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Abstract

Benchmarks for general language understand-001
ing have been rapidly developing in recent002
years of NLP research, with well-known ex-003
amples such as GLUE and SuperGLUE. While004
benchmarks have been proposed in the legal005
language domain, virtually no such bench-006
marks exist for privacy policies despite their007
increasing importance in modern digital life.008
This could be explained by privacy policies009
falling under the legal language domain, but010
we find evidence to the contrary that motivates011
a separate benchmark for privacy policies. Con-012
sequently, we propose PrivacyGLUE as the first013
comprehensive benchmark of relevant and high-014
quality privacy tasks for measuring general lan-015
guage understanding in the privacy language016
domain. Furthermore, we release performances017
from the BERT, RoBERTa, Legal-BERT, Legal-018
RoBERTa and PrivBERT transformer language019
models and perform model-pair agreement020
analysis to detect PrivacyGLUE task examples021
where models benefited from domain special-022
ization. Our findings show PrivBERT outper-023
forms other models by an average of 2 − 3%024
over all PrivacyGLUE tasks, shedding light on025
the importance of in-domain pretraining for pri-026
vacy policies. We believe PrivacyGLUE can027
accelerate NLP research and improve general028
language understanding for humans and AI al-029
gorithms in the privacy language domain.030

1 Introduction031

Data privacy is evolving into a critical aspect of032

modern life with the United Nations (UN) describ-033

ing it as a human right in the digital age (Gstrein034

and Beaulieu, 2022). Despite its importance, sev-035

eral studies have demonstrated high barriers to036

the understanding of privacy policies (Obar and037

Oeldorf-Hirsch, 2020) and estimate that an aver-038

age person would require ∼200 hours annually to039

read through all privacy policies encountered in040

their daily life (McDonald and Cranor, 2008). To041

Figure 1: UMAP visualization of BERT embeddings
from Wikipedia, European Legislation (EURLEX) and
company privacy policy documents with a total of 2.5M
tokens per corpus

address this, studies such as Wilson et al. (2016) 042

recommend training Artificial Intelligence (AI) al- 043

gorithms on appropriate benchmark datasets to as- 044

sist humans in understanding privacy policies. 045

In recent years, benchmarks have been gaining 046

popularity in Machine Learning and Natural Lan- 047

guage Processing (NLP) communities because of 048

their ability to holistically evaluate model perfor- 049

mance over a variety of representative tasks. GLUE 050

(Wang et al., 2018) and SuperGLUE (Wang et al., 051

2019) are examples of popular NLP benchmarks 052

which measure the natural language understanding 053

capabilities of SOTA models. NLP benchmarks are 054

also developing rapidly in language domains, with 055

LexGLUE (Chalkidis et al., 2022) being an exam- 056

ple of a recent benchmark hosting several difficult 057

tasks in the legal language domain. Interestingly, 058

we do not find similar NLP benchmarks in the pri- 059

vacy language domain for privacy policies. While 060
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Task Source Task Type Train/Dev/Test Instances # Classes

OPP-115 Wilson et al. (2016) Multi-label sequence classification 2,185/550/697 12

PI-Extract Bui et al. (2021) Multi-task token classification 2,579/456/1,029 3/3/3/3†

Policy-Detection Amos et al. (2021) Binary sequence classification 773/137/391 2

PolicyIE-A Ahmad et al. (2021) Multi-class sequence classification 4,109/100/1,041 5

PolicyIE-B Ahmad et al. (2021) Multi-task token classification 4,109/100/1,041 29/9†

PolicyQA Ahmad et al. (2020) Reading comprehension 17,056/3,809/4,152 –

PrivacyQA Ravichander et al. (2019) Binary sequence classification 157,420/27,780/62,150 2

Table 1: Summary statistics of PrivacyGLUE benchmark tasks; † PI-Extract and PolicyIE-B consist of four and two
subtasks respectively and the number of BIO token classes per subtask are separated by a forward slash character

