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ABSTRACT

Advanced machine learning models that can handle inputs of variable lengths
are powerful, but often hard to interpret. The lack of transparency hinders their
adoption in many domains. Explanation techniques are essential for improving
transparency. However, existing model-agnostic general explanation techniques
do not consider the variable lengths of input data points, which limits their effec-
tiveness. To address this limitation, we propose REX, a general framework for
adapting various explanation techniques to models that process variable-length
inputs, expanding explanation coverage to data points of different lengths. Our
approach adds temporal information to the explanations generated by existing
techniques without altering their core algorithms. We instantiate our approach
on three popular explanation techniques: Anchors, LIME, and Kernel SHAP. To
evaluate the effectiveness of REX, we apply our approach to five models in two
different tasks. Our evaluation results demonstrate that our approach significantly
improves the fidelity and understandability of explanations.

1 INTRODUCTION

As more critical applications employ machine learning systems, how to explain the rationales
behind their results has emerged as an important problem. Such explanations allow end users to
1) judge whether the results are trustworthy (Ribeiro et al., 2016; Doshi-Velez et al., 2017) and 2)
understand knowledge embedded in the systems so they can use the knowledge to manipulate future
events (Poyiadzi et al., 2020; Prosperi et al., 2020; Zhang et al., 2018). This paper focuses on the
problem of explaining deep learning systems that are widely applied to processing sequential data of
different lengths, such as Recurrent Neural Networks (RNNs), Transformers(Vaswani et al., 2017;
Wolf et al., 2020), and others.

Explanation techniques can be classified as global or local (Molnar, 2020). The former explains
how the model behaves on all inputs, while the latter explains how the model behaves on a particular
set of inputs (typically ones that are similar to a given input). Most of the existing explanation
techniques for variable-length models are global. Take techniques for RNNs as an example: they
employ deterministic finite automaton (DFAs) as global surrogates of target RNNs (Omlin & Giles,
1996; Jacobsson, 2005; Wang et al., 2018; Weiss et al., 2018; Dong et al., 2020). However, due to
the complex nature of any practical problem domain, these techniques can produce very large DFAs.
These explanations are hard for a human to digest. Moreover, they take a long time to generate,
making these techniques hard to scale. Therefore, these techniques are often limited to toy networks
such as ones that learn regular expressions. Even for these simple domains, the explanations can still
be complex as RNNs often fail to internalize the perfect regular expressions and contain noise.

Due to the complexity of the problem domain and the networks, we turn our attentions to local
methods (Ribeiro et al., 2016; 2018; Zhang et al., 2018; Arras et al., 2017; Wachter et al., 2017;
Lundberg & Lee, 2017). Local methods produce more tractable and understandable explanations at
the cost of covering much fewer inputs. Such methods provide explanations for individual inputs and
have a wide range of applications. While there is a rich body of techniques in this category, to our
knowledge, there are few that are specialized to capture the temporal information of inputs, which
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Table 1: Example explanations generated in Anchors (a) without REX and (b) with REX.

Input Sentence I. He never fails in any exam. II. He never attends any lecture,
so he fails in any exam.

Network output Positive Negative

Explanations: (a) {never, fails} {never, fails}
(b) {never, fails} {never, fails}

∧ Posfails − Posnever = 1 ∧ Posfails − Posnever ≥ 2

Input sentence : Bob is not a bad boy. Network output: Positive
Explanations:

not

0.49

-0.13

Positive Negative

bad
0.23 Bob

a
-0.09

{not, bad} Posbad-Posnot ≥ 1

-0.16
not

0.45

-0.11
bad

{a, boy} Posboy-Posa ≥ 1

Positive Negative

0.1

Figure 1: An example explanation generated in LIME without REX (left) and with REX (right).

plays an important role in models like RNNs and transformers. Without incorporating temporal
information, the explanations lack fidelity and understandability.

Consider Anchors (Ribeiro et al., 2018), a popular local technique that generates sufficient conditions
to explain specific outputs. Table 1 shows Anchors explanations of a sentiment analysis RNN on two
sentences. For sentence I, Anchors generates the following explanation: Sentence I is positive because
it contains both “never” and “fails”. For sentence II, Anchors produces the same explanation as for
Sentence I, but the sentence is negative. The key difference is in Sentence II, “never” and “fails” do
not form a phrase. Anchors fails to capture the difference, which confuses users.

