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Abstract

Benchmarks for general language understand-
ing have been rapidly developing in recent
years of NLP research, with well-known ex-
amples such as GLUE and SuperGLUE. While
benchmarks have been proposed in the legal
language domain, virtually no such bench-
marks exist for privacy policies despite their
increasing importance in modern digital life.
This could be explained by privacy policies
falling under the legal language domain, but
we find evidence to the contrary that motivates
a separate benchmark for privacy policies. Con-
sequently, we propose PrivacyGLUE as the first
comprehensive benchmark of relevant and high-
quality privacy tasks for measuring general lan-
guage understanding in the privacy language
domain. Furthermore, we release performances
from the BERT, RoBERTa, Legal-BERT, Legal-
RoBERTa and PrivBERT transformer language
models and perform model-pair agreement
analysis to detect PrivacyGLUE task examples
where models benefited from domain special-
ization. Our findings show PrivBERT outper-
forms other models by an average of 2 — 3%
over all PrivacyGLUE tasks, shedding light on
the importance of in-domain pretraining for pri-
vacy policies. We believe PrivacyGLUE can
accelerate NLP research and improve general
language understanding for humans and Al al-
gorithms in the privacy language domain.

1 Introduction

Data privacy is evolving into a critical aspect of
modern life with the United Nations (UN) describ-
ing it as a human right in the digital age (Gstrein
and Beaulieu, 2022). Despite its importance, sev-
eral studies have demonstrated high barriers to
the understanding of privacy policies (Obar and
Oeldorf-Hirsch, 2020) and estimate that an aver-
age person would require ~200 hours annually to
read through all privacy policies encountered in
their daily life (McDonald and Cranor, 2008). To
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Figure 1: UMAP visualization of BERT embeddings
from Wikipedia, European Legislation (EURLEX) and
company privacy policy documents with a total of 2.5M
tokens per corpus

address this, studies such as Wilson et al. (2016)
recommend training Artificial Intelligence (Al) al-
gorithms on appropriate benchmark datasets to as-
sist humans in understanding privacy policies.

In recent years, benchmarks have been gaining
popularity in Machine Learning and Natural Lan-
guage Processing (NLP) communities because of
their ability to holistically evaluate model perfor-
mance over a variety of representative tasks. GLUE
(Wang et al., 2018) and SuperGLUE (Wang et al.,
2019) are examples of popular NLP benchmarks
which measure the natural language understanding
capabilities of SOTA models. NLP benchmarks are
also developing rapidly in language domains, with
LexGLUE (Chalkidis et al., 2022) being an exam-
ple of a recent benchmark hosting several difficult
tasks in the legal language domain. Interestingly,
we do not find similar NLP benchmarks in the pri-
vacy language domain for privacy policies. While



Task Source Task Type Train/Dev/Test Instances # Classes
OPP-115 Wilson et al. (2016) Multi-label sequence classification 2,185/550/697 12
PI-Extract Bui et al. (2021) Multi-task token classification 2,579/456/1,029 3/3/3/3"
Policy-Detection Amos et al. (2021) Binary sequence classification 773/137/391 2
PolicylE-A Ahmad et al. (2021) Multi-class sequence classification 4,109/100/1,041 5
PolicylE-B Ahmad et al. (2021) Multi-task token classification 4,109/100/1,041 29/9%
PolicyQA Ahmad et al. (2020) Reading comprehension 17,056/3,809/4,152 -
PrivacyQA Ravichander et al. (2019) Binary sequence classification 157,420/27,780/62,150 2

Table 1: Summary statistics of PrivacyGLUE benchmark tasks; § PI-Extract and PolicylE-B consist of four and two
subtasks respectively and the number of BIO token classes per subtask are separated by a forward slash character

this could be explained by privacy policies falling
under the legal language domain due to their for-
mal and jargon-heavy nature, we claim that privacy
policies fall under a distinct language domain and
cannot be subsumed under any other specialized
NLP benchmark such as LexGLUE.

To investigate this claim, we gather documents
from Wikipedia (Wikimedia Foundation, 2022),
European Legislation (EURLEX; Chalkidis et al.
2019) and company privacy policies (Mazzola
et al., 2022), with each corpus truncated to 2.5M
tokens. Next, we feed these documents into BERT
and gather contextualized embeddings, which are
then projected to 2-dimensional space using UMAP
(Mclnnes et al., 2018). In Figure 1, we observe
that the three domain corpora cluster indepen-
dently, providing evidence that privacy policies lie
in a distinct language domain from both legal and
wikipedia documents. With this motivation, we
propose PrivacyGLUE as the first comprehensive
benchmark for measuring general language under-
standing in the privacy language domain. Our main
contributions are threefold:

1. Composition of seven high-quality and rel-
evant PrivacyGLUE tasks, specifically OPP-
115, PI-Extract, Policy-Detection, PolicylE-A,
PolicylE-B, PolicyQA and PrivacyQA.

