
Parameterized Physics-informed Neural Networks for Parameterized PDEs

Woojin Cho 1 2 Minju Jo 3 Haksoo Lim 1 Kookjin Lee 2 Dongeun Lee 4 Sanghyun Hong 5 Noseong Park 6

Abstract
Complex physical systems are often described
by partial differential equations (PDEs) that de-
pend on parameters such as the Raynolds number
in fluid mechanics. In applications such as de-
sign optimization or uncertainty quantification,
solutions of those PDEs need to be evaluated at
numerous points in the parameter space. While
physics-informed neural networks (PINNs) have
emerged as a new strong competitor as a surro-
gate, their usage in this scenario remains under-
explored due to the inherent need for repetitive
and time-consuming training. In this paper, we ad-
dress this problem by proposing a novel extension,
parameterized physics-informed neural networks
(P2INNs). P2INNs enable modeling the solutions
of parameterized PDEs via explicitly encoding a
latent representation of PDE parameters. With the
extensive empirical evaluation, we demonstrate
that P2INNs outperform the baselines both in ac-
curacy and parameter efficiency on benchmark 1D
and 2D parameterized PDEs and are also effective
in overcoming the known “failure modes”.

1. Introduction
Scientific machine learning (SML) (Baker et al., 2019)
has been growing fast. Unlike traditional tasks in ma-
chine learning, e.g., image classification and object detec-
tion, SML requires exact satisfaction of important physical
characteristics. Recent work has developed various deep-
learning models that encode such physical characteristics,
that are physically-consistent (e.g., by enforcing conserva-
tion laws (Raissi et al., 2019; Lee & Carlberg, 2021) or
preserving structures (Greydanus et al., 2019; Toth et al.,
2019; Lutter et al., 2018; Cranmer et al., 2020b; Lee et al.,
2021)) and symmetrical (e.g., modeling invariance or equiv-
ariance by design (Battaglia et al., 2018; Satorras et al.,

1Yonsei University 2Arizona State University 3LG CNS 4Texas
A&M University-Commerce 5Oregon State University 6KAIST.
Correspondence to: Noseong Park <noseong@kaist.ac.kr>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Table 1. P2INNs greatly improve the quality of CDR solutions.
We compare the average absolute (Abs.) and relative (Rel.) errors
of PINN and P2INN in six different CDR equations. IMP is the
improvement ratio of P2INN to PINN. (see Section 4.1 for details).

PDE type
PINN P2INN IMP. (%)

Abs. Rel. Abs. Rel. Abs. Rel.

Convection 0.0496 0.0871 0.0330 0.0241 33.43 72.37

Diffusion 0.3611 0.6939 0.1592 0.3190 55.91 54.03

Reaction 0.5825 0.6431 0.0041 0.0069 99.30 98.92

Conv.-Diff. 0.1493 0.2793 0.0532 0.1236 64.34 55.75

Reac.-Diff. 0.4744 0.5614 0.1319 0.2008 72.21 64.24

Conv.-Diff.-Reac. 0.4811 0.5315 0.0391 0.0759 91.88 85.72

PINN PINN-R PINN-seq2seq P2INN
(ours)

10 2

10 1

Er
ro

r

Abs.
Rel.

Figure 1. P2INNs outperform the baselines. P2INNs reduce the
average L2 absolute (Abs.) and relative (Rel.) errors by 100×
compared to the baselines. The results are for reaction equations –
the most challenging problems for PINNs.

2021)). Among those methods, physics-informed neural
networks (PINNs) (Raissi et al., 2019) are gaining traction
in the research community because of their sound compu-
tational formalism to enforce governing physical laws to
learn solutions. PINNs are also easy to implement by using
automatic differentiation (Baydin et al., 2018) and gradient-
based training algorithms that are readily available in any
deep-learning frameworks, such as PYTORCH (Paszke et al.,
2019) or TENSORFLOW (Abadi et al., 2016).

PINNs parameterize the solution u(x, t) of partial differen-
tial equations (PDEs) using a neural network uΘ(x, t) that
takes the spatial and temporal coordinates (x, t) as input
and has Θ as the model parameters. During training, the
neural network minimizes a PDE residual loss (cf. Eq. (12))
denoting the governing equation, at a set of collocation

1



Parameterized Physics-informed Neural Networks for Parameterized PDEs

points, and a data matching loss (cf. Eqs. (11) and (13)),
which enforces an initial condition and a boundary con-
dition, at another set of collocation points sampled from
initial/boundary conditions. This computational formalism
enables to infuse the physical laws, described by the govern-
ing equation F(x, t, u), into the solution model and, thus,
is denoted as “physics informed.” PINNs have shown to be
effective in solving many different PDEs, such as Navier–
Stokes equations (Shukla et al., 2021; Jagtap & Karniadakis,
2020; Jagtap et al., 2020). While powerful, PINNs suffer
from several obvious weaknesses.

W1) PDE operators are highly nonlinear (making training
extremely difficult);

W2) Repetitive trainings from scratch are needed when
solutions to new PDEs are sought (even for new PDEs
arising from new PDE parameters in parameterized
PDEs).

There have been various efforts to mitigate each of these
issues: (For addressing W1) curriculum-learning-type train-
ing algorithms that train PINNs from easy PDEs to hard
PDEs1 (Krishnapriyan et al., 2021), and (for addressing W2)
meta-learning PINNs (Liu et al., 2022); or directly learn-
ing solutions of parameterized PDEs such that uΘ(x, t;µµµ),
where µµµ is a set of PDE parameters, e.g., µµµ = [β, ν, ρ] in
convection-diffusion-reaction (CDR) equations. However,
there has been a less focus on addressing both problems in
a unified PINN framework.

To mitigate the both issues in W1 and W2 simultaneously,
we propose a variant of PINNs for solving parameterized
PDEs, called parameterized physics-informed neural net-
works (P2INNs). P2INNs approximate solutions as a neu-
ral network of a form uΘ(x, t;µµµ) (for resolving W2) and
are capable of inferring approximate solutions with accu-
racy (cf. Table 1 and Figure 1) even for harder PDEs
(for resolving W1). A novel modification proposed in our
model is to explicitly extract a hidden representation of the
PDE parameters by employing a separate encoder network,
hhhparam = gΘp

(µµµ), and uses this hidden representation to
parameterize the solution neural network, uΘ(x, t;hhhparam).
Rather than simply treating µµµ as a coordinate in the pa-
rameter domain, we infer useful information of PDEs from
the PDE parameters µµµ, constructing the latent manifold on
which the hidden representation of each PDE lies.

To demonstrate the effectiveness of the proposed model, we
demonstrate the performance of the proposed model with
well-known benchmarks (Krishnapriyan et al., 2021), i.e.,
parameterized CDR equations. As studied in (Krishnapriyan
et al., 2021), certain choices of the PDE parameters (e.g.,
high convective or reaction term) make training PINNs very

1Following the notational conventions in curriculum learning,
we use the terms, “easy” and “hard,” to indicate data that are easy
or hard for neural networks to learn.

challenging (i.e., harder PDEs), and our goal is to show that
the proposed method is capable of producing approximate
solutions with reasonable accuracy for those harder PDEs.

To sum up, our contributions are as follows:

• We design a novel neural network architecture for solv-
ing parameterized PDEs, P2INNs, which significantly
improves the performance of PINNs overcoming the
well-known weaknesses (W1 and W2).

• We empirically demonstrate that explicitly encoding
the PDE parameters into a hidden representation plays
an important role in improving performance.

• We show that the proposed P2INNs are able to learn
all the experimented benchmark PDEs via a single
training run and greatly outperforms existing PINN-
based methods in terms of prediction accuracy.

2. Background and Motivation
We start by providing illustrative examples of parameterized
PDEs and their solutions to motivate a development of a
new efficient variant of PINNs for multi-query and real-time
scenarios. Details on the PDEs can be found in Appendix.

2.1. Convection-Diffusion-Reaction Equations

As an example, we consider parameterized CDR equations:

∂u

∂t
+β

∂u

∂x
−ν

∂2u

∂x2
−ρu(1−u)=0, x ∈ Ω, t ∈ [0, T ]. (1)

The equation describes how the state variable u changes
over time with the existence of convective (the second term),
diffusive (the third term), and reactive (the fourth term)
phenomena. Here, β is a coefficient about how fast trans-
portable the equation is, ν is a diffusivity for the diffusion
phase, and ρ is a scaling parameter about spreading ve-
locity. Note that we choose the well-known Fisher’s form
ρu(1− u), which was used in (Krishnapriyan et al., 2021),
as our reaction term.

We note that we choose this class of PDEs due to many
advantages: (1) solution characteristics are varying signif-
icantly based on PDE parameters, (2) some PDE parame-
ter values introduce challenging situations for PINNs (a.k.a
“failure modes”), and (3) analytical solutions exist. However,
we also note that our proposed method is not specifically
limited to this PDE class, but is applicable to general PDE
classes (e.g., see Section 4.3 for 2D cases).

2.2. Motivation

Our goal is to develop a method to solve parameterized
PDEs via the computational formalism of PINNs’ overcom-
ing W1 and W2. With this in mind, we first attempt to obtain

2



Parameterized Physics-informed Neural Networks for Parameterized PDEs

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

(a) Conv. (β = 5)

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

(b) Conv. (β = 10)

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

(c) Conv. (β = 15)

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(d) Reac. (ρ = 1)

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(e) Reac. (ρ = 4)

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(f) Reac. (ρ = 7)

Figure 2. The ground-truth solutions of various convection equa-
tions with an initial condition of 1 + sin(x) (Figure 2. (a)-(c))
and reaction equations with an initial condition of a Gaussian
distribution N(π, (π/2)2) (Figure 2. (d)-(f)). We note that var-
ied solutions are made (with similar architectures) depending on
changes in coefficient.

intuitions from the visual inspection of solution snapshots
displayed on the (x, t)-coordinate space (Figures 2 and 3).