We see similar issues with other existing local explanation techniques. For example, attribution-based
techniques like LIME (Ribeiro et al., 2016) use linear models as local surrogates. Figure 1 shows
LIME explanations of a sentiment analysis transformer on a sentence. LIME assigns a high positive
score to “not” and “bad”. Intuitively, it means that either “not” or “bad” can make the sentence
positive. But this will lead to some ridiculous results. The user will predict “Bob is a bad boy” as a
positive sentence since the word “bad” should have a strong positive effect. However, this is not the
case. “Not bad” together is a positive phrase, while “not” or “bad” alone is a negative word.

To address this issue, we propose REX, a general framework for extending various local model-
agnostic explanation techniques with temporal information. In particular, REX adds temporal
information in the form of Posf op d and Posf − Posg op d (op can be =, >, <, ≥, or ≤ ), where
Posf means the position of feature f . The way to present temporal information depends on the
specific explanation technique. Consider the sentences in Table 1 again. After REX augments
Anchors, the explanation to Sentence I becomes the sentence is positive because it contains both

“never” and “fails”, and “never” is right before “fails”. For sentence II, the explanation becomes the
sentence is negative because it contains “never” and “fails”, and “never” is not right before “fails”.

Now, consider applying LIME with REX to the sentence in Figure 1. The fact that “not” is before
“bad” gets the highest positive score, while “not” and “bad” both get negative scores respectively. This
new information 1) associates the two words, and 2) captures that “not” comes before “bad”.

Figure 2 shows another example when explaining an anomaly detection RNN. Anchors generates an
explanation: the anomaly is detected because of the presence of several separated data points. After
REX augments Anchors, the explanation becomes the anomaly is detected because of the presence of
data points 413 and 425 with at least 3 points between them. Compared to the original explanation,
the new explanation is more general and more understandable to end users.
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Anomaly data point: 428
Explanation:

Anchors  : {414, 417, 416, 415, 418,
413, 419, 412}

Anchors*: {413,425} at least 3 data
points between  them

Figure 2: Explaining an anomaly detection RNN with Anchors and Anchors*(Anchors with REX).

The examples show that temporal information improves the fidelity of explanations and makes
them easier to understand. How to add such information to various local model-agnostic explanation
techniques? We notice that these techniques treat target models as black boxes and generate surrogates
by learning from input-output pairs. In particular, we make two key observations: 1) these techniques
use a perturbation model to generate inputs that are similar to the original input so it captures the local
behavior of the model via these inputs; 2) these techniques generate explanations that are described
in features. Based on 1), in order to capture temporal information which the model internalizes, we
can modify the perturbation model to generate inputs whose lengths and feature value orders vary.
Based on 2), we can treat temporal information such as Posf −Posg ≥ d as a predicate used to form
the explanation. Although this feature will not affect the result of the original network, they reflect
temporal information that is internalized by the network. More importantly, now the explanation
techniques can generate explanations that utilize them without changing their core algorithms.

To evaluate the effectiveness of REX, we have applied it to LIME, Anchors, and kernel SHAP (Lund-
berg & Lee, 2017) and then use their augmented versions to explain a sentiment analysis LSTM,
several sentiment analysis transformer models (BERT (Devlin et al., 2018),T5 (Raffel et al., 2020),
and GPT 2.0 (Radford et al., 2019)), and an anomaly detection RNN. Our results show that REX
improves existing techniques in both the fidelity and understandability of generated explanations.
On average, REX helps improve the fidelity of Anchors, LIME, and Kernel SHAP explanations by
98.2%, 28.6%, and 23.1% respectively. Moreover, a user study shows that augmented explanations
make it easier for human users to predict the behaviors of the models.

In summary, we have made the following contributions:

• We have proposed to incorporate temporal information in the form of Posf op d and Posf −
Posg op d in local explanations to machine learning models that can capture temporal information
in the inputs, which makes these explanations more faithful and easier to understand.

• We have proposed a general framework REX to automatically incorporate the above information in
popular local explanation techniques.

• We have demonstrated the effectiveness of REX by applying it to LIME, Anchors, and kernel
SHAP, and evaluating the augmented versions on representative models.

2 PRELIMINARIES

In this section, we describe the necessary background to introduce our approach. Without loss of
generality, we assume the target model is a black-box function from a sequence of real numbers to a
real value, f : R∗ → R, where R∗ =

⋃
T∈N RT . We limit our discussion to classifiers and regressors.