2. Benchmark performances of five transformer
language models on all aforementioned tasks,
specifically BERT, RoBERTa, Legal-BERT,
Legal-RoBERTa and PrivBERT.

3. Model agreement analysis to detect Priva-
cyGLUE task examples where models ben-
efited from domain specialization.

We release PrivacyGLUE as a fully configurable
benchmark suite for straight-forward reproducibil-

ity and production of new results in our pub-
lic GitHub repository'. Our findings show that
PrivBERT, the only model pretrained on privacy
policies, outperforms other models by an average
of 2 — 3% over all PrivacyGLUE tasks, shedding
light on the importance of in-domain pretraining for
privacy policies. Our model-pair agreement analy-
sis explores specific examples where PrivBERT’s
privacy-domain pretraining provided both competi-
tive advantage and disadvantage. By benchmark-
ing holistic model performances, we believe Pri-
vacyGLUE can accelerate NLP research into the
privacy language domain and ultimately improve
general language understanding of privacy policies
for both humans and Al algorithms.

2 Related work

NLP benchmarks have been gaining popularity in
recent years because of their ability to holistically
evaluate model performance over a variety of rep-
resentative tasks. GLUE (Wang et al., 2018) and
SuperGLUE (Wang et al., 2019) are examples of
benchmarks that evaluate SOTA models on a range
of natural language understanding tasks. The GEM
benchmark (Gehrmann et al., 2021) looks beyond
text classification and measures performance in
Natural Language Generation tasks such as summa-
rization and data-to-text conversion. The XTREME
(Hu et al., 2020) and XTREME-R (Ruder et al.,
2021) benchmarks specialize in measuring cross-
lingual transfer learning on 40-50 typologically
diverse languages and corresponding tasks. Popu-
lar NLP benchmarks often host public leaderboards
with SOTA scores on supported tasks, thereby en-
couraging the community to apply new approaches
for surpassing top scores.
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While the aforementioned benchmarks focus
on problem types such as natural language un-
derstanding and generation, other benchmarks fo-
cus on language domains. The LexGLUE bench-
mark (Chalkidis et al., 2022) is an example of a
benchmark that evaluates models on tasks from
the legal language domain. LexGLUE consists of
seven English-language tasks that are representa-
tive of the legal language domain and chosen based
on size and legal specialization. Chalkidis et al.
(2022) benchmarked several models such as BERT
(Devlin et al., 2019) and Legal-BERT (Chalkidis
et al., 2020), where Legal-BERT has a similar ar-
chitecture to BERT but was pretrained on diverse
legal corpora. A key finding of LexGLUE was
that Legal-BERT outperformed other models which
were not pretrained on legal corpora. In other
words, they found that an in-domain pretrained
model outperformed models that were pretrained
out-of-domain.

In the privacy language domain, we tend to find
isolated datasets from specialized studies. Zim-
meck et al. (2019), Wilson et al. (2016), Bui
et al. (2021) and Ahmad et al. (2021) are exam-
ples of studies that introduce annotated corpora
for privacy-practice sequence and token classifi-
cation tasks, while Ravichander et al. (2019) and
Ahmad et al. (2020) release annotated corpora for
privacy-practice question answering. Amos et al.
(2021) is another recent study that released an an-
notated corpus of privacy policies. As of writing,
no comprehensive NLP benchmark exists for gen-
eral language understanding in privacy policies,
making PrivacyGLUE the first consolidated NLP
benchmark in the privacy language domain.

3 Datasets and Tasks

The PrivacyGLUE benchmark consists of seven
natural language understanding tasks originating
from six datasets in the privacy language domain.
Summary statistics, detailed label information and
representative examples are shown in Table 1, Ta-
ble 5 (Appendix A) and Table 6 (Appendix B) re-
spectively.

OPP-115 Wilson et al. (2016) was the first study
to release a large annotated corpus of privacy poli-
cies. A total of 115 privacy policies were selected
based on their corresponding company’s popularity
on Google Trends. The selected privacy policies
were annotated with 12 data privacy practices on
a paragraph-segment level by experts in the pri-

vacy domain. As noted by Mousavi Nejad et al.
(2020), one limitation of Wilson et al. (2016) was
the lack of publicly released training and test data
splits which are essential for machine learning and
benchmarking. To address this, Mousavi Nejad
et al. (2020) released their own training, valida-
tion and test data splits for researchers to easily
reproduce OPP-115 results. PrivacyGLUE utilizes
the "Majority" variant of data splits released by
Mousavi Nejad et al. (2020) to compose the OPP-
115 task. Given an input paragraph segment of a
privacy policy, the goal of OPP-115 is to predict
one or more data practice categories.

