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ABSTRACT

Persistent homology offers a principled way to capture multi-scale topological
structures in graphs, yet it remains unclear whether large language models (LLMs)
can understand and reason about such high-order topological concepts. To address
this gap, we introduce LLM4PH, the first benchmark designed to evaluate the
ability of LLMs to comprehend and apply persistent homology on graphs. Our
benchmark decomposes the persistent homology pipeline into four progressively
challenging task levels, ranging from simplicial structure understanding to real-
world graph inference. It includes 9 sub-tasks spanning 3 synthetic graph sizes
and 3 real-world graph datasets, each annotated with topological features such as
connected components, simplices, filtrations, and persistence diagrams. We system-
atically assess LLMs’ capabilities in recognizing topological features, reasoning
over filtrations, designing filtration strategies, and applying persistent homology
for classification. Beyond task-level evaluation, we perform cross-task ablations on
prompt encoding and transfer, explore post-training effects, and construct a compo-
sitional PH pipeline to assess end-to-end performance. Our results provide the first
in-depth view of how well LLMs bridge discrete graph structures with continuous
topological abstraction, and offer insights into their potential for structure-aware
scientific reasoning.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of
natural language understanding and reasoning tasks (Chang et al., 2024; Hadi et al., 2023; Plaat et al.,
2024). However, their capabilities on graph-structured data, common in real-world, non-Euclidean
domains, remain underexplored. Recent efforts have introduced benchmarks based on classical
graph-theoretic problems such as shortest paths and connectivity, achieving notable progress on
both static graphs (Fatemi et al., 2024; Wang et al., 2023) and dynamic graphs (Zhang et al., 2024).
These benchmarks primarily focus on local structural reasoning and rely on standard node-edge
representations. However, many real-world graphs exhibit complex high-order structures that go
beyond pairwise interactions and require a more global topological perspective (Bick et al., 2023;
Bianconi, 2021).

High-order structures refer to non-binary relationships among multiple nodes in a graph, such as
communities in social networks or clusters in protein interaction networks. Some recent studies
model these structures using graph patterns or hypergraphs and explore the use of LLMs for tasks
like pattern matching (Dai et al., 2025; Feng et al., 2025). However, these representations often lack
a natural sense of scale or continuity, making it difficult to analyze how structures evolve. Persistent
homology(PH), a method from topological data analysis, offers an alternative by capturing multi-scale
topological features in graphs (Pun et al., 2022). The process begins by assigning a filtration function,
such as edge weights, which determines the order in which edges or nodes are added. PH then builds
a sequence of simplicial complexes from this filtration and tracks the birth and death of topological
features, resulting in a persistence diagram that summarizes their lifespan. This technique has been
successfully applied in domains such as social network analysis, neuroscience, molecular biology,
and materials science (Chen et al., 2022; Ye et al., 2023; Li et al., 2024; Curto & Sanderson, 2025;
Obayashi et al., 2022).
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For example, in a social network where edge weights reflect communication frequency,
a filtration can be constructed by adding edges from the weakest to the strongest ties.
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Figure 1: Social network filtration example.

As shown in Figure 1, graphs Ga and Gb differ
only in the weight of a single edge, yet their
topological structures evolve differently. Specif-
ically, graph Ga maintains a single connected
component throughout the filtration, while graph
Gb initially has two separate components that
eventually merge into one. PH captures these
structural differences concisely, producing bar-
codes that summarize when components appear,
persist, and merge across different interaction
thresholds. This helps distinguish stable community structures from transient interactions and noise.
For more detailed explanation of PH, please refer to Appendix C.

Despite existing LLM benchmarks for graphs, many challenges remain in enabling large language
models to understand graph data from a topological perspective. From the graph side, it requires
reasoning over edge weights, filtration functions, and nonlocal structures. From the topological
side, it demands comprehension of abstract mathematical concepts such as simplicial complexes and
homological changes across a sequence of filtered graphs. A model must not only understand the
shape of a graph but also how that shape changes over different scales.

To address this challenge, we introduce LLM4PH, a new benchmark designed to evaluate the ability
of LLMs to understand, reason about, and apply PH on graphs. The benchmark decomposes the
overall process into meaningful sub-tasks and organizes them from simple to complex. These include
tasks such as identifying topological features, generating strategies for filtration designs, reasoning
under different filtration choices, and assessing the utility of the discovered topological knowledge
with respect to real-world graph analysis. Through this structured evaluation, LLM4PH provides
the first comprehensive testbed for examining how well language models can connect discrete graph
structures with topological abstraction.

LLM4PH
Benchmark

Simplicial Structure Understanding Filtration Evolution Reasoning

Real world Graph InferenceFiltration Strategy Design

Graph Simplicial Complex

Component Counting

Filtration

Component Count Under Filtration

Graph 𝐺𝐺𝑎𝑎
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Protein
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……
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3 Real-World Graphs

Filtration Sequence Generation for Classification

Figure 2: Benchmark Design.

2 BENCHMARK DESIGN

As shown in Figure 2, our benchmark is divided into four task categories, progressing from simple to
complex with increasing difficulty. These tasks range from topological feature recognition to complex
filtration strategy generation, and finally to practical applications, establishing a comprehensive
evaluation path from fundamentals to advanced concepts. The specific task designs and benchmark
statistics are as follows:

2.1 TASK DESIGN

To rigorously assess the capability of LLMs in understanding PH on graphs, we design a benchmark
composed of four progressively challenging task categories. In this benchmark, we employ the
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Vietoris–Rips (VR) complex, widely used in related research, as the simplicial complex constructed
from graphs. For a comprehensive explanation of our task design methodology, see Appendix D.

Simple Tasks (Simplicial Structure Understanding). These tasks examine whether LLMs can
recognize topological features such as connected components and critical simplices before the
filtration. Tasks are evaluated by accuracy.

From the perspective of PH, these tasks correspond to the input stage before filtration begins, where
LLM must identify the fundamental simplicial elements (e.g., 0-simplices and 1-simplices) that will
later form the basis of the topological space. Accurate understanding at this level is essential for
constructing suitable simplicial complexes.