this could be explained by privacy policies falling061

under the legal language domain due to their for-062

mal and jargon-heavy nature, we claim that privacy063

policies fall under a distinct language domain and064

cannot be subsumed under any other specialized065

NLP benchmark such as LexGLUE.066

To investigate this claim, we gather documents067

from Wikipedia (Wikimedia Foundation, 2022),068

European Legislation (EURLEX; Chalkidis et al.069

2019) and company privacy policies (Mazzola070

et al., 2022), with each corpus truncated to 2.5M071

tokens. Next, we feed these documents into BERT072

and gather contextualized embeddings, which are073

then projected to 2-dimensional space using UMAP074

(McInnes et al., 2018). In Figure 1, we observe075

that the three domain corpora cluster indepen-076

dently, providing evidence that privacy policies lie077

in a distinct language domain from both legal and078

wikipedia documents. With this motivation, we079

propose PrivacyGLUE as the first comprehensive080

benchmark for measuring general language under-081

standing in the privacy language domain. Our main082

contributions are threefold:083

1. Composition of seven high-quality and rel-084

evant PrivacyGLUE tasks, specifically OPP-085

115, PI-Extract, Policy-Detection, PolicyIE-A,086

PolicyIE-B, PolicyQA and PrivacyQA.087

2. Benchmark performances of five transformer088

language models on all aforementioned tasks,089

specifically BERT, RoBERTa, Legal-BERT,090

Legal-RoBERTa and PrivBERT.091

3. Model agreement analysis to detect Priva-092

cyGLUE task examples where models ben-093

efited from domain specialization.094

We release PrivacyGLUE as a fully configurable095

benchmark suite for straight-forward reproducibil-096

ity and production of new results in our pub- 097

lic GitHub repository1. Our findings show that 098

PrivBERT, the only model pretrained on privacy 099

policies, outperforms other models by an average 100

of 2 − 3% over all PrivacyGLUE tasks, shedding 101

light on the importance of in-domain pretraining for 102

privacy policies. Our model-pair agreement analy- 103

sis explores specific examples where PrivBERT’s 104

privacy-domain pretraining provided both competi- 105

tive advantage and disadvantage. By benchmark- 106

ing holistic model performances, we believe Pri- 107

vacyGLUE can accelerate NLP research into the 108

privacy language domain and ultimately improve 109

general language understanding of privacy policies 110

for both humans and AI algorithms. 111

2 Related work 112

NLP benchmarks have been gaining popularity in 113

recent years because of their ability to holistically 114

evaluate model performance over a variety of rep- 115

resentative tasks. GLUE (Wang et al., 2018) and 116

SuperGLUE (Wang et al., 2019) are examples of 117

benchmarks that evaluate SOTA models on a range 118

of natural language understanding tasks. The GEM 119

benchmark (Gehrmann et al., 2021) looks beyond 120

text classification and measures performance in 121

Natural Language Generation tasks such as summa- 122

rization and data-to-text conversion. The XTREME 123

(Hu et al., 2020) and XTREME-R (Ruder et al., 124

2021) benchmarks specialize in measuring cross- 125

lingual transfer learning on 40-50 typologically 126

diverse languages and corresponding tasks. Popu- 127

lar NLP benchmarks often host public leaderboards 128

with SOTA scores on supported tasks, thereby en- 129

couraging the community to apply new approaches 130

for surpassing top scores. 131

1Repository will be made public post-acceptance. Anony-
mous repository: https://anonymous.4open.science/
r/f4293357886f671347fa69fae3650543

2

https://anonymous.4open.science/r/f4293357886f671347fa69fae3650543
https://anonymous.4open.science/r/f4293357886f671347fa69fae3650543