PI-Extract Buietal. (2021) focuses on enhanced
data practice extraction and presentation to help
users better understand privacy policies. As part of
their study, they released the PI-Extract dataset con-
sisting of 4.1K sentences (97K tokens) and 2.6K
expert-annotated data practices from 30 privacy
policies in the OPP-115 dataset. Expert annotations
were performed on a token-level for all sentences
of selected privacy policies. PI-Extract is broken
into four subtasks, where spans of tokens are inde-
pendently tagged using the BIO scheme commonly
used in Named Entity Recognition (NER). Sub-
tasks I, II, III and IV require the classification of to-
ken spans for data-related entities that are collected,
not collected, not shared and shared respectively. In
the interest of diversifying tasks in PrivacyGLUE,
we composed PI-Extract as a multi-task token clas-
sification problem where all four PI-Extract sub-
tasks are to be jointly learned.

Policy-Detection Amos et al. (2021) developed
a crawler for automated collection and curation of
privacy policies. An important aspect of their sys-
tem is the automated classification of documents
into privacy policies and non-privacy-policy docu-
ments encountered during web crawling. To train
such a privacy policy classifier, Amos et al. (2021)
performed expert annotations of commonly en-
countered documents during web crawls and classi-
fied them into the aforementioned categories. The
Policy-Detection dataset was released with a to-
tal of 1.3K annotated documents and is utilized in
PrivacyGLUE as a binary sequence classification
task.

PolicyIE Inspired by Wilson et al. (2016) and
Bui et al. (2021), Ahmad et al. (2021) created
PolicylE, an English corpus composed by 5.3K
sentence-level and 11.8K token-level data practice



Model Source # Params Vocab. Size Pretraining corpora’

BERT Devlin et al. (2019) 110M 30K Wikipedia, BC (16 GB)
RoBERTa Liu et al. (2019) 125M 50K Wikipedia, BC, CC-News, OWT (160 GB)
Legal-BERT Chalkidis et al. (2020) 110M 30K Legislation, Court Cases, Contracts (12 GB)
Legal-RoBERTa*  Geng et al. (2021) 125M 50K Patents, Court Cases (5 GB)
PrivBERT* Srinath et al. (2021) 125M 50K Privacy policies (17 GB)

Table 2: Summary of models used in the PrivacyGLUE benchmark; all models used are base-sized variants of
BERT/RoBERTa architectures; T BC = BookCorpus, CC-News = CommonCrawl-News, OWT = OpenWebText;
models were initialized with the pretrained RoOBERTa model

annotations over 31 privacy policies from websites
and mobile applications. PolicylE was designed to
be used for machine learning in NLP, to ultimately
make data privacy concepts easier for users to un-
derstand. We split the PolicylE corpus into two
tasks, namely PolicylE-A and PolicylE-B. Given
an input sentence, PolicylE-A entails multi-class
data practice classification while PolicylE-B en-
tails multi-task token classification over distinct
subtasks I and II, which require the classification
of token spans for entities that participate in pri-
vacy practices and their conditions/purposes respec-
tively. The motivation for composing PolicylE-B as
a multi-task problem is similar to that of PI-Extract.

PolicyQA Ahmad et al. (2020) argue in favour
of short-span answers to user questions for long
privacy policies. They release PolicyQA, a dataset
of 25k reading comprehension examples curated
from the OPP-115 corpus from Wilson et al. (2016).
Furthermore, they provide 714 human-written ques-
tions optimized for a wide range of privacy policies.
The final question-answer annotations follow the
SQuAD-1.0 format (Rajpurkar et al., 2016), which
improves the ease of adaptation into NLP pipelines.
We utilize PolicyQA as PrivacyGLUE’s reading
comprehension task.

PrivacyQA Similar to Ahmad et al. (2020),
Ravichander et al. (2019) argue in favour of an-
notated question-answering data for training NLP
models to answer user questions about privacy poli-
cies. They correspondingly released PrivacyQA,
a corpus composed by 1.75K questions and more
than 3.5K expert annotated answers. Unlike Poli-
cyQA, PrivacyQA proposes a binary sequence clas-
sification task where a question-answer pair is clas-
sified as either relevant or irrelevant. Correspond-
ingly, we treat PrivacyQA as a binary sequence
classification task in PrivacyGLUE.

4 Experimental setup

The PrivacyGLUE benchmark was tested using the
BERT, RoBERTa, Legal-BERT, Legal-RoBERTa
and PrivBERT models which are summarized in
Table 2. We describe the models used and task-
specific approaches, and provide details on our
benchmark configuration in Appendix E.

4.1 Models

BERT Proposed by Devlin et al. (2019), BERT
is perhaps the most well-known transformer lan-
guage model. BERT utilizes the WordPiece tok-
enizer (Wu et al., 2016) and is case-insensitive. It
is pretrained with the Masked Language Model
(MLM) and Next Sentence Prediction (NSP) tasks
on the Wikipedia and BookCorpus corpora.