• 0D Component Counting. Counts the number of connected components (0-dimensional homology
classes).

• 1D Simplex Counting. Counts the number of 1-simplices (edges).
• Component Reduction. Modifies one edge in a given graph to reduce the number of connected

components.

Medium Tasks (Filtration Evolution Reasoning). These tasks assess whether LLMs can reason
about births and deaths of topological features. Tasks are evaluated by accuracy.

In the context of PH, these tasks correspond to tracking the dynamic evolution of topological features
as the filtration progresses. The goal is to test whether LLMs can associate filtration steps with
topological events such as component merging or cycle formation, which are essential for constructing
persistence diagrams.

• Simplex Birth Time. Given a graph and its filtration sequence, predicts the birth time of specific
simplices.

• Component Merge Time. Given a graph and its filtration sequence, predicts when specific connected
components merge.

• Component Count Under Filtration. Given a graph and its filtration sequence, determines the
number of connected components at a specified filtration value.

Hard Tasks (Filtration Strategy Design). These tasks challenge LLMs to select or generate filtration
strategies that maximize the Wasserstein distance between the persistence barcodes of two given
graphs. We consider two types of strategies: the first involves selecting a global filtration function,
while the second involves generating a non-uniform sequence of filtration thresholds under a given
filtration function. Tasks are evaluated using ranking-based metrics. From the PH perspective,
this stage focuses on the design of filtration functions, which directly determines how simplicial
complexes evolve and which topological features are revealed. LLMs are expected to reason backward
from topological goals (e.g., maximizing feature differences) to suitable filtration strategies.

• Optimal Filtration Selection. Given two distinct graphs, the model selects the optimal filtration
function from a set of candidates: node degree, edge weight, K-shell, closeness centrality, between-
ness centrality, or eigenvector centrality, so as to maximize the Wasserstein distance between their
resulting persistence barcodes.

• Non-Uniform Filtration Generation. Given two distinct graphs with edge weights ranging from 1
to 10, and a fixed filtration function (edge weight), the model generates a non-uniform filtration
sequence of length 5 (e.g., (1, 3, 4, 7, 10)) that maximizes the Wasserstein distance between their
persistence barcodes.

Real-World Tasks (Real-World Graph Inference). These tasks evaluate the capability of LLMs
to transfer and apply PH insights acquired from synthetic scenarios to real-world graph datasets.
Specifically, we test whether LLMs can choose or generate suitable filtration strategies to solve
real-world graph classification tasks. Tasks are evaluated by classification accuracy. The datasets are
from Sutherland et al. (2003), corresponding to molecular graphs targeting benzodiazepine receptor
(BZR), cyclooxygenase-2 (COX2), and dihydrofolate reductase (LDHFR), respectively.

This stage reflects the final step of the PH pipeline, where topological features are used for downstream
tasks such as classification. It tests whether LLMs can operationalize abstract persistence information
in practical settings.
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• Filtration Selection for Classification. Given four graphs from two classes, the model selects the
optimal filtration function from node degree, edge weight, K-shell, closeness centrality, betweenness
centrality, or eigenvector centrality to group the graphs correctly by class.

• Filtration Sequence Generation for Classification. Given four graphs from two classes and a fixed
filtration function with a set of candidate filtration values, the model generates a filtration sequence
that enables correct classification of the four graphs into two groups.

Table 1: Overview of the LLM4PH Benchmark Tasks.
Task Category Task Name Evaluation #Samples

Simplicial Structure Understanding
Component Counting Accuracy 1200
Critical Simplex Identification Accuracy 1200
Component Reduction Accuracy 1200

Filtration Evolution Reasoning
Component Count Under Filtration Accuracy 1200
Simplex Birth Time Accuracy 1200
Component Merge Time Accuracy 1200

Filtration Strategy Design Optimal Filtration Selection Ranking 1200
Uneven Filtration Generation Ranking 1200

Real-World Graph Inference Filtration Selection for Classification Accuracy 900
Filtration Sequence Generation for Classification Accuracy 900

Total 10 11400

3 EXPERIMENTS

Based on the LLM4PH benchmark, we conduct a series of experiments to evaluate the performance
of various large language models across different tasks. The goal is to assess whether LLMs are
capable of understanding the abstract concepts behind PH and applying this knowledge to practical
graph analysis tasks.

Experimental Setup. We evaluate the following six LLMs: GPT-4.1 (gpt-4.1-2025-04-14), GPT-4o
(gpt-4o-2024-08-06), Claude(claude-3-7-sonnet-20250219), Gemini-2.5 (gemini-2.5-flash-preview-
04-17), Deepseek-R1, Deepseek-V3, Qwen3-30B, Mistral-small-3.1-24B and Llama-3-70B. The first
five are proprietary models accessed via their official APIs. The last three are open-source models
deployed locally on a Linux server equipped with four NVIDIA A6000 GPUs. In some experiments,
Random denotes predictions sampled uniformly from the empirical label distribution.

3.1 RESULTS OF SIMPLE TASKS (SIMPLICIAL STRUCTURE UNDERSTANDING)

Table 2: Results of Simple Tasks.
Size GPT-4.1 GPT-4o Claude Gemini DS-R1 DS-V3 Qwen Mistral Llama Random

0D Component Counting
S 0.693 0.863 0.995 1 0.995 0.998 0.995 0.843 0.390 0.301
M 0.518 0.733 0.915 1 0.915 0.995 0.978 0.680 0.335 0.303
L 0.375 0.375 0.528 0.988 0.528 0.998 0.535 0.455 0.335 0.353

1D Simplex Counting
S 0.213 0.270 0.150 0.271 0.150 0.260 0.143 0.085 0.223 0.253
M 0.105 0.225 0.068 0.078 0.068 0.043 0.035 0.030 0.058 0.255
L 0.105 0.178 0.018 0.044 0.018 0.038 0.020 0.045 0 0.265

Component Reduction
S 1 0.943 1 1 1 1 0.998 0.898 0.875 -
M 0.993 0.855 0.988 1 0.988 1 0.400 0.780 0.810 -
L 0.833 0.620 0.815 1 0.815 1 0.255 0.648 0.708 -

