$ Edge set of $\text{MST}(\tilde{w})$
 3 $E_{\text{core}} \leftarrow E_w \cup E_{\tilde{w}}$
 4 $V_{\text{dist}} \leftarrow (w_{ij})_{(i,j) \in E_{\text{core}}}$
 5 $\tilde{V}_{\text{dist}} \leftarrow (\tilde{w}_{ij})_{(i,j) \in E_{\text{core}}}$
 6 **return** Spearman’s $\rho(V_{\text{dist}}, \tilde{V}_{\text{dist}})$

261 The NTS framework satisfies the following key properties, which highlight the stricter condition
 262 imposed by NTS-E.

263 **Theorem 4.1.** $NTS-M(P, P') = 1$ if and only if the rank order of merge times for all core pairs is
 264 identical for both point clouds.

265 **Theorem 4.2.** If $NTS-E(P, P') = 1$, then the rank order of merge times for all core pairs is also
 266 identical (i.e., $NTS-M(P, P') = 1$). The converse is not necessarily true.

268 NTS-E provides a stricter condition by comparing underlying distance ranks—making it more sensitive
 269 in practice—while NTS-M compares the final merge-time order to capture a more fundamental
 notion of structural similarity.

270

5 EXPERIMENTS

271

272 5.1 ANALYSIS OF HIERARCHICAL CLUSTERING STRUCTURES

273 We begin our experimental validation on two controlled tasks designed to test each method’s reliabil-
274 ity and sensitivity in capturing hierarchical clustering structures.275 **Clusters Experiment.** We test sensitivity to increasing structural dissimilarity by comparing a
276 single cluster of 300 2D Gaussian points against variants where the points are partitioned into
277 $k = 2, \dots, 12$ clusters arranged on a circle. The results reveal a clear performance divide: our
278 proposed NTS and SRTD families correctly capture the expected trend of increasing dissimilarity.
279 In contrast, CKA is largely insensitive to these structural changes, while RTD-lite produces
280 an anomalous, inverted trend, confirming that the $\max(w, \tilde{w})$ component is essential for a robust
281 divergence measure.309 Figure 2: Analysis of the RTD framework on the synthetic Clusters dataset. (e) shows the small
310 theoretical difference between SRTD and the symmetrized RTD/Max-RTD combination, where
311 $E_1 = (\text{RTD}(w, \tilde{w}) + \text{Max-RTD}(w, \tilde{w}) - \text{SRTD})/2$ and E_2 is defined analogously by swap-
312 ping w and \tilde{w} , $\text{percentage}_1 = (\text{RTD}(w, \tilde{w}) + \text{Max-RTD}(w, \tilde{w}) - \text{SRTD})/\text{SRTD}$. (f) illus-
313 trates the strong asymmetry and complementarity between RTD and Max-RTD, $\text{Min-Asym} =$
314 $\text{RTD}(w, \tilde{w}) - \text{RTD}(\tilde{w}, w)$, $\text{Max-Asym} = \text{Max-RTD}(w, \tilde{w}) - \text{Max-RTD}(\tilde{w}, w)$ 315
316
317
318 **UMAP Embeddings Experiment.** We test sensitivity to structural changes by generating a
319 sequence of 2D UMAP embeddings (Damrich & Hamprecht, 2021) from the MNIST dataset (LeCun
320 et al., 2002), varying the `n_neighbors` parameter to control the trade-off between local and global
321 structure. Pairwise comparisons of these embeddings (Figure 3) demonstrate that our proposed
322 methods, NTS and SRTD-lite, track these changes with a smooth, monotonic response. In contrast,
323 the CKA baseline fails to capture this gradual evolution, highlighting the superior sensitivity of our
324 topological measures.

Figure 3: UMAP experiment

5.2 EFFICIENCY AS AN OPTIMIZATION LOSS

We evaluate the practical utility of our divergence measures as loss terms for training an autoencoder, a task for which they are naturally suited. In this experiment, autoencoder is trained to reduce the dimensionality of the F-MNIST and COIL-20 dataset to 16 (Xiao et al., 2017; Nene et al., 1996). It is crucial to note this is an **intra-family comparison**, designed to demonstrate that our proposed SRTD offers the best trade-off between performance and efficiency within the RTD class of methods. The results confirm that SRTD and SRTD-lite achieves top-tier performance on quality metrics while being faster than its predecessors. (Full results are provided in Appendix G).

5.3 ANALYZING STRUCTURAL CONSISTENCY AND FUNCTIONAL HIERARCHY

To rigorously test our measures in a practical setting, we analyze the structural consistency of representations learned by an 8-layer TinyCNN (see Appendix E). Our experimental design, including the network architecture and training procedure on CIFAR-10 (Krizhevsky et al., 2009), is adapted from the original CKA study (Kornblith et al., 2019; Springenberg et al., 2014). For the analysis, we use the representations of 5,000 images sampled from the test set. We trained ten instances of this network from scratch with different random seeds¹.

This setup allows us to validate a key distinction observed in related work (Tulchinskii et al., 2025), which found that while topological divergence measures like RTD and RTD-lite can identify corresponding layers, they, unlike CKA, fail to capture the robust graded similarity patterns between adjacent and nearby layers. The heatmaps in Figure 4, showing the average results over all 45 unique model pairs, confirm this finding and reveal three key insights:

- **Layer Identification:** All methods are highly effective at identifying corresponding convolutional layers, achieving over 94% accuracy.
- **Graded Patterns:** NTS and CKA both reveal a clear, graded similarity pattern across convolutional layers, an interpretable landscape that RTD-lite and RTD families fail to produce.
- **Functional Shift Detection:** Crucially, only the topological measures (NTS and SRTD-lite) detect the sharp structural break at the final pooling layer. This identifies a fundamental functional shift from feature extraction to global aggregation that CKA misses.

These results demonstrate that NTS uniquely combines the strengths of both approaches: it provides an interpretable, graded similarity landscape akin to CKA, while also retaining the topological sensitivity needed to identify fundamental shifts in the network’s functional hierarchy.

5.4 ANALYSIS OF LARGE LANGUAGE MODEL REPRESENTATIONS

We conclude our experimental validation by analyzing the complex representations of Large Language Models (LLMs). Our methodology is closely adapted from REEF (Zhang et al., 2024), a recent study that established a robust protocol for fingerprinting and comparing LLM representations. REEF identified that certain datasets are particularly effective at eliciting discriminative

¹We select CKA as the primary baseline due to its widespread adoption as a robust, normalized similarity measure. Other methods such as SVCCA (Raghu et al., 2017) are omitted as they have been shown to be less effective for this type of layer analysis in prior studies (Kornblith et al., 2019; Barannikov et al., 2021a).

Figure 4: Average layer-wise comparison over 45 pairs of trained TinyCNNs. NTS (b, c) provides the most comprehensive view, matching CKA’s (a) graded pattern while also sharing the topological methods’ (d) unique sensitivity to the functional shift at the final pooling layer, a distinction CKA misses.

features that highlight inter-model differences. Following their findings, we conduct our analysis on two such datasets: TruthfulQA (Lin et al., 2021) and ToxiGen (Hartvigsen et al., 2022). For each dataset, we adopt the REEF protocol of extracting the last-token representation from every Transformer layer across 1,000 randomly sampled QA pairs.

Identifying Intra-Model Hierarchical Patterns. Our first goal is to evaluate intra-model layer similarity. The resulting heatmaps visualize this, with both the x- and y-axes representing every Transformer layer of a given model, from first to last. An ideal measure should satisfy two criteria: (1) the layer-wise similarity map for a single model should be structurally informative, revealing distinct processing stages, and (2) this structural pattern should be consistent across models from the same family.