RoBERTa Liu et al. (2019) proposed RoBERTa
as an improvement to BERT. RoBERTa uses dy-
namic token masking and eliminates the NSP task
during pretraining. Furthermore, it uses a case
sensitive byte-level Byte-Pair Encoding (Sennrich
et al., 2016) tokenizer and is pretrained on larger
corpora. Liu et al. (2019) reported improved re-
sults on various benchmarks using RoOBERTa over
BERT.

Legal-BERT Chalkidis et al. (2020) proposed
Legal-BERT by pretraining BERT from scratch on
legal corpora consisting of legislation, court cases
and contracts. The sub-word vocabulary of Legal-
BERT is learned from scratch using the Sentence-
Piece (Kudo and Richardson, 2018) tokenizer to
better support legal terminology. Legal-BERT was
the best overall performing model in the LexGLUE
benchmark as reported in Chalkidis et al. (2022).

Legal-RoBERTa Inspired by Legal-BERT, Geng
et al. (2021) proposed Legal-RoBERTa by further
pretraining RoBERTa on legal corpora, specifi-
cally patents and court cases. Legal-RoBERTa



is pretrained on less legal data than Legal-BERT
while producing similar results on downstream fine-
tuning legal domain tasks.

PrivBERT Due to the scarcity of large corpora
in the privacy domain, Srinath et al. (2021) pro-
posed PrivaSeer, a novel corpus of 1M English
language website privacy policies crawled from
the web. They subsequently proposed PrivBERT
by further pretraining RoBERTa on the PrivaSeer
corpus.

4.2 Task-specific approaches

Given the aforementioned models and tasks, we
now describe our task-specific fine-tuning and
evaluation approaches. Given an input sequence
s = {wy,wo,...,wy} consisting of N sequential
sub-word tokens, we feed s into a transformer
encoder and obtain a contextual representation
{ho, hi, ..., hy) where h; € RP and D is the output
dimensionality of the transformer encoder. Here,
hg refers to the contextual embedding for the start-
ing token which is [CLS] for BERT-derived mod-
els and <s> for RoBERTa-derived models. For
PolicyQA and PrivacyQA, the input sequence s is
composed by concatenating the question and con-
text/answer pairs respectively. The concatenated se-
quences are separated by a separator token, which
is [SEP] for BERT-derived models and </s> for
RoBERTa-derived models.

4.2.1 Sequence classification

The hy embedding is fed into a class-wise sigmoid
classifier (1) and softmax classifier (2) for multi-
label and binary/multi-class tasks respectively. The
classifier has weights W € RP*C and bias b € R¢
and is used to predict the probability vector y € RC,
where C refers to the number of output classes.
We fine-tune models end-to-end by minimizing the
binary cross-entropy loss and cross-entropy loss
for multi-label and binary/multi-class tasks respec-
tively.

y = sigmoid(W " hy + b) (1)

y = softmax(W " hy + b) (2)

We report the macro and micro-average F

scores for all sequence classification tasks since
the former ignores class imbalance while the latter
takes it into account.
4.2.2 Multi-task token classification

Each h; € {hy, ho, ..., hy} token embedding is fed
into J independent softmax classifiers with weights

W;e RP*Cj and bias b j € RS to predict the token
probability vector y;; € RCi, where C ; refers to
the number of output BIO classes per subtask j €
{1,2,...,J} . We fine-tune models end-to-end by
minimizing the cross-entropy loss across all tokens
and subtasks.

Vij = softmax(WjThi +b)) 3)

We report the macro and micro-average Fj
scores for all multi-task token classification tasks
by averaging the respective metrics for each sub-
task. Furthermore, we ignore cases where B or I
prefixes are mismatched as long as the main token
class is correct.

4.2.3 Reading comprehension

Each h; € {hy, hy, ..., hy} token embedding is fed
into two independent linear layers with weights
W; € RP and bias b; € R where j € {1,2}. These
linear outputs are then concatenated per layer and
a softmax function is applied to form a probabil-
ity vector y; across all tokens for answer-start and
answer-end token probabilities respectively. We
fine-tune models end-to-end by minimizing the
cross-entropy loss on the gold answer-start and
answer-end indices.

yj= softmax( [WJ «hy + bj WJ' <hy + b]]) @

Similar to SQuAD (Rajpurkar et al., 2016), we
report the sample F; and exact match accuracy for
our reading comprehension task. It is worth noting
that Rajpurkar et al. (2016) refer to their reported
F, score as a macro-average, whereas we refer to it
as the sample-average as we believe this is a more
accurate term.