Given an input x ∈ R∗, its corresponding output o ∈ R, o := f(x), a local explanation is g(x, f). It
reflects why the model produces output o given input x and the target model’s behavior around input
x. Typically, a local explanation is a function of input x and model f . Specifically, g(x, f) predict
the output of model f on another input x′ based on the evaluation result of an expression formed
with feature predicates {pj}j=1,2...,|x|. Formally, we define pj := fj op c, where fj represents
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the jth feature of input x, op is a binary operator (e.g., =, ≥, ≤), and c is a constant. The feature
predicate pj compares the jth feature of input x to the constant. Based on the specific form of the
expression, a feature predicate can be interpreted as a Boolean variable or a {0, 1} integer. We call the
set of feature predicates the vocabulary of the local explanation. For example, in Anchors, g(x, f)
is a conjunction

∧
j∈{1,2,...,|x|} pj which must evaluate to true on x; in LIME and kernel SHAP,

g(x, f) is a linear expression in the form of Σ|x|
j=1ωjpj ; in a counterfactual explanation (Zhang et al.,

2018; Wachter et al., 2017; Dandl et al., 2020), g(x, f) is a conjunction
∧

j∈∆ pj ∧
∧

k/∈∆ pk where
∆ ⊆ {1, 2, ..., |x|}, none of pj(j ∈ ∆) holds on x, and all pk(k /∈ ∆) has the form of fk = x[k].
Moreover, if an input x′ satisfies a counterfactual explanation g(x, f), then |f(x)− f(x′)| ≥ d for a
given d. In the case of binary classification, d is 1.

We define I as the set of all input data. A perturbation model per : I → 2I describes a set of inputs
similar to x. A local explanation technique t is parameterized by a perturbation model, and generates
a local explanation to a model given an input: tper(f, x) := g(x, f). The local explanation reflects
the target model’s behaviors over the input space given by the perturbation model. Existing local
techniques implement the perturbation models as changing feature values, i.e., per(x) ⊆ R|x|.

As we can see, both the vocabularies and the perturbation models of existing local explanations
are limited to describing inputs that have the same lengths as the original input1. This limits their
effectiveness on models processing sequential data of different lengths.

3 OUR FRAMEWORK

We now describe REX. Our goal is to provide a general approach to incorporate temporal information
in explanations without heavily modifying the explanation generation technique. We introduce REX
in three steps: 1) we introduce the definition of local explanations with temporal information, 2) we
describe how to augment existing techniques to generate such explanations, and 3) we describe the
workflow of generating explanations with temporal information.

3.1 LOCAL EXPLANATIONS WITH TEMPORAL INFORMATION

Our key observation is that while the form of explanation expression varies, the expressions are all
built from the corresponding vocabulary. If we can add predicates that reflect temporal information to
the vocabulary, then naturally the explanations provide temporal information.

Our temporal predicates describe the temporal relationship between a set of features that satisfy
basic predicates. We limit the number of features in a temporal predicate up to two because 1) in
most cases, the temporal relationship between two features suffices to cover a large range of inputs
of different lengths, therefore providing useful information, 2) humans are bad at understanding
high-dimensional information. We give their definitions below:
Definition 3.1 (1-D Temporal Predicate). A 1-D temporal predicate takes the form of

∃i ∈ Z+ such that fi op1 c ∧ i op3 d where c ∈ R, d ∈ Z+, op1, op3 ∈ {=, >,<,≥,≤}.
Definition 3.2 (2-D Temporal Predicate). A 2-D temporal predicate takes the form of

∃i, j ∈ Z+ such that fi op1 c1 ∧ fj op2 c2 ∧ j − i op3 d
where c1, c2 ∈ R, d ∈ Z \ {0}, op1, op2, op3 ∈ {=, >,<,≥,≤}.

To illustrate the effects of a single feature’s absolute position, we use 1-D temporal predicates. To
illustrate the effects of the relative position between two features, we use 2-D temporal predicates.
Moreover, we can use 2-D temporal predicates when the presence of two features together is important
but their order is not. For example, feature j can come before or after feature i when the distance d is
negative and op3 is ≥. This means the order between these two features does not matter. Compared to
conventional feature predicates, temporal predicates no longer describe properties of features at fixed
positions in an input. Instead, it requires positions of features to satisfy given temporal constraints.

We now introduce the definition of local explanations with temporal information:
1When explaining NLP models, some perturbation models allow replacing a word with an empty string. This

enables the explanations to cover inputs of shorter lengths to some extent.
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Definition 3.3 (Explanation with Temporal Information). A local explanation with temporal infor-
mation is a local explanation whose vocabulary consists of regular feature predicates, 1-D temporal
predicates, or 2-D temporal predicates.

Examples. Consider Input sentence I in Table 1, a 2-D temporal predicate is

∃i, j ∈ Z+ such that fi = “never” ∧ fj = “fails” ∧ j − i = 1.