While the aforementioned benchmarks focus132

on problem types such as natural language un-133

derstanding and generation, other benchmarks fo-134

cus on language domains. The LexGLUE bench-135

mark (Chalkidis et al., 2022) is an example of a136

benchmark that evaluates models on tasks from137

the legal language domain. LexGLUE consists of138

seven English-language tasks that are representa-139

tive of the legal language domain and chosen based140

on size and legal specialization. Chalkidis et al.141

(2022) benchmarked several models such as BERT142

(Devlin et al., 2019) and Legal-BERT (Chalkidis143

et al., 2020), where Legal-BERT has a similar ar-144

chitecture to BERT but was pretrained on diverse145

legal corpora. A key finding of LexGLUE was146

that Legal-BERT outperformed other models which147

were not pretrained on legal corpora. In other148

words, they found that an in-domain pretrained149

model outperformed models that were pretrained150

out-of-domain.151

In the privacy language domain, we tend to find152

isolated datasets from specialized studies. Zim-153

meck et al. (2019), Wilson et al. (2016), Bui154

et al. (2021) and Ahmad et al. (2021) are exam-155

ples of studies that introduce annotated corpora156

for privacy-practice sequence and token classifi-157

cation tasks, while Ravichander et al. (2019) and158

Ahmad et al. (2020) release annotated corpora for159

privacy-practice question answering. Amos et al.160

(2021) is another recent study that released an an-161

notated corpus of privacy policies. As of writing,162

no comprehensive NLP benchmark exists for gen-163

eral language understanding in privacy policies,164

making PrivacyGLUE the first consolidated NLP165

benchmark in the privacy language domain.166

3 Datasets and Tasks167

The PrivacyGLUE benchmark consists of seven168

natural language understanding tasks originating169

from six datasets in the privacy language domain.170

Summary statistics, detailed label information and171

representative examples are shown in Table 1, Ta-172

ble 5 (Appendix A) and Table 6 (Appendix B) re-173

spectively.174

OPP-115 Wilson et al. (2016) was the first study175

to release a large annotated corpus of privacy poli-176

cies. A total of 115 privacy policies were selected177

based on their corresponding company’s popularity178

on Google Trends. The selected privacy policies179

were annotated with 12 data privacy practices on180

a paragraph-segment level by experts in the pri-181

vacy domain. As noted by Mousavi Nejad et al. 182

(2020), one limitation of Wilson et al. (2016) was 183

the lack of publicly released training and test data 184

splits which are essential for machine learning and 185

benchmarking. To address this, Mousavi Nejad 186

et al. (2020) released their own training, valida- 187

tion and test data splits for researchers to easily 188

reproduce OPP-115 results. PrivacyGLUE utilizes 189

the "Majority" variant of data splits released by 190

Mousavi Nejad et al. (2020) to compose the OPP- 191

115 task. Given an input paragraph segment of a 192

privacy policy, the goal of OPP-115 is to predict 193

one or more data practice categories. 194

PI-Extract Bui et al. (2021) focuses on enhanced 195

data practice extraction and presentation to help 196

users better understand privacy policies. As part of 197

their study, they released the PI-Extract dataset con- 198

sisting of 4.1K sentences (97K tokens) and 2.6K 199

expert-annotated data practices from 30 privacy 200

policies in the OPP-115 dataset. Expert annotations 201

were performed on a token-level for all sentences 202

of selected privacy policies. PI-Extract is broken 203

into four subtasks, where spans of tokens are inde- 204

pendently tagged using the BIO scheme commonly 205

used in Named Entity Recognition (NER). Sub- 206

tasks I, II, III and IV require the classification of to- 207

ken spans for data-related entities that are collected, 208

not collected, not shared and shared respectively. In 209

the interest of diversifying tasks in PrivacyGLUE, 210

we composed PI-Extract as a multi-task token clas- 211

sification problem where all four PI-Extract sub- 212

tasks are to be jointly learned. 213

Policy-Detection Amos et al. (2021) developed 214

a crawler for automated collection and curation of 215

privacy policies. An important aspect of their sys- 216

tem is the automated classification of documents 217

into privacy policies and non-privacy-policy docu- 218

ments encountered during web crawling. To train 219

such a privacy policy classifier, Amos et al. (2021) 220

performed expert annotations of commonly en- 221

countered documents during web crawls and classi- 222

fied them into the aforementioned categories. The 223

Policy-Detection dataset was released with a to- 224

tal of 1.3K annotated documents and is utilized in 225

PrivacyGLUE as a binary sequence classification 226

task. 227

PolicyIE Inspired by Wilson et al. (2016) and 228

Bui et al. (2021), Ahmad et al. (2021) created 229

PolicyIE, an English corpus composed by 5.3K 230

sentence-level and 11.8K token-level data practice 231
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Model Source # Params Vocab. Size Pretraining corpora†

BERT Devlin et al. (2019) 110M 30K Wikipedia, BC (16 GB)

RoBERTa Liu et al. (2019) 125M 50K Wikipedia, BC, CC-News, OWT (160 GB)

Legal-BERT Chalkidis et al. (2020) 110M 30K Legislation, Court Cases, Contracts (12 GB)

Legal-RoBERTa‡ Geng et al. (2021) 125M 50K Patents, Court Cases (5 GB)

PrivBERT‡ Srinath et al. (2021) 125M 50K Privacy policies (17 GB)

Table 2: Summary of models used in the PrivacyGLUE benchmark; all models used are base-sized variants of
BERT/RoBERTa architectures; † BC = BookCorpus, CC-News = CommonCrawl-News, OWT = OpenWebText; ‡
models were initialized with the pretrained RoBERTa model