5 Results

After running the PrivacyGLUE benchmark with
10 random seeds, we collect results on the test-
sets of all tasks. Figure 2 shows the respective
results in a graphical form while Table 7 in Ap-
pendix C shows the numerical results in a tabular
form. In terms of absolute metrics, we observe that
PrivBERT outperforms other models for all Priva-
cyGLUE tasks. We apply the Mann-Whitney U-
test (Mann and Whitney, 1947) over random seed
metric distributions and find that PrivBERT sig-
nificantly outperforms other models on six out of
seven PrivacyGLUE tasks with p <= 0.05, where
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Figure 2: Test-set results of the PrivacyGLUE benchmark where points indicate mean performance and error bars
indicate standard deviation over 10 random seeds; *** implies p <= 0.001 , ** implies 0.001 < p <= 0.01, *
implies 0.01 < p <= 0.05 given an alternative hypothesis that PrivBERT has a greater performance metric than all

other models in a task using the Mann-Whitney U-test

Policy-Detection was the task where the signifi-
cance threshold was not met. We utilize the Mann-
Whitney U-test because it does not require a nor-
mal distribution for test-set metrics, an assumption
which has not been extensively validated for deep
neural networks (Dror et al., 2019).

In Figure 2, we observe large differences be-
tween the two representative metrics for OPP-115,
Policy-Detection, PolicylE-A, PrivacyQA and Pol-
icyQA. For the first four of the aforementioned
tasks, this is because of data imbalance resulting
in the micro-average F; being significantly higher
since it can be skewed by the metric of the ma-
jority class. For PolicyQA, this occurs because
the EM metric requires exact matches and is there-
fore much stricter than the sample F| metric. Fur-
thermore, we observe an exceptionally large stan-
dard deviation on PI-Extract metrics compared to
other tasks. This can be attributed to data imbal-
ance between the four subtasks of PI-Extract, with
the NOT_COLLECT and NOT_SHARE subtasks hav-
ing less than 100 total examples each.

We apply the arithmetic, geometric and har-
monic means to aggregated metric means and stan-
dard deviations as shown in Table 3. With this, we
observe the following general ranking of models

Model A-Mean G-Mean H-Mean

w < w < w o
BERT 67.5 1.1 646 09 61.1 0.6
RoBERTa 690 12 664 0.7 632 03
Legal-BERT 679 1.1 649 08 612 04
Legal-RoBERTa 685 13 657 0.8 623 04
PrivBERT 70.8 12 683 08 652 0.5

Table 3: Macro-aggregation of means (i) and standard
deviations (o) per model using the arithmetic mean (A-
Mean), geometric mean (G-Mean) and harmonic mean
(H-Mean)

from best to worst: PrivBERT, RoBERTa, Legal-
RoBERTa, Legal-BERT and BERT. Interestingly,
models derived from RoBERTa generally outper-
formed models derived from BERT. Using the
arithmetic mean for simplicity, we observe that
PrivBERT outperforms all other models by 2 — 3%.

6 Discussion

With the PrivacyGLUE benchmark results, we re-
visit our privacy vs. legal language domain claim
from Section 1 and discuss our model-pair agree-
ment analysis for detecting PrivacyGLUE task ex-
amples where models benefited from domain spe-
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Figure 3: Model-pair agreement analysis of PrivBERT against other models over all PrivacyGLUE tasks; bars
represent proportions of examples per model-pair and task which fell into categories P and O; all models on the

x-axis are compared against PrivBERT

Category P

Category O

ID: 1978

Question: Who can see my information?

Answer: We do not sell or rent your personal infor-
mation to third parties for their marketing purposes
without your explicit consent.

Label: Relevant

ID: 33237

Question: Could the wordscapes app contain mal-
ware?

Answer: We encrypt the transmission of all informa-
tion using secure socket layer technology (SSL).
Label: Relevant

Table 4: Test-set examples from PrivacyQA that fall under categories P and O for PrivBERT vs. BERT

cialization.

6.1 Privacy vs. legal language domain

We initially provided evidence from Figure 1 sug-
gesting that the privacy language domain is distinct
from the legal language domain. We believe that
our PrivacyGLUE results further support this initial
claim. If the privacy language domain was sub-
sumed under the legal language domain, we could
have observed Legal-RoBERTa and Legal-BERT
performing competitively with PrivBERT. Instead,
we observed that the legal models underperformed
compared to both PrivBERT and RoBERTa, fur-
ther indicating that the privacy language domain is
distinct and requires its own NLP benchmark.

6.2 Model-pair agreement analysis

PrivBERT, the top performing model, differentiates
itself from other models by its in-domain pretrain-

ing on the PrivaSeer corpus (Srinath et al., 2021).
Therefore, we can infer that PrivBERT incorpo-
rated knowledge of privacy policies through its
pretraining and became specialized for fine-tuning
tasks in the privacy language domain. We investi-
gate this specialization using model-pair agreement
analysis to detect examples where PrivBERT had a
competitive advantage over other models. Conse-
quently, we detect examples where PrivBERT was
disadvantaged due to its in-domain pretraining.

