
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MULTICFV: DETECTING CONTROL FLOW VULNERA-
BILITIES IN SMART CONTRACTS LEVERAGING MULTI-
MODAL DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The introduction of smart contract functionality marks the advent of the blockchain
2.0 era, enabling blockchain technology to support digital currency transactions
and complex distributed applications. However, many smart contracts have been
found to contain vulnerabilities and errors, leading to the loss of assets within the
blockchain. Despite a range of tools that have been developed to identify vulnera-
bilities in smart contracts at the source code or bytecode level, most rely on a single
modality, reducing performance, accuracy, and limited generalization capabilities.
This paper proposes a multimodal deep learning approach, MultiCFV, which is
designed specifically to analyze and detect erroneous control flow vulnerability, as
well as identify code clones in smart contracts. Bytecode is generated from source
code to construct control flow graphs, with graph embedding techniques extracting
graph features. Abstract syntax trees are used to obtain syntax features, while code
comments capture key commentary words and comment features. These three
feature vectors are fused to create a database for code inspection, which is used
to detect similar code and identify contract vulnerabilities. Experimental results
demonstrate our method effectively combines structural, syntactic, and semantic
information, improving the accuracy of smart contract vulnerability detection and
clone detection.

1 INTRODUCTION

The concept of smart contracts was first introduced by computer scientist Nick Szabo in 1994 and
gradually received significant attention with the emergence of Bitcoin (Nakamoto, 2008). A smart
contract is an automated agreement that operates on blockchain technology, removing the need for
third-party involvement. These contracts commonly involve transactions such as the transfer of
cryptocurrency or digital assets, which are automatically executed when predefined conditions are
met. This automation spans various fields, making smart contracts tamper-resistant and ensuring
transparency and reliability in transactions (Kuo & Pham, 2023; Subramanian & Subramanian, 2022;
Qi et al., 2023). However, the substantial value of the assets involved makes smart contracts prime
targets for attackers looking to exploit vulnerabilities or errors in the contract’s code. For instance,
on October 7, 2023, the cryptocurrency exchange Mixin Network was hacked, resulting in a loss of
approximately $200 million (Toulas, 2024).

Due to the immutable nature of smart contracts, they cannot be altered once deployed on the
blockchain. Therefore, it is crucial to minimize vulnerabilities and errors in the code before deploy-
ment to enhance the security of the contract. Significant research efforts have led to advancements
in blockchain systems and the development of tools designed to analyze and prevent smart contract
vulnerabilities (He et al., 2023; di Angelo et al., 2023). Nevertheless, these tools still face several
limitations. For instance, some tools require experts to define error patterns and detection rules
that are not only time-consuming and labor-intensive but also struggle to address new or variant
vulnerabilities effectively (Liu et al., 2021; Lin et al., 2023). To overcome the time-consuming and
labor-intensive, certain tools utilize deep learning models to identify specific patterns or features
associated with vulnerabilities (Wu et al., 2021; Yu et al., 2021; Gao, 2020). However, these tools
primarily operate from the unimodal perspective, which often results in extracted features failing

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

to fully capture the semantic information, leading to reduced detection accuracy and compromised
reliability (Adami, 2016).

In this paper, a novel approach MultiCFV is proposed to overcome these challenges through multi-
modal deep learning for smart contract clone detection and vulnerability verification. Our approach
focuses on three key aspects: (1) Deep Learning Techniques: Deep learning is utilized to learn patterns
and features of smart contract vulnerabilities, eliminating reliance on expert-defined detection rules
and code design, which enables faster and more efficient detection. (2) Accuracy and Generalization:
Detection accuracy and generalization capabilities are significantly enhanced through the use of mul-
timodal deep learning. (3) Comment Information: To further improve detection accuracy, additional
code information and features are extracted from comments within the code. These comments often
provide insights into the function’s purpose and considerations, offering valuable supplementary data.