annotations over 31 privacy policies from websites232

and mobile applications. PolicyIE was designed to233

be used for machine learning in NLP, to ultimately234

make data privacy concepts easier for users to un-235

derstand. We split the PolicyIE corpus into two236

tasks, namely PolicyIE-A and PolicyIE-B. Given237

an input sentence, PolicyIE-A entails multi-class238

data practice classification while PolicyIE-B en-239

tails multi-task token classification over distinct240

subtasks I and II, which require the classification241

of token spans for entities that participate in pri-242

vacy practices and their conditions/purposes respec-243

tively. The motivation for composing PolicyIE-B as244

a multi-task problem is similar to that of PI-Extract.245

PolicyQA Ahmad et al. (2020) argue in favour246

of short-span answers to user questions for long247

privacy policies. They release PolicyQA, a dataset248

of 25k reading comprehension examples curated249

from the OPP-115 corpus from Wilson et al. (2016).250

Furthermore, they provide 714 human-written ques-251

tions optimized for a wide range of privacy policies.252

The final question-answer annotations follow the253

SQuAD-1.0 format (Rajpurkar et al., 2016), which254

improves the ease of adaptation into NLP pipelines.255

We utilize PolicyQA as PrivacyGLUE’s reading256

comprehension task.257

PrivacyQA Similar to Ahmad et al. (2020),258

Ravichander et al. (2019) argue in favour of an-259

notated question-answering data for training NLP260

models to answer user questions about privacy poli-261

cies. They correspondingly released PrivacyQA,262

a corpus composed by 1.75K questions and more263

than 3.5K expert annotated answers. Unlike Poli-264

cyQA, PrivacyQA proposes a binary sequence clas-265

sification task where a question-answer pair is clas-266

sified as either relevant or irrelevant. Correspond-267

ingly, we treat PrivacyQA as a binary sequence268

classification task in PrivacyGLUE.269

4 Experimental setup 270

The PrivacyGLUE benchmark was tested using the 271

BERT, RoBERTa, Legal-BERT, Legal-RoBERTa 272

and PrivBERT models which are summarized in 273

Table 2. We describe the models used and task- 274

specific approaches, and provide details on our 275

benchmark configuration in Appendix E. 276

4.1 Models 277

BERT Proposed by Devlin et al. (2019), BERT 278

is perhaps the most well-known transformer lan- 279

guage model. BERT utilizes the WordPiece tok- 280

enizer (Wu et al., 2016) and is case-insensitive. It 281

is pretrained with the Masked Language Model 282

(MLM) and Next Sentence Prediction (NSP) tasks 283

on the Wikipedia and BookCorpus corpora. 284

RoBERTa Liu et al. (2019) proposed RoBERTa 285

as an improvement to BERT. RoBERTa uses dy- 286

namic token masking and eliminates the NSP task 287

during pretraining. Furthermore, it uses a case 288

sensitive byte-level Byte-Pair Encoding (Sennrich 289

et al., 2016) tokenizer and is pretrained on larger 290

corpora. Liu et al. (2019) reported improved re- 291

sults on various benchmarks using RoBERTa over 292

BERT. 293

Legal-BERT Chalkidis et al. (2020) proposed 294

Legal-BERT by pretraining BERT from scratch on 295

legal corpora consisting of legislation, court cases 296

and contracts. The sub-word vocabulary of Legal- 297

BERT is learned from scratch using the Sentence- 298

Piece (Kudo and Richardson, 2018) tokenizer to 299

better support legal terminology. Legal-BERT was 300

the best overall performing model in the LexGLUE 301

benchmark as reported in Chalkidis et al. (2022). 302

Legal-RoBERTa Inspired by Legal-BERT, Geng 303

et al. (2021) proposed Legal-RoBERTa by further 304

pretraining RoBERTa on legal corpora, specifi- 305

cally patents and court cases. Legal-RoBERTa 306
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is pretrained on less legal data than Legal-BERT307

while producing similar results on downstream fine-308

tuning legal domain tasks.309

PrivBERT Due to the scarcity of large corpora310

in the privacy domain, Srinath et al. (2021) pro-311

posed PrivaSeer, a novel corpus of 1M English312

language website privacy policies crawled from313

the web. They subsequently proposed PrivBERT314

by further pretraining RoBERTa on the PrivaSeer315

corpus.316

4.2 Task-specific approaches317

Given the aforementioned models and tasks, we318

now describe our task-specific fine-tuning and319

evaluation approaches. Given an input sequence320

s = {w1,w2, . . . ,wN} consisting of N sequential321

sub-word tokens, we feed s into a transformer322

encoder and obtain a contextual representation323

{h0, h1, . . . , hN} where hi ∈ R
D and D is the output324

dimensionality of the transformer encoder. Here,325

h0 refers to the contextual embedding for the start-326

ing token which is [CLS] for BERT-derived mod-327

els and <s> for RoBERTa-derived models. For328

PolicyQA and PrivacyQA, the input sequence s is329

composed by concatenating the question and con-330

text/answer pairs respectively. The concatenated se-331

quences are separated by a separator token, which332

is [SEP] for BERT-derived models and </s> for333

RoBERTa-derived models.334

4.2.1 Sequence classification335

The h0 embedding is fed into a class-wise sigmoid336

classifier (1) and softmax classifier (2) for multi-337

label and binary/multi-class tasks respectively. The338

classifier has weights W ∈ RD×C and bias b ∈ RC339

and is used to predict the probability vector y ∈ RC ,340

where C refers to the number of output classes.341

We fine-tune models end-to-end by minimizing the342

binary cross-entropy loss and cross-entropy loss343

for multi-label and binary/multi-class tasks respec-344

tively.345

y = sigmoid
(
W⊤h0 + b

)
(1)346

y = softmax
(
W⊤h0 + b

)
(2)347

We report the macro and micro-average F1348

scores for all sequence classification tasks since349

the former ignores class imbalance while the latter350

takes it into account.351

4.2.2 Multi-task token classification352

Each hi ∈ {h1, h2, . . . , hN} token embedding is fed353

into J independent softmax classifiers with weights354

W j ∈ R
D×C j and bias b j ∈ R

C j to predict the token 355

probability vector yi j ∈ R
C j , where C j refers to 356

the number of output BIO classes per subtask j ∈ 357

{1, 2, . . . , J} . We fine-tune models end-to-end by 358

minimizing the cross-entropy loss across all tokens 359

and subtasks. 360

yi j = softmax
(
W⊤j hi + b j

)
(3) 361

We report the macro and micro-average F1 362

scores for all multi-task token classification tasks 363

by averaging the respective metrics for each sub- 364

task. Furthermore, we ignore cases where B or I 365

prefixes are mismatched as long as the main token 366

class is correct. 367

4.2.3 Reading comprehension 368

Each hi ∈ {h1, h2, . . . , hN} token embedding is fed 369

into two independent linear layers with weights 370

W j ∈ R
D and bias b j ∈ R where j ∈ {1, 2}. These 371

linear outputs are then concatenated per layer and 372

a softmax function is applied to form a probabil- 373

ity vector y j across all tokens for answer-start and 374

answer-end token probabilities respectively. We 375

fine-tune models end-to-end by minimizing the 376

cross-entropy loss on the gold answer-start and 377

answer-end indices. 378

y j = softmax
( [

W j · h1 + b j . . . W j · hN + b j
] )