The first set of the examples is shown in Figure 2: The
ground-truth solutions of convection equations (top row) and
reaction equations (bottom row) with varying parameters
β and ρ, respectively. As we vary the PDE parameter, e.g.,
increasing β, we obtain gradually changing solutions (i.e.,
becoming more oscillatory, as we go left from Figure 2(a) to
Figure 2(c)). This suggests that model parameters of PINNs
for varying PDE parameters could have similar values and
this can be leveraged in the training of PINNs.

This observation indeed has been investigated in (Krish-
napriyan et al., 2021) to solve hard PDEs for PINNs. With
a higher convective term (large β), the PDE becomes a hard
problem for PINNs to solve due to the spectral bias (Ra-
haman et al., 2019) (i.e., the solution is highly oscillatory
in time). Thus, (Krishnapriyan et al., 2021) proposed a
curriculum-learning algorithm which starts to feed an easier
PDE and gradually increases β until it reaches the target
value. This approach, however, drops all the intermediate
model parameters obtained in the course of training. Instead,
in our approach, we utilize all PDE information to train a
single model for the solutions of parameterized PDEs.

The second set of examples (Figure 3, the solutions of differ-
ent types of PDEs) provide a similar observation as above:
even for different classes of PDEs (e.g., convection, dif-
fusion, and convection-diffusion equations), the solutions
gradually change, which can be leveraged in training PINNs.

Motivation #1: a latent space of parameterized PDEs
may exist. Since PDEs with similar parameter settings
share common characteristics, we conjecture that solutions

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

(a) Conv.

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

(b) Diff.

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

(c) Conv.-Diff.

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(d) Reac.

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(e) Diff.

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(f) Reac.-Diff.

Figure 3. The ground-truth solutions of various CDR equations
with an initial condition of 1 + sin(x) (Figure 3. (a)-(c)) or a
Gaussian distribution N(π, (π/2)2) (Figure 3. (d)-(f)). We note
that the solution in the last column reflects the first two columns’
solutions. Therefore, there also exist similarities across different
equation types.

of parameterized PDEs can be embedded onto a latent space
and reconstructed by using a shared decoder network.

Motivation #2: it will be more effective to solve similar
problems simultaneously. Considering the similarities
between solutions parameterized by similar PDE parameters,
we conjecture that training can be improved by attempting to
solve all those similar problems together — multi-task learn-
ing approaches are also based on the same intuition (Kendall
et al., 2018; Ruder, 2017).

Motivated by the observations, we develop a new approach
that alleviates the two known weaknesses W1 and W2.

3. P2INNs: Parameterized PINNs
Now we introduce our parameterized physics-informed neu-
ral networks (P2INNs). In essence, our goal is to design a
neural network architecture that effectively emulates the ac-
tion of the parameterized PDE solution function, u(x, t;µµµ).

3.1. Model Architecture

For P2INNs, we propose a modularized design of the neural
network uΘ(x, t;µµµ), which consists of three parts, i.e., two
separate encoders gθp and gθc , and a manifold network gθg
such that

uΘ(x, t;µµµ) = gθg ([gθc(x, t); gθp(µµµ)]), (2)

where Θ = {θc, θp, θg} denotes the set of model parame-
ters. The two encoders, gθc and gθp , take the spatiotemporal
coordinate (x, t) and the PDE parametersµµµ as inputs and ex-
tract hidden representations such that hhhcoord = gθc(x, t) and
hhhparam = gθp(µµµ). The two extracted hidden representations
are then concatenated and fed into the manifold network to

3



Parameterized Physics-informed Neural Networks for Parameterized PDEs

C
on

ca
te

na
te

PDE parameters

Spatial / temporal coodrdinates

Governing equation

PDE residual loss

Data matching loss

Boundary condition

Figure 4. P2INNs architecture. The two encoders gθp and gθc are added to generate better representations for the PDE parameter and the
spatial/temporal coordinate. We also customize the manifold network gθg . In this figure, we provide the CDR equation as an example.

infer the solution of of the PDE with the parameters µµµ at
the coordinate (x, t), i.e., û(x, t;µµµ) = gθg ([hhhcoord;hhhparam]).
Figure 4 summarizes the P2INNs architecture.

The important design choice here is that we explicitly en-
code the PDE parameters into a hidden representation as
opposed to treating the PDE parameters merely as a co-
ordinate in the parameter domain, e.g., (x, t,µµµ) is com-
bined and directly fed into our ablation model, called
PINN-P, for our ablation study in Section 4.2.3. With
the abuse of notation, P2INNs can be expressed as a func-
tion of (x, t), parameterized by the hidden representation:
uΘ(x, t;µµµ) = u{θc,θg}(x, t;hhhparam). This expression em-
phasizes our intention that we explicitly utilize the PDE
model parameters to characterize the behavior of the solu-
tion neural network.

3.1.1. ENCODER FOR EQUATION INPUT

The equation encoder gθp reads the PDE parameters, and
generates a hidden representation of the equation, denoted
as hhhparam. We employ the following fully-connected (FC)
structure for the encoder:

hhhparam = σ(FCDp · · · (σ(FC2(σ(FC1(µµµ)))))), (3)

where σ denotes a non-linear activation, such as ReLU and
tanh, and FCi denotes the i-th FC layer of the encoder. Dp

means the number of FC layers.

We note that hhhparam has a size larger than that of µµµ in our
design to encode the space and time-dependent character-
istics of the parameterized PDE. Since highly non-linear
PDEs show different characteristics at different spatial and
temporal coordinates, we intentionally employ relatively
high-dimensional encoding.

3.1.2. ENCODER FOR SPATIOTEMPORAL COORDINATE

The spatial and temporal coordinate encoder gθc generates
a hidden representation hhhcoord for (x, t). This encoder has

the following FC layer structure:

hhhcoord = σ(FCDc
· · · (σ(FC2(σ(FC1(x, t)))))), (4)

where FCi and Dc denote the i-th FC layer of this encoder
and the number of FC layers, respectively.

3.1.3. MANIFOLD NETWORK

The manifold network gθg reads the two hidden represen-
tations, hhhparam and hhhcoord, and infer the input equation’s
solution at (x, t), denoted as û(x, t;µµµ). With the inferred so-
lution û, we construct two losses, Lu and Lf . The manifold
network can have various forms but we use the following
form:

û(x, t;µµµ) = σ(FCDg
· · ·σ(FC1(hhhconcat))), (5)

where hhhconcat = hhhcoord ⊕ hhhparam, and ⊕ is the concatenation
of the two vectors; Dg denotes the number of FC layers.

3.2. Training

Model training is performed by minimizing the regular
PINN loss. With the prediction û produced by P2INNs,
our basic loss function consists of three terms as follows:

L(Θ) = w1Lu + w2Lf + w3Lb, , (6)

where Lu, Lb, and Lf enforces initial, boundary conditions,
and physical laws in PDEs, respectively, and w1, w2, w3 ∈
R are hyperparameters. In general, the overall training
method follows the training procedure of the original PINN
(Raissi et al., 2019). The only exception is that the PDE
residual loss associated with multiple PDEs is minimized
in a mini-batch whereas in the original PINN, the residual
of only one PDE is minimized. To be more specific, in
each iteration, we create a mini-batch of {µµµi, (xi, ti)}Bi=1,
where B is a mini-batch size. We randomly sample the
collocation points and, thus, there can be multiple different
PDEs, identified by µµµi, in a single mini-batch.

4



Parameterized Physics-informed Neural Networks for Parameterized PDEs

... ...

Figure 5. P2INNs with SVD modulation. From the pre-trained
decoder layer of P2INN, we obtain the bases Φl,Ψl for parameter-
ized PDEs through SVD (cf. Eq. (7)). Note that only the diagonal
matrices αl are used for fine-tuning. (The dotted lines represent
learnable parameters.)

3.3. Fast Fine-tuning

As the ultimate goal in this study is to deploy trained mod-
els to a set of specific PDE parameters of our interest, we
devise a method to fine-tune the trained models to improve
the solution accuracy at those query PDE parameters. To
this end, we adopt an idea of SVD-PINNs (Gao et al., 2022),
which shows that extracting basis through singular value de-
composition (SVD) from the weights of a PINN trained on a
single PDE equation is effective in transferring information.
Extending this insight, we introduce an SVD modulation by
obtaining bases through applying SVD to the weights of the
decoder layers of P2INNs. Specifically, only the manifold
network gθg is transformed to a form that can be modulated
(cf. Figure 5); each layer, excluding the first and last layers,
is decomposed as follows:

FCl = ΨlαlΦ
T
l , l = 2, 3, . . . , Dg − 1. (7)

Then, during fine-turning, we set {αl}
Dg−1
l=2 to be learnable,

while keeping all other parameters in the network fixed. It
is an option to fix the parameters of FC1 and FCDg

.

In the field of implicit neural representations, where the
study on learning coordinate-based continuous neural func-
tion is conducted, the shift modulation (Dupont et al., 2022)
has been one of leading architectural choices. This involves
adding a shift term to the bias of each layer in the model,
to better represent various data with a small number of
learnable parameter. However, we found from empirical
experiments that modulating by shift in PINNs does not
lead to significant performance improvement. We discuss
this further in Section 4.2.4.

4. Evaluation
In this section, we test the performance of P2INNs on the
benchmark PDE problems: 1D CDR equations and 2D
Helmholtz equations, both of which are known to suffer
from the failure modes. We first layout our experimental
setup and show that P2INNs outperform the baselines with
an extensive evaluation. We further analyze how P2INNs ad-
dress the failures shown in Section 2. Due to space reasons,
detailed experimental setups and results are in Appendix.

4.1. Experimental Setup

Datasets. For simplicity but without loss of generality,
we assume the parameterized 1D CDR equations and 2D
Helmholtz equations (cf. Eqs. (1) and (8)). To generate the
ground-truth data, we use either analytic or numerical solu-
tions. In case of 1D CDR equations, we analyze the target
equations with three types of initial conditions u(x, 0): two
Gaussian distributions of N(π, (π/2)2) and N(π, (π/4)2),
and a sinusoidal function of 1 + sin(x). To solve the equa-
tion, we use the Strang splitting method (Strang, 1968). For
2D Helmholtz equations, we obtain the exact solution by
calculating it directly.