The explanation generated by Anchors augmented with REX in Table 1 is a conjunction that only
consists of the above 2-D predicate. Consider another sentence “I hate that man but love her” which
is judged as positive. When applying Anchors with REX on it, the explanation is

∃i ∈ Z+ such that fi = “love” ∧ ∃j ∈ Z+.fj = “but” ∧ j ≥ 3.

The second conjunction above is a 1-D predicate. The sentence contains both “love” and “hate” but is
judged as positive because there is a “but” in the middle. On the other hand, the sentence “but I hate
that man loves her” is judged as negative. Our 1-D predicate captures such information.

3.2 AUGMENTING GENERATION TECHNIQUES

We aim to provide a general approach to extend existing local model-agnostic techniques with
temporal information without heavily modifying their algorithms. Our key idea is to extend the
vocabulary and perturbation model of a technique. The existing techniques essentially treat the target
model as a black box and generate surrogate models as explanations. These explanations are (1)
described using features from the vocabulary and (2) trained from input-output pairs obtained from
the perturbation model. By modifying only these two components, we can generate explanations
augmented with temporal information, while keeping the core algorithms intact.

Extending Vocabularies. To incorporate a predicate into a vocabulary, the predicate must be able
to serve as a feature of an input. Therefore, provided there’s a method to evaluate the predicate on
a given input, this incorporation is a lightweight task. The evaluation is easy for our 1-D and 2-D
temporal predicates on any model input. Adding temporal predicates to the vocabulary allows the
explanation technique to describe the behavior of the target model over variable-length inputs.

Extending Perturbation Models. To cover inputs of different lengths, we modify the perturbation
models of existing techniques. Concretely, we add a preprocessor over a given perturbation model.
For a given input x, the preprocessor does two modifications in sequence to generate more inputs:
1) it can delete certain features from the input, and 2) it can switch the positions of two features.
Formally, we define rf : I → 2I which returns inputs that remove arbitrary features from a given
input; sf : I× Z× Z → 2I which returns an input that switches the positions of two features of a
given input. The preprocessor is a function prep : I → 2I and it is defined follows:

prep(x, Smax) :=
⋃

x̂∈rf(x)
n−m≤Smax

sf(x̂,m, n).

To control the number of generated inputs, we add a parameter Smax to limit the switching operation
to two features that are at most Smax apart. In our experiment, we set Smax = 1. This corresponds
to the aforementioned setting of 2-D temporal predicates where the distance d ≥ −1. Given a
perturbation model per, a constant Smax, the new perturbation model our approach generates is

pert(x, Smax) :=
⋃

x̂∈prep(x,Smax)

per(x̂).

Careful readers may have noticed that our augmented perturbation model can be made more complex.
For example, one can completely shuffle the features in the input without being limited by Smax, or
add new features besides deleting or switching features. In practice, we find our definition above a
good balance among generality, efficiency, and fidelity.

3.3 GENERATING EXPLANATIONS WITH TEMPORAL INFORMATION

With REX, we can generate explanations following the scheme of local model-agnostic black-box
explanation techniques. The only difference is the extended explanation techniques now include
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(a)

(b)
Figure 3: Workflows of generating explanations by local model-agnostic black-box explanation
techniques without (a) and with (b) REX.

temporal predicates in their vocabularies. Note the target model still takes the original input. The
outputs of the extended perturbation model are also expressed in the original input features, so we can
feed them to the target model. Then we evaluate the predicates on these inputs to get the representation
in terms of temporal predicates. Figure 3 shows a typical workflow of the explanation-generating
process of these techniques without (a) and with (b) REX. After applying REX, the perturbation
model provides sampled inputs to the target model to obtain corresponding output, and sampled
inputs in the temporal predicate form to generate an explanation with temporal predicates.

4 EMPIRICAL EVALUATION

We have instantiated REX on Anchors, LIME, and Kernel SHAP (KSHAP for short) in this section.
We refer to the extended version as Anchors*, LIME*, and KSHAP*. We study how much REX
improves Anchors, LIME, and KSHAP by comparing them with the extended versions. Following
previous works, we use fidelity and understandability (Markus et al., 2021; Alangari et al., 2023)
as metrics. They mean good explanations should 1) accurately describe the ML model and 2) be
understandable to a human. We conducted two experiments to assess them.