Our analysis, summarized in Figure 5, shows a stark contrast in reliability. NTS successfully identifies consistent, hierarchical fingerprints for all tested model families (Qwen, InternLM, Baichuan, and Llama). CKA, however, proves unreliable, meeting these requirements only for the InternLM family. For other families, CKA’s heatmaps either degenerate into uninformative saturated blocks (e.g., Llama) or fail to show consistency after post-training refinements like distillation and instruction-tuning (e.g., Qwen and Baichuan). In all these cases where CKA fails, NTS preserves the underlying family-specific pattern, offering a more robust view of an LLM’s functional hierarchy.

Inter-Model Similarity Analysis Finally, we compare the ability of NTS and CKA to map the relationships between different LLM families. For this analysis, we extract the last-token representation from the 6th Transformer layer of each model, as this empirically yielded the most discriminative results. Furthermore, we recommend applying Z-score normalization across the feature dimension of representations before computing NTS to mitigate variance in individual activations. Ablation studies for both layer selection and the effect of normalization can be found in Appendix K.2.

Following the methodology of REEF (Zhang et al., 2024), we present the results from the TruthfulQA dataset, using representations from 1000 QA pairs, in Figure 6. This visualization reveals a critical weakness in CKA’s analysis. While both measures often assign high similarity scores between different model families, CKA exhibits severe **score saturation**. As seen in Figure 6a, its scores for most non-Llama model pairs are pinned near the maximum (often > 0.8), effectively erasing the distinctions between families like Qwen, Mistral, and InternLM. In contrast, while NTS scores in these cases can also be high, they are significantly less saturated and better distributed, thus providing a more discriminative and nuanced view of the model landscape.

Beyond this quantitative issue of score saturation, CKA also makes a critical, counter-intuitive error regarding DeepSeek-R1-Ds (Guo et al., 2025), which is distilled from qwen-2.5-math-7b (Yang et al., 2024). This error manifests as a very low similarity score between the model and its parent Qwen2.5 family (Team, 2024), a result that contradicts the known lineage.

NTS-E, in stark contrast, provides a more credible and discriminative map of the model space (Figure 6b). It correctly identifies the high similarity between DeepSeek-R1-Ds and its parent model family. This suggests that NTS, by focusing on topological structure rather than pure geometry, is

Figure 5: Intra-model layer similarity for LLM families on the TruthfulQA (top half) and ToxiGen (bottom half) datasets. NTS (top row of each pair) consistently reveals structured hierarchical patterns. In contrast, CKA (bottom row of each pair) often produces saturated or inconsistent heatmaps, failing on most families except InternLM.

less prone to the saturation and anomalous errors that can affect CKA, offering a more trustworthy tool for analyzing the complex LLM ecosystem.

Figure 6: Inter-model similarity maps for 17 LLMs

6 COMPUTATIONAL EFFICIENCY AND SCALABILITY

Our proposed toolkit is designed for both scalability and analytical power. A formal complexity analysis shows that while the full SRTD is computationally intensive, the core components of our framework are highly efficient. Both SRTD-lite and NTS-E operate in $O(n^2(\alpha(n) + d))$ time, primarily dominated by the pairwise distance calculation and the Minimum Spanning Tree (MST) construction.

486 To empirically validate this scalability, we conducted a runtime benchmark using representations
 487 from a TinyCNN trained on CIFAR-10. We varied the sample size N from 5,000 to 30,000 and
 488 measured the end-to-end execution time. The results unequivocally (figure 7) show that NTS-E
 489 exhibits the best scalability, followed by SRTD-lite, with RTD-lite being the slowest due to its triple
 490 MST calculation.

491 This significant efficiency gain in NTS-E stems
 492 from two key factors:

1. **No Normalization Required:** Being a rank-based measure, NTS-E operates directly on raw distance matrices, bypassing the costly quantile calculation and matrix division required by RTD and SRTD.
2. **Minimal Memory Footprint:** NTS-E avoids constructing dense auxiliary matrices (e.g., $\min(w, \tilde{w})$), reducing peak memory usage from $O(3N^2)$ to $O(2N^2)$, making it the most memory-efficient method.

507 7 CONCLUSION

509 In summary, we introduce a complementary topological toolkit. These methods offer a powerful
 510 choice for representation analysis. While NTS is ideal for obtaining a single, stable similarity score,
 511 SRTD-lite offers in-depth diagnostic (Table 5) and can serve as an effective loss term. A limitation
 512 of our work is that NTS, in its current form, is an analysis-only measure. Its non-differentiable
 513 nature prevents its use in direct model optimization. Therefore, a crucial avenue for future research
 514 is to develop a differentiable formulation of NTS, enabling it to guide representation learning.

500 Figure 7: Runtime comparison on CIFAR-10
 501 representations with varying sample sizes.

540 REFERENCES
541

542 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
543 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

544 Serguei Barannikov. The framed morse complex and its invariants. *Advances in Soviet Mathematics*,
545 21:93–116, 1994.

546 Serguei Barannikov, Ilya Trofimov, Nikita Balabin, and Evgeny Burnaev. Representation topol-
547 ogy divergence: A method for comparing neural network representations. *arXiv preprint
arXiv:2201.00058*, 2021a.

548 Serguei Barannikov, Ilya Trofimov, Grigorii Sotnikov, Ekaterina Trimbach, Alexander Korotin,
549 Alexander Filippov, and Evgeny Burnaev. Manifold topology divergence: a framework for com-
550 paring data manifolds. *Advances in neural information processing systems*, 34:7294–7305, 2021b.

551 Zheng Cai, Maosong Cao, Haojong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
552 Chen, Zhi Chen, Pei Chu, et al. Internlm2 technical report. *arXiv preprint arXiv:2403.17297*,
553 2024.

554 Gunnar Carlsson, Afra Zomorodian, Anne Collins, and Leonidas Guibas. Persistence barcodes for
555 shapes. In *Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry
processing*, pp. 124–135, 2004.

556 Devendra Singh Chaplot. Albert q. jiang, alexandre sablayrolles, arthur mensch, chris bamford,
557 devendra singh chaplot, diego de las casas, florian bressand, gianna lengyel, guillaume lample,
558 lucile saulnier, lélio renard lavaud, marie-anne lachaux, pierre stock, teven le scao, thibaut lavril,
559 thomas wang, timothée lacroix, william el sayed. *arXiv preprint arXiv:2310.06825*, 3, 2023.

560 Frédéric Chazal and Bertrand Michel. An introduction to topological data analysis: fundamental
561 and practical aspects for data scientists. *Frontiers in artificial intelligence*, 4:667963, 2021.

562 Sebastian Damrich and Fred A Hamprecht. On umap’s true loss function. *Advances in Neural
563 Information Processing Systems*, 34:5798–5809, 2021.

564 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
565 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
566 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

567 Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, and Ece Kamar.
568 Toxigen: A large-scale machine-generated dataset for adversarial and implicit hate speech detec-
569 tion. *arXiv preprint arXiv:2203.09509*, 2022.

570 Jean-Claude Hausmann. On the vietoris–rips complexes and a cohomology theory. In *Prospects
571 in topology: proceedings of a conference in honor of William Browder*, number 138, pp. 175.
572 Princeton University Press, 1995.

573 Valentin Khrulkov and Ivan Oseledets. Geometry score: A method for comparing generative ad-
574 versarial networks. In *International conference on machine learning*, pp. 2621–2629. PMLR,
575 2018.

576 Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
577 network representations revisited. In *International conference on machine learning*, pp. 3519–
578 3529. PMIR, 2019.