We compare 10 X 10 = 100 random seed combi-
nations for all test-set pairs between PrivBERT and
other models. Each prediction-pair can be classi-
fied into one of four mutually exclusive categories
(B, P, O and N) shown below. Categories B and N
represent examples that are either not challenging
or too challenging for both PrivBERT and the other
model respectively. Categories P and O are more in-
teresting for us since they indicate examples where



PrivBERT had a competitive advantage and disad-
vantage over the other model respectively. There-
fore, we focus on categories P and O in our analysis.
We classify examples over all random seed combi-
nations and take the majority occurrence for each
category within its distribution.

Category B: Both PrivBERT and the other model
were correct, i.e. (PrivBERT, Other Model)

Category P: PrivBERT was correct and the other
model was wrong, i.e. (PrivBERT, — Other Model)

Category O: Other model was correct and
PrivBERT was wrong, i.e. (= PrivBERT, Other
Model)

Category N: Neither PrivBERT nor the other
model was correct, i.e. (= PrivBERT, = Other
Model)

Figure 3 shows a relative distribution of majority
categories across model-pairs and PrivacyGLUE
tasks. We observe that category P is always greater
than category O, which correlates with PrivBERT
outperforming all other models. We also observe
that category P is often the greatest when com-
pared against BERT, implying that PrivBERT has
the most competitive advantage over BERT. Sur-
prisingly, we also observe category O is often the
greatest when compared against BERT, implying
that BERT has the highest absolute advantage over
PrivBERT. This is an insightful observation since
we would have expected BERT to have the least
competitive advantage given its lowest overall Pri-
vacyGLUE performance.

To investigate PrivBERT’s competitive advan-
tage and disadvantage against BERT, we extract
several examples from categories P and O in the
PrivacyQA task for brevity. Two interesting exam-
ples are listed in Table 4 and additional examples
can be found in Table 8 in Appendix D. From Ta-
ble 4, we speculate that PrivBERT specializes in
example 1978 because it contains several privacy-
specific terms such as "third parties" and "explicit
consent”. On the other hand, we speculate that
BERT specializes in example 33237 since it con-
tains more generic information regarding encryp-
tion and SSL, which also happens to be a topic in
BERT’s Wikipedia pretraining corpus as seen in
Figure 1 and Table 2.

Looking at further examples in Table 8, we can
also observe that all sampled category P exam-

ples have the Relevant label while many sam-
pled category O examples have the Irrelevant
label. On further analysis of the PrivacyQA test-
set, we find that 71% of category P examples
have the Relevant label and 61% of category
O samples have the Irrelevant label. We can
infer that PrivBERT specializes in the minority
Relevant label while BERT specializes in the ma-
jority Irrelevant label as the former label could
require more privacy knowledge than the latter.

7 Conclusions and further work

In this paper, we describe the importance of data
privacy in modern digital life and observe the
lack of a NLP benchmark in the privacy language
domain despite its distinctness. To address this,
we propose PrivacyGLUE as the first comprehen-
sive benchmark for measuring general language
understanding in the privacy language domain.
We release benchmark performances from the
BERT, RoBERTa, Legal-BERT, Legal-RoBERTa
and PrivBERT transformer language models. Our
findings show that PrivBERT outperforms other
models by an average of 2 — 3% over all Priva-
cyGLUE tasks, shedding light on the importance of
in-domain pretraining for privacy policies. We ap-
ply model-pair agreement analysis to detect Priva-
cyGLUE examples where PrivBERT’s pretraining
provides competitive advantage and disadvantage.
By benchmarking holistic model performances, we
believe PrivacyGLUE can accelerate NLP research
into the privacy language domain and ultimately
improve general language understanding of privacy
policies for both humans and Al algorithms.

Looking forward, we envision several ways to
further our study. Firstly, we intend to apply deep-
learning explainability techniques such as Inte-
grated Gradients (Sundararajan et al., 2017) on
examples from Table 4, to explore PrivBERT’s
and BERT’s token-level attention attributions for
categories P and O. Additionally, we intend to
benchmark large prompt-based transformer lan-
guage models such as T5 (Raffel et al., 2020) and
TO (Sanh et al., 2022), as they incorporate large
amounts of knowledge from the various sequence-
to-sequence tasks that they were trained on. Finally,
we plan to continue maintaining our PrivacyGLUE
GitHub repository and host new model results from
the community.



Limitations

To the best of our knowledge, our study has two
main limitations. While we provide performances
from transformer language models, our study does
not provide human expert performances on Priva-
cyGLUE. This would have been a valuable contri-
bution to judge how competitive language models
are against human expertise. However, this lim-
itation can be challenging to address due to the
difficulty in finding experts and high costs for their
services. Additionally, our study only focuses on
English language privacy tasks and omits multi-
lingual scenarios. Multilingual tasks would have
been very interesting and relevant to explore, but
also involve significant complexity since privacy
experts for non-English languages may be harder
to find.

Ethics Statement

Original work attribution

All datasets used to compose PrivacyGLUE are
publicly available and originate from previous stud-
ies. We cite these studies in our paper and include
references for them in our GitHub repository. Fur-
thermore, we clearly illustrate how these datasets
were used to form the PrivacyGLUE benchmark.