Performance analysis. Simple tasks in our benchmark are conceptually related to prior LLM
benchmarks on graphs that focus on counting connected components or identifying cycles Fatemi et al.
(2024); Wang et al. (2023). However, instead of relying purely on graph-theoretic terminology, our
benchmark frames these problems within the language of PH. For example, connected components are
treated as 0-dimensional homology classes, and edges are seen as 1-simplices forming the foundation
of higher-order topological features. This reframing not only allows for a more unified multi-scale
perspective, but also tests whether LLMs can map familiar combinatorial structures into a topological
reasoning framework.
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Table 3: Results of Medium Tasks.
Size GPT-4.1 GPT-4o Claude Gemini DS-R1 DS-V3 Qwen Mistral Llama Random

Simplex Birth Time
S 0.683 0.278 0.370 0.470 0.960 0.325 0.375 0.280 0.325 0.118
M 0.375 0.135 0.415 0.125 0.810 0.140 0.135 0.130 0.345 0.143
L 0.263 0.188 0.545 0.538 0.760 0.030 0 0.055 0.255 0.185

Component Merge Time
S 0.333 0.425 0.270 0.180 0.455 0.470 0.135 0.310 0.400 0.105
M 0.218 0.308 0.080 0.080 0.133 0.160 0.050 0.240 0.085 0.148
L 0.260 0.258 0.013 0.027 0.050 0.150 0.030 0.150 0.010 0.133

Component Count Under Filtration
S 0.968 0.790 0.990 0.885 0.988 0.838 0.535 0.515 0.448 0.173
M 0.958 0.593 0.885 0.810 0.995 0.660 0.448 0.422 0.240 0.120
L 0.615 0.210 0.510 0.635 0.975 0.335 0.285 0.130 0.113 0.252

Table 4: Results of Hard Tasks. Subscripts indicate standard deviations.
Size GPT-4.1 GPT-4o Claude Gemini DS-R1 DS-V3 Qwen Mistral Llama

Optimal Filtration Selection
S 4.281.75 4.381.73 4.051.79 4.061.93 4.451.77 4.221.82 4.551.73 3.671.79 3.581.74

M 4.141.50 4.181.65 4.051.61 4.381.64 4.481.52 4.301.44 4.301.66 3.781.55 3.741.46

L 4.231.40 4.241.43 4.211.43 4.401.50 4.461.48 4.201.46 4.271.60 4.051.49 4.101.39

Non-Uniform Filtration Generation
S 46.430.1 56.038.6 43.429.3 58.334.2 60.235.4 54.934.6 53.734.9 46.631.5 50.831.8

M 52.635.1 54.236.6 47.931.5 54.835.8 64.435.0 55.533.5 59.131.3 50.033.3 53.930.4

L 48.633.9 53.031.0 46.830.3 54.733.8 77.633.5 54.027.4 60.934.2 46.731.1 52.628.6

As shown in Table 2, most LLMs perform very well on the 0D Feature Counting task. Deepseek-V3
and Gemini reach near-perfect accuracy across all graph sizes, with open-source models such as
deepseek-R1 and Qwen3-32B also achieving over 97% on small and medium graphs. This suggests
that counting connected components is a well-internalized task for many models, especially when the
concept is explicitly framed. Notably, the use of “0-dimensional homology” in the prompt does not
significantly hinder performance, indicating that many models can align this term with the familiar
notion of connectedness.

In contrast, the 1D Simplex Counting task is considerably more challenging. Even the strongest
models fail to surpass 30% accuracy on medium and large graphs. Among them, GPT-4o performs
relatively better, but its results remain unsatisfactory. This difficulty likely stems from the inherently
discrete nature of counting, as well as the weak association between topological terminology and
natural language. Although the term "1-simplex" is mathematically precise, it is rarely used in
everyday contexts, and most models may lack the prior knowledge needed to link it reliably to the
concept of edges in graphs.

The Connectivity Reduction task sits between the two in difficulty. Most models achieve over 95% on
small graphs, with Gemini maintaining strong performance even as the graph size increases. The task
requires not only understanding the current number of connected components, but also modifying
the graph to reduce it by one. This implies a degree of generative reasoning over topological state
changes, and the performance gap between models such as Claude (81.5% on large graphs) and
Qwen3 (25.5%) highlights their varying abilities to execute localized structural edits in a topological
context.

Observation. While many LLMs perform well on classical graph tasks when expressed in plain
language, only the strongest models sustain high accuracy when the same tasks are reframed using the
abstract vocabulary of PH. This reveals that true topological reasoning, understood as alignment
with the PH pipeline rather than simple output matching, remains an unsolved challenge for
most models.

3.2 RESULTS OF MEDIUM TASKS (FILTRATION EVOLUTION REASONING)

Performance analysis. Unlike traditional graph reasoning tasks that rely solely on fixed structures,
the medium tasks in our benchmark center around filtration. This dynamic process is foundational
to PH, as it defines when features appear (birth) and disappear (death). In these tasks, models must
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go beyond static recognition and reason about how topological features evolve across a filtration
sequence. This reflects one of the most distinctive aspects of PH and poses a significantly greater
challenge for LLMs, especially without explicit computation.

As shown in Table 3, model performance varies widely across tasks and sizes, highlighting both the
complexity of filtration-based reasoning and the limitations of current LLMs.

In the Simplex Birth Time task, which requires the model to determine when specific simplices
(such as edges or triangles) appear during the filtration process, the results are highly inconsistent.
DeepSeek-R1 achieves strong performance on this task (up to 96%), possibly due to its robustness in
handling ordering-based reasoning. However, this advantage does not consistently extend to other
tasks. In contrast, other open-source models perform poorly. For instance, Qwen reaches only 10%
and Mistral just 5.5% on large graphs. These results suggest that reasoning about dynamic structural
evolution remains a significant challenge for large language models.