Baseline and Ablation Methods. We compare P2INNs
with three baselines. PINN is the original design based on
fully-connected layers with non-linear activations in (Raissi
et al., 2019), and PINN-R is its enhancement by using
residual connections, which was used in (Kim et al., 2021).
PINN-seq2seq (Krishnapriyan et al., 2021) is a model that
applies the seq2seq learning method to the PINN model,
sequentially learning data over time. We divided the entire
time into 10 steps. In addition, we define one ablation model
for our method, called PINN-P, which has the same structure
as original PINN, but the PDE parameters µµµ is treated as a
coordinate in the parameter space, i.e., (x, t,µµµ).

Methodology. We train PINN and PINN-R for each pa-
rameter configuration in each equation type, following the
standard PINN training method — in other words, there are
as many models as the number of PDE parameter configura-
tions for an equation type. To train P2INNs, however, we
train it with all the initial conditions and collocation points
of the multiple parameter configurations in each equation
type, following the training method in Section 3.2. There-
fore, we have only one model in each equation type.

Metrics. To evaluate the performance of the model, we
measure the L2 relative and absolute errors between the
solution predicted by the model and the analytic solution.
The relative error and the absolute error of the i-th equa-
tion are defined as the averages of ∥ûi − ui∥2 / ∥ui∥2 and
∥ûi − ui∥2, where i ∈ {1, ..., Ne} and Ne is the number
of equations used for the task. At this time, the errors are
measured for each test points and the average value is used.
In addition, we use max error and explained variance score
for further analysis (cf. Table 12). We test with 3 seed
numbers and report their mean.

4.2. 1D CDR Equations

In the experiments, we employ 6 different equation types
stemmed from CDR equations (cf. Section 2.1) with the
varying parameters as listed in Table 5, and the experimen-
tal results are summarized in Table 2. Whereas existing

5



Parameterized Physics-informed Neural Networks for Parameterized PDEs

Table 2. The relative and absolute L2 errors over all the equations. Our P2INNs surpass baselines in all but one cases, even without
fine-tuning. IMP. denotes the rate of improvement of our model over the best baseline.

PDE type Coefficient Metric PINN PINN-R PINN-seq2seq P2INN IMP. (%)range

Class 1

Convection

1∼5 Abs. err. 0.0183 0.0222 0.1281 0.0039 78.44
Rel. err. 0.0327 0.0381 0.2160 0.0079 75.82

1∼10 Abs. err. 0.0164 0.0666 0.1924 0.0093 43.62
Rel. err. 0.0307 0.1195 0.3276 0.0179 41.78

1∼20 Abs. err. 0.1140 0.1624 0.2252 0.0198 82.64
Rel. err. 0.1978 0.2779 0.3819 0.0464 76.55

Diffusion

1∼5 Abs. err. 0.1335 0.1665 0.1987 0.1322 0.97
Rel. err. 0.2733 0.3462 0.4050 0.2710 0.84

1∼10 Abs. err. 0.2716 0.3175 0.3149 0.1539 43.34
Rel. err. 0.5259 0.6206 0.6174 0.3116 40.75

1∼20 Abs. err. 0.6782 0.7054 0.3346 0.1916 42.74
Rel. err. 1.2825 1.3401 0.6442 0.3745 41.87

Reaction

1∼5 Abs. err. 0.3341 0.3336 0.4714 0.0015 99.54
Rel. err. 0.3907 0.3907 0.5907 0.0027 99.31

1∼10 Abs. err. 0.6232 0.3619 0.6924 0.0065 98.19
Rel. err. 0.6926 0.4190 0.7931 0.0089 97.88

1∼20 Abs. err. 0.7902 0.4320 0.8246 0.0042 99.02
Rel. err. 0.8460 0.4932 0.8960 0.0092 98.14

Class 2

Conv.-Diff.

1∼5 Abs. err. 0.0610 0.0654 0.0979 0.0399 34.61
Rel. err. 0.1175 0.1289 0.1950 0.0892 24.05

1∼10 Abs. err. 0.1133 0.1313 0.0917 0.0576 37.25
Rel. err. 0.2098 0.2510 0.1959 0.1320 32.62

1∼20 Abs. err. 0.2735 0.2118 0.0645 0.0622 3.51
Rel. err. 0.5106 0.4154 0.1504 0.1485 1.28

Reac.-Diff.

1∼5 Abs. err. 0.1900 0.1876 0.4201 0.1225 34.70
Rel. err. 0.2702 0.2777 0.5346 0.1856 31.31

1∼10 Abs. err. 0.5166 0.3809 0.6288 0.1833 51.88
Rel. err. 0.6141 0.4790 0.7274 0.2756 42.46

1∼20 Abs. err. 0.7167 0.7210 0.7663 0.0898 81.03
Rel. err. 0.7998 0.8105 0.8337 0.1411 74.68

Class 3 Conv.-Diff.-Reac.

1∼5 Abs. err. 0.1663 0.0865 0.4943 0.0311 64.02
Rel. err. 0.2057 0.1415 0.6104 0.0525 62.88

1∼10 Abs. err. 0.5321 0.3170 0.7051 0.0508 83.98
Rel. err. 0.5928 0.3772 0.8027 0.0939 75.10

1∼20 Abs. err. 0.7450 0.4080 0.7136 0.0353 91.94
Rel. err. 0.7960 0.4645 0.8100 0.0812 82.88

baselines show fluctuating performance, our P2INNs show
stable performance for all the 6 different equation types. The
most notable accuracy differences are made for the diffu-
sion, the reaction, the reaction-diffusion, and the convection-
diffusion-reaction equations.

For instance, PINN-R marks an absolute error of 0.4320
whereas P2INN achieves an error of 0.0042 for the reaction
equations with the coefficient range of 1 to 20, i.e., 102 time
smaller error. The smallest accuracy differences happen for
the diffusion equations with the coefficient range of 1 to
5. While PINN and P2INN show similar performance, our
method much better predict reference solution for the range
of 1 to 20, i.e., an error or 0.6782 by PINN vs. 0.1916 by
P2INN. Since large coefficients incur equations difficult to
solve, all existing baselines commonly fail in the range. In
all cases, our method outperforms PINNs, depending on
the equation type, by 33% to 99% as reported in Table 1.
For the reaction equations, the improvement ratio by our
method is significant.

4.2.1. INFERRING SOLUTIONS OF UNSEEN PDE
PARAMETERS

We further evaluate our P2INNs in more challenging situ-
ations: testing trained models on PDE parameters that are
unseen during training, which can be considered as real-time
multi-query scenarios.

For reaction equations, we train P2INNs on ρ ∈ [1, 10]
with interval 1 and conduct interpolation on ρ ∈ [1.5, 9.5]
with interval 1 and extrapolation on ρ ∈ [10.5, 15] with
interval 0.5. As shown in Figure 6, PINNs’ failure for ρ > 4
contrasts P2INNs’ exceptional performance, demonstrating
its resilience in extrapolation, not limited good performance
only for learned or closely aligned parameters.

4.2.2. P2INNS IN PINN’S FAILURE MODES

It is well known that PINNs have several failure cases. In
particular, CDR equations with large coefficients are no-

6



Parameterized Physics-informed Neural Networks for Parameterized PDEs

1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0
0.0
0.2
0.4
0.6
0.8
1.0

L 2
 a

bs
ol

ut
e 

er
ro

r

PINN (seen)
P2INN (unseen)
P2INN (seen)

(a) L2 absolute error

1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0
0.0
0.2
0.4
0.6
0.8
1.0

L 2
 re

la
tiv

e 
er

ro
r

PINN (seen)
P2INN (unseen)
P2INN (seen)

(b) L2 relative error

Figure 6. [Reaction equation] Interpolation and extrapolation re-
sults for unseen ρ.

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

(a) Exact

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

(b) PINN

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6
x

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

(c) P2INN

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.2

0.4

0.6

0.8

1.0

(d) Exact

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.0

0.2

0.4

0.6

0.8

1.0

(e) PINN

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.0

0.2

0.4

0.6

0.8

1.0

(f) P2INN

Figure 7. Failure modes in the convection equation of β = 30 (a-
c), and the reaction equation of ρ = 5 (d-f). P2INNs much more
accurately predict reference solutions.

toriously hard to solve with PINNs (Krishnapriyan et al.,
2021). Among the reported failure cases of PINN, the con-
vection equation with β = 30 and the reaction equation
with ρ = 5 are two representative ones — in particular,
β = 30 corresponds to an extrapolation task after being
trained for up to β = 20, which is considered as one of
the most challenging task. These two equations generate
signals sharply fluctuating over time. As shown in Figure 7
and Table 9, therefore, PINNs fail to predict reference so-
lutions whereas our method almost exactly reproduce them
(cf. Appendix F).

4.2.3. ABLATION STUDIES

As an ablation study, we do not separately encode (x, t,µµµ)
but directly feed it into our ablation model, PINN-P (i.e., em-
ploying a single encoder network g(x, t,µµµ) without explic-
itly having an encoder for PDE parameters, gθp(µ)). We test
on reaction equations, which are hard for PINN baselines
to solve, and summarize the results in Table 3. As shown
in Table 3, especially in a wide coefficient range, P2INNs
outperforms the ablation model, justifying our model de-
sign to separately encode the PDE parameters and the spa-
tial/temporal coordinate. More details of the experiments
and other ablation studies are in Appendix.

Table 3. Ablation study on the reaction equations.

Coefficient PINN-P P2INN
range Abs. err. Rel. err. Abs. err. Rel. err.
1∼5 0.0083 0.0113 0.0015 0.0027
1∼20 0.8975 0.9908 0.0042 0.0092

Table 4. Experimental results of modulations with an initial condi-
tion of a Gaussian distribution N(π, (π/2)2).