The main contributions of this paper are as follows:

1. We propose a novel type of vulnerability and conduct an in-depth analysis. To the best of
our knowledge, it’s the first application of multimodal deep learning to smart contracts with
erroneous control flow vulnerabilities.

2. We propose an innovative feature extraction approach by using multimodal deep learning
and graph embedding techniques. Our approach overcomes the limitations of unimodal
methods while enhancing detection accuracy and robustness. We integrate control flow
graphs generated from bytecode, abstract syntax trees(AST) derived from source code, and
code comments.

3. We introduce comment word embeddings as supplementary features for smart contracts. We
highlight the importance of comments and include them in the feature set, thereby improving
detection accuracy and overall performance.

4. We have uploaded the source code, experimental data, and comprehensive README
documentation of MultiCFV. These resources ensure the reproducibility of our work and
will be made open-source following the paper’s publication.

Specifically, in the phase of code clone detection, the source code is not used directly as feature
vectors. Instead, emphasis is placed on the control flow and semantic structure of smart contracts.
Our approach avoids interference from irrelevant items such as variable and function names, leading
to superior performance in both accuracy and generalization capability.

2 BACKGROUND

2.1 ERRONEOUS CONTROL FLOW VULNERABILITIES

Erroneous control flow vulnerabilities in smart contracts refer to design or implementation flaws that
occur when handling exceptions or errors. These flaws can result in the smart contract failing to
properly manage error situations, leading to unexpected behaviors or security issues.

Among the most common and severe erroneous control flow vulnerabilities in smart contracts is
the reentrancy vulnerability (Xue et al., 2020; Wu et al., 2021). Reentrancy allows an attacker to
repeatedly call a function during its execution, preventing the contract’s state from being updated
promptly and creating significant security risks. To prevent such vulnerabilities, smart contracts
must rigorously verify the correctness and security of their behavior flows. In addition to reentrancy,
other critical vulnerabilities include impermissible access control flaws, dangerous delegatecall
vulnerabilities, and unchecked external call vulnerabilities (Zheng et al., 2024). Our detection focuses
primarily on these four types of vulnerabilities. The rationale for focusing on these vulnerabilities is
detailed in Appendix A.3.

2.2 CONTROL FLOW GRAPH

The Control Flow Graph (CFG) consists of basic blocks and control flow edges. Basic blocks are
sequences of consecutive instructions in a program that contain no branches, representing a single
execution unit (Contro et al., 2021). In this paper, basic blocks are composed of bytecode blocks
formed by Ethereum Virtual Machine (EVM) instruction sequences. Branch instructions (e.g., JUMP,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

JUMPI, RETURN) are the end markers of basic blocks, which are used to segment the basic blocks.
Appendix A.5 provides a list of unique bytecode values along with their corresponding definitions
and instructions.

Control flow edges refer to the transitions from one bytecode block to another based on conditional
or call statements. In the CFG, different colors of control flow edges indicate different types of edges,
mainly four types. An unconditional jump from one bytecode block to another is represented by a
blue edge (unconditional edge, such as the JUMP instruction); the jump path when a conditional
statement (conditional edge, such as JUMPI) is true is represented by a green edge; the jump path
when a conditional statement is false is represented by a red edge (conditional edge, such as the
JUMPI instruction); and the jump path involving calls to external functions within a bytecode block
is represented by a yellow edge (function call edge).

3 METHODOLOGY

3.1 METHOD OVERVIEW

Erroneous control flow vulnerability is associated with smart contracts’ behavioral logic and state
transitions. Addressing this vulnerability requires a deep understanding of the contract’s control
flow and behavior across various states. However, a single graph alone cannot provide sufficient
information. To obtain more adequate information, we apply multimodal deep learning to capture
different features of smart contracts from three aspects: CFG, AST, and code comments.