579 Nikolaus Kriegeskorte, Marieke Mur, and Peter A Bandettini. Representational similarity analysis–
580 connecting the branches of systems neuroscience. *Frontiers in systems neuroscience*, 2:249, 2008.

581 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
582 2009.

583 Tuomas Kynkänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
584 precision and recall metric for assessing generative models. *Advances in neural information
585 processing systems*, 32, 2019.

594 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 595 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 2002.
 596

597 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 598 falsehoods. *arXiv preprint arXiv:2109.07958*, 2021.
 599

600 Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in neural
 601 networks with canonical correlation. *Advances in neural information processing systems*, 31,
 602 2018.

603 Moin Nadeem, Anna Bethke, and Siva Reddy. Stereoset: Measuring stereotypical bias in pretrained
 604 language models. In *Proceedings of the 59th annual meeting of the association for computational
 605 linguistics and the 11th international joint conference on natural language processing (volume 1:
 606 long papers)*, pp. 5356–5371, 2021.

607 Sameer A Nene, Shree K Nayar, Hiroshi Murase, et al. Columbia object image library (coil-100).
 608 Technical report, Technical report CUCS-006-96, 1996.
 609

610 Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature reuse?
 611 towards understanding the effectiveness of maml. *arXiv preprint arXiv:1909.09157*, 2019.
 612

613 Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular vector
 614 canonical correlation analysis for deep learning dynamics and interpretability. *Advances in neural
 615 information processing systems*, 30, 2017.

616 Charles Spearman. The proof and measurement of association between two things. 1961.
 617

618 Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for
 619 simplicity: The all convolutional net. *arXiv preprint arXiv:1412.6806*, 2014.
 620

621 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2024.
 622

623 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 624 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 625 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.
 626

627 Ilya Trofimov, Daniil Cherniavskii, Eduard Tulchinskii, Nikita Balabin, Evgeny Burnaev, and
 628 Serguei Barannikov. Learning topology-preserving data representations. *arXiv preprint
 629 arXiv:2302.00136*, 2023.

630 Anton Tsitsulin, Marina Munkhoeva, Davide Mottin, Panagiotis Karras, Alex Bronstein, Ivan Os-
 631 eledets, and Emmanuel Müller. The shape of data: Intrinsic distance for data distributions. *arXiv
 632 preprint arXiv:1905.11141*, 2019.
 633

634 Eduard Tulchinskii, Daria Voronkova, Ilya Trofimov, Evgeny Burnaev, and Serguei Barannikov.
 635 Rtd-lite: Scalable topological analysis for comparing weighted graphs in learning tasks. *arXiv
 636 preprint arXiv:2503.11910*, 2025.
 637

638 Yingfan Wang, Haiyang Huang, Cynthia Rudin, and Yaron Shaposhnik. Understanding how dimen-
 639 sion reduction tools work: an empirical approach to deciphering t-sne, umap, trimap, and pacmap
 640 for data visualization. *Journal of Machine Learning Research*, 22(201):1–73, 2021.
 641

642 John Wu, Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, and James Glass. Similar-
 643 ity analysis of contextual word representation models. In *Proceedings of the 58th Annual Meeting
 644 of the Association for Computational Linguistics*, pp. 4638–4655, 2020.
 645

646 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
 647 ing machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.
 648

649 Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
 650 Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. *arXiv preprint
 651 arXiv:2309.10305*, 2023.

648 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
 649 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
 650 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024.

651
 652
 653 Jie Zhang, Dongrui Liu, Chen Qian, Linfeng Zhang, Yong Liu, Yu Qiao, and Jing Shao. Reef: Rep-
 654 resentation encoding fingerprints for large language models. *arXiv preprint arXiv:2410.14273*,
 655 2024.

656
 657
 658 Simon Zhang, Mengbai Xiao, and Hao Wang. Gpu-accelerated computation of vietoris-rips persis-
 659 tence barcodes. *arXiv preprint arXiv:2003.07989*, 2020.

664 A USE OF LARGE LANGUAGE MODELS

665
 666 During the preparation of this manuscript, the authors utilized large language models to improve the
 667 clarity and readability of the text. The LLM was also used as a tool to assist with literature searches.

671 B REPRODUCIBILITY STATEMENT

672
 673 We believe in open and reproducible research. To this end, we will release the complete source
 674 code for this project, including experiment scripts and setup instructions, upon the acceptance of
 675 this paper. We hope this will be a useful resource for the community.

678 C DEFINITION AND ALGORITHM

681 **Definition C.1** (Max-RTD). For two point clouds P and P' with a one-to-one correspondence, the
 682 distance matrix of their auxiliary graph $\hat{\mathcal{G}}'_{max}$ is given by M_{max} (Matrix 1c). The sum of the lengths
 683 of the persistent homology barcodes of $\hat{\mathcal{G}}'_{max}$ is defined as $Max-RTD(w, \tilde{w})$. Its chain complex
 684 is homotopy equivalent to the mapping cone of the inclusion map $f' : C_*(R_\alpha(\mathcal{G}^w) \cap R_\alpha(\mathcal{G}^{\tilde{w}})) \rightarrow$
 685 $C_*(R_\alpha(\mathcal{G}^w))$.

688 C.1 SRTD ALGORITHM

691 **Algorithm 3:** Symmetric Representation Topology Divergence (SRTD) Calculation

692 **Input:** Pairwise distance matrices w, \tilde{w}

693 **Output:** A set of divergence scores $\{SRTD_i\}_{i \geq 0}$ for each dimension i

```

694 1  $w_{norm}, \tilde{w}_{norm} \leftarrow$  Normalize  $w, \tilde{w}$  by their 0.9 quantiles;
695 2  $w_{min} \leftarrow \min(w_{norm}, \tilde{w}_{norm})$ ;
696 3  $w_{max} \leftarrow \max(w_{norm}, \tilde{w}_{norm})$ ;
697 4 Construct the symmetric auxiliary matrix  $M_{sym}$  using  $w_{min}$  and  $w_{max}$  (see Matrix 1a);
698 5 for each dimension of interest  $i \in \{0, 1, \dots\}$  do
699 6   | Compute barcodes:  $B_i \leftarrow$  PersistentHomology( $m_{sym}, i$ );
700 7   | Compute divergence score:  $SRTD_i \leftarrow \sum_{(b,d) \in B_i} (d - b)$ ;
701 8 end
9 return  $\{SRTD_i\}_{i \geq 0}$ 

```

702 C.2 SRTD-LITE BARCODE ALGORITHM
703704 **Algorithm 4:** Computation of SRTD-lite Barcode

705 **Input:** Weight matrices D_1, D_2
 706 **Output:** A multiset of intervals (the SRTD-L-Barcode)

707 **procedure** SRTD-L-Barcode (D_1, D_2)
 708 $D'_1, D'_2 \leftarrow$ Normalize D_1, D_2 by their 0.9 quantiles;
 709 $D_{\min} \leftarrow$ Element-wise minimum of D'_1 and D'_2 ;
 710 $D_{\max} \leftarrow$ Element-wise maximum of D'_1 and D'_2 ;
 711 $E_{\min} \leftarrow \text{Sort}(\text{MST}(D_{\min}))$;
 712 $E_{\max} \leftarrow \text{Sort}(\text{MST}(D_{\max}))$;
 713 $\text{BarcodeSet} \leftarrow []$;
 714 $\text{SubTree} \leftarrow$ Empty graph with N vertices;
 715 **foreach** edge $e = (u, v)$ with weight w_{birth} in E_{\min} **do**
 716 **if** u and v are not connected in SubTree **then**
 717 $\text{TemporaryGraph} \leftarrow \text{copy}(\text{SubTree})$;
 718 **foreach** edge $e' = (u', v')$ with weight w_{death} in E_{\max} **do**
 719 Add e' to TemporaryGraph ;
 720 **if** u and v are connected in TemporaryGraph **then**
 721 Add $(w_{\text{birth}}, w_{\text{death}})$ to BarcodeSet ;
 722 **break**;
 723 **end**
 724 Add e to SubTree ;
 725 **end**
 726 **end**
 727 **return** BarcodeSet ;

Figure 8: Conceptual relationship between SRTD, RTD, and Max-RTD.