4.1 MODELS AND DATASETS

Sentiment Analysis Models We trained an LSTM model with paraphrastic sentence embedding (Wi-
eting et al., 2015), and fine-tuned a GPT-2 (Radford et al., 2019) and a Flan-T5 (Chung et al., 2022)
model, along with a pre-trained BERT model (HF Canonical Model Maintainers, 2022). We used
the Stanford Sentiment Treebank dataset (Socher et al., 2013) and followed the train/validation/test
split used in the original dataset. The explanations produced by the original models used only feature
predicates, while REX added 1-D and 2-D temporal predicates to the explanations. In the perturbation
model, besides deleting and switching words, we also applied BERT (Devlin et al., 2018) to replace
words with other words that can appear in the context.

Anomaly Detection RNN We trained an Anomaly Detection RNN (Park, 2018) on an ECG
dataset (Dau et al., 2018). We again followed the train/validate/test split in the original dataset.
We used whether a data point in a series is fixed to a given value as the basic building block of expla-
nations. While the explanations generated by the original techniques only contain such predicates,
REX adds temporal predicates. For traceability, we limited the explanations to only consist of data
points that are at most 20 steps before the detected anomalous point in a time series. For perturbations,
we allowed deleting, switching, and changing data points by sampling from a Gaussian distribution
with its original value as the mean and 1 as the standard deviation.

4.2 FIDELITY

Fidelity reflects how well an explanation describes the target model. As Anchors provides rule-based
explanations while LIME and SHAP provide attribution-based ones, we employed different metrics.
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Table 2: Fidelity results.

Method
Sentiment Analysis Anom.

LSTM BERT T5 GPT-2 RNN
Precision (%)

Anchors 93.6 91.1 97.9 98.6 99.3
Anchors* 95.8 94.0 97.9 99.8 93.5

Accuracy(%)
LIME 28.8 57.2 33.6 33.9 62.3
LIME* 65.7 86.0 58.5 64.2 80.1
KSHAP 39.8 58.9 37.0 28.1 62.9
KSHAP* 64.2 64.1 63.0 61.1 77.4

Sentiment Analysis Anom.
LSTM BERT T5 GPT-2 RNN

Coverage (%)
5.1 5.7 7.6 5.9 4.6
12.3 14.2 10.0 10.4 8.7

AUROC
0.505 0.519 0.505 0.513 0.575
0.713 0.794 0.646 0.648 0.763
0.493 0.514 0.521 0.577 0.557
0.603 0.682 0.652 0.687 0.716

Table 3: Excecution time(seconds) of experiments. “*” indicates the version with REX.

Sentiment Analysis Anomaly Detection
LSTM BERT T5 GPT-2 RNN

* * * * *
Anchor 48.3 77.2 63.1 86.0 45.2 87.2 41.3 64.2 665.3 476.4
LIME 24.9 42.5 205.5 248.3 6.8 10.7 12.9 13.2 605.2 824.2
KSHAP 10.6 12.4 88.4 139.4 12.1 23.3 187.3 189.9 630.7 869.1

For Anchors, we considered the metrics used in rule-based explanation (Lakkaraju et al., 2016; Ribeiro
et al., 2018; Craven & Shavlik, 1995) and the sufficient condition nature of Anchors explanations,
using coverage and precision as the fidelity metrics. Given a neural network model f , an input
instance x, and a distribution D corresponding to a perturbation model pert, an explanation Ax where
Ax(z) = 1 if and only if z satisfies the explanation (a sufficient condition), we can define the coverage
as cov(x; f,A) = Ez∼D(x)[A(z)] and precision as prec(x; f,A) = Ez∼D(x)[1f(x)=f(z)|A(z) = 1].
Coverage is the proportion of input data in the neighborhood space that match the explanation.
Precision is the proportion of covered data that has the same model prediction as the original input.

For LIME and KSHAP, as attribution-based methods, there are primarily two ways to measure
the metrics, which are assessing the effect of each high-attribution feature (Hooker et al., 2019;
Yoshikawa & Iwata, 2020) and comparing the output of the black-box model with the surrogate
model (Balagopalan et al., 2022; Yeh et al., 2019; Ismail et al., 2021). We chose the latter metric for
our measurement. The former one needs to change certain predicates while maintaining the others.
It is hard for augmented techniques since we cannot change the value of feature predicates without
affecting temporal information. Given a black-box model f , an input x, an explanation surrogate
model E, and a performance metric L (e.g., accuracy, Area Under the Receiver Operating Character-
istic curve (AUROC), or mean squared error), the (in)fidelity is defined as Ez∼D(x)L(f(z), E(z)).
In our evaluation, we used accuracy and AUROC as performance metrics.