The Component Merge Time task, which requires models to determine when two connected compo-
nents merge during a filtration, is highly challenging for all models. Even top-performing models
like GPT-4.1 and Claude score below 35%, and some models, such as Claude and Gemini on large
graphs, barely produce any correct predictions. Although DeepSeek-R1 achieves the best results on
small graphs, its performance declines significantly as the graph size increases. This difficulty further
illustrates that tracking the merging of components across filtration steps is a fundamentally hard
problem for autoregressive token-based large language models.

On Component Count Under Filtration, DS-R1 leads across all sizes with 98.8% on small, 99.5% on
medium, and 97.5% on large, showing the strongest scale robustness. Claude is marginally higher
on small at 99.0%, and GPT-4.1 stays strong on small and medium at 96.8% and 95.8% but drops
to 61.5% on large. GPT-4o declines with size from 79.0% to 59.3% to 21.0%. DS-V3 sits mid tier.
Open-source models remain far behind, near the mid 50s on small, mid 40s on medium, and below
30% on large, with Llama near 11.0%. Overall, DS-R1 sustains near-ceiling accuracy while others
degrade with scale.

Observation. Filtration-based reasoning adds a distinct layer of complexity that exposes the structural
limitations of current LLMs. While some models manage localized success on small graphs/simple
filtrations, none consistently handle the full range of tasks and sizes. PH introduces not only
unfamiliar terminology but also a conceptual framework grounded in temporal evolution and
geometric abstraction which remains difficult for most models to grasp. These results pose
a critical challenge in topological reasoning where continuity and change must be understood in
tandem.

3.3 RESULTS OF HARD TASKS (FILTRATION STRATEGY DESIGN)

Performance analysis. This set of tasks evaluates LLMs’ ability to reason in reverse: from desired
objectives (e.g., maximizing topological difference) to designing appropriate filtration strategies. In
contrast to earlier tasks that test a model’s ability to recognize topological features, these tasks assess
whether a model can actively control the filtration process to induce specific topological outcomes.

We use ranking-based evaluation for both tasks. In Optimal Filtration Selection, each model is
asked to choose a filtration function (e.g., node degree, edge weight) that maximizes the Wasserstein
distance between persistence barcodes of two input graphs. Since there are six candidate functions,
the model’s answer is ranked among the six: lower rank means better performance (1 is best, 6 is
worst). In Non-Uniform Filtration Generation, the model generates a filtration sequence (a length-5
subset from values 1 to 10), and its output is ranked among 126 possible sequences based on the
resulting Wasserstein distance. Again, lower rank indicates a more effective choice.

From Table 4, we observe that all models struggle with these tasks. In the Optimal Filtration
Selection task, the small open-source models Mistral and Llama surprisingly achieve the best results,
while most other models fail to produce any rankings below 3. In addition, all models exhibit large
standard deviations, indicating highly unstable outputs. This suggests that their performance is only
marginally better than random guessing. Overall, designing filtrations based on specific goals and
graph structures remains a highly challenging task for current language models.
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In the Non-Uniform Filtration Generation task, Claude emerges as the best-performing model across
all graph sizes, achieving the lowest average rank (43.4 on small, 47.9 on medium, and 46.8 on
large). This indicates a surprising strength in generating effective filtration sequences that yield
topological divergence. However, the overall performance remains disappointing. All models exhibit
large standard deviations that are nearly as large as their means, suggesting that the models have not
truly learned any meaningful knowledge related to the task.

Observation. Topological control tasks remain challenging for LLMs, requiring reasoning about
graph-filtration interactions. Our benchmark tests active topological shaping rather than passive
interpretation. Results show that even strong models lack sufficient reasoning granularity, suggesting
new research directions in persistence-aware training and hybrid architectures. Success requires
aligning structural patterns with topological objectives, not just pattern recognition.

3.4 RESULTS OF REAL-WORLD TASKS (OR REAL-WORLD GRAPH INFERENCE)

Table 5: Results of Real-World Tasks.

Datasets GPT-4.1 GPT-4o Claude Gemini DS-R1 DS-V3 Qwen Mistral Llama
Filtration Selection for Classification

BZR 0.350 0.350 0.350 0.340 0.320 0.350 0.320 0.350 0.350
COX2 0.320 0.260 0.320 0.320 0.360 0.320 0.360 0.290 0.315
LDHFR 0.345 0.310 0.345 0.345 0.460 0.335 0.460 0.310 0.340

Filtration Sequence Generation for Classification
BZR 0.595 0.650 0.775 0.765 0.760 0.410 0.400 0.652 0.740
COX2 0.710 0.555 0.695 0.755 0.180 0.160 0.480 0.655 0.655
LDHFR 0.950 0.920 0.970 0.958 0.760 0.880 0.740 0.860 0.945

Directly Classification
BZR 0.985 0.940 0.990 0.969 0.920 0.980 0.820 0.525 0.995
COX2 0.985 0.920 0.995 0.990 1 0.995 0.740 0.460 1
LDHFR 1 0.960 0.995 1 1 0.990 0.980 0.790 1

This set of tasks evaluates whether LLMs can apply PH to graph classification. It includes two
PH-guided tasks: Filtration Selection for Classification and Filtration Sequence Generation for
Classification, as well as a direct classification baseline without topological reasoning.

In the Filtration Selection for Classification task, performance is notably poor and highly uniform
across models and datasets, with accuracies fluctuating narrowly around 0.32 to 0.36. This indicates
that models consistently choose similar filtration functions regardless of the graph structure. Further
inspection reveals that most LLMs default to selecting edge weight as the filtration function,
possibly because it appears more "interpretable" or statistically grounded. However, this uniformity
fails to expose discriminative topological differences, leading to almost random classification results.

In contrast, the Filtration Sequence Generation for Classification task exhibits stronger performance
across all models, especially on the LDHFR dataset, where top models (Claude, GPT-4.1, Gemini)
achieve accuracies above 0.95. This suggests that when explicitly instructed to manipulate filtration
sequences, even under fixed filtration functions, LLMs can induce more topologically meaningful
separations. Notably, Claude outperforms all other models on BZR and LDHFR, achieving the best
classification accuracy among all methods.