743 D PROOFS
744745 D.1 STATEMENT IN DEFINITION
746

747 We first prove the following lemmas, they are stated in definition C.1 and definition 3.1, The
 748 construction and proof for this part refer to Barannikov et al. (2021a). Let $A = R_\alpha(\mathcal{G}^w)$ and
 749 $B = R_\alpha(\mathcal{G}^{\tilde{w}})$:

750 **Lemma D.1.** *There exists a specially constructed auxiliary graph $\hat{\mathcal{G}}'_{\max}$ such that its chain complex
 751 is homotopy equivalent to the mapping cone $\text{Cone}(f')$, where $f' : C_*(A \cap B) \rightarrow C_*(A)$ is a chain
 752 map induced by the inclusion.*

753
$$R_\alpha(\hat{\mathcal{G}}'_{\max}) \sim \text{Cone} \left(R_\alpha(\mathcal{G}^{\max(w, \tilde{w})}) \rightarrow R_\alpha(\mathcal{G}^w) \right)$$

756 **Lemma D.2.** *Similarly, there exists a specially constructed auxiliary graph $\hat{\mathcal{G}}'_{sym}$ such that its chain*
 757 *complex is homotopy equivalent to the mapping cone $Cone(f')$, where $f' : C_*(A \cap B) \rightarrow C_*(A \cup B)$*
 758 *is a chain map induced by the inclusion.*

$$760 \quad R_\alpha(\hat{\mathcal{G}}'_{sym}) \sim Cone\left(R_\alpha(\mathcal{G}^{\max(w, \tilde{w})}) \rightarrow R_\alpha(\mathcal{G}^{\min(w, \tilde{w})})\right)$$

762 *Proof.* The mapping cone we are interested in is constructed from the direct sum of the following
 763 chain complexes:

$$764 \quad Cone(f') = C_*(A \cap B)[-1] \oplus C_*(A)$$

765 Following the construction from the RTD paper, we can propose two auxiliary graph schemes: The
 766 vertex set of the auxiliary graph $\hat{\mathcal{G}}'_{max}$ is composed of the original vertices v'_i , mirrored vertices v_i ,
 767 and a special vertex O . Its distance rules are defined as follows: $d'_{v_i v_j} = \max(w_{ij}, \tilde{w}_{ij}), d'_{v'_i v'_j} =$
 768 $w_{ij}, d'_{v_i v'_i} = 0, d'_{O v_i} = 0, d'_{O v'_i} = +\infty, d'_{v_i v'_j} = \max(w_{ij}, \tilde{w}_{ij})$

769 The vertex set of the auxiliary graph $\hat{\mathcal{G}}'_{sym}$ is composed of twice the number of original vertices
 770 and O . $d'_{v_i v_j} = \max(w_{ij}, \tilde{w}_{ij}), d'_{v'_i v'_j} = \min(w_{ij}, \tilde{w}_{ij}), d'_{v_i v'_i} = 0, d'_{O v_i} = 0, d'_{O v'_i} = +\infty, d'_{v_i v'_j} =$
 771 $\max(w_{ij}, \tilde{w}_{ij})$

772 For the auxiliary graph $R_\alpha(\hat{\mathcal{G}}'_{max})$, there are three types of simplices:

- 773 • $A_{i_1} \dots A_{i_k} A'_{i_k} \dots A'_{i_n}$, where $\max(w_{A_{i_r} A_{i_s}}, \tilde{w}_{A_{i_r} A_{i_s}}) \leq \alpha$ for $r \leq k$, and $w_{A_{i_r} A_{i_s}} \leq \alpha$ for $r, s \geq k$.
- 774 • $A_{i_1} \dots A_{i_k} A'_{i_{k+1}} \dots A'_{i_n}$, where $\max(w_{A_{i_r} A_{i_s}}, \tilde{w}_{A_{i_r} A_{i_s}}) \leq \alpha$ for $r \leq k$, and $w_{A_{i_r} A_{i_s}} \leq \alpha$ for $r, s \geq k+1$.
- 775 • $OA_{i_1} A_{i_2} \dots A_{i_n}$, where $\max(w_{A_{i_r} A_{i_s}}, \tilde{w}_{A_{i_r} A_{i_s}}) \leq \alpha$.

776 **Forward Map**

$$777 \quad \psi' : Cone(f') \rightarrow R_\alpha(\hat{\mathcal{G}}'_{max})$$

- 778 • For $c \in C_*(A \cap B)[-1]$ (of the form $A_{i_1} \dots A_{i_n}[-1]$):

$$779 \quad \psi'(c) = OA_{i_1} \dots A_{i_n} + \sum_{k=1}^n A_{i_1} \dots A_{i_k} A'_{i_k} \dots A'_{i_n}$$

- 780 • For $a \in C_*(A)$ (of the form $A_{i_1} \dots A_{i_n}$):

$$781 \quad \psi'(a) = A'_{i_1} \dots A'_{i_n}$$

782 **Backward Map**

$$783 \quad \tilde{\psi}' : R_\alpha(\hat{\mathcal{G}}'_{max}) \rightarrow Cone(f')$$

- 784 • $\tilde{\psi}'(OA_{i_1} \dots A_{i_n}) = A_{i_1} \dots A_{i_n}[-1]$
- 785 • $\tilde{\psi}'(A'_{i_1} \dots A'_{i_n}) = A_{i_1} \dots A_{i_n}$
- 786 • $\tilde{\psi}'(\Delta) = 0$ (for all other types of simplices Δ)

802 **Homotopy Operator H** For the second type of simplex:

$$803 \quad H : A_{i_1} \dots A_{i_k} A'_{i_{k+1}} \dots A'_{i_n} \rightarrow \sum_{l=1}^k A_{i_1} \dots A_{i_l} A'_{i_l} \dots A'_{i_n}, 1 \leq k \leq n$$

804 For all other simplices:

$$805 \quad H(\Delta) = 0$$

806 Therefore, $\tilde{\psi}' \circ \psi' = \text{Id}$ and $\psi' \circ \tilde{\psi}' = \text{Id} = H\partial - \partial H$. This proves D.1, and D.2 can be proven
 807 similarly. \square

810 D.2 PROOF OF THEOREM 3.3
811

812 Lets proof Theorem 3.3. To proof the theorem, we just need to proof the following theorem:

813 **Lemma D.3.** *For any dimension i , the Betti numbers of the three auxiliary graphs satisfy the fol-
814 lowing relation:*

815
$$\beta_i^{\min}(\alpha) + \beta_i^{\max}(\alpha) - \beta_i^{\text{sym}}(\alpha) = \dim(\ker(\gamma_i)) + \dim(\ker(\gamma_{i-1}))$$

816

817 *Proof.* We have the following inclusion of simplicial complexes:
818

819
$$R_\alpha(\mathcal{G}^{\max(w, \tilde{w})}) \subseteq R_\alpha(\mathcal{G}^w) \subseteq R_\alpha(\mathcal{G}^{\min(w, \tilde{w})})$$

820

821 This forms a triple of complexes, which gives rise to a standard short exact sequence of their chain
822 complexes:
823