(4) 379

Similar to SQuAD (Rajpurkar et al., 2016), we 380

report the sample F1 and exact match accuracy for 381

our reading comprehension task. It is worth noting 382

that Rajpurkar et al. (2016) refer to their reported 383

F1 score as a macro-average, whereas we refer to it 384

as the sample-average as we believe this is a more 385

accurate term. 386

5 Results 387

After running the PrivacyGLUE benchmark with 388

10 random seeds, we collect results on the test- 389

sets of all tasks. Figure 2 shows the respective 390

results in a graphical form while Table 7 in Ap- 391

pendix C shows the numerical results in a tabular 392

form. In terms of absolute metrics, we observe that 393

PrivBERT outperforms other models for all Priva- 394

cyGLUE tasks. We apply the Mann-Whitney U- 395

test (Mann and Whitney, 1947) over random seed 396

metric distributions and find that PrivBERT sig- 397

nificantly outperforms other models on six out of 398

seven PrivacyGLUE tasks with p <= 0.05, where 399
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Figure 2: Test-set results of the PrivacyGLUE benchmark where points indicate mean performance and error bars
indicate standard deviation over 10 random seeds; *** implies p <= 0.001 , ** implies 0.001 < p <= 0.01, *
implies 0.01 < p <= 0.05 given an alternative hypothesis that PrivBERT has a greater performance metric than all
other models in a task using the Mann-Whitney U-test

Policy-Detection was the task where the signifi-400

cance threshold was not met. We utilize the Mann-401

Whitney U-test because it does not require a nor-402

mal distribution for test-set metrics, an assumption403

which has not been extensively validated for deep404

neural networks (Dror et al., 2019).405

In Figure 2, we observe large differences be-406

tween the two representative metrics for OPP-115,407

Policy-Detection, PolicyIE-A, PrivacyQA and Pol-408

icyQA. For the first four of the aforementioned409

tasks, this is because of data imbalance resulting410

in the micro-average F1 being significantly higher411

since it can be skewed by the metric of the ma-412

jority class. For PolicyQA, this occurs because413

the EM metric requires exact matches and is there-414

fore much stricter than the sample F1 metric. Fur-415

thermore, we observe an exceptionally large stan-416

dard deviation on PI-Extract metrics compared to417

other tasks. This can be attributed to data imbal-418

ance between the four subtasks of PI-Extract, with419

the NOT_COLLECT and NOT_SHARE subtasks hav-420

ing less than 100 total examples each.421

We apply the arithmetic, geometric and har-422

monic means to aggregated metric means and stan-423

dard deviations as shown in Table 3. With this, we424

observe the following general ranking of models425

Model A-Mean G-Mean H-Mean
µ σ µ σ µ σ

BERT 67.5 1.1 64.6 0.9 61.1 0.6
RoBERTa 69.0 1.2 66.4 0.7 63.2 0.3
Legal-BERT 67.9 1.1 64.9 0.8 61.2 0.4
Legal-RoBERTa 68.5 1.3 65.7 0.8 62.3 0.4
PrivBERT 70.8 1.2 68.3 0.8 65.2 0.5

Table 3: Macro-aggregation of means (µ) and standard
deviations (σ) per model using the arithmetic mean (A-
Mean), geometric mean (G-Mean) and harmonic mean
(H-Mean)

from best to worst: PrivBERT, RoBERTa, Legal- 426

RoBERTa, Legal-BERT and BERT. Interestingly, 427

models derived from RoBERTa generally outper- 428

formed models derived from BERT. Using the 429

arithmetic mean for simplicity, we observe that 430

PrivBERT outperforms all other models by 2 − 3%. 431

6 Discussion 432

With the PrivacyGLUE benchmark results, we re- 433

visit our privacy vs. legal language domain claim 434

from Section 1 and discuss our model-pair agree- 435

ment analysis for detecting PrivacyGLUE task ex- 436

amples where models benefited from domain spe- 437
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Figure 3: Model-pair agreement analysis of PrivBERT against other models over all PrivacyGLUE tasks; bars
represent proportions of examples per model-pair and task which fell into categories P and O; all models on the
x-axis are compared against PrivBERT

Category P Category O

ID: 1978
Question: Who can see my information?
Answer: We do not sell or rent your personal infor-
mation to third parties for their marketing purposes
without your explicit consent.
Label: Relevant

ID: 33237
Question: Could the wordscapes app contain mal-
ware?
Answer: We encrypt the transmission of all informa-
tion using secure socket layer technology (SSL).
Label: Relevant

Table 4: Test-set examples from PrivacyQA that fall under categories P and O for PrivBERT vs. BERT

cialization.438

6.1 Privacy vs. legal language domain439

We initially provided evidence from Figure 1 sug-440

gesting that the privacy language domain is distinct441

from the legal language domain. We believe that442

our PrivacyGLUE results further support this initial443

claim. If the privacy language domain was sub-444

sumed under the legal language domain, we could445

have observed Legal-RoBERTa and Legal-BERT446

performing competitively with PrivBERT. Instead,447

we observed that the legal models underperformed448

compared to both PrivBERT and RoBERTa, fur-449

ther indicating that the privacy language domain is450

distinct and requires its own NLP benchmark.451

6.2 Model-pair agreement analysis452

PrivBERT, the top performing model, differentiates453

itself from other models by its in-domain pretrain-454

ing on the PrivaSeer corpus (Srinath et al., 2021). 455

Therefore, we can infer that PrivBERT incorpo- 456

rated knowledge of privacy policies through its 457

pretraining and became specialized for fine-tuning 458

tasks in the privacy language domain. We investi- 459

gate this specialization using model-pair agreement 460

analysis to detect examples where PrivBERT had a 461

competitive advantage over other models. Conse- 462

quently, we detect examples where PrivBERT was 463

disadvantaged due to its in-domain pretraining. 464

We compare 10 × 10 = 100 random seed combi- 465

nations for all test-set pairs between PrivBERT and 466

other models. Each prediction-pair can be classi- 467

fied into one of four mutually exclusive categories 468

(B, P, O and N) shown below. Categories B and N 469

represent examples that are either not challenging 470

or too challenging for both PrivBERT and the other 471

model respectively. Categories P and O are more in- 472

teresting for us since they indicate examples where 473
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PrivBERT had a competitive advantage and disad-474