PDE type Metric PINN P2INN Modulation
(best) All Shift SVD

Convection Abs. err. 0.0183 0.0174 0.1959 0.0139 0.0138
Rel. err. 0.0327 0.0316 0.3319 0.0248 0.0246

Reaction Abs. err. 0.3336 0.0126 0.0713 0.0095 0.0089
Rel. err. 0.3907 0.0229 0.1211 0.0198 0.0184

Conv.-Diff.-Reac. Abs. err. 0.0865 0.0315 0.0463 0.0321 0.0303
Rel. err. 0.1415 0.0508 0.0690 0.0521 0.0486

4.2.4. P2INN LEARNED VARIOUS EQUATION TYPES

Now, we test the proposed model on a more challenging
case, i.e., learning a single solution network for all six dif-
ferent types of CDR equations (cf. Section 2.1) at the same
time. We compare the performance of our proposed PINN-
specific modulation method (cf. Section 3.3) against updat-
ing all the parameters of the network (denoted as “All”) and
shift modulation (Dupont et al., 2022) (denoted as “shift”).
That is, using P2INN trained with a range of 1 to 5 as a pre-
trained model, we test how the each method fine-tunes the
pretrained model. For the experiment, we fine-tune only for
15 epochs on each type of CDR equations and summarize
the results of convection, reaction, and convection-diffusion-
reaction equations in Table 4. The full experimental results
are in Appendix F.3.

As shown in Table 4, P2INN accurately approximates and
distinguishes the solution for each PDE type even in these
challenging scenarios. Moreover, our SVD-based modula-
tion outperforms all other baselines, including shift modula-
tion and the pretrained model. Additionally, Figure 8, shows
how each model infers solutions of seen and unseen PDE
parameters at first 100 epochs. For both seen and unseen
PDE parameters, SVD-based methods show the lowest L2

absolute errors, proving its generalizability and robustness.
In other words, we demonstrate that through our SVD mod-
ulation, P2INN can be adapted to various PDEs with small
number of trainable parameters and only a few epochs.

4.3. 2D Helmholtz Equations

For 2D Helmholtz equations, we train models with a ∈
[2.5, 3.0] with interval 0.1, and then test them with interval
0.05. Notably, as shown in Figure 9, P2INNs consistently
shows good performance in both cases where a is a seen
parameter(a = 2.7) and an unseen(a = 2.75) parameter.

7



Parameterized Physics-informed Neural Networks for Parameterized PDEs

0 25 50 75 100
Epoch

10 2

10 1

all
shift

svd
pretrained

(a) β = 3 (seen)

0 25 50 75 100
Epoch

1.6 × 10 1

1.8 × 10 1

2 × 10 1

2.2 × 10 1

2.4 × 10 1

2.6 × 10 1

all
shift

svd
pretrained

(b) β = 8 (unseen)

Figure 8. [Convection equation] Comparison of L2 absolute errors
based on modulation methods with an initial condition of a Gaus-
sian distribution N(π, (π/2)2)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) Exact

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) PINN

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c) PINN-R

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(d) P2INN

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(e) Exact

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(f) PINN

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(g) PINN-R

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(h) P2INN

Figure 9. [2D-Helmholtz equation] Exact solutions and results of
baselines and P2INN for a = 2.7 (seen) (a-d) and a = 2.75
(unseen) (e-h)

However, PINN and PINN-R struggle, despite the fact that
both of these values are within the seen(trained) parameter
range for two models.

These outcomes underscore our method’s capacity to de-
liver robust solutions, a characteristic that extends to un-
explored parameter spaces. Therefore, when solving equa-
tions in some coefficient range, P2INNs offer exceptional
efficiency as they only require testing within the learned
latent space, eliminating the need for additional training.
On top of that, the experiment on 2D PDEs reaffirms the
robustness and efficacy of our proposed P2INN approach
in higher-dimensional settings, where there are non-trivial
boundary conditions. More results are listed in Appendix G.

5. Related Work
Machine Learning Methods for Solving Partial Differ-
ential Equations. Traditional numerical methods such as
finite element methods and finite difference methods have
clear pros and cons (Patidar, 2016; Li & Bettess, 1997;
Srirekha et al., 2010). The more accurate the results, the
more expensive the calculation of numerically approximated
formulas. It means that to earn more accurate solutions, it
needs to use finer grids, which implies more cost. To al-

leviate those cons, researchers were attracted to machine
learning approaches (Karniadakis et al., 2021; Cuomo et al.,
2022). After various trials like using the Galerkin or Ritz
method (Rudd & Ferrari, 2015), PINNs proposed a trans-
formative way of using deep learning for solving general
governing PDEs in a physically sound and easy-to-formulate
computational formalism (Raissi et al., 2019). As elaborated
above, PINNs, however, possess weaknesses which must be
addressed (Krishnapriyan et al., 2021): (1) there are classes
of PDEs that it is difficult for PINNs to learn (e.g., PDEs ex-
hibiting high oscillation or sharp transitions in spatial and/or
temporal domains) and (2) gradient-based training often
converges to a local optimum of models. Another line of
research for solving PDEs is to analyze operator learning for
differential equation or deep Ritz methods (Yu et al., 2018;
Li et al., 2020; Gupta et al., 2021) but PINNs still have its
potential for mainly focusing on governing equations which
describe physical phenomena.

Physics as Inductive Biases. There have been various
strategies to impose physical constraints on neural networks
(Cranmer et al., 2020a; Rudd & Ferrari, 2015; Lee et al.,
2021). Most of them focus on imposing constraints for
outputs or injecting specific physical conditions into neural
networks. As a simple but effective solution, PINNs directly
impose physical conditions into neural networks by using
a governing equation itself as a loss (Raissi et al., 2019).
This loss function is called Lf . In this way, PINNs can
learn the residual error of the governing equation. If initial
conditions are given, we can add an initial error loss term
Lu. Furthermore, if there are specific boundary conditions,
we can specify boundary conditions in Lb.

Recent Developments in PINNs. In the recent literature,
PINNs have evolved in many different ways to resolve is-
sues inherent with the vanilla PINNs. Some architectural
enhancements have been made in (Cho et al., 2024b) (a
low-rank extension PINNs for model efficiency and a hyper-
network for effective training) and in (Cho et al., 2024a) (a
separable design of model parameters for efficient training).
A systematic assessment for PINNs and a new sample strate-
gie have been investigated in PINNACLE (Lau et al., 2023).
There have been some effort to combine PINNs with sym-
bolic regression in universal PINNs (Podina et al., 2023) and
to devise a preconditioner for PINNs from an PDE operator
preconditioning perspective (De Ryck et al., 2023). Lastly,
novel optimizers for effective training of PINNs have been
proposed in (Yao et al., 2023) (MultiAdam) and (Müller &
Zeinhofer, 2023) (based on natural gradient descent).

6. Conclusions
PINN is a highly applicable and promising technology for
many engineering and scientific domains. In particular, it

8



Parameterized Physics-informed Neural Networks for Parameterized PDEs

has the strength that training is possible only with a PDE to
be solved, without any additional data. However, due to the
highly nonlinear characteristic of PDEs, PINNs show very
poor performance in certain parameterized PDE problems.
In addition, there is a weakness that the model must be
re-trained from scratch to analyze a new PDE. To solve
these chronic issues, we propose parameterized physics-
informed neural networks (P2INNs), which can learn similar
parameterized PDEs simultaneously. Through this approach,
it is possible to overcome the failure situation of PINNs that
could not be solved in previous studies. To ensure that it is
effective in general cases, we use more than thousands of
CDR equations and show that P2INNs outperform baselines
in almost all cases of the benchmark PDEs.

Impact Statement
Our method can significantly reduce the energy consump-
tion in training PINNs for many equations. When solving
for an one trivial equation only, however, existing PINN
methods show better efficiency.

Acknowledgements
This work was partly supported by Samsung Electronics
Co., Ltd. (No. G01240136, KAIST Semiconductor Re-
search Fund (2nd)), the Korea Advanced Institute of Science
and Technology (KAIST) grant funded by the Korea gov-
ernment (MSIT) (No. G04240001, Physics-inspired Deep
Learning), and Institute for Information & Communications
Technology Planning & Evaluation (IITP) grants funded
by the Korea government (MSIT) (No. RS-2020-II201361,
Artificial Intelligence Graduate School Program (Yonsei
University)). K. Lee acknowledges support from the U.S.
National Science Foundation under grant IIS 2338909.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
{TensorFlow}: A system for {Large-Scale} machine
learning. In 12th USENIX symposium on operating sys-
tems design and implementation (OSDI 16), pp. 265–283,
2016.

Baker, N., Alexander, F., Bremer, T., Hagberg, A.,
Kevrekidis, Y., Najm, H., Parashar, M., Patra, A., Sethian,
J., Wild, S., et al. Workshop report on basic research
needs for scientific machine learning: Core technologies
for artificial intelligence. Technical report, USDOE Of-
fice of Science (SC), Washington, DC (United States),
2019.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,

A., Raposo, D., Santoro, A., Faulkner, R., et al. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261, 2018.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind,
J. M. Automatic differentiation in machine learning: a
survey. Journal of Marchine Learning Research, 18:1–43,
2018.

Cho, J., Nam, S., Yang, H., Yun, S.-B., Hong, Y., and
Park, E. Separable physics-informed neural networks.
Advances in Neural Information Processing Systems, 36,
2024a.

Cho, W., Lee, K., Rim, D., and Park, N. Hypernetwork-
based meta-learning for low-rank physics-informed neu-
ral networks. Advances in Neural Information Processing
Systems, 36, 2024b.

Cranmer, M., Greydanus, S., Hoyer, S., Battaglia, P.,
Spergel, D., and Ho, S. Lagrangian neural networks,
2020a. URL https://arxiv.org/abs/2003.
04630.

Cranmer, M., Greydanus, S., Hoyer, S., Battaglia, P.,
Spergel, D., and Ho, S. Lagrangian neural networks.
In ICLR 2020 Workshop, 2020b.