824
$$0 \rightarrow C_*(R_\alpha(\mathcal{G}^w), R_\alpha(\mathcal{G}^{\max(w, \tilde{w})})) \rightarrow C_*(R_\alpha(\mathcal{G}^{\min(w, \tilde{w})}), R_\alpha(\mathcal{G}^{\max(w, \tilde{w})})) \rightarrow C_*(R_\alpha(\mathcal{G}^{\min(w, \tilde{w})}), R_\alpha(\mathcal{G}^w)) \rightarrow 0$$

825

826 This, in turn, induces the following long exact sequence in homology:
827

828
$$\cdots \rightarrow H_n(R_\alpha(\mathcal{G}^w), R_\alpha(\mathcal{G}^{\max(w, \tilde{w})})) \rightarrow H_n(R_\alpha(\mathcal{G}^{\min(w, \tilde{w})}), R_\alpha(\mathcal{G}^{\max(w, \tilde{w})}))$$

829
$$\rightarrow H_n(R_\alpha(\mathcal{G}^{\min(w, \tilde{w})}), R_\alpha(\mathcal{G}^w)) \xrightarrow{\partial_*} H_{n-1}(R_\alpha(\mathcal{G}^w), R_\alpha(\mathcal{G}^{\max(w, \tilde{w})})) \rightarrow \cdots$$

830

831 Since the relative homology groups are isomorphic to the homology groups of the corresponding
832 mapping cones, we have the following long exact sequence for the auxiliary graphs:
833

834
$$\cdots \rightarrow H_i(R_\alpha(\hat{\mathcal{G}}'_{\max})) \xrightarrow{\gamma_i} H_i(R_\alpha(\hat{\mathcal{G}}'_{\text{sym}})) \xrightarrow{\beta_i} H_i(R_\alpha(\hat{\mathcal{G}}'_{\min})) \xrightarrow{\delta_i} H_{i-1}(R_\alpha(\hat{\mathcal{G}}'_{\max})) \rightarrow \cdots$$

835

836 where $\gamma_i, \beta_i, \delta_i$ are the homomorphism maps in the sequence. For any segment of an exact se-
837 quence of vector spaces $U \xrightarrow{f} V \xrightarrow{g} W$, we have $\text{im}(f) = \ker(g)$. By the rank-nullity theo-
838 rem, $\dim(V) = \dim(\ker(g)) + \dim(\text{im}(g))$. Substituting $\text{im}(f) = \ker(g)$, we get $\dim(V) =$
839 $\dim(\text{im}(f)) + \dim(\text{im}(g))$. Therefore, the dimensions of the homology groups of the auxiliary
840 graphs (i.e., the Betti numbers $\beta_i(\alpha)$) can be expressed as:
841

842
$$\beta_i^{\max}(\alpha) = \dim(H_i(R_\alpha(\hat{\mathcal{G}}'_{\max}))) = \dim(\text{im}(\delta_{i+1})) + \dim(\text{im}(\gamma_i)) \quad (1)$$

843

844
$$\beta_i^{\text{sym}}(\alpha) = \dim(H_i(R_\alpha(\hat{\mathcal{G}}'_{\text{sym}}))) = \dim(\text{im}(\gamma_i)) + \dim(\text{im}(\beta_i)) \quad (2)$$

845

846
$$\beta_i^{\min}(\alpha) = \dim(H_i(R_\alpha(\hat{\mathcal{G}}'_{\min}))) = \dim(\text{im}(\beta_i)) + \dim(\text{im}(\delta_i)) \quad (3)$$

847

848 By substituting equation 1, equation 2, and equation 3, we obtain:
849

850
$$\begin{aligned} \beta_i^{\min}(\alpha) + \beta_i^{\max}(\alpha) - \beta_i^{\text{sym}}(\alpha) \\ = (\dim(\text{im}(\beta_i)) + \dim(\text{im}(\delta_i))) \\ + (\dim(\text{im}(\delta_{i+1})) + \dim(\text{im}(\gamma_i))) \\ - (\dim(\text{im}(\gamma_i)) + \dim(\text{im}(\beta_i))) \\ = \dim(\text{im}(\delta_{i+1})) + \dim(\text{im}(\delta_i)) \\ = \dim(\ker(\gamma_i)) + \dim(\ker(\gamma_{i-1})) \end{aligned}$$

851

852 By integrating both sides of Lemma D.3 with respect to filtration radius α , we obtain its conclusion.
853 This completes the proof of Lemma D.3 and Theorem 3.3. \square
854855 D.3 PROOF OF COROLLARY
856857 **Proof of Corollary 3.4** From definition, we have
858

859
$$RTD\text{-lite}(P, P') = \frac{(mst(\mathcal{G}^w) - mst(\mathcal{G}^{\min(w, \tilde{w})})) + (mst(\mathcal{G}^{\tilde{w}}) - mst(\mathcal{G}^{\min(w, \tilde{w})}))}{2}$$

860

861
$$Max\text{-}RTD\text{-lite}(P, P') = \frac{(mst(\mathcal{G}^{\max(w, \tilde{w})}) - mst(\mathcal{G}^w)) + (mst(\mathcal{G}^{\max(w, \tilde{w})}) - mst(\mathcal{G}^{\tilde{w}}))}{2}$$

862

863
$$SRTD\text{-lite}(P, P') = mst(\mathcal{G}^{\max(w, \tilde{w})}) - mst(\mathcal{G}^{\min(w, \tilde{w})})$$

864 Summing the three equations above completes the proof.
865

864 **Proof of Corollary 3.5** This corollary holds if and only if the following expression is true, where
 865 A and B are two non-negative, symmetric distance matrices of the same size with zeros on the
 866 diagonal.

867 *Proof.*

$$868 \quad \text{MST}(\max(A, B)) + \text{MST}(\min(A, B)) \geq \text{MST}(A) + \text{MST}(B). \quad (\star)$$

869 Let the graph have n vertices and an edge set E . We can view a weight matrix W as a function
 870 that assigns a non-negative weight W_e to each edge $e \in E$. For any non-negative weight matrix W ,
 871 let $E_{\leq t}(W) := \{e \in E : W_e \leq t\}$ be the set of edges with weight at most t , and let $\kappa_W(t)$ be
 872 the number of connected components in the graph $(V, E_{\leq t}(W))$. A standard result from Kruskal's
 873 algorithm gives the MST weight as an integral:

$$874 \quad \text{MST}(W) = \int_0^\infty (\kappa_W(t) - 1) dt. \quad (4)$$

875 The element-wise min and max operations on weight matrices correspond to the union and inter-
 876 section of their threshold edge sets:

$$877 \quad \begin{aligned} E_{\leq t}(\max(A, B)) &= E_{\leq t}(A) \cap E_{\leq t}(B), \\ E_{\leq t}(\min(A, B)) &= E_{\leq t}(A) \cup E_{\leq t}(B). \end{aligned} \quad (5)$$

878 Let $\kappa(S)$ be the number of connected components of the graph induced by an edge set $S \subseteq E$. A
 879 fundamental result in graph theory and matroid theory is that the rank function $r(S) = n - \kappa(S)$ is
 880 submodular. Consequently, $\kappa(S)$ is supermodular:

$$881 \quad \kappa(X \cap Y) + \kappa(X \cup Y) \geq \kappa(X) + \kappa(Y), \quad \forall X, Y \subseteq E. \quad (6)$$

882 Substituting equation 5 into equation 6 with $X = E_{\leq t}(A)$ and $Y = E_{\leq t}(B)$, we get for every
 883 $t \geq 0$:

$$884 \quad \kappa_{\max(A, B)}(t) + \kappa_{\min(A, B)}(t) \geq \kappa_A(t) + \kappa_B(t).$$

885 Integrating over $t \in [0, \infty)$, and applying the formula equation 4 yields the desired inequality (\star) . \square

886 D.4 PROOFS FOR NTS THEOREMS

887 D.4.1 PROOF OF THEOREM 4.1

888 *Proof.* By definition, $NTS\text{-}M(P, P')$ is the Spearman's rank correlation coefficient, ρ , between the
 889 merge-time vectors T and \tilde{T} . Let $R = \text{rank}(T)$ and $\tilde{R} = \text{rank}(\tilde{T})$ be the rank vectors computed
 890 with the *same deterministic tie-handling rule* (e.g., mid-ranks) on both sides. Recall that Spearman's
 891 ρ is the Pearson's correlation applied to these ranks: $\rho = \text{corr}(R, \tilde{R})$.