Figure 1: A High-level Overview of MultiCFV

The CFG, supplemented by the AST, provides valuable semantic and structural context. Code
comments further offer insights into the contract’s functionality and considerations, collectively
enabling more effective features needed to identify erroneous control flow vulnerabilities. Our
research considers the following aspects: (1) The CFG illustrates the control flow paths within the
contract. By analyzing the graph, potential issues such as call errors, unchecked calls, and conditional

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

logic errors can be detected. This analysis helps in identifying control flow paths between basic
blocks in the contracts, including conditional branches and jump paths. (2) The AST focuses on the
structure and syntax of the code, including variable declarations, function definitions, and scopes.
As a supplement to syntax and semantic checks, the AST facilitates error detection. (3) Combining
CFG and AST enables a comprehensive analysis of smart contracts, leading to accurate detection and
prevention of potential vulnerabilities in behavioral logic and state transitions.

Figure 1 presents the high-level overview of our approach MultiCFV, which comprises four key parts:
control flow feature extraction, abstract syntax feature extraction, comment feature extraction, clone
detection and contract verification. Specifically, bytecode is first generated from the source code,
followed by the construction of the CFG by using this bytecode. A Graph Convolutional Network
(GCN) combined with a Gated Recurrent Unit (GRU) is then employed to extract graph feature
vectors from the CFG. The AST is extracted from the source code to obtain AST feature vectors.
Additionally, key comment words and comment feature vectors are captured by utilizing attention
mechanisms and fine-tuned BERT embeddings. Then, in the clone detection phase, these three
feature vectors are integrated into a contract feature database for comparison with new input contracts.
Contracts are considered as having similar codes if the similarity exceeds a defined threshold. In the
contract verification phase, similarity measures are also used to assess new input contracts and detect
erroneous control flow vulnerabilities.

3.2 CONTROL FLOW FEATURE EXTRACTION

3.2.1 EXTRACT CONTROL FLOW INFORMATION

The source code of contracts is converted into bytecode using a public compiler, and an automated
tool called "Graphextractor" is developed to extract the CFG from the compiled bytecode. The
extraction process is illustrated in Figure 2. Inspired by (Qian et al., 2023), the fine-tuned BERT
model is used to process EVM instructions in the CFG, specifically named blocks, to extract features
for these blocks as CFG node features.

Figure 2: Control Flow Graph Extraction Process

The representation of control flow information for each contract is as follows.
Ocfg = (GP,NF,CN) (1)

where G contains all bytecode blocks and their corresponding control flow edges. NF is the set
of features for all bytecode blocks, represented by 256-dimensional vectors obtained from BERT
embeddings, with each vector corresponding to a feature of a bytecode block. CN is the name of the
contract file, ending with ‘.sol’. The formula for GP is as Equation 2.

GP = {(u, g, v) | u, v ∈ V, g ∈ G} (2)
where V is the set of nodes, and G is the set of edge types.

The formula for node features NF is as follows.
NF = (f1 f2 f3 · · · fN)

⊤ (3)

where N is the total number of nodes, and each node’s feature vector has a length of 128. fi ∈ R128

represents the feature vector of node i, i.e., fi = (fi1, fi2, . . . , fi128).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2.2 BERT EMBEDDING

The BERT model is employed as an embedding tool due to the contextual dependency of terms in
EVM instructions and comments within smart contracts. BERT’s contextual awareness can more
accurately capture these dependencies (Jie et al., 2023). Moreover, smart contract code often involves
complex logic and structure, and BERT’s Transformer architecture is well-suited to capture and
represent these intricate semantic details.

During feature extraction, the BERT model is not applied to all types of vulnerability contracts
simultaneously. Instead, it is fine-tuned separately for each vulnerability type before being used
for BERT embedding (Mosbach et al., 2020). This targeted approach optimizes the model for each
vulnerability, improving the precision of feature extraction.