Cuomo, S., di Cola, V. S., Giampaolo, F., Rozza, G.,
Raissi, M., and Piccialli, F. Scientific machine learn-
ing through physics-informed neural networks: Where
we are and what’s next, 2022. URL https://arxiv.
org/abs/2201.05624.

De Ryck, T., Bonnet, F., Mishra, S., and de Bezenac, E.
An operator preconditioning perspective on training in
physics-informed machine learning. In The Twelfth Inter-
national Conference on Learning Representations, 2023.

Dupont, E., Kim, H., Eslami, S. M. A., Rezende, D. J.,
and Rosenbaum, D. From data to functa: Your data
point is a function and you can treat it like one. In 39th
International Conference on Machine Learning (ICML),
2022.

Gao, Y., Cheung, K. C., and Ng, M. K. Svd-pinns:
Transfer learning of physics-informed neural networks
via singular value decomposition. In 2022 IEEE Sym-
posium Series on Computational Intelligence (SSCI).
IEEE, December 2022. doi: 10.1109/ssci51031.2022.
10022281. URL http://dx.doi.org/10.1109/
SSCI51031.2022.10022281.

Greydanus, S., Dzamba, M., and Yosinski, J. Hamiltonian
neural networks. Advances in Neural Information Pro-
cessing Systems, 32:15379–15389, 2019.

9

https://arxiv.org/abs/2003.04630
https://arxiv.org/abs/2003.04630
https://arxiv.org/abs/2201.05624
https://arxiv.org/abs/2201.05624
http://dx.doi.org/10.1109/SSCI51031.2022.10022281
http://dx.doi.org/10.1109/SSCI51031.2022.10022281


Parameterized Physics-informed Neural Networks for Parameterized PDEs

Gupta, G., Xiao, X., and Bogdan, P. Multiwavelet-based
operator learning for differential equations. Advances in
Neural Information Processing Systems, 34, 2021.

Jagtap, A. D. and Karniadakis, G. E. Extended physics-
informed neural networks (xpinns): A generalized space-
time domain decomposition based deep learning frame-
work for nonlinear partial differential equations. Commu-
nications in Computational Physics, 28(5):2002–2041,
2020.

Jagtap, A. D., Kharazmi, E., and Karniadakis, G. E. Con-
servative physics-informed neural networks on discrete
domains for conservation laws: Applications to forward
and inverse problems. Computer Methods in Applied
Mechanics and Engineering, 365:113028, 2020.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris,
P., Wang, S., and Yang, L. Physics-informed machine
learning. Nature Reviews Physics, 3(6):422–440, 2021.

Kendall, A., Gal, Y., and Cipolla, R. Multi-task learning
using uncertainty to weigh losses for scene geometry and
semantics. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 7482–7491,
2018.

Kim, J., Lee, K., Lee, D., Jhin, S. Y., and Park, N. DPM:
A novel training method for physics-informed neural net-
works in extrapolation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pp. 8146–
8154, 2021.

Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., and
Mahoney, M. W. Characterizing possible failure modes
in physics-informed neural networks. Advances in Neural
Information Processing Systems, 34, 2021.

Lau, G. K. R., Hemachandra, A., Ng, S.-K., and Low, B.
K. H. PINNACLE: Pinn adaptive collocation and exper-
imental points selection. In The Twelfth International
Conference on Learning Representations, 2023.

Lee, K. and Carlberg, K. T. Deep conservation: A latent-
dynamics model for exact satisfaction of physical conser-
vation laws. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 277–285, 2021.

Lee, K., Trask, N., and Stinis, P. Machine learning structure
preserving brackets for forecasting irreversible processes.
Advances in Neural Information Processing Systems, 34,
2021.

Li, L.-y. and Bettess, P. Adaptive finite element methods: a
review. 1997.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier

neural operator for parametric partial differential equa-
tions. arXiv preprint arXiv:2010.08895, 2020.

Liu, X., Zhang, X., Peng, W., Zhou, W., and Yao, W. A novel
meta-learning initialization method for physics-informed
neural networks. Neural Computing and Applications,
pp. 1–24, 2022.

Lutter, M., Ritter, C., and Peters, J. Deep lagrangian net-
works: Using physics as model prior for deep learning. In
International Conference on Learning Representations,
2018.

McClenny, L. and Braga-Neto, U. Self-adaptive physics-
informed neural networks using a soft attention mecha-
nism. arXiv preprint arXiv:2009.04544, 2020.

Müller, J. and Zeinhofer, M. Achieving high accuracy
with pinns via energy natural gradient descent. In In-
ternational Conference on Machine Learning, pp. 25471–
25485. PMLR, 2023.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. PyTorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Patidar, K. C. Nonstandard finite difference methods: recent
trends and further developments. Journal of Difference
Equations and Applications, 22(6):817–849, 2016.

Podina, L., Eastman, B., and Kohandel, M. Universal
physics-informed neural networks: symbolic differential
operator discovery with sparse data. In International Con-
ference on Machine Learning, pp. 27948–27956. PMLR,
2023.

Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M.,
Hamprecht, F., Bengio, Y., and Courville, A. On the spec-
tral bias of neural networks. In International Conference
on Machine Learning, pp. 5301–5310. PMLR, 2019.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
Physics, 378:686–707, 2019.

Rudd, K. and Ferrari, S. A constrained integration (cint)
approach to solving partial differential equations using
artificial neural networks. Neurocomputing, 155:277–285,
2015.

Ruder, S. An overview of multi-task learning in deep neural
networks. arXiv preprint arXiv:1706.05098, 2017.

10



Parameterized Physics-informed Neural Networks for Parameterized PDEs

Satorras, V. G., Hoogeboom, E., and Welling, M. E (n)
equivariant graph neural networks. In International Con-
ference on Machine Learning, pp. 9323–9332. PMLR,
2021.

Shukla, K., Jagtap, A. D., and Karniadakis, G. E. Parallel
physics-informed neural networks via domain decompo-
sition. Journal of Computational Physics, 447:110683,
2021.

Srirekha, A., Bashetty, K., et al. Infinite to finite: an
overview of finite element analysis. Indian Journal of
Dental Research, 21(3):425, 2010.

Strang, G. On the construction and comparison of difference
schemes. SIAM journal on numerical analysis, 5(3):506–
517, 1968.

Toth, P., Rezende, D. J., Jaegle, A., Racanière, S., Botev,
A., and Higgins, I. Hamiltonian generative networks. In
International Conference on Learning Representations,
2019.

Yao, J., Su, C., Hao, Z., Liu, S., Su, H., and Zhu, J. Multi-
adam: Parameter-wise scale-invariant optimizer for multi-
scale training of physics-informed neural networks. In In-
ternational Conference on Machine Learning, pp. 39702–
39721. PMLR, 2023.

Yu, B. et al. The deep ritz method: a deep learning-based nu-
merical algorithm for solving variational problems. Com-
munications in Mathematics and Statistics, 6(1):1–12,
2018.

11



Parameterized Physics-informed Neural Networks for Parameterized PDEs

A. Datasets
A.1. 1D Convection-Diffusion-Reaction Equations

Each of these individual PDEs has their own importance and has been studied extensively:

1. Convection-diffusion equations are used in fluid dynamics, particle chemistry, computational finance, and so on,
2. Reaction-diffusion equations are popular in the domain of biophysics and mathematical biology,
3. Convection equations, diffusion equations, and reaction equations are for describing transport, diffusive, and reactive

phenomena, respectively in simplified settings.

In total, there are six classes of Convection-Diffusion-Reaction equations, each of which has its own importance in science.
For each dataset, we select 1,000 collocation points, 256 initial points, 100 boundary points, and 1,000 test points.

A.2. 2D Helmholtz Equations

∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
+ k2u(x, y)− q(x, y) = 0

q(x, y) = (−(a1π)
2 − (a2π)

2 + k2) sin(a1πx) sin(a2πy)

(8)

u(x, y) = k2 sin(a1πx) sin(a2πy). (9)

We employ the specific Helmholtz equations which were used in (McClenny & Braga-Neto, 2020) as benchmark PDEs (cf.
Eq. (8)), and it can be directly solved as Eq. (9). The Helmholtz equations describe the behavior of state variable u(x, y) in
a 2D space, accounting for the effects of wave propagation, and a source term represented by q(x, y). Here k is a parameter
related to wave frequency, while a1 and a2 control the spatial variations of the source term. In our experiments, we set k to 1
and the parameters a1 and a2 to a common value a. For each dataset, we select 1,000 collocation points, 400 boundary
points, and 100 test points.

B. More Details on Experimental Setup
B.1. Loss

With the prediction û produced by P2INNs, our basic loss function consists of three terms as follows:

L(Θ) = w1Lu + w2Lf + w3Lb, (10)

and Lu, Lf and Lb are defined as follows:

Lu =
1

Nu

∑
Nu

(
û(x, 0;µµµ)− u(x, 0;µµµ)

)2

, (11)

Lf =
1

Nf

∑
Nf

(
F(x, t, û;µµµ)

)2

, (12)

Lb =
1

Nb

∑
Nb

(
û(0, t;µµµ)− û(2π, t;µµµ)

)2

, (13)

where Nu, Nf , and Nb are the cardinalities of the sets of initial conditions, collocation points, and boundary conditions;
w1, w2, w3 ∈ R are hyperparameters. The first and the second terms denote the data matching loss Lu and the PDE residual
loss Lf , respectively. In addition, we separately add the boundary condition term Lb, forcing their values equal at both top
and bottom parts (see Figures 2 and 3).

12



Parameterized Physics-informed Neural Networks for Parameterized PDEs

B.2. Baseline

Each baseline and ablation model is trained in the following way:

1. PINN, PINN-R, and PINN-seq2seq do not read PDE parameters, such as β, ν, ρ and a, but are trained separately for
each of the coefficient settings.

2. PINN-P, an ablation model of P2INNs, is able to process PDE parameters and is trained for all coefficient settings in
each equation type.

3. Therefore, PINN, PINN-R, and PINN-seq2seq require many trained models for solving parameterized PDEs whereas
PINN-P and our method require a single trained model to solve them.