We took the test sets of the two datasets, and applied Anchors, LIME, KSHAP, Anchors*, LIME*,
and KSHAP* to generate explanations for each input in the sets. Since normal points are much more
than anomalous points in the anomaly detection dataset, we only looked at anomalous inputs. There
are 2210 inputs in the test set of the sentiment analysis dataset, while there are 9 (anomalous) inputs
in that of the anomaly detection dataset. To calculate the fidelity, We sampled 10,000 variable-length
inputs from the neighborhood space for each input.

Table 2 summarizes the evaluation results. For Anchors, REX improves the coverage by 98.2% on
average while maintaining roughly the same level of precision or slightly improving it compared to
the original approaches. This is in line with our assumption that REX can augment existing local
techniques to explain more inputs. Limited by space, we report the results of 30 randomly chosen
inputs in the BERT experiment and all inputs in the anomaly detection experiments in Figure 4. For
LIME and KSHAP, REX improves both Accuracy and AUROC, helping to explain the black-box
model better by incorporating temporal information. REX improves the accuracy of LIME and
Kernel SHAP by 28.6% and 23.1%, and the AUROC by 32.7% and 28.5% respectively.

We did a 1-tail paired t-tests on these 15 setup pairs, only differing in the application of REX. The
significance values are all far less than 0.01. This shows with over 99% confidence, REX significantly
improves the explanation fidelity.
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Figure 4: Anchors coverage improvement of 30 inputs in the sentiment analysis BERT experiment
and all inputs in the anomaly detection experiment.

Table 4: Results of the user study.

Method Precisionu (%) Coverageu (%)
T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

Anchors 70.6 47.4 18.1 47.4 57.8 58.0 44.0 37.0 37.0 43.5
Anchors* 81.2 99.4 73.9 84.1 97.7 61.9 69.5 80.5 71.5 60.5

Table 3 reports the execution time. Though REX introduces extra predicates, which potentially
lead to increased runtimes, we did not encounter notable issues with efficiency. For LIME and
KSHAP, the main time-consuming step is obtaining the results of the target model’s output, while
REX does not require a larger number of sampled instances, resulting in comparable running
times for both techniques. Anchors’ runtime heavily depends on how quickly the underlying KL-
LUCB algorithm (Kaufmann & Kalyanakrishnan, 2013) can find predicates that fit the model well.
Interestingly, when Anchors adds suitable predicates, it can make the algorithm faster. For example,
Anchors may not find a good anchor for the sentence “it’s not a bad journey at all”, but with REX, it
can easily and quickly identify the anchor {not, bad} ∧ Posgood − Posbad ≥ 1 as the explanation.
However, if ReX fails to add such predicates, the algorithm may run slower.

4.3 UNDERSTANDABILITY

To assess how much REX helps an end user understand a model, we conducted a user study by
comparing Anchors* and Anchors. We use precisionu and coverageu as metrics, similar to those
used for measuring fidelity. We employed 19 computer science undergraduates with machine learning
backgrounds but no experience with explanation techniques, and studied how much REX improves
Anchors on the sentiment analysis LSTM. The questionnaire contains five sets of tests. Each test
first presents a sentence, the network’s output on the sentence, and explanations from Anchor and
Anchor*, respectively. The sentences are randomly chosen from the test set. Then each user is
asked to predict the RNN’s output on 10 new sentences. The new sentences are produced using our
perturbation model (with BERT (Devlin et al., 2018)). They can answer “positive”, “negative”, or “I
don’t know”. If a user did not answer “I don’t know”, we gave a “yes” to the coverageu question; if
their prediction matches the actual model output, we gave a “yes” to the precisionu question.

Table 4 shows the average coverageu and precisionu across the 19 users and 10 sentences for
each question. Anchors* is better than Anchors on all questions in terms of both coverageu and
precisionu. Across these questions, Anchors* yields an average precisionu of 87.3% and an
average coverageu of 68.8%, while these numbers are only 48.3% and 43.9% for Anchors. The
improvements are 80.9% and 56.7% respectively. We did 1-tail paired t-tests on these paired data.
With more than 99% confidence, REX significantly helps Users predict more instances more precisely.

Users can utilize the explanations to predict the behaviors of the target models on more inputs and
more precisely. Incorporating temporal information improves the clarity of explanations (e.g., ones in
Table 1 and Figure 1), whereas the new perturbation model considers the fact that a word can appear
at any position due to variable input lengths. Strictly speaking, an explanation produced by Anchors
only covers inputs with lengths that are equal to the original input’s. We inspected the answers closely
and found out that sometimes users would misuse the original Anchors’ explanations. Some users
would ignore input length constraints and apply the explanations when they were supposed to answer
“I don’t know”. This situation happened for 24.8% of all the answers. Therefore, they often give
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incorrect predictions to these sentences while the coverage is increased. But such misuses rarely
happen with Anchors* because the corresponding explanations highlight temporal information and
cover more inputs.