vantage over the other model respectively. There-475

fore, we focus on categories P and O in our analysis.476

We classify examples over all random seed combi-477

nations and take the majority occurrence for each478

category within its distribution.479

Category B: Both PrivBERT and the other model480

were correct, i.e. (PrivBERT, Other Model)481

Category P: PrivBERT was correct and the other482

model was wrong, i.e. (PrivBERT, ¬ Other Model)483

Category O: Other model was correct and484

PrivBERT was wrong, i.e. (¬ PrivBERT, Other485

Model)486

Category N: Neither PrivBERT nor the other487

model was correct, i.e. (¬ PrivBERT, ¬ Other488

Model)489

Figure 3 shows a relative distribution of majority490

categories across model-pairs and PrivacyGLUE491

tasks. We observe that category P is always greater492

than category O, which correlates with PrivBERT493

outperforming all other models. We also observe494

that category P is often the greatest when com-495

pared against BERT, implying that PrivBERT has496

the most competitive advantage over BERT. Sur-497

prisingly, we also observe category O is often the498

greatest when compared against BERT, implying499

that BERT has the highest absolute advantage over500

PrivBERT. This is an insightful observation since501

we would have expected BERT to have the least502

competitive advantage given its lowest overall Pri-503

vacyGLUE performance.504

To investigate PrivBERT’s competitive advan-505

tage and disadvantage against BERT, we extract506

several examples from categories P and O in the507

PrivacyQA task for brevity. Two interesting exam-508

ples are listed in Table 4 and additional examples509

can be found in Table 8 in Appendix D. From Ta-510

ble 4, we speculate that PrivBERT specializes in511

example 1978 because it contains several privacy-512

specific terms such as "third parties" and "explicit513

consent". On the other hand, we speculate that514

BERT specializes in example 33237 since it con-515

tains more generic information regarding encryp-516

tion and SSL, which also happens to be a topic in517

BERT’s Wikipedia pretraining corpus as seen in518

Figure 1 and Table 2.519

Looking at further examples in Table 8, we can520

also observe that all sampled category P exam-521

ples have the Relevant label while many sam- 522

pled category O examples have the Irrelevant 523

label. On further analysis of the PrivacyQA test- 524

set, we find that 71% of category P examples 525

have the Relevant label and 61% of category 526

O samples have the Irrelevant label. We can 527

infer that PrivBERT specializes in the minority 528

Relevant label while BERT specializes in the ma- 529

jority Irrelevant label as the former label could 530

require more privacy knowledge than the latter. 531

7 Conclusions and further work 532

In this paper, we describe the importance of data 533

privacy in modern digital life and observe the 534

lack of a NLP benchmark in the privacy language 535

domain despite its distinctness. To address this, 536

we propose PrivacyGLUE as the first comprehen- 537

sive benchmark for measuring general language 538

understanding in the privacy language domain. 539

We release benchmark performances from the 540

BERT, RoBERTa, Legal-BERT, Legal-RoBERTa 541

and PrivBERT transformer language models. Our 542

findings show that PrivBERT outperforms other 543

models by an average of 2 − 3% over all Priva- 544

cyGLUE tasks, shedding light on the importance of 545

in-domain pretraining for privacy policies. We ap- 546

ply model-pair agreement analysis to detect Priva- 547

cyGLUE examples where PrivBERT’s pretraining 548

provides competitive advantage and disadvantage. 549

By benchmarking holistic model performances, we 550

believe PrivacyGLUE can accelerate NLP research 551

into the privacy language domain and ultimately 552

improve general language understanding of privacy 553

policies for both humans and AI algorithms. 554

Looking forward, we envision several ways to 555

further our study. Firstly, we intend to apply deep- 556

learning explainability techniques such as Inte- 557

grated Gradients (Sundararajan et al., 2017) on 558

examples from Table 4, to explore PrivBERT’s 559

and BERT’s token-level attention attributions for 560

categories P and O. Additionally, we intend to 561

benchmark large prompt-based transformer lan- 562

guage models such as T5 (Raffel et al., 2020) and 563

T0 (Sanh et al., 2022), as they incorporate large 564

amounts of knowledge from the various sequence- 565

to-sequence tasks that they were trained on. Finally, 566

we plan to continue maintaining our PrivacyGLUE 567

GitHub repository and host new model results from 568

the community. 569
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Limitations570