B.3. Implementation

We implement P2INNs with PYTHON 3.7.11 and PYTORCH 1.10.2 that supports CUDA 11.4. We run our evaluation on a
machine equipped with Intel Core-i9 CPUs and NVIDIA RTX A6000 and RTX 2080 TI GPUs.

C. Model Configuration and Efficiency
C.1. Dataset Statistics

Table 5. Dataset statistics. For each equation type, we test three different coefficient ranges. In Conv.-Diff.-Reac., β, ν, ρ are non-zeros.

Coefficient range Convection Diffusion Reaction Conv.-Diff. Reac.-Diff. Conv.-Diff.-Reac.
1∼ 5 5 5 5 25 25 125

1∼10 10 10 10 100 100 1,000

1∼20 20 20 20 400 400 8,000

Table 5 represents dataset statistics, and our dataset generation source code is mainly based on (Krishnapriyan et al., 2021).

C.2. Model Efficiency and Hyperparameters

Our baselines, PINN, PINN-R, and PINN-seq2seq, are designed with 6 layers, and the dimension of hidden vector is 50. For
training, we employ Adam optimizers with learning rate of 1e− 3. For our method, we set Dp, Dc, and Dg to 4, 3, and 5
respectively. In the loss function in Eq. (6), we set w1, w2, and w3 to 1. We use a hidden vector dimension of 50 for gθc and
gθg , and 150 for gθp . For gθg . Considering that our method is able to solve multiple equations with one model, the total
model size for our method is much smaller than other baselines (see Appendix M).

D. Sensitivity Analyses

Table 6. Experimental results of P2INNs by varying the dimension of gθp

Dim. Convection Reaction

Abs. err. Rel. err. Abs. err. Rel. err.

80 0.0030 0.0060 0.0036 0.0054

160 0.0029 0.0054 0.0016 0.0029

320 0.0023 0.0045 0.0061 0.0082

We test P2INNs by varying the hidden vector dimension of gθp in {80, 160, 320}. Convection and reaction equations with
the coefficient range of 1 to 5 are used for testing and we summarize the result in Table 6. As shown in Table 6, P2INNs
attain small errors in every hyperparameter setting compared to other baselines, which proves the robustness of our model.

13



Parameterized Physics-informed Neural Networks for Parameterized PDEs

E. Additional Experiments
E.1. Large Range

Table 7. Experimental results on reaction equation with ρ ∈ [1, 50]

Metric PINN PINN-R PINN-seq2eq P2INN

Abs. err. 0.9053 0.4732 0.9190 0.0486
Rel. err. 0.9383 0.5211 0.9582 0.1322

We conduct additional experiments on the reaction equation with an initial condition of Gaussian distribution(N(π, (π/2)2)).
In these experiments, we test on equations with ρ ∈ [1, 50], which is an extremely wide range, to compare how models work
in highly challenging scenarios in terms of range. As summarized in Table 7, P2INNs surpass others, showing that P2INNs
even works properly in the extremely large coefficient ranges.

E.2. Comparison with Meta-learning Algorithms

Table 8. Comparison of our model with meta-learning based PINNs

PDE type Metric MAML Reptile P2INN

Convection Abs. err. 0.0579 0.0173 0.0039
Rel. err. 0.1036 0.0347 0.0079

Reaction Abs. err. 0.0029 0.0033 0.0015
Rel. err. 0.0057 0.0064 0.0027

We compare P2INNs with two other meta-learning methods (i.e., MAML, Reptile). We first train three models using
convection and reaction equations with coefficient range of 1∼5 and then fine-tune MAML and Reptile. As shown in Table
8, our model shows best performance among three models in every case, even without fine-tuning steps.

F. Fine-tuning P2INNs
In general, our P2INNs outperform other baselines in most of the tested equations. We can fine-tune the pre-trained model
to further increase the accuracy and in this section, we show the efficacy of the fine-tuning step with intuitive visualizations.

F.1. Experiments with Gaussian Distribution as an Initial Condition

Experiments summarized in Table 2 use the initial condition of the Gaussian distribution N(π, (π/2)2). We fine-tune P2INN
from Table 2 on two PDEs: a convection equation with β = 10, and a reaction equation with ρ = 5. For the coefficient
range used in pre-training, we select β ∈ [1, 20] and ρ ∈ [1, 10], respectively. We compare our fine-tuned model with vanilla
PINN and results are summarized in Figure 10.

For the additional study, we show how the results of pre-trained P2INNs are affected by varying the PDE parameters.
Figures 11(a-c)/(d-f) are the results of convection/reaction equations. As shown in Figure 11, our P2INNs effectively learn
the differences among the various coefficient settings.

14



Parameterized Physics-informed Neural Networks for Parameterized PDEs

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(a) Exact solution

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.0

0.2

0.4

0.6

0.8

1.0

(b) Result of PINN

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.0

0.2

0.4

0.6

0.8

1.0

(c) Result of P2INNs

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(d) Exact solution

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6
x

0.0

0.2

0.4

0.6

0.8

1.0

(e) Result of PINN

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.0

0.2

0.4

0.6

0.8

1.0

(f) Result of P2INNs

Figure 10. Experimental results of fine-tuning P2INN. Convection equation of β = 30 (Figure 10. (a)-(c)). Reaction equation of ρ = 5
(Figure 10. (d)-(f)). Figures 10 (c) and (f) are the results after fine-tuning, and the results before fine-tuning can be checked in Figure 11.

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.0

0.2

0.4

0.6

0.8

1.0

(a) β = 10

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.0

0.2

0.4

0.6

0.8

1.0

(b) β = 15

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.0

0.2

0.4

0.6

0.8

1.0

(c) β = 20

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.0

0.2

0.4

0.6

0.8

1.0

(d) ρ = 5

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.0

0.2

0.4

0.6

0.8

1.0

(e) ρ = 7

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.0

0.2

0.4

0.6

0.8

1.0

(f) ρ = 9

Figure 11. Results of P2INN on convection equation and reaction equation without fine-tuning.

15



Parameterized Physics-informed Neural Networks for Parameterized PDEs

F.2. Failure Mode

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

(a) Before fine-tuning

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

(b) After fine-tuning

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.0

0.2

0.4

0.6

0.8

1.0

(c) Before fine-tuning

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

0.0

0.2

0.4

0.6

0.8

1.0

(d) After fine-tuning

Figure 12. Experimental results of P2INN in Section 4.2.2. Figures (a) and (b) are the results of convection equation β = 30, and Figures
(c) and (d) are reaction equation ρ = 5.

Table 9. Results of P2INNs for the failure mode. We use a convection equation with 1 + sin(x) as an initial condition and a reaction
equation with the Gaussian distribution N(π, (π/4)2).

Failure PINN P2INN

mode Abs. err. Rel. err. Abs. err. Rel. err.

β = 30 0.6132 0.5734 0.0910 0.0916

ρ = 5 0.5490 0.9844 0.0058 0.0173

Figure 7 is the result of P2INN for the failure mode, and Figure 12 is a comparison between before and after fine-tuning on
the results of P2INN. Figures 12 (a) and (b) are the results on convection equation of β = 30, and Figures 12 (c) and (d) are
the results on reaction equation of ρ = 5. As shown in Table 9, P2INN significantly improves the performance compared to
PINN.

F.3. Modulation for P2INNs

Here, we provide the full results from Table 4 for six-types of CDR equations employing our SVD modulation.

Table 10. Experimental results of modulations with an initial condition of a Gaussian distribution N(π, (π/2)2)

PDE type Metric PINN PINN-R PINN-seq2seq P2INN
Modulation

All Shift SVD

Convection Abs. err. 0.0183 0.0222 0.1281 0.0174 0.1959 0.0139 0.0138
Rel. err. 0.0327 0.1665 0.1987 0.0316 0.3319 0.0248 0.0246

Diffusion Abs. err. 0.1335 0.1665 0.1987 0.0764 0.0726 0.0801 0.0689
Rel. err. 0.2733 0.3462 0.4050 0.1694 0.1392 0.1785 0.1518

Reaction Abs. err. 0.3341 0.3336 0.4714 0.0126 0.0713 0.0095 0.0089
Rel. err. 0.3907 0.3907 0.5907 0.0229 0.1211 0.0198 0.0184

Conv.-Diff. Abs. err. 0.0610 0.0654 0.0979 0.0443 0.0555 0.0452 0.0422
Rel. err. 0.1175 0.1289 0.1950 0.0897 0.1074 0.0931 0.0832

Reac.-Diff. Abs. err. 0.1900 0.1876 0.4201 0.0586 0.0581 0.0603 0.0548
Rel. err. 0.2702 0.2777 0.5346 0.1015 0.0886 0.1043 0.0947

Conv.-Diff.-Reac. Abs. err. 0.1663 0.0865 0.4943 0.0315 0.0463 0.0321 0.0303
Rel. err. 0.2057 0.1415 0.6104 0.0508 0.0690 0.0521 0.0486

16



Parameterized Physics-informed Neural Networks for Parameterized PDEs

G. Experimental Results on 2D Helmholtz Equation
We undertake an evaluation by training our P2INN model on a 2D Helmholtz equation and subsequently comparing its
performance with that of PINNs. In the case of a = {2.50, 2.70, 2.80, 3.00}, performance is evaluated on the seen PDEs
utilized for training, while for a = {2.65, 2.75, 2.85}, performance is assessed on the unseen PDEs not used during training
phase. All test datasets consist of data that is not employed in the training, and the experimental results are reported in
Table 11 and Figure 13.