To evaluate the reliance on PH reasoning, we introduce a control task: Direct Classification, where the
model is asked to classify graphs directly without designing filtration strategies. Surprisingly, most
models achieve near-perfect accuracy (0.98–1.0), suggesting that for small 4-graph inputs, LLMs can
leverage shallow statistical patterns or implicit textual correlations to memorize or infer class labels.
However, this also reveals that the PH tasks are substantially more difficult than the direct version,
requiring abstraction, planning, and topological insight rather than pattern matching.

Observation. The weak performance on filtration function selection, contrasted with stronger
results on filtration sequence generation, suggests that LLMs are capable of expressing meaningful
topological reasoning only when guided by structured prompts and constrained options. In the
absence of such scaffolding, models tend to fall back on familiar heuristics, which often obscure
rather than uncover PH-based structure.
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3.5 CROSS-TASK ANALYSES

Beyond the evaluation of individual tasks, we conduct three cross-task experiments that focus on
broader aspects of model behavior. These experiments examine the effects of input representation,
model fine-tuning, and pipeline compositionality across multiple tasks and graph sizes. Together, they
provide additional insight into the generalization and operational behavior of language models when
applied to PH reasoning. Detailed results for all cross-task experiments are provided in Appendix E.

Prompt Encoding and Task Formulation Ablation We examine how the structure of prompts
influences model behavior across tasks. This experiment includes variations in both the graph repre-
sentation style and the task formulation style, applied to three representative tasks: 1D Simplex
Counting, Component Merge Time, and Component Count Under Filtration on both synthetic and
real-world LDHFR data. We evaluate three styles of graph representation, i.e., text-style format, code-
like format, and matrix-based format, and three styles of task instruction formulation: topological,
graph-theoretic, and minimal. Descriptions of each style are summarized in Table 10, and examples
for each combination are provided in the appendix. From Table 8, text-style input consistently yields
the highest accuracy across models. Graph-theoretic task phrasing also outperforms both topological
and minimal formulations in most settings. In contrast, matrix-based input and minimal task prompts
tend to result in lower and less stable performance. These findings confirm that surface-level prompt
features play a substantial role in model outcomes, even when the underlying graph structure and
reasoning objectives remain unchanged. Consequently, evaluations of language models on topological
reasoning must account for prompt formulation as a key factor in performance variance.

Post Training and Scale Transferability We study whether supervised adaptation can instill stable
topological routines in an open-source model. We fine tune LLaMA-3.1-8B-Instruct on small graphs
for three representative tasks and then evaluate on medium graphs with matched distributions. The
protocol preserves the prompt settings used in the ablation, which allows us to measure how much
performance remains sensitive to surface representation after adaptation. As reported in Table 9, post
training delivers consistent and often large gains across all tasks. On 1D Simplex Counting the best
prompt improves from 0.02 to 0.20, while Code like with topological phrasing reaches 0.26. On
Component Merge Time the score rises from 0.09 to 0.43 for text with graph theoretic phrasing, with
similar improvements for other text prompts. On Component Count Under Filtration the text with
graph theoretic phrasing increases from 0.16 to 0.66, and code like with topological phrasing reaches
0.54. Prompt sensitivity remains present after adaptation. Text prompts continue to be reliable across
tasks. Code like prompts become more competitive after fine tuning and show the largest relative
improvements in two tasks. Minimal phrasing improves but still trails behind explicit instructions. We
observe the same trends in cross scale transfer, where a model tuned on small graphs improves from
0.005 to 0.235 on large 1D Simplex Counting, which suggests that the learned routines generalize
beyond the training size. Overall, fine tuning strengthens topological reasoning and reduces variance,
yet careful prompt design remains important for peak performance.

Compositional PH Pipeline Beyond evaluating LLM performance on individual subtasks, we
construct a full pipeline to assess how well LLMs perform when guiding an integrated PH workflow.
We run a Filtration Selection for Classification experiment on the real-world BZR dataset. The
pipeline follows the standard five-step process used by PH practitioners: (1) select a filtration
function, (2) compute filtration values, (3) generate persistence diagrams, (4) compare diagram
distances, and (5) determine the final class label. In Table 6, LLM indicates that a step is completed
entirely by the language model through prompt-based reasoning, while code denotes that the step
is handled by standard PH libraries such as Gudhi. We test four settings that vary the boundary
between model reasoning and code execution. In Setting 1 the model selects the filtration and also
executes diagram generation and distance comparison, while code handles filtration values and the
final classifier. In Setting 2 the model selects the filtration and all downstream steps use code. In
Setting 3 the model selects the filtration and performs distance comparison, while code generates the
diagrams. In Setting 4 the model selects the filtration and generates diagrams, while code performs
distance comparison and the final classifier. Table 6 shows that the pure code-based configuration
(filtration by the model, all downstream steps by code) produces stable mid-level accuracy across
models, providing a consistent baseline. In contrast, hybrid designs where the model participates
in distance comparison achieve the highest scores for Claude and DS-V3. Settings that require the
model to generate diagrams are less reliable, often leading to performance drops. These results

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

suggest that the language model is most effective in filtration selection and, for some models, in
distance reasoning, while code remains essential for diagram generation and overall stability.

Large-Graph Scalability via Subgraph Sampling Since current context windows cannot contain
full large graphs, we evaluate scalability through controlled subgraph sampling on the ego-Facebook
dataset Leskovec & Mcauley (2012). We use random walk sampling to build six collections with
10, 20, 50, 80, 100, and 150 subgraphs, each subgraph containing 50 nodes. We run the 1D Simplex
Counting task five times for GPT-4o and GPT-4.1-mini and report mean accuracy (standard deviation)
in Table 7. Both models improve as the number of sampled subgraphs grows. GPT-4.1-mini increases
monotonically from 14% to 24%, and GPT-4o shows an overall upward trend.

Error analysis: Non-Uniform Filtration Generation To better understand model failure on this
task, we conduct a systematic error analysis and identify six recurring patterns for the Non-Uniform
Filtration Generation task. These fall into three broad categories: loss of prior context, incomplete
procedural reasoning, and chain-of-thought instability.

1. Fact forgetting. The model fails to retain previously mentioned edge information. For instance,
it may first note that node 1 is connected to node 7, but later treat them as belonging to separate
components. This occurs because earlier facts drift out of the model’s attention window and are
no longer integrated into downstream predictions.