Our user study shows that REX can help users predict more instances with higher precisionu. It also
shows the shortcomings of existing techniques when applied to models processing sequential data of
different lengths. In particular, users are likely to misuse and make wrong predictions when applying
the explanations to inputs whose lengths are different from the original input’s.

5 RELATED WORK

Our work relates to explanation techniques for models processing inputs of variable lengths and
general local model-agnostic explanation techniques. We refer to the surveys (Wang et al., 2018;
Jacobsson, 2005; Rojat et al., 2021; Molnar, 2020) for comprehensive introductions.

Many works have concentrated on extracting DFAs (Jacobsson, 2005) and their variants (Ayache
et al., 2018; Du et al., 2019; Dong et al., 2020) from RNNs or develop more scalable algorithms
like adapting Angluin’s L∗ algorithm (Weiss et al., 2018). These approaches are not practical to
complex models due to their global nature and are mostly limited to explaining toy RNNs. Some
approaches (Wisdom et al., 2016; Sha & Wang, 2017) prioritize fidelity over understandability by
producing surrogate models that require expert analysis. In contrast, REX can help regular end users.

Local explanations for these models mainly attribute importance to features (Arras et al., 2019;
Schlegel et al., 2019) like LIME. But they fail to capture temporal information. Treating models as
white boxes can lead to more efficient and precise explanations (Li et al., 2016; Denil et al., 2014;
Ding et al., 2017; Arras et al., 2017; Arjona-Medina et al., 2019; Murdoch et al., 2018; Karim et al.,
2017; Vinayavekhin et al., 2018), but this makes such approaches model-specific. Some consider the
effect of multiple features together (Chen et al., 2020; Singh et al., 2018; Sivill & Flach, 2022; Tsang
et al., 2020), but these methods ignore temporal information and cannot handle inputs of variable
lengths. They extend explanations in an orthogonal direction to REX, so they could potentially be
combined with REX to consider both temporal information and multiple-feature effects.

Local model-agnostic explanation techniques apply to a wide range of machine-learning models
by treating models as black boxes. Popular explanation forms include feature importance attribu-
tion (Ribeiro et al., 2016; Strumbelj & Kononenko, 2014; Lundberg & Lee, 2017; Dandolo et al.,
2023), boolean expressions as sufficient conditions (Ribeiro et al., 2018), and counterfactuals (Wachter
et al., 2017; Dandl et al., 2020; Zhang et al., 2018). Individual Conditional Expectation plots visualize
how the model output changes as one feature changes (Goldstein et al., 2015). These approaches fail
to capture temporal information in models processing sequential data of variable lengths.

6 CONCLUSION AND LIMITATION

We have proposed REX, a general framework that adds temporal information to existing local model-
agnostic explanation methods. REX allows these methods to generate more useful explanations for
models that handle inputs of variable lengths (e.g., RNNs and transformers). REX achieves this by
extending vocabularies of explanations with temporal predicates, and modifying perturbation models
so they can generate inputs of different lengths. We have instantiated REX on Anchors, LIME, and
Kernel SHAP, and demonstrated the effectiveness by empirical evaluation.

One limitation of our approach is that it relies on finding realistic perturbation models which is a
common problem for model-agnostic explanation techniques. For example, it is unclear what a good
perturbation model for the time series data of stock prices is.
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Rafael Poyiadzi, Kacper Sokol, Raúl Santos-Rodrı́guez, Tijl De Bie, and Peter A. Flach. FACE:
feasible and actionable counterfactual explanations. In Annette N. Markham, Julia Powles, Toby
Walsh, and Anne L. Washington (eds.), AIES ’20: AAAI/ACM Conference on AI, Ethics, and
Society, New York, NY, USA, February 7-8, 2020, pp. 344–350. ACM, 2020.

Mattia C. F. Prosperi, Yi Guo, Matthew Sperrin, James S. Koopman, Jae S. Min, Xing He, Shannan N.
Rich, Mo Wang, Iain E. Buchan, and Jiang Bian. Causal inference and counterfactual prediction in
machine learning for actionable healthcare. Nat. Mach. Intell., 2(7):369–375, 2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.
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Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research,
pp. 5244–5253. PMLR, 2018.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. Towards universal paraphrastic
sentence embeddings. arXiv preprint arXiv:1511.08198, 2015.