Table 11. Comparision with PINN, PINN-R and P2INN on 2D Helmholtz equations

Model Metrics a = 2.50 a = 2.65 a = 2.70 a = 2.75 a = 2.80 a = 2.85 a = 3.00

PINN Abs. err. 0.1484 0.9077 1.9105 1.8942 1.5689 0.9077 2.4981
Rel. err. 0.4817 2.0937 4.9264 4.7584 3.3739 2.0937 6.1532

PINN-R Abs. err. 0.1107 0.2916 1.1590 1.4000 1.1095 1.5789 1.8800
Rel. err. 0.3830 0.7239 2.8633 3.6641 2.6792 3.8059 4.7755

P2INN Abs. err. 0.0240 0.0259 0.0257 0.0263 0.0321 0.0232 0.0315
Rel. err. 0.0718 0.0767 0.0788 0.0840 0.0975 0.0642 0.0973

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) Exact (a = 2.5)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) Exact (a = 2.65)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c) Exact (a = 2.75)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(d) Exact (a = 2.85)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(e) Exact (a = 3.0)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(f) PINN (a = 2.5)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(g) PINN (a = 2.65)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(h) PINN (a = 2.75)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(i) PINN (a = 2.85)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(j) PINN (a = 3.0)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(k) PINN-R (a = 2.5)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(l) PINN-R (a = 2.65)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(m) PINN-R (a = 2.75)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(n) PINN-R (a = 2.85)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(o) PINN-R (a = 3.0)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(p) P2INN (a = 2.5)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(q) P2INN (a = 2.65)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(r) P2INN (a = 2.75)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(s) P2INN (a = 2.85)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(t) P2INN (a = 3.0)

Figure 13. [2D-Helmholtz equation] Exact solutions and results of PINN, PINN-R and P2INN for various a

17



Parameterized Physics-informed Neural Networks for Parameterized PDEs

H. Architectural Details of PINN-P

...

Figure 14. PINN-P architecture.

We propose PINN-P as an ablation model of our P2INN. Unlike P2INN, PINN-P does not have a separate encoder for PDE
parameters, so that PDE parameters enter the model with coordinates. As shown in Figure 14, PINN-P consists of l-stacked
fully-connected layers. For a fair comparison with P2INNs, we set size of hidden vector to 150 and l to 6, making the model
size similar to P2INNs.

I. Reproducibility Statement
To benefit the community, the code will be posted online. The source code for our proposed method and the dataset used in
this paper are attached.

18



Parameterized Physics-informed Neural Networks for Parameterized PDEs

J. Additional Statistical Analysis on CDR Equations
In this section, we provide additional statistical analysis on experiments of Table 2 with two other metrics, explained variance
score (Exp. var.) and max error (Max. err.), and summarize the results in Table 12.

Table 12. The max error and explained variance score over all the equations with the initial condition of Gaussian distribution
N(π, (π/2)2). We do not fine-tune P2INN for each coefficient setting. However, our pre-trained models already outperform oth-
ers in many cases.

PDE type Coefficient Metric PINN PINN-R PINN-seq2seq P2INNrange

Class 1

Convection

1∼5 Max. err. 0.0513 0.0601 0.2751 0.0293
Exp. var. 0.9948 0.9919 0.6070 0.9997

1∼10 Max. err. 0.0593 0.1681 0.3744 0.0496
Exp. var. 0.9952 0.8227 0.3009 0.9985

1∼20 Max. err. 0.2431 0.3173 0.4190 0.1430
Exp. var. 0.6076 0.4107 0.1500 0.9887

Diffusion

1∼5 Max. err. 0.3989 0.5190 0.5784 0.4382
Exp. var. -0.1383 -1.0922 -1.5233 -0.4871

1∼10 Max. err. 0.6194 0.7576 0.7638 -0.4871
Exp. var. -5.4421 -8.4565 -7.6938 -2.0589

1∼20 Max. err. 1.3538 1.4417 0.7564 0.4516
Exp. var. -79.3751 -85.9107 -13.9281 -6.3671

Reaction

1∼5 Max. err. 0.4053 0.4093 0.7653 0.0142
Exp. var. 0.6232 0.6123 -0.1824 0.9999

1∼10 Max. err. 0.7040 0.5116 0.8847 0.0376
Exp. var. 0.3008 0.5036 -0.0936 0.9995

1∼20 Max. err. 0.8529 0.7022 0.9429 0.0846
Exp. var. 0.1492 0.2561 -0.0478 0.9977

Class 2

Conv.-Diff.

1∼5 Max. err. 0.1412 0.1601 0.3062 0.0399
Exp. var. 0.7469 0.6008 0.2710 0.0892

1∼10 Max. err. 0.2171 0.3023 0.3634 0.3169
Exp. var. -0.4752 -1.2314 -0.3168 0.6039

1∼20 Max. err. 0.5396 0.5468 0.3606 0.4549
Exp. var. -19.0867 -17.8158 -0.4771 0.0253

Reac.-Diff.

1∼5 Max. err. 0.4901 0.5272 0.7646 0.4335
Exp. var. 0.1600 -0.2223 -0.3109 0.5052

1∼10 Max. err. 0.8332 0.7536 0.8982 0.7501
Exp. var. -1.0339 -1.0530 -0.6734 -0.4028

1∼20 Max. err. 0.9637 0.8345 0.9445 1.0133
Exp. var. -1.8660 -1.4076 -0.5779 -3.4065

Class 3 Conv.-Diff.-Reac.

1∼5 Max. err. 0.2694 0.3267 0.6831 0.2307
Exp. var. 0.4267 0.5533 -0.2518 0.9333

1∼10 Max. err. 0.6367 0.5262 0.8418 0.5249
Exp. var. 0.1239 0.3869 -0.1386 0.7111

1∼20 Max. err. 0.8192 0.6859 0.9213 0.7230
Exp. var. 0.0587 0.2529 -0.0720 0.6803

19



Parameterized Physics-informed Neural Networks for Parameterized PDEs

K. Experiments on Another Initial Condition
In this section, we present the experimental results with the initial condition of 1+sin(x), with other conditions remain
unchanged. In Table 13, we summarize the results in terms of L2 absolute and relative errors, and in Table 14, we use max
error and explained variance score for evaluation. Even with the initial condition of 1+sin(x), our P2INNs show adequate
performance, especially in a wide coefficient range, i.e., 1∼20. On top of that, particularly in the case of reaction and
conv.-diff.-reac. equations, P2INNs outperform the baselines by a huge gap.

Table 13. The relative and absolute L2 errors over all the equations with the initial condition of 1+sin(x). We do not fine-tune P2INN for
each coefficient setting. However, our pre-trained models already outperform others in many cases.

PDE type Coefficient Metric PINN PINN-R PINN-seq2seq P2INNrange

Class 1

Convection

1∼5 Abs. err. 0.0135 0.0073 0.2213 0.0045
Rel. err. 0.0147 0.0076 0.2159 0.0044

1∼10 Abs. err. 0.0117 0.0233 0.4101 0.0095
Rel. err. 0.0127 0.0244 0.3821 0.0092

1∼20 Abs. err. 0.1283 0.2558 0.5355 0.0826
Rel. err. 0.1295 0.2503 0.5092 0.0827

Diffusion

1∼5 Abs. err. 0.0496 0.0688 0.2682 0.4027
Rel. err. 0.0714 0.0956 0.3048 0.4608

1∼10 Abs. err. 0.0835 0.1106 0.3047 0.4863
Rel. err. 0.1078 0.1416 0.3356 0.5487

1∼20 Abs. err. 0.1206 0.2045 0.3015 0.5254
Rel. err. 0.1500 0.2333 0.3308 0.5963

Reaction

1∼5 Abs. err. 0.2349 0.2396 0.5100 0.0254
Rel. err. 0.3241 0.3316 0.6117 0.0736

1∼10 Abs. err. 0.5688 0.3418 0.7054 0.0617
Rel. err. 0.6561 0.4494 0.7994 0.1199

1∼20 Abs. err. 0.7615 0.4290 0.8294 0.1487
Rel. err. 0.8274 0.5268 0.8987 0.2901

Class 2

Conv.-Diff.

1∼5 Abs. err. 0.0213 0.0182 0.2382 0.1997
Rel. err. 0.0261 0.0233 0.2605 0.2296

1∼10 Abs. err. 0.0294 0.0345 0.2316 0.1297
Rel. err. 0.0350 0.0410 0.2574 0.1514

1∼20 Abs. err. 0.0824 0.0960 0.2504 0.1173
Rel. err. 0.0928 0.1094 0.2741 0.1339

Reac.-Diff.

1∼5 Abs. err. 0.0386 0.0368 0.3038 0.1150
Rel. err. 0.0632 0.0581 0.3562 0.1566

1∼10 Abs. err. 0.2305 0.1632 0.5427 0.0816
Rel. err. 0.2681 0.2054 0.5807 0.1190

1∼20 Abs. err. 0.5454 0.3107 0.6892 0.0413
Rel. err. 0.5710 0.3497 0.7131 0.0727

Class 3 Conv.-Diff.-Reac.

1∼5 Abs. err. 0.0593 0.0932 0.3626 0.0551
Rel. err. 0.0899 0.1465 0.4554 0.0735

1∼10 Abs. err. 0.4953 0.3407 0.6500 0.0337
Rel. err. 0.5341 0.4006 0.7196 0.0538

1∼20 Abs. err. 0.7329 0.4283 0.8101 0.0614
Rel. err. 0.7663 0.4911 0.8588 0.1240

20



Parameterized Physics-informed Neural Networks for Parameterized PDEs

Table 14. The max error and explained variance score over all the equations with the initial condition of 1+sin(x). We do not fine-tune
P2INN for each coefficient setting. However, our pre-trained models already outperform others in many cases.

PDE type Coefficient Metric PINN PINN-R PINN-seq2seq P2INNrange

Class 1

Convection

1∼5 Max. err. 0.0531 0.0316 0.6235 0.0141
Exp. var. 0.9993 0.9998 0.8369 1.0000

1∼10 Max. err. 0.0479 0.0919 0.8839 0.0358
Exp. var. 0.9994 0.9947 0.4700 0.9998

1∼20 Max. err. 0.3495 0.5931 1.1652 0.2295
Exp. var. 0.8662 0.6638 0.2362 0.9681

Diffusion

1∼5 Max. err. 0.2706 0.3166 0.6683 0.9959
Exp. var. 0.9322 0.8433 0.3848 -1.3721

1∼10 Max. err. 0.3190 0.3693 0.6645 1.0063
Exp. var. 0.7238 0.5667 0.0207 -4.0842

1∼20 Max. err. 0.4056 0.4829 0.6612 0.9708
Exp. var. 0.0209 -0.4390 -0.5409 -21.5206

Reaction

1∼5 Max. err. 0.8754 0.8815 1.1852 0.8770
Exp. var. 0.6996 0.6760 0.1010 0.9692

1∼10 Max. err. 1.2884 1.0865 1.4784 1.0001
Exp. var. 0.3725 0.3932 0.0618 0.8961

1∼20 Max. err. 1.4931 1.2158 1.5880 1.0000
Exp. var. 0.1881 0.2003 0.0331 0.0000

Class 2

Conv.-Diff.