3.2.3 GRAPH EMBEDDING ON CFG

The graph embedding technique GRU-GCN is used to process control flow information and generate
graph features from the CFG. The detailed rationale for selecting the GRU-GCN model, along with
the complete process and formulas for generating the control flow graph features Fcfg ∈ R512

through graph embedding, are provided in Appendix A.4.

3.3 ABSTRACT SYNTAX FEATURE EXTRACTION

The process of extracting abstract syntax information is illustrated in Appendix A.2. An automated
tool called "ast-generation" is developed to generate ASTs and extract key information from them.
The extracted information is processed by a simple deep learning model to generate an abstract syntax
feature vector for each contract, denoted as Fast ∈ R512.

Appendix A.7 offers a detailed list of extracted roles and categories with their definitions. We
primarily pay attention to the following aspects: the role of nodes, the role of their children, the
number of child nodes, the presence of variables, the presence of input, and output parameters, etc.

3.4 COMMENT FEATURE EXTRACTION

The comment feature extractor operates as follows: comments are first extracted from the contract
and cleaned to remove invalid characters, symbols, and meaningless words, retaining only relevant
content. A convolutional neural network with a self-attention mechanism called " com-extractor "
extracts keywords and feature vectors from the comments. The number of keywords depends on
the comment length and represents the contract. The comment feature extraction process is the
same as detailed in Section 3.2.2, producing a comment feature vector for each contract, denoted as
Fast ∈ R512. The specific rationale for selecting a convolutional neural network with a self-attention
mechanism is detailed in Appendix A.8.

What’s more, we compile the keywords from all comments and generate a word cloud, as shown in
Figure 3. The figure shows that most of these contracts use the SafeMath library, and a large portion
of the code content involves mathematical operations (Hefele et al., 2019).

3.5 CONTRACT VERIFICATION AND CLONE DETECTION

The CFG feature vector Fcfg, the AST feature vector Fast, and the comment feature vector Fcom

described above are vertically stacked to form the comprehensive feature representation matrix F for
each smart contract, which is used to verify the presence of erroneous control flow vulnerabilities and
similar code. The comprehensive feature representation matrices F for all smart contracts are stored
in a database for code clone detection. Due to the high-dimensional and sparse nature of the data,
the RBF kernel function is multiplied with cosine similarity for code similarity computation. The
detailed reasons are listed in Appendix A.9.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: Comment Wordcloud

4 EXPERIMENTS

4.1 DATA COLLECTION

To obtain a large number of smart contracts, we select four distinct datasets: Smartbugs Curated (di An-
gelo et al., 2023), SolidiFI-Benchmark (Ghaleb & Pattabiraman, 2020), MessiQ-Dataset (Qian et al.,
2023; Liu et al., 2023), and Clean Smart Contracts from Smartbugs Wild (Nguyen et al., 2022).
Detailed information on these four datasets is provided in Appendix A.6.

4.2 EXPERIMENTAL SETUP

The GRU-GCN, and "com-extractor" are implemented using PyTorch. GRU-GCN has a hidden
layer size of 512 and consists of a convolutional layer, two dropout layers, three GRU layers, a fully
connected layer, and a regression layer. The learning rate is 0.0001, and the Adam optimizer is used
for training. Moreover, the "com-extractor" has a hidden layer size of 512 with 4 convolutional layers.

The dataset is split with an 8:2 ratio for contract vulnerability and code clone detection. Due to the
dataset’s imbalance from an abundance of negative samples in vulnerability detection, a balanced
dataset is created using SMOTE and data augmentation. The model processes three modalities:
comment features, AST features, and CFG features, employing Binary Cross-Entropy Loss and the
Adam optimizer with a 0.005 learning rate. To reduce overfitting, Dropout regularization (probability
0.3) is applied. Features from all modalities are concatenated and passed through a fully connected
layer with ReLU activation, followed by a sigmoid layer to output probabilities. During 500 epochs,
the model with the lowest loss is saved for evaluation. Vulnerabilities are identified if probabilities
exceed 0.95.