To the best of our knowledge, our study has two571

main limitations. While we provide performances572

from transformer language models, our study does573

not provide human expert performances on Priva-574

cyGLUE. This would have been a valuable contri-575

bution to judge how competitive language models576

are against human expertise. However, this lim-577

itation can be challenging to address due to the578

difficulty in finding experts and high costs for their579

services. Additionally, our study only focuses on580

English language privacy tasks and omits multi-581

lingual scenarios. Multilingual tasks would have582

been very interesting and relevant to explore, but583

also involve significant complexity since privacy584

experts for non-English languages may be harder585

to find.586

Ethics Statement587

Original work attribution588

All datasets used to compose PrivacyGLUE are589

publicly available and originate from previous stud-590

ies. We cite these studies in our paper and include591

references for them in our GitHub repository. Fur-592

thermore, we clearly illustrate how these datasets593

were used to form the PrivacyGLUE benchmark.594

Social impact595

PrivacyGLUE could be used to produce fine-tuned596

transformer language models, which could then be597

utilized in downstream applications to help users598

understand privacy policies and/or answer ques-599

tions regarding them. We believe this could have a600

positive social impact as it would empower users601

to better understand lengthy and complex privacy602

policies. That being said, application developers603

should perform appropriate risk analyses when us-604

ing fine-tuned transformer language models. Im-605

portant points to consider include the varying per-606

formance ranges on PrivacyGLUE tasks and known607

examples of implicit bias, such as gender and racial608

bias, that transformer language models incorporate609

through their large-scale pretraining (Bender et al.,610

2021).611

Software licensing612

We release source code for PrivacyGLUE under613

version 3 of the GNU General Public License (GPL-614

3.0). We chose GPL-3.0 as it is a strong copyleft615

license that protects user freedoms such as the free-616

dom to use, modify and distribute software.617
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A Detailed label information898

Task Labels
OPP-115 Data Retention, Data Security, Do Not Track, First Party Collection/Use,

International and Specific Audiences Introductory/Generic, Policy
Change, Practice not covered, Privacy contact information, Third Party
Sharing/Collection, User Access, Edit and Deletion, User Choice/Control

PI-Extract Subtask-I: {B,I}-COLLECT, O
Subtask-II: {B,I}-NOT_COLLECT, O
Subtask-III: {B,I}-NOT_SHARE, O
Subtask-IV: {B,I}-SHARE, O

Policy-Detection Not Policy, Policy

PolicyIE-A Other, data-collection-usage, data-security-protection,
data-sharing-disclosure, data-storage-retention-deletion

PolicyIE-B Subtask-I: {B,I}-data-protector, {B,I}-data-protected, {B,I}-data-collector,
{B,I}-data-collected, {B,I}-data-receiver, {B,I}-data-retained,
{B,I}-data-holder, {B,I}-data-provider, {B,I}-data-sharer, {B,I}-data-shared,
storage-place, {B,I}-retention-period, {B,I}-protect-against, {B,I}-action, O

Subtask-II: {B,I}-purpose-argument, {B,I}-polarity, {B,I}-method,
{B,I}-condition-argument, O

PrivacyQA Irrelevant, Relevant

Table 5: Breakdown of labels for each PrivacyGLUE task; PolicyQA is omitted from this table since it is a reading
comprehension task and does not have explicit labels like other tasks

B PrivacyGLUE task examples899

Task Input Target

OPP-115 Revision Date: March 24th 2015 Introductory/Generic,
Policy Change

PI-Extract We may collect and share your IP ad-
dress but not your email address with
our business partners .

Subtask-I: O O O O O B-COLLECT I-COLLECT
I-COLLECT O O O O O O O O O O
Subtask-II: O O O O O O O O O O B-NOT_COLLECT
I-NOT_COLLECT I-NOT_COLLECT O O O O O
Subtask-II: O O O O O O O O O O B-NOT_SHARE
I-NOT_SHARE I-NOT_SHARE O O O O O
Subtask-IV: O O O O O B-SHARE I-SHARE I-SHARE
O O O O O O O O O O

Policy-Detection Log in through another service:
* Facebook * Google

Not Policy

PolicyIE-A To backup and restore your Pocket AC
camera log

data-collection-usage

PolicyIE-B Access to your personal information is
restricted .

Subtask-I: O O B-data-provider
B-data-protected I-data-protected O
B-action O
Subtask-II: B-method O O O O O O O

PolicyQA Question: How do they secure my
data?
Context: Users can visit our site anony-
mously

Answer: Users can visit our site anonymously

PrivacyQA Question: What information will you
collect about my usage?
Answer: Location information

Relevant

Table 6: Representative examples of each PrivacyGLUE benchmark task
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C PrivacyGLUE benchmark results 900