1∼5 Max. err. 0.0811 0.0702 0.6079 0.6515
Exp. var. 0.9914 0.9888 0.5136 0.4635

1∼10 Max. err. 0.1002 0.1154 0.6613 0.5590
Exp. var. 0.9641 0.9532 0.2876 0.6620

1∼20 Max. err. 0.2583 0.3162 0.7221 0.3527
Exp. var. 0.7337 0.6718 -0.1857 0.1614

Reac.-Diff.

1∼5 Max. err. 0.2870 0.2659 0.9199 0.5404
Exp. var. 0.8536 0.8962 0.2670 0.5430

1∼10 Max. err. 0.7232 0.6471 1.2166 0.5853
Exp. var. 0.2866 0.1213 0.1293 0.4415

1∼20 Max. err. 1.1176 0.9268 1.3338 0.3204
Exp. var. 0.1430 -0.0407 -0.0576 0.3938

Class 3 Conv.-Diff.-Reac.

1∼5 Max. err. 0.3264 0.5064 1.1676 0.3694
Exp. var. 0.9039 0.6877 -0.0153 0.8884

1∼10 Max. err. 1.0318 0.9348 1.4829 0.4511
Exp. var. 0.4165 0.3708 -0.0199 0.8822

1∼20 Max. err. 1.3732 1.1398 1.5986 0.9006
Exp. var. 0.2066 0.1825 -0.0091 0.0134

21



Parameterized Physics-informed Neural Networks for Parameterized PDEs

L. Standard Deviation of the Evaluation Metrics from Table 2
In Table 15, we report the standard deviation of evaluation metrics, Abs. err. and Rel. err., from Table 2. We conduct the
experiments in Table 2 with three different random seeds.

Table 15. Standard deviation of evaluation metrics from Table 2.

PDE type Coefficient Metric PINN PINN-R PINN-seq2seq P2INNrange

Class 1

Convection

1∼5 Abs. err. 0.0012 0.0058 0.0130 0.0005
Rel. err. 0.0022 0.0095 0.0221 0.0008

1∼10 Abs. err. 0.0022 0.0177 0.0065 0.0039
Rel. err. 0.0051 0.0305 0.0109 0.0072

1∼20 Abs. err. 0.0021 0.0066 0.0032 0.0064
Rel. err. 0.0012 0.0125 0.0055 0.0100

Diffusion

1∼5 Abs. err. 0.0023 0.0156 0.0066 0.0010
Rel. err. 0.0068 0.0321 0.0142 0.0013

1∼10 Abs. err. 0.0178 0.0282 0.0116 0.0001
Rel. err. 0.0326 0.0583 0.0225 0.0001

1∼20 Abs. err. 0.0093 0.0115 0.0183 0.0001
Rel. err. 0.0205 0.0244 0.0358 0.0002

Reaction

1∼5 Abs. err. 0.0018 0.1605 0.0159 0.0025
Rel. err. 0.0023 0.1853 0.0087 0.0030

1∼10 Abs. err. 0.0011 0.0915 0.0080 0.0017
Rel. err. 0.0014 0.1009 0.0044 0.0019

1∼20 Abs. err. 0.0005 0.0199 0.0040 0.0649
Rel. err. 0.0007 0.0258 0.0022 0.1445

Class 2

Conv.-Diff.

1∼5 Abs. err. 0.0018 0.0021 0.0023 0.0097
Rel. err. 0.0026 0.0045 0.0034 0.0176

1∼10 Abs. err. 0.0033 0.0105 0.0023 0.0035
Rel. err. 0.0064 0.0194 0.0043 0.0037

1∼20 Abs. err. 0.0012 0.0066 0.0007 0.0055
Rel. err. 0.0018 0.0117 0.0013 0.0146

Reac.-Diff.

1∼5 Abs. err. 0.0100 0.0322 0.0126 0.0245
Rel. err. 0.0135 0.0352 0.0105 0.0420

1∼10 Abs. err. 0.0045 0.0174 0.0043 0.0507
Rel. err. 0.0025 0.0182 0.0046 0.0745

1∼20 Abs. err. 0.0007 0.0070 0.0018 0.2010
Rel. err. 0.0011 0.0070 0.0030 0.2114

Class 3 Conv.-Diff.-Reac.

1∼5 Abs. err. 0.0072 0.0015 0.0042 0.0054
Rel. err. 0.0071 0.0024 0.0021 0.0062

1∼10 Abs. err. 0.0102 0.0022 0.0055 0.0021
Rel. err. 0.0118 0.0047 0.0062 0.0037

1∼20 Abs. err. 0.0034 0.0082 0.0008 0.0024
Rel. err. 0.0047 0.0077 0.0011 0.0041

22



Parameterized Physics-informed Neural Networks for Parameterized PDEs

M. Ablation Studies on PINN-P and LargePINN

Table 16. Number of model parameters.

PINN PINN-R PINN-seq2seq LargePINN PINN-P P2INN
#params 10,401 10,401 10,401 82,941 91,651 76,851

Table 17. The relative and absolute L2 errors over all the equations. Our P2INNs surpass LargePINN and PINN-P in all but one cases,
even without fine-tuning.

PDE type Metric PINN LargePINN PINN-P P2INN

Class 1

Convection Abs. err. 0.1140 0.1191 0.0209 0.0198
Rel. err. 0.1978 0.2084 0.0410 0.0464

Diffusion Abs. err. 0.6782 0.5868 0.3800 0.1916
Rel. err. 1.2825 1.0994 0.7912 0.3745

Reaction Abs. err. 0.7902 0.7910 0.8975 0.0042
Rel. err. 0.8460 0.8469 0.9908 0.0092

Class 2
Conv.-Diff. Abs. err. 0.2735 0.1626 0.1253 0.0622

Rel. err. 0.5106 0.3189 0.3009 0.1495

Reac.-Diff. Abs. err. 0.7167 0.7399 0.1756 0.0898
Rel. err. 0.7998 0.8186 0.2632 0.1411

Class 3 Conv.-Diff.-Reac. Abs. err. 0.7450 0.7415 0.8590 0.0353
Rel. err. 0.7960 0.7915 0.9532 0.0812

For more comprehensive evaluation, we conduct additional ablation studies following the experimental settings of Table 2
with the coefficient range of 1 ∼ 20 using PINN-P (cf. Appendix B.2) and LargePINN, which is PINN with bigger
network size. As shown in Table 16, since the model size of our proposed P2INN is larger than original PINN, we conduct
experiments using a LargePINN model. The LargePINN has the same MLP architecture as the original PINN but with
increased hidden dimensions, resulting in a model size of 82,941.

The experimental results of LargePINN, PINN-P, and P2INN are summarized in Table 17. In all scenarios, as indicated by
Table 17, the LargePINN model consistently performs inferiorly compared to P2INNs, and P2INNs outperforms PINN-P
in all cases except one. That is, while the baselines struggles when learning the equations encompassing wide coefficient
ranges, i.e., 1 ∼ 20. For instance, considering Conv.-Reac.-Diff. equation, the L2 absolute error exhibited by P2INN is
0.0353 whereas LargePINN and PINN-P have errors of 0.7415 and 0.8590, respectively. Note that this collective outcome
underscores that P2INN’s separation of PDE parameters and spatial/temporal coordinates during the learning process
significantly enhances both generalization capabilities and scalability.

23



Parameterized Physics-informed Neural Networks for Parameterized PDEs

N. Ablation Studies on Varying Data Points
We conduct a more challenging experiment by extremely reducing the training data points. Assuming the training of reaction
equations for ρ ∈ [1, 10], a total of 10,000 collocation points are utilized during the PINN’s training process - with 10
separate models processing 1,000 collocation points each. On the other hand, for P2INNs, 10 equations are jointly learned by
a single model, also with a total of 10,000 collocation points. We name those two models PINN(10,000) and P2INN(10,000)
respectively, and compare these two models with new ablation model, P2INN(1,000). To be specific, for P2INN(1,000),
a single model learned from a subset of 100 data points taken from each of the 10 equations, resulting in a total of 1,000
collocation points. The outcome of this experiment is summarized in the table presented below.

Table 18. Experimental results on Reaction equation with varying ρ

ρ = 1ρ = 1ρ = 1 ρ = 2ρ = 2ρ = 2 ρ = 3ρ = 3ρ = 3 ρ = 4ρ = 4ρ = 4 ρ = 5ρ = 5ρ = 5 ρ = 6ρ = 6ρ = 6 ρ = 7ρ = 7ρ = 7 ρ = 8ρ = 8ρ = 8 ρ = 9ρ = 9ρ = 9 ρ = 10ρ = 10ρ = 10

PINN(10,000) 0.0045 0.0041 0.0047 0.7974 0.8598 0.8820 0.9021 0.9159 0.9263 0.9350

P2INN(1,000) 0.0078 0.0049 0.0036 0.0036 0.0029 0.0020 0.0020 0.0014 0.0014 0.0016

P2INN(10,000) 0.0034 0.0029 0.0017 0.0022 0.0014 0.0012 0.0008 0.0008 0.0008 0.0009

According to the Table 18, P2INNs with only 1,000 data points, i.e., P2INN(1,000), achieves successful outcomes for the
failure mode of PINN involving reaction equations with values over 4, outperforming PINN by a big margin. Notably, its
results are comparable to P2INNs with the original setting, i.e., P2INN(10,000).

24