2. Rule forgetting. After explicitly acknowledging rules, such as “isolated nodes are not counted
as components” or “a merge occurs when two components join”. This reflects the absence of
persistent logical constraints; once the model’s focus shifts, prior rules are no longer enforced.

3. Incomplete algorithm emulation. The model often attempts to reproduce the output of traversal-
based algorithms (such as depth-first search) but does so heuristically, without internal state
tracking. This results in invalid outputs, such as calling a walk with repeated nodes a cycle or
skipping key edges during merge detection.

4. Blurry conceptual boundaries. Topological concepts are applied too loosely. For example, any
path resembling a loop may be labeled as a “hole” or “cycle,” even if it includes repeated vertices
or fails basic structural criteria. This suggests the model relies on surface-level statistical cues
rather than precise graph-theoretic definitions.

5. Interrupted reasoning. In longer examples requiring multiple stages of analysis, the model’s
output may terminate mid-thought (e.g., “Now we check for cycles. . . ” with no continuation).
This typically occurs when the chain of thought becomes too long to maintain internal coherence,
especially in graphs with many nodes or edge weights.

6. Analysis paralysis. When faced with multiple plausible merge paths or interpretations, the model
may enter loops of self-revision. For instance, it might state “the correct answer is 4.00,” then
immediately consider “perhaps 10.00,” and continue revising. This failure to converge indicates
difficulty in managing uncertainty and resolving conflicting hypotheses.

These failure modes reveal structural limitations in current LMs. Robust reasoning under non-uniform
filtrations needs persistent memory, explicit constraint handling, and the ability to simulate structured
procedures.

4 CONCLUSION

This work introduces LLM4PH, the first benchmark designed to evaluate large language models’
ability to understand, reason about, and apply PH on graphs. By decomposing the PH pipeline
into interpretable sub-tasks and organizing them into a progression of difficulty, we assess both
the conceptual alignment and reasoning depth of LLMs in a topological setting. Our results reveal
that while some models can handle low-dimensional features or structured prompts, most struggle
with dynamic evolution and filtration design, indicating a fundamental gap between current LLM
capabilities and the demands of topological abstraction. We hope this benchmark provides a foun-
dation for future advances in topology-aware reasoning, hybrid neuro-symbolic architectures, and
geometric representation learning with language models. Improving LLMs’ ability to engage with
topological structures could unlock new directions in scientific discovery, graph-based inference, and
interpretable AI systems grounded in geometric reasoning.
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Ethics Statement This study does not involve human subjects, sensitive personal data, or any
proprietary or confidential information. All datasets used in this work are synthetic or publicly
available and are pre-processed to remove any personally identifiable information. For real-world
graph datasets, we follow standard usage and citation practices and do not modify the underlying
node or edge semantics.

Reproducibility Statement To ensure full reproducibility, we provide all datasets, prompts, task
definitions, and evaluation scripts in an anonymous GitHub repository: https://anonymous.
4open.science/r/LLM4PH-7015/. Detailed descriptions of each benchmark task, including
data generation methods, prompt templates, and scoring metrics, are included in the main paper and
the appendix.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs), such as ChatGPT, to assist with writing refinement, code
debugging, and literature exploration. LLMs helped improve the clarity and academic tone of
the manuscript, assisted in refactoring evaluation scripts, and supported the search for relevant
background references. All core research ideas, experimental design, implementation, and analysis
were conducted independently by the authors. No text or results were generated solely by LLMs.

A RELATED WORK

LLM for Graphs. Recent efforts have sought to evaluate the reasoning capabilities of large
language models (LLMs) on graph-structured data through benchmark datasets. Early benchmarks
focus on static graph tasks such as shortest path computation, cycle detection, node classification,
and graph traversal Fatemi et al. (2024); Wang et al. (2023). More recent work expands this scope
to dynamic graphs, introducing temporal reasoning tasks such as dynamic link prediction and event
ordering Zhang et al. (2024). Other studies have explored graph pattern recognition Dai et al. (2025)
and subgraph isomorphism through natural language prompts. These benchmarks typically emphasize
local structure, edge-level logic, or symbolic reasoning over discrete structures. However, they often
overlook the global, multi-scale, and high-dimensional characteristics inherent in many real-world
graphs. Our work complements and extends this line of research by introducing PH as a testbed for
evaluating topological reasoning beyond pairwise relationships.

Recent work has explored using LLMs for traditional graph learning tasks Chen et al. (2024b).
Methods like Graph-LLM Chai et al. (2023) and GraphText Zhao et al. (2024) convert graphs into
natural language for few-shot inference, while others combine LLMs with GNNs Tang et al. (2024);
Tan et al. (2024). However, these approaches focus on low-order features rather than high-dimensional
topological structures. Our work complements this by targeting PH features and assessing LLMs’
ability to reason about them without neural encoders.

Persistent Homology on Graphs. Persistent homology, a core tool in topological data analysis
(TDA), provides a framework to extract multi-scale topological features from data (Pun et al., 2022).
When applied to graphs, it captures global structures such as connected components, cycles, and
voids across a filtration of the graph Aktas et al. (2019); Immonen et al. (2023); Horak et al. (2009).
Graph-based persistent homology has been widely used in fields like neuroscience Dabaghian et al.
(2012); Curto & Sanderson (2025), biology Xia & Wei (2014); Meng et al. (2020); Townsend et al.
(2020), and materials science Obayashi et al. (2022), often serving as a shape descriptor or structural
feature for downstream tasks. In machine learning, persistent diagrams have been integrated into
graph neural networks Hofer et al. (2019); Yan et al. (2021); Chen et al. (2024a) as interpretable
features. Despite its growing adoption, prior work assumes full access to the topological pipeline and
does not explore whether LLMs can internalize or reason over such structures directly. Our work
bridges this gap by proposing a benchmark that tests whether LLMs can understand, predict, and
generate persistent homology concepts from graph inputs without explicit computation.

B DATASET CONSTRUCTION

To support a controlled and interpretable evaluation of persistent homology understanding, we
construct both synthetic and real-world datasets tailored to each task category.