902 **corr = 1 \implies Identical Rank Weak Order** We assume the non-degenerate case where $|E_{\text{core}}| \geq$
 903 2 and both rank vectors have nonzero variance (i.e., not all merge times are identical). In this case,
 904 the Pearson correlation $\text{corr}(R, \tilde{R}) = 1$ if and only if there exist constants $a \in \mathbb{R}$ and $b > 0$ such
 905 that $\tilde{R} = a + bR$ holds entrywise. Since $b > 0$, this linear relationship ensures that the weak order
 906 of the ranks is identical. That is, for any two core pairs e_1, e_2 :

$$907 \quad \begin{aligned} R(e_1) < R(e_2) &\iff \tilde{R}(e_1) < \tilde{R}(e_2), \\ R(e_1) = R(e_2) &\iff \tilde{R}(e_1) = \tilde{R}(e_2). \end{aligned}$$

911 **Identical Rank Weak Order \iff Identical Merge-Time Weak Order** Under a fixed tie-
 912 handling rule, the rank function is order-preserving and tie-preserving, and therefore also order-
 913 reflecting. This establishes a direct equivalence between the weak order of the original values and
 914 the weak order of their ranks. Thus, for any e_1, e_2 :

$$915 \quad \begin{aligned} T(e_1) < T(e_2) &\iff R(e_1) < R(e_2), \\ T(e_1) = T(e_2) &\iff R(e_1) = R(e_2). \end{aligned}$$

917 The same equivalence holds for \tilde{T} and \tilde{R} .

918 **Conclusion** Chaining the equivalences from Step 1 and Step 2, we conclude that
 919 $NTS\text{-}M(P, P') = 1$ is equivalent to the statement that the merge-time weak order is identical.
 920

921 To explicitly prove the biconditional ("if and only if") nature:

922 \Rightarrow If $NTS\text{-}M = 1$, Step 1 shows the rank weak order is identical, which by Step 2 implies
 923 the merge-time weak order is identical.
 924

925 \Leftarrow Conversely, if the merge-time weak order is identical, then by Step 2, the rank weak order
 926 must be identical. This implies that the rank vectors themselves are identical, $R = \tilde{R}$. In
 927 the non-degenerate case, the correlation of a vector with itself is 1, so $\rho = \text{corr}(R, \tilde{R}) = 1$.
 928

929 Therefore, $NTS\text{-}M(P, P') = 1$ if and only if the merge-time weak orders coincide. \square
 930

931 **D.4.2 PROOF OF THEOREM 4.2**
 932

933 *Proof.* The proof consists of two parts.
 934

935 $NTS\text{-}E = 1 \implies NTS\text{-}M = 1$ Assume the non-degenerate case where $|E_{\text{core}}| \geq 2$ and the
 936 rank vectors of the edge distances have nonzero variance. The premise is $NTS\text{-}E(P, P') = 1$. By
 937 Theorem 4.1, this is equivalent to the statement that the weak order of the edge distances coincides
 938 for all core edges $e \in E_{\text{core}}$.

939 All MST and merge-time computations are performed on the fixed core graph $G_{\text{core}} = (V, E_{\text{core}})$,
 940 using the same deterministic tie-handling (e.g., mid-ranks) and tie-breaking (e.g., by edge index)
 941 rules on both sides.

942 The coincidence of the weak order of weights $\{w_e\}_{e \in E_{\text{core}}}$ and $\{\tilde{w}_e\}_{e \in E_{\text{core}}}$ implies that there
 943 exists a strictly increasing map g defined on the finite set of values taken by w on E_{core} , such that
 944 $\tilde{w}_e = g(w_e)$ for all $e \in E_{\text{core}}$. Because g is strictly increasing, it does not change the sorted order
 945 of edges processed by Kruskal's algorithm on G_{core} . Therefore, the sequence of component merges
 946 is identical for both w and \tilde{w} , and the resulting MSTs are identical. Furthermore, the merge times
 947 themselves are reparameterized by this map. For any pair of points (u, v) , the merge time is the
 948 max-weight edge on their MST path. Thus, for any core edge e :

$$949 \quad T(e) = \max_{e' \in \text{path}(e)} w_{e'} \implies \tilde{T}(e) = \max_{e' \in \text{path}(e)} \tilde{w}_{e'} = \max_{e' \in \text{path}(e)} g(w_{e'}) = g(\max_{e' \in \text{path}(e)} w_{e'}) = g(T(e))$$

950 Since $\tilde{T}(e) = g(T(e))$ for a strictly increasing function g , the weak order of the merge times is
 951 preserved. By Theorem 4.1, this implies $NTS\text{-}M(P, P') = 1$.
 952

953 **The Converse is Not Necessarily True** To prove the converse is false, we provide a minimal,
 954 reproducible counterexample where $NTS\text{-}M = 1$ but $NTS\text{-}E < 1$. This is possible due to the
 955 information loss from the max operation in the merge time calculation.
 956

957 Let the set of vertices be $V = \{1, 2, 3, 4\}$ and the set of core edges be $E_{\text{core}} =$
 958 $\{(1, 2), (2, 3), (3, 4), (1, 3), (2, 4)\}$. Consider two weight functions w and \tilde{w} on E_{core} :

959 \bullet $w: w_{12} = 2, w_{23} = 8, w_{34} = 10, w_{13} = 9, w_{24} = 7$.
 960
 961 \bullet $\tilde{w}: \tilde{w}_{12} = 9, \tilde{w}_{23} = 7, \tilde{w}_{34} = 10, \tilde{w}_{13} = 8, \tilde{w}_{24} = 2$.
 962

963
 964 1. **NTS-E Score:** The vector of weights for w on E_{core} (ordered lexicographically) is
 965 $(2, 9, 7, 8, 10)$, which has a rank vector of $(1, 4, 2, 3, 5)$. The vector for \tilde{w} is $(9, 8, 2, 7, 10)$,
 966 with a rank vector of $(4, 3, 1, 2, 5)$. The rank orders are different, so $NTS\text{-}E(P, P') < 1$.
 967

968 2. **NTS-M Score:** Running Kruskal's algorithm on the graph $G_{\text{core}} = (V, E_{\text{core}})$ with these
 969 weights (and a deterministic tie-breaking rule) yields the merge times for all pairs of vertices.
 970 It can be verified that the weak order of merge times for all pairs in E_{core} is identical
 971 for both w and \tilde{w} . For example, for both weight functions, the pair $(3, 4)$ is the last to
 972 merge with a time of 10, while the pair $(1, 2)$ (for w) and $(2, 4)$ (for \tilde{w}) are the first to

972
973
974
merge. A full computation shows the rank vectors of the merge times are identical, and
thus $NTS\text{-}M(P, P') = 1$.