Scott Wisdom, Thomas Powers, James Pitton, and Les Atlas. Interpretable recurrent neural networks
using sequential sparse recovery. arXiv preprint arXiv:1611.07252, 2016.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. Association for
Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6.

Chih-Kuan Yeh, Cheng-Yu Hsieh, Arun Suggala, David I Inouye, and Pradeep K Ravikumar. On the
(in) fidelity and sensitivity of explanations. Advances in Neural Information Processing Systems,
32, 2019.

Yuya Yoshikawa and Tomoharu Iwata. Gaussian process regression with local explanation. arXiv
preprint arXiv:2007.01669, 2020.

Xin Zhang, Armando Solar-Lezama, and Rishabh Singh. Interpreting neural network judgments
via minimal, stable, and symbolic corrections. In Samy Bengio, Hanna M. Wallach, Hugo
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A APPENDIX

A.1 INSTANCES

In this section, we present the instantiation of our framework on several popular model-agnostic
local explanation methods (Molnar, 2020). We provide details about the augmented explanations, the
integration of temporal predicates, and the interaction between the perturbation model and the core
algorithm. Since model-agnostic techniques treat target models as black boxes, they typically sample
different inputs and observe how the model outputs change. In our experiment, we implement the
instances corresponding to three representative approaches, LIME, kernel SHAP, and Anchors.

LIME (Ribeiro et al., 2016). As the example in Figure 1 shows, the augmented explanation is now a
linear expression whose 0-1 variables can either be a conventional predicate or a temporal predicate.
There are two main steps in LIME to generate explanations: 1) obtaining several sample inputs
around a given input using a perturbation model and the corresponding outputs, and 2) performing
regression on the input-output pairs. To instantiate REX on LIME, it only needs to be able to evaluate
the linear expression and calculate the loss value after adding temporal predicates. For regression
algorithms, it is easy to cope with additional predicates. As for the perturbation model, it is used to
draw the aforementioned inputs and is viewed as a black box by the core algorithm in LIME. As a
result, replacing the perturbation model is straightforward.

Kernel SHAP (Lundberg & Lee, 2017). Similar to LIME, kernel SHAP attributes importance to
individual features with a regression algorithm, albeit a different loss function, weighting kernel,
and regularization term to align the generated explanations with the properties of Shapley values.
Consequently, applying our framework to Kernel SHAP resembles the process used for LIME.

Anchors(Ribeiro et al., 2018). As Table 1 shows, the augmented explanation is now a conjunction of
conventional and temporal predicates. Similar to LIME, Anchors are generated by a sampling-based
approach. But in contrast to LIME, Anchors uses if-then rules as its explanation form. Except for
the perturbation model, the other parts of Anchors can work well with any predicate. To incorporate
temporal information, the new perturbation model only needs to be modified as LIME does. Therefore,
adding the temporal predicates and substituting the perturbation model are straightforward.

Besides these methods, other model-agnostic local explanation methods can cooperate with REX
in similar ways. Such as Counterfactual Explanations(Wachter et al., 2017; Dandl et al., 2020;
Van Looveren & Klaise, 2021), also follow the above algorithm structure. We only need to follow
suit while applying REX on these methods.

A.2 DETAILS ABOUT USER STUDY

The questionnaires are similar for all users with minor variations in the order of presentation. We
presented the five questions, Q1, Q2,..., and Q5 in a random order. For each question, we presented
the explanations generated without/with ReX in a random order. Also, we presented the ten sentences
to be predicted in a random order. We presented one explanation at a time and asked participants
to simulate the model on 10 sentences. Since there were 10 explanations in total, we repeated this
process 10 times. Figure 5 is a question example in our user study.
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Original sentence: pretentious editing ruins a potentially terrific flick.
RNN output: negative.

Explanation 1: the word “ruins” appears in the sentence at the specific position.

Please predict the RNN output on each sentence below according to each explanation. You can
answer 0. negative, 1. positive, or 2. I don’t know.

Sentence Prediction 1
ruins beneath terrific design.
pretentious editing ruins a potentially terrific methodology.
cult ruins a potentially lucrative planet.
...

Explanation 2: both “ruins” and “terrific” appear in the sentence, “terrific” is behind “ruins”, and there are at least
“0” words between them.

Sentence Prediction 2
ruins beneath terrific design.
pretentious editing ruins a potentially terrific methodology.
cult ruins a potentially lucrative planet.
...

Figure 5: A question in the user study.
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