B.1 BENCHMARK STATISTICS

The statistical overview of our benchmark is illustrated in Table 1. Each synthetic dataset task
category’s samples are composed of an equal number of large, medium, and small graphs (10 nodes,
15 nodes, 30 nodes). For example, out of 1200 samples, 400 are large graphs, 400 are medium graphs,
and 400 are small graphs. The real-world datasets BZR, COX2, and LDHFR have an equal number
of samples. For more detailed information about dataset construction, please refer to Appendix B.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B.2 SYNTHETIC GRAPH GENERATION

All synthetic graphs are generated using randomized network models with fixed size constraints.
Specifically, small, medium, and large graphs are set to contain 10, 15, and 30 nodes respectively. For
each graph, we randomly sample edges to ensure structural variability while maintaining connectivity
and topological relevance.

B.3 TASK-SPECIFIC FILTERING AND SELECTION

For simple and medium tasks, we compute the Vietoris–Rips complex from each candidate graph and
evaluate its corresponding Betti numbers and persistence diagrams across standard filtration functions.
Graphs are selected based on whether they yield diverse and interpretable topological outcomes, such
as distinct connected components, nontrivial 1-dimensional features, and clear merging events.

For hard tasks, we compute pairwise Wasserstein distances between persistence diagrams of graph
pairs under all candidate filtration strategies. Each strategy (e.g., node degree, edge weight, closeness
centrality) is evaluated, and we retain the ranking of each strategy based on the resulting distance.
This ranking provides the ground truth supervision for tasks involving filtration design.

B.4 REAL-WORLD GRAPH SELECTION

For real-world tasks, we curate graphs from public datasets (e.g., BZR, COX2, LDHFR) and sample
small subsets of graphs from two distinct classes. For each problem instance, we evaluate the
Wasserstein distance between diagrams produced under each candidate filtration strategy, and label
tasks according to whether the correct class separation can be achieved. Graphs are allowed to appear
in at most two tasks to avoid overfitting and ensure evaluation diversity.

This construction pipeline ensures that each benchmark task is grounded in verifiable topological
variation and aligned with persistent homology computation standards.

C ADDITIONAL EXPLANATION OF PERSISTENT HOMOLOGY

Persistent homology is a core method in topological data analysis (TDA) that enables the extraction
of multi-scale topological features from data. It generalizes classical homology theory by introducing
the concept of a filtration, which allows one to track how topological features evolve across scales.

A filtration is a nested sequence of simplicial complexes:

K0 ⊆ K1 ⊆ · · · ⊆ KT ,

typically constructed by gradually adding simplices based on a filtration function (e.g., edge weights in
a graph). As the filtration evolves, features such as connected components (0-dimensional homology),
cycles (1-dimensional), and voids (2-dimensional) appear and eventually disappear.

Key terms used throughout this work include:

• Simplex: A generalization of a vertex (0-simplex), edge (1-simplex), triangle (2-simplex),
or higher-dimensional face. Simplices are the building blocks of a simplicial complex.

• Simplicial Complex: A finite set of simplices closed under the subset operation. It defines
a discrete topological space amenable to homology computation.

• Filtration Function: A function f that assigns a real-valued threshold to each simplex (often
indirectly through edges or vertices). The function governs the order in which simplices are
added during the filtration.

• Birth and Death: A topological feature (e.g., a connected component or a cycle) births at
the filtration index where it first appears and dies when it is merged into a larger feature or
filled in.

• Persistence Diagram / Barcode: A multiset of intervals {[bi, di)} representing the lifespan
of topological features. The length di − bi reflects the persistence or significance of each
feature.
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• Betti Number βk: The rank of the k-th homology group Hk, counting k-dimensional holes:
β0 for components, β1 for loops, etc.

• Wasserstein Distance: A distance metric between persistence diagrams that quantifies
how topological structures differ across filtrations. It is often used to evaluate the output of
persistence-aware models.

By computing and analyzing these topological signatures, persistent homology provides a robust,
noise-tolerant summary of data structure that is invariant to continuous transformations and particu-
larly suited to graph-structured domains.

D DETAILS OF TASK DESIGN

This appendix provides detailed explanations for each task in the LLM4PH benchmark, framed
through the mathematical language of persistent homology and simplicial complex theory.

D.1 SIMPLE TASKS (SIMPLICIAL STRUCTURE UNDERSTANDING)

These tasks correspond to the initial stage of persistent homology, prior to any filtration, where the
simplicial structure of the graph must be identified. Each task tests whether an LLM can understand
basic homological objects from a combinatorial graph input.

0D Component Counting. Given an undirected graph G = (V,E), the model is asked to compute
β0(G), the 0-th Betti number, which equals the number of connected components in the graph. This
is equivalent to computing the rank of the 0-dimensional homology group H0(G).

1D Simplex Counting. Given a graph G, the task requires counting the number of 1-simplices,
which correspond to edges in the 1-skeleton of the simplicial complex induced by G. This measures
the cardinality of the 1-simplex set Σ1.

Component Reduction. Given G, the model is asked to identify a single edge e /∈ E such that
E′ = E ∪ {e} decreases β0(G) by one. This requires reasoning about connected component merges
via edge addition.

D.2 MEDIUM TASKS (FILTRATION EVOLUTION REASONING)

These tasks test an LLM’s ability to reason over a filtration {Kt}t∈T of simplicial complexes built
from a weighted graph G, where Kt denotes the simplicial complex at filtration threshold t. The aim
is to understand topological evolution: the birth and death of homology classes across t.

Simplex Birth Time. Given a weighted graph G and a filtration order (e.g., by edge weight), the
model predicts the value t at which a given simplex σ ∈ Kt appears. This corresponds to the birth
time b(σ) in the persistence diagram.

Component Merge Time. For a pair of initially disconnected vertices (u, v), the model predicts
the threshold t at which u and v are first included in the same connected component, i.e., when their
representatives in H0 are merged.

Component Count Under Filtration. At a given threshold t, the model is asked to compute
β0(Kt), the number of connected components in the complex Kt.