Social impact

PrivacyGLUE could be used to produce fine-tuned
transformer language models, which could then be
utilized in downstream applications to help users
understand privacy policies and/or answer ques-
tions regarding them. We believe this could have a
positive social impact as it would empower users
to better understand lengthy and complex privacy
policies. That being said, application developers
should perform appropriate risk analyses when us-
ing fine-tuned transformer language models. Im-
portant points to consider include the varying per-
formance ranges on PrivacyGLUE tasks and known
examples of implicit bias, such as gender and racial
bias, that transformer language models incorporate
through their large-scale pretraining (Bender et al.,
2021).

Software licensing

We release source code for PrivacyGLUE under
version 3 of the GNU General Public License (GPL-
3.0). We chose GPL-3.0 as it is a strong copyleft
license that protects user freedoms such as the free-
dom to use, modify and distribute software.
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A Detailed label information

Task Labels

OPP-115 Data Retention, Data Security, Do Not Track, First Party Collection/Use,
International and Specific Audiences Introductory/Generic, Policy
Change, Practice not covered, Privacy contact information, Third Party
Sharing/Collection, User Access, Edit and Deletion, User Choice/Control

PI-Extract Subtask-I: {B,I}-COLLECT, O

Subtask-II: {B,I}-NOT_COLLECT, O
Subtask-III: {B,I}-NOT_SHARE, O
Subtask-1V: {B,I}-SHARE, O

Not Policy, Policy

Policy-Detection

PolicylE-A Other, data-collection-usage, data-security-protection,
data-sharing-disclosure, data-storage-retention-deletion

PolicylE-B Subtask-I: {B,I}-data-protector, {B,I}-data-protected, {B,I}-data-collector,
{B,I}-data-collected, {B,I}-data-receiver, {B,I}-data-retained,
{B,I}-data-holder, {B,I}-data-provider, {B,I}-data-sharer, {B,I}-data-shared,
storage-place, {B,I}-retention-period, {B,I}-protect-against, {B,I}-action, O
Subtask-II: {B,I}-purpose-argument, {B,I}-polarity, {B,I}-method,
{B,I}-condition-argument, O

PrivacyQA Irrelevant, Relevant

Table 5: Breakdown of labels for each PrivacyGLUE task; PolicyQA is omitted from this table since it is a reading
comprehension task and does not have explicit labels like other tasks

B PrivacyGLUE task examples

Task Input Target
OPP-115 Revision Date: March 24th 2015 Introductory/Generic,
Policy Change
PI-Extract We may collect and share your IP ad- Subtask-I: 0 0 0 0 0 B-COLLECT I-COLLECT

dress but not your email address with
our business partners .

I-COLLECT 00 0O0000000O0

Subtask-II: 0 0 0 0 0 0 0 O O O B-NOT_COLLECT
I-NOT_COLLECT I-NOT_COLLECT O 0 0 O O
Subtask-II: 0 0 0 0 0 0 0 0 O O B-NOT_SHARE
I-NOT_SHARE I-NOT_SHARE 0 0 0 0 O
Subtask-IV:0 0 0 O O B-SHARE I-SHARE I-SHARE
00000000O0O

Policy-Detection

Log in through another service:
* Facebook * Google

Not Policy

PolicylE-A To backup and restore your Pocket AC data-collection-usage
camera log
PolicylE-B Access to your personal information is Subtask-I: 0 0 B-data-provider
restricted . B-data-protected I-data-protected O
B-action O
Subtask-II: B-method 0 0 0 0 0 0 O
PolicyQA Question: How do they secure my Answer: Users can visit our site anonymously
data?
Context: Users can visit our site anony-
mously
PrivacyQA Question: What information will you Relevant

collect about my usage?
Answer: Location information

Table 6: Representative examples of each PrivacyGLUE benchmark task
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C PrivacyGLUE benchmark results

Task Metric’ BERT RoBERTa Legal-BERT Legal-RoBERTa PrivBERT
m-F 78.4. 79.5. 79.6. 79.1. 82.1.
OPP-115 1 +0.6 +1.1 +1.0 +0.7 +0.5
u-Fy 84.0.05 85.4.05 84.3.07 84.7.03 87.2.04
m-F 60.0427 624,44 59.5430 60.5439 66.4.34
PI-Extract
M'Fl 60'0i27 62.4144 59‘5i30 60‘5i39 66.4i34
. . rn-Fl 85-3¢1A8 86.9i1.3 86.6i1~0 86.4i2.0 87.3i1.1
Policy-Detection
wF 921,  927.08 92.7.05 924, 929,05
m-F 72.9 73.2 73.2 73.5: 75.3
PolicyIE—A 1 +1.7 +1.6 +1.5 +1.5 +2.2
u-Fy 84.74+10 84.8106 84.7.05 84.8.03 86.2.¢
m-F 50.3. 52.8. 51.5. 53.5. 554.
PolicyIE—B 1 +0.7 +0.6 +0.7 +0.5 +0.7
M‘Fl 50-3i0.5 54.510,7 52.2i1,0 53.6i0,9 55.711,3
s-F 55.7. 57.4. 55.3. 56.3. 59.3.
PolicyQA 1 +0.5 +0.4 +0.7 +0.6 +0.5
m-F 53.6. 54.4., 53.6. 54.4, 55.3.
PrivacyQA 1 +0.8 +0.3 +0.8 +0.5 +0.6
u-F; 90.049,1 90.2100 90.0.9.1 90.2.0.1 90.2.9