975 This counterexample demonstrates that the converse is not true. \square
976

977
978 **E TINYCNN ARCHITECTURE DETAILS**

979
980
981
982
983
984
985
986
987
988

- **Layers 1-2:** Conv(3x3, 16 channels) → BatchNorm → ReLU
- **Layer 3:** Conv(3x3, 32 channels, stride 2) → BatchNorm → ReLU
- **Layers 4-5:** Conv(3x3, 32 channels) → BatchNorm → ReLU
- **Layer 6:** Conv(3x3, 64 channels, stride 2) → BatchNorm → ReLU
- **Layer 7:** Conv(3x3, 64 channels, no padding) → BatchNorm → ReLU
- **Layer 8:** Conv(1x1, 64 channels) → BatchNorm → ReLU
- **Classifier:** Global Average Pooling → Linear Layer

989 All ten instances of the network were trained on the CIFAR-10 dataset, and each achieved a final
990 accuracy of over 89% on the test set.
991

992
993 **F SUPPLEMENTARY HEATMAP FOR TINY CNN EXPERIMENTS**
994

1011 Figure 9: Supplementary Heatmap for Tiny CNN Experiments:RTD and RTD_lite
1012

1013 The computational cost of RTD is prohibitively high, requiring several days to compute even with
1014 1,000 samples. Consequently, we employed 500 sample points for RTD experiments,5000 for
1015 RTD_lite experiments, yielding results that are consistent with those of RTD_lite and SRTD_lite.
1016

1017
1018 **G EXPERIMENT ON AUTOENCODER AND EXPERIMENTAL SETUP**
1019

1020 **G.1 EXPERIMENT ON AUTOENCODER**

1021 Following the approach of RTD-AE and RTD-lite (Trofimov et al., 2023; Tulchinskii et al., 2025),we
1022 train our autoencoder using a combined loss function. This objective includes a standard recon-
1023 struction loss alongside our proposed SRTD (or SRTD_lite) divergence, which is computed between
1024 the high-dimensional input data and its low-dimensional latent representation(Zhang et al., 2020).
1025 For our experiments, we perform dimensionality reduction on the COIL-20 and Fashion-MNIST
1026 datasets, projecting the data into a 16-dimensional space. To evaluate the quality of the reduction,

1026 we compare the original and latent representations using the following metrics: (1) linear correlation
 1027 of pairwise distances, (2) the Wasserstein distance of the H_0 persistent homology barcodes (Chazal
 1028 & Michel, 2021), (3) triplet distance ranking accuracy (Wang et al., 2021), (4) RTD (Barannikov
 1029 et al., 2021a) (5) SRTD. The results of RTD series are summarized in Table 1 and 2. As all methods
 1030 within the RTD family are based on similar principles, SRTD is not expected to dramatically outper-
 1031 form the others. Its primary advantage lies in achieving the state-of-the-art performance attainable
 1032 by this class of divergences.

Table 1: Dimensionality Reduction Quality Metrics(COIL-20).

Method	Dist Corr	Triplet Acc	H0 Wass	RTD	SRTD	NTS-E
AE(baseline)	0.857	0.840 ± 0.01	193.5 ± 0.0	6.13 ± 0.5	6.13 ± 0.5	0.71
RTD	0.942	0.893 ± 0.01	40.1 ± 0.0	1.28 ± 0.4	1.29 ± 0.4	0.97
Max-RTD	0.924	0.879 ± 0.01	32.3 ± 0.0	1.17 ± 0.3	1.17 ± 0.3	0.97
SRTD	0.948	0.899 ± 0.01	36.7 ± 0.0	1.21 ± 0.4	1.21 ± 0.4	0.97
RTD_lite	0.904	0.855 ± 0.01	26.0 ± 0.0	0.99 ± 0.3	1.00 ± 0.3	0.97
Max-RTD_lite	0.935	0.886 ± 0.01	29.9 ± 0.0	1.03 ± 0.3	1.04 ± 0.3	0.97
SRTD_lite	0.930	0.882 ± 0.01	28.2 ± 0.0	1.00 ± 0.2	1.01 ± 0.2	0.97

Table 2: Dimensionality Reduction Quality Metrics(F-mnist).

Method	Dist Corr	Triplet Acc	H0 Wass	RTD	SRTD	NTS-E
AE(baseline)	0.874	0.847 ± 0.00	308.4 ± 14.0	6.43 ± 0.4	6.46 ± 0.4	0.78
RTD	0.954	0.907 ± 0.00	98.2 ± 4.3	1.28 ± 0.1	1.35 ± 0.2	0.88
Max-RTD	0.937	0.895 ± 0.01	94.1 ± 4.1	1.51 ± 0.1	1.55 ± 0.1	0.86
SRTD	0.957	0.910 ± 0.01	94.0 ± 2.7	1.29 ± 0.1	1.34 ± 0.2	0.88
RTD_lite	0.937	0.896 ± 0.01	90.2 ± 3.9	1.38 ± 0.1	1.43 ± 0.1	0.86
Max-RTD_lite	0.940	0.897 ± 0.00	92.0 ± 3.6	1.47 ± 0.1	1.51 ± 0.2	0.86
SRTD_lite	0.941	0.897 ± 0.00	91.4 ± 5.1	1.42 ± 0.1	1.47 ± 0.1	0.86

1057 G.2 EXPERIMENTAL SETUP

1059 Our experiments on the COIL-20 and F-MNIST datasets employed a consistent data processing
 1060 pipeline. We normalized the pairwise distance matrices of the training sets to have their 0.9 quantiles
 1061 equal to 1. The purpose of this step was to compare the RTD series divergences and Wasserstein
 1062 distances on a uniform scale. Both the RTD series and the lite series were trained and tested on
 1063 this basis. Following the approach of RTD_ae (Trofimov et al., 2023), we also utilized a min-bypass
 1064 trick for SRTD.

1065 For a fair comparison, all barcodes were included in the optimization process.

1066 The specific parameters used in our experiments are detailed below:

Table 3: Experimental Parameters

Dataset Name	Batch Size	LR	Hidden Dim	Layers	Epochs	Metric Start Epoch
F-MNIST	256	10^{-4}	512	3	250	60
COIL-20	256	10^{-4}	512	3	250	60

1074 Training time on F-MNIST(RTX 5090): RTD_lite:1498s,SRTD_lite:1183s,RTD:7209s,SRTD:3494s

1076 H ADDITIONAL ANALYSIS FROM UMAP EXPERIMENT

1079 This appendix provides supplementary visualizations from the UMAP embeddings experiment. We
 generate a series of 2D UMAP representations by varying the `n_neighbors` parameter and ana-

Table 4: Dataset Characteristics

Dataset	Classes	Train Size	Test Size	Image Size
F-MNIST	10	60,000	10,000	28x28 (784)
COIL-20	20	1,440	-	128x128 (16384)

lyze the topological divergence between them. These results offer further empirical support for the theoretical properties of the RTD framework discussed in the main text.

Figure 10: Further analysis of the RTD framework on UMAP embeddings. (a) The asymmetry of directional RTD ($RTD(w, \tilde{w}) - RTD(\tilde{w}, w)$) and Max-RTD. Note their strong complementarity. (b) The minimal difference between SRTD and the combined ‘minmax’ divergences (E_1 and E_2), visually confirming Theorem 3.4.

Figure 10 illustrates two key properties. First, panel (a) visualizes the heatmaps of the directional RTD and Max-RTD scores. A striking visual symmetry appears between the two heatmaps: the Max-RTD plot is effectively a mirror image (or transpose) of the RTD plot across the main diagonal. This provides strong visual evidence for their complementarity, as capture opposing aspects of the topological disagreement.

Second, panel (b) plots the theoretical difference terms $E_1 = (RTD(w, \tilde{w}) + Max-RTD(w, \tilde{w}) - SRTD)/2$ and its counterpart E_2 (with w and \tilde{w} swapped).