Task Metric† BERT RoBERTa Legal-BERT Legal-RoBERTa PrivBERT

OPP-115
m-F1 78.4±0.6 79.5±1.1 79.6±1.0 79.1±0.7 82.1±0.5

µ-F1 84.0±0.5 85.4±0.5 84.3±0.7 84.7±0.3 87.2±0.4

PI-Extract
m-F1 60.0±2.7 62.4±4.4 59.5±3.0 60.5±3.9 66.4±3.4

µ-F1 60.0±2.7 62.4±4.4 59.5±3.0 60.5±3.9 66.4±3.4

Policy-Detection
m-F1 85.3±1.8 86.9±1.3 86.6±1.0 86.4±2.0 87.3±1.1

µ-F1 92.1±1.2 92.7±0.8 92.7±0.5 92.4±1.3 92.9±0.8

PolicyIE-A
m-F1 72.9±1.7 73.2±1.6 73.2±1.5 73.5±1.5 75.3±2.2

µ-F1 84.7±1.0 84.8±0.6 84.7±0.5 84.8±0.3 86.2±1.0

PolicyIE-B
m-F1 50.3±0.7 52.8±0.6 51.5±0.7 53.5±0.5 55.4±0.7

µ-F1 50.3±0.5 54.5±0.7 52.2±1.0 53.6±0.9 55.7±1.3

PolicyQA
s-F1 55.7±0.5 57.4±0.4 55.3±0.7 56.3±0.6 59.3±0.5

EM 28.0±0.9 30.0±0.5 27.5±0.6 28.6±0.9 31.4±0.6

PrivacyQA
m-F1 53.6±0.8 54.4±0.3 53.6±0.8 54.4±0.5 55.3±0.6

µ-F1 90.0±0.1 90.2±0.0 90.0±0.1 90.2±0.1 90.2±0.1

Table 7: Test-set results of the PrivacyGLUE benchmark; † m-F1 refers to macro-average F1, µ-F1 refers to the
micro-average F1, s refers to sample-average F1, EM refers to the exact match accuracy, metrics are reported as
percentages with the following format: mean±standard deviation
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D Additional PrivacyQA examples from categories P and O901

Category P Category O

ID: 9227
Question: Will the app use my data for marketing
purposes?
Answer: We will never share with or sell the infor-
mation gained through the use of Apple HealthKit,
such as age, weight and heart rate data, to advertisers
or other agencies without your authorization.
Label: Relevant

ID: 8749
Question: Will my fitness coach share my informa-
tion with others?
Answer: Develop new services.
Label: Irrelevant

ID: 10858
Question: What information will this app have ac-
cess to of mine?
Answer: Information you make available to us when
you open a Keep account, as set out above;
Label: Relevant

ID: 47271
Question: Who will have access to my medical in-
formation?
Answer: 23andMe may share summary statistics,
which do not identify any particular individual or
contain individual-level information, with our quali-
fied research collaborators.
Label: Irrelevant

ID: 18704
Question: Does it share my personal information
with others?
Answer: We may also disclose Non-Identifiable In-
formation:
Label: Relevant

ID: 54904
Question: What data do you keep and for how long?
Answer: We may keep activity data on a non-
identifiable basis to improve our services.
Label: Irrelevant

ID: 45935
Question: Will my test results be shared with any
third party entities?
Answer: 23andMe may share summary statistics,
which do not identify any particular individual or
contain individual-level information, with our quali-
fied research collaborators.
Label: Relevant

ID: 57239
Question: Do you sell any of our data?
Answer: (c) Advertising partners: to enable the lim-
ited advertisements on our service, we may share a
unique advertising identifier that is not attributable
to you, with our third party advertising partners, and
advertising service providers, along with certain tech-
nical data about you (your language preference, coun-
try, city, and device data), based on our legitimate
interest.
Label: Relevant

ID: 50467
Question: Can I delete my personally identifying
information?
Answer: (Account Deletion), we allow our cus-
tomers to delete their accounts at any time.
Label: Relevant

ID: 59334
Question: Does the app protect my account details
from being accessed by other people?
Answer: Note that chats with bots and Public Ac-
counts, and communities are not end-to-end en-
crypted, but we do encrypt such messages when sent
to the Viber servers and when sent from the Viber
servers to the third party (the Public Account owner
and/or additional third party tool (eg CRM solution)
integrated by such owner).
Label: Irrelevant

Table 8: Additional test-set examples from PrivacyQA that fall under categories P and O for PrivBERT vs. BERT;
note that these examples are not paired and can therefore be compared in any order between categories
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E Benchmark configuration902

We run PrivacyGLUE benchmark tasks with the903

following configuration:904

• We train all models for 20 epochs with a batch905

size of 16. We utilize a linear learning rate906

scheduler with a warmup ratio of 0.1 and peak907

learning rate of 3 × 10−5. We utilize AdamW908

(Loshchilov and Hutter, 2017) as our opti-909

mizer. Finally, we monitor respective met-910

rics on the validation datasets and utilize early911

stopping if the validation metric does not im-912

prove for 5 epochs.913

• We use Python v3.8.13, CUDA v11.7,914

PyTorch v1.12.1 (Paszke et al., 2019) and915

Transformers v4.19.4 (Wolf et al., 2020)916

as our core software dependencies.917

• We use the following918

HuggingFace model tags:919

bert-base-uncased, roberta-base,920

nlpaueb/legal-bert-base-uncased,921

saibo/legal-roberta-base,922

mukund/privbert for BERT, RoBERTa,923

Legal-BERT, Legal-RoBERTa and PrivBERT924

respectively.925

• We use 10 random seeds for each benchmark926

run, i.e. {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. This pro-927

vides a distribution of results that can be used928

for statistical significance testing.929

• We run the PrivacyGLUE benchmark on a930

Lambda workstation with 4 × NVIDIA RTX931

A4000 (16 GB VRAM) GPUs for ∼180 hours.932

• We use Weights and Biases v0.13.3933

(Biewald, 2020) to monitor model metrics dur-934

ing training and for intermediate report gener-935

ation.936
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