Table 7: Test-set results of the PrivacyGLUE benchmark; ¥ m-F; refers to macro-average F;, u-F; refers to the
micro-average Fy, s refers to sample-average F, EM refers to the exact match accuracy, metrics are reported as
percentages with the following format: mean..sandard deviation
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D Additional PrivacyQA examples from categories P and O

Category P Category O

ID: 9227 ID: 8749

Question: Will the app use my data for marketing Question: Will my fitness coach share my informa-
purposes? tion with others?

Answer: We will never share with or sell the infor-
mation gained through the use of Apple HealthKit,
such as age, weight and heart rate data, to advertisers
or other agencies without your authorization.
Label: Relevant

Answer: Develop new services.
Label: Irrelevant

ID: 10858

Question: What information will this app have ac-
cess to of mine?

Answer: Information you make available to us when
you open a Keep account, as set out above;

Label: Relevant

ID: 47271

Question: Who will have access to my medical in-
formation?

Answer: 23andMe may share summary statistics,
which do not identify any particular individual or
contain individual-level information, with our quali-
fied research collaborators.

Label: Irrelevant

ID: 18704

Question: Does it share my personal information
with others?

Answer: We may also disclose Non-Identifiable In-
formation:

Label: Relevant

ID: 54904

Question: What data do you keep and for how long?
Answer: We may keep activity data on a non-
identifiable basis to improve our services.

Label: Irrelevant

ID: 45935

Question: Will my test results be shared with any
third party entities?

Answer: 23andMe may share summary statistics,
which do not identify any particular individual or
contain individual-level information, with our quali-
fied research collaborators.

Label: Relevant

ID: 57239

Question: Do you sell any of our data?

Answer: (c) Advertising partners: to enable the lim-
ited advertisements on our service, we may share a
unique advertising identifier that is not attributable
to you, with our third party advertising partners, and
advertising service providers, along with certain tech-
nical data about you (your language preference, coun-
try, city, and device data), based on our legitimate
interest.

Label: Relevant

ID: 50467

Question: Can I delete my personally identifying
information?

Answer: (Account Deletion), we allow our cus-
tomers to delete their accounts at any time.

Label: Relevant

ID: 59334

Question: Does the app protect my account details
from being accessed by other people?

Answer: Note that chats with bots and Public Ac-
counts, and communities are not end-to-end en-
crypted, but we do encrypt such messages when sent
to the Viber servers and when sent from the Viber
servers to the third party (the Public Account owner
and/or additional third party tool (eg CRM solution)
integrated by such owner).

Label: Irrelevant

Table 8: Additional test-set examples from PrivacyQA that fall under categories P and O for PrivBERT vs. BERT;
note that these examples are not paired and can therefore be compared in any order between categories
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E Benchmark configuration

We run PrivacyGLUE benchmark tasks with the
following configuration:

e We train all models for 20 epochs with a batch
size of 16. We utilize a linear learning rate
scheduler with a warmup ratio of 0.1 and peak
learning rate of 3 X 107>. We utilize AdamW
(Loshchilov and Hutter, 2017) as our opti-
mizer. Finally, we monitor respective met-
rics on the validation datasets and utilize early
stopping if the validation metric does not im-
prove for 5 epochs.

e We use Python v3.8.13, CUDA vl1l1.7,
PyTorch v1.12.1 (Paszke et al., 2019) and
Transformers v4.19.4 (Wolf et al., 2020)
as our core software dependencies.

o We use the following
HuggingFace model tags:
bert-base-uncased, roberta-base,
nlpaueb/legal-bert-base-uncased,
saibo/legal-roberta-base,
mukund/privbert for BERT, RoBERTa,
Legal-BERT, Legal-RoBERTa and PrivBERT
respectively.

e We use 10 random seeds for each benchmark
run, i.e. {0,1,2,3,4,5,6,7,8,9}. This pro-
vides a distribution of results that can be used
for statistical significance testing.

e We run the PrivacyGLUE benchmark on a
Lambda workstation with 4 X NVIDIA RTX
A4000 (16 GB VRAM) GPUs for ~180 hours.

e We use Weights and Biases v0.13.3
(Biewald, 2020) to monitor model metrics dur-
ing training and for intermediate report gener-
ation.