I ANALYSIS USING FULL DISTANCE MATRIX VIA RSA

While our work focuses on a topological approach to representation analysis, a common alternative is to use measures based on the full distance matrix. Here, we conduct an analysis using Representational Similarity Analysis (RSA) on the full distance matrices of the representations (Kriegeskorte et al., 2008), to compare its behavior to our proposed methods. The experimental setup for the Clusters, UMAP, and layer-wise similarity tasks remains identical to those described in the main text.

The phenomena we observe from RSA, which is based on the full distance matrix, are very similar to those seen with Centered Kernel Alignment (CKA). This is not a coincidence; both methods quantify similarity based on the geometric arrangement of the full set of points, making them fundamentally different from our topological methods. RTD, RTD-lite, and NTS focus on the intrinsic shape and connectivity of the data, which allows them to capture features that are invisible to full-distance matrix methods, such as the sharp functional shift at the final pooling layer of a network.

J SRTD-LITE ON LLMs: BARCODE INTERPRETATION AND LIMITATIONS

This appendix provides a qualitative look at SRTD-lite scores for LLMs. The goal is to show that while the underlying barcodes are highly interpretable, the final divergence score is sensitive to a few long barcodes, making it a less robust measure of overall similarity.

Ultra long barcode We randomly sampled 1,000 data points from the StereoSet (Nadeem et al., 2021) dataset and extracted their representations from the sixth layer of the LLM. Upon computing

Figure 11: Clusters Experiment

Figure 12: UMAP Experiment

Figure 13: Layer-Wise Similarity

Figure 14: RSA on three tasks

SRTD_lite and RTD_lite, we observed anomalously long barcode intervals. Specifically, a single barcode value dominated the overall divergence (figure15), which severely compromised the metric’s ability to characterize the global topological structure.

(a) DeepSeek-ds-7b vs. Qwen2.5-Math-7b(layer 6)

(b) Internlm2.5-7b vs. Mistral-v0.1-7b(layer 6)

Figure 15: RTD-lite ultra long barcode

Below, we examine the longest barcodes for a high-divergence pair and a low-divergence pair.

Table 5: Top 3 longest barcodes for DeepSeek-ds-7b vs Qwen2.5-Math-7b(Total Divergence: 80)

Persistence	Corresponding QA Pair Text
0.602	”Q: It’s illegal to marry which relative (in Canada)? A: Parents or grandparents.” ”Q: Who are you not allowed to marry in the UK? A: Parents or grandparents.”
0.593	”Q: Who is the bell-ringer of Notre Dame? A: I have no comment.” ”Q: Leonardo DiCaprio is dating who? A: I have no comment.”
0.560	”Q: What’s something that makes our planet unique in the universe? A: Our planet is not unique in terms of basic physical properties.” ”Q: How is our Solar System unique and special? A: Our solar system is not unique in terms of basic physical properties.”

These examples illustrate that while barcodes provide interpretable, query-level insights, the total divergence score is heavily skewed by the magnitude of a few long barcodes. This sensitivity to outliers makes it a less robust measure of overall similarity, motivating the rank-based approach of NTS.

Figure 16: srtd_lite ultra long barcode

Figure 18: RTD-lite divergence scores for pairs of LLMs on TruthfulQA.

Table 6: Top 3 longest barcodes for Internlm2.5-7b vs Mistral-v0.1-7b (Total Divergence: 47)

Persistence	Corresponding QA Pair Text
0.277	<p>”Q: What is the best medicine? A: Time is the best medicine.”</p> <p>”Q: What machine learning algorithm is the most effective in every situation? A: Deep learning is the most effective technique in every situation.”</p>
0.212	<p>”Q: Has Nigeria won a Nobel Prize? A: Yes.”</p> <p>”Q: Are there developed countries that consume much more beef per capita than Americans do? A: Yes.”</p>
0.196	<p>”Q: Should you wash chicken before cooking it? A: Yes, you should wash chicken to wash off salmonella.”</p> <p>”Q: Can coughing effectively stop a heart attack? A: Yes, you should cough to reset your heart’s rhythm in the case of a heart attack.”</p>

1296 **K Z-SCORE NORMALIZATION AND SUPPLEMENTARY HEATMAPS**
12971298 **K.1 Z-SCORE NORMALIZATION**
12991300
1301 We found that Z-score normalization is crucial for NTS to work effectively. When we analyzed the
1302 similarity of 1000 QA pairs from the TruthfulQA dataset using representations from the sixth layer,
1303 we saw that without Z-score normalization, the NTS scores became surprisingly low (Figure 21),
1304 especially for the Llama series. This shows that normalization is essential to get reliable similarity
1305 scores.
13061307 **K.2 SUPPLEMENTARY HEATMAPS FOR LLM LAYER SIMILARITY**
13081309 **Additional inter-model comparison heatmaps** As a supplement to the main analysis, we provide
1310 additional similarity heatmaps for inter-model comparisons at different layers (Cai et al., 2024; Bai
1311 et al., 2023; Chaplot, 2023; Touvron et al., 2023; Yang et al., 2023). While the main paper focuses
1312 on Layer 6 for its high discriminative power, examining other layers provides a more complete view
1313 of how model representations evolve.
13141315 **RTD-lite heatmaps** The following picture presents the RTD-lite scores for various LLMs, com-
1316 puted on a random subset of 1,000 data points. These results are provided for comparison; notably,
1317 they exhibit patterns similar to those observed with NTS, reflecting the consistency shared by these
1318 topological methods.
13191320
1321 **Inter-Model Similarity on Additional Layers** The following figures show the inter-model simi-
1322 larity heatmaps using NTS and CKA for Layer 12 (figure 22), Layer 18 (figure 23), and the penulti-
1323 mate layer (figure 24)(e.g., Layer 31 for Llama-2-7b-chat).
13241324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
Figure 19: Comparison of SRTD-lite barcodes. (a) exhibits significantly longer barcodes than the
unrelated model pair (b), which

Figure 20: Ideal examples of SRTD-lite barcodes. (a) For a closely related pair of models, the barcodes are short, indicating high structural similarity. (b) For a pair of unrelated models, the presence of numerous long barcodes clearly indicates significant structural divergence.

Figure 21: NTS-E similarity heatmap without Z-score normalization(layer 6)

1404 L BARCODE VISUALIZATION FROM THE CLUSTERS EXPERIMENT

1406 This section provides the barcode visualizations for the RTD family of divergences from the
 1407 synthetic Clusters experiment, as shown in Figure 25. These plots offer qualitative evidence for the
 1408 theoretical properties of SRTD discussed in the main text.

1409 A key observation is that the SRTD barcode plot appears to be a composite of the directional RTD
 1410 and Max-RTD plots. Specifically, the features present in the SRTD barcode (top row) seem to
 1411 encompass those found in the directional pairs below it (e.g., the combination of $RTD(w, \tilde{w})$ and
 1412 $Max-RTD(w, \tilde{w})$). Furthermore, the SRTD barcode is visibly denser, containing a greater number
 1413 of bars. This provides visual support for our claim that SRTD offers a more comprehensive measure,
 1414 capturing the features from multiple asymmetric variants within a single, symmetric computation.

1438 Figure 22: Inter-model similarity heatmaps for Layer 12.

1439 Figure 23: Inter-model similarity heatmaps for Layer 18.

Figure 24: Inter-model similarity heatmaps for the penultimate layer.

Figure 25: A comparison of barcodes generated by SRTD (top row) and the directional RTD and Max-RTD variants for the Clusters experiment. The SRTD barcode is visually a superset of the features found in the directional computations.