D.3 HARD TASKS (FILTRATION STRATEGY DESIGN)

These tasks involve reasoning from desired topological divergence toward filtration design. Given
two graphs G1 and G2, the objective is to select or generate a filtration function f : E → R (or a
sequence of filtration thresholds) that induces persistence diagrams D1, D2 with maximal Wasserstein
distance W (D1, D2).
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Optimal Filtration Selection. The model selects a global filtration function f ∈ F from a
predefined set (e.g., node degree, edge weight, K-shell, etc.) such that the resulting persistence
diagrams maximize Wp(D1, D2) under a p-Wasserstein metric.

Non-Uniform Filtration Generation. Under a fixed filtration function f , the model selects a
non-uniform filtration sequence {t1, t2, . . . , t5} from a discrete set (e.g., {1, 2, . . . , 10}) to maximize
W (D1, D2), effectively constructing a coarse but topologically expressive filtration.

D.4 REAL-WORLD TASKS (REAL-WORLD GRAPH INFERENCE)

These tasks examine whether an LLM can apply persistent homology insights to downstream tasks
such as graph classification. Let G = {G1, G2, G3, G4} be a set of graphs belonging to two classes.
The goal is to design a filtration such that the resulting persistence-based representations {Di} allow
for correct class separation.

Filtration Selection for Classification. The model selects a filtration function f ∈ F that yields
persistence diagrams best aligned with the class partition of the graphs, typically optimizing for
inter-class distance or clustering.

Filtration Sequence Generation for Classification. Under a given filtration function f , the model
generates a filtration sequence {t1, . . . , t5} that maximizes topological separability between graphs
from different classes, typically measured by diagram-level distance or homology-aware clustering
accuracy.

E SUPPLEMENTARY TABLES FOR CROSS-TASK ANALYSES

This appendix provides supplemental materials to support the results presented in the Sec. 3.5. We
include:

• Prompt Style Summary (Table 10), outlining the different ways graph structure and task
instructions are encoded.

• Prompt Ablation Results (Table 8), showing performance across multiple representation
and instruction combinations.

• Post-Training Evaluation (Table 9), reporting transfer results after supervised tuning on
small graphs.

• Compositional Pipeline Evaluation (Table 6), examining model performance in hybrid
workflows across persistent homology steps.

• Subgraph Scaling (Table 7), assessing accuracy trends as the number of sampled subgraphs
increases.

Table 6: Compositional PH pipeline on BZR. The model chooses the filtration in every row.

Settings Accuracy

Filtration
selection

Filtration
values

Diagram
generation

Distance
comparison Classifier GPT-4o GPT-4.1 Claude DS-V3 Mistral

LLM CODE LLM LLM CODE 0.150 0.180 0.780 0.290 0.210
LLM CODE CODE CODE CODE 0.350 0.350 0.350 0.350 0.350
LLM CODE CODE LLM CODE 0.250 0.280 0.840 0.780 0.520
LLM CODE LLM CODE CODE 0.300 0.320 0.190 0.025 0.150

Table 7: Subgraph sampling on ego–Facebook for 1D Simplex Counting. Values are mean accuracy
± standard deviation over five runs.

Subsamples 10 20 50 80 100 150

GPT–4o 0.0600±0.08 0.1400±0.08 0.1280±0.04 0.1325±0.03 0.1733±0.02 0.1960±0.02
GPT–4.1–mini 0.1400±0.10 0.1400±0.08 0.1520±0.03 0.1850±0.03 0.2260±0.02 0.2413±0.04
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Table 8: Prompt encoding and task formulation ablation shown in a single horizontally merged table
across three tasks.

1D Simplex Counting Component Merge Time Component Count Under Filtration

Prompt setting Synthetic LDHFR Synthetic LDHFR Synthetic LDHFR
GPT-4o Claude GPT-4o Claude GPT-4o Claude GPT-4o Claude GPT-4o Claude GPT-4o Claude

Text style + Graph theoretic 0.270 0.150 0.170 0.260 0.425 0.270 0.250 0.090 0.785 0.983 0.173 0.780
Text style + Minimal 0.176 0.078 0.273 0.670 0.443 0.225 0.160 0.023 0.093 0.025 0.233 0.085
Text style + Topological 0.160 0.268 0.250 0.250 0.510 0.090 0.125 0.020 0.633 0.790 0.148 0.655
Matrix style + Topological 0.125 0.224 0.118 0.230 0.245 0.090 0.018 0.000 0.643 0.870 0.180 0.610
Code like + Topological 0.128 0.210 0.118 0.160 0.445 0.115 0.220 0.110 0.833 0.980 0.120 0.570

Table 9: Post training on LLaMA-3.1-8B-Instruct with supervision on small graphs and evaluation on
medium graphs.

Prompt setting 1D Simplex Counting Component Merge Time Component Count Under Filtration

Zero-shot Post-train Zero-shot Post-train Zero-shot Post-train

Text style + Graph theoretic 0.020 0.200 0.090 0.430 0.160 0.660
Text style + Minimal 0.000 0.160 0.040 0.290 0.090 0.400
Text style + Topological 0.000 0.040 0.080 0.430 0.330 0.480
Matrix style + Topological 0.000 0.060 0.140 0.250 0.210 0.480
Code like + Topological 0.000 0.260 0.010 0.370 0.220 0.540

Table 10: Summary of graph representation and task instruction styles. Full prompt examples are
provided in the appendix.

Prompt Style Description
Graph Representation Styles

Text-style format Nodes and edges are described using plain natural language sen-
tences, following human-like narration.

Code-like format Graph elements are structured using syntax that resembles pro-
gramming or configuration files, such as lists or dictionaries.

Matrix-based format The graph is represented by a numerical adjacency matrix, requir-
ing structural inference from tabular data.

Task Instruction Styles

Topological formulation Instructions are written using formal terminology from algebraic
topology, such as simplex, homology, and filtration.

Graph-theoretic formulation Tasks are described using standard graph terminology, avoiding
domain-specific topological language.

Minimal formulation Prompts are short and generic, with little or no explicit context,
requiring the model to infer the task from minimal cues.
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