4.3 ABLATION EXPERIMENTS

Given the wide range of vulnerabilities detected in this study, Reentrancy vulnerability, one of the
most common types, is selected as the reference for ablation experiments.

4.3.1 LEARNING RATE SELECTION

A comparative analysis of different learning rates is conducted to determine the optimal value for
achieving the best performance. Table 1 shows that the model achieves the highest accuracy and
performance at a learning rate of 0.005. Meanwhile, the ROC curve for our approach’s detection
results is illustrated in Figure 4, showing an AUC of 0.9947.

4.3.2 MULTI-MODAL INTEGRATION

Ablation studies highlight the essential role of multimodal deep learning in the proposed approach.
Models trained on single features (e.g., comment, AST, or CFG) or dual-modal combinations

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Learning Rate ACC RE PRE F1

0.01 98.25 99.42 97.15 98.27
0.005 99.13 98.25 98.65 98.45
0.001 98.35 99.03 97.70 98.36
0.0005 98.16 99.42 96.97 98.18

Table 1: Performance Comparison (%) Across Different Learning Rates in Terms of Accuracy (ACC),
Recall (RE), Precision (PRE), and F1-Score (F1)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

Receiver Operating Characteristic

ROC curve (area = 0.9947)

Figure 4: ROC Curve of MultiCFV Detection Results

Modality ACC RE PRE F1

Comments 52.04 36.12 75.00 48.75
AST 62.33 50.68 89.38 64.68
CFG 85.74 92.49 91.77 92.13
AST & CFG 96.88 95.48 92.99 94.22
AST & Comments 71.84 54.05 97.07 61.54
CFG & Comments 90.45 94.26 92.75 93.45
All 99.13 98.25 98.65 98.45

Table 2: Performance Comparison (%) between Single-Modal (AST, CFG, or Comments Features),
Dual-Modal (AST + CFG, AST + Comments, or CFG + Comments), and Multi-Modal (AST + CFG
+ Comments) Approaches in Vulnerability Detection in Terms of ACC, RE, PRE, and F1

(e.g., AST & CFG or comment & AST) consistently underperformed the multimodal approach,
underscoring the complementary benefits of integrating multiple modalities. Experimental results
show that CFG achieved the highest accuracy among single-modal features, while CFG & AST
outperformed other dual-modal pairings. However, neither single-modal nor dual-modal setups
matched the performance of the fully integrated multimodal approach.

4.4 CONTRACT VERIFICATION

According to Zheng et al., Slither and Mythril currently exhibit the highest accuracy in contract
vulnerability detection (Zheng et al., 2024; Josselin, 2024; Bast, 2024). Comparative experiments
are conducted using the Slither and Mythril tool. Table 3 presents comparative experiments using
these tools. Notably, Slither failed to analyze 66 contracts, while Mythril encountered even more
failures, primarily due to limitations related to the supported ranges of Solidity compiler versions.

Additionally, MultiCFV is tested on a new vulnerability dataset (Unprotected Ether Withdrawal). The
detection results showed an accuracy of 82.86%, a precision of 92.07%, a recall of 83.34%, and an
F1-score of 87.49%. This demonstrates that MultiCFV is very generalizable.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Tool Reentrancy Access Control External Call Delegatecall

ACC RE PRE F1 ACC RE PRE F1 ACC RE PRE F1 ACC RE PRE F1

Mythril 66.17 64.33 65.09 64.71 0 0 0 0 50.14 51.25 54.01 52.59 59.56 60.59 61.40 60.99
Slither 72.76 71.11 73.67 72.36 0 0 0 0 63.12 60.56 66.20 63.22 66.91 67.97 69.44 68.70

Slither & Mythril 76.71 77.37 77.03 77.20 0 0 0 0 64.39 63.84 67.67 65.71 68.46 68.52 70.26 69.38
MultiCFV 99.13 98.25 98.65 99.12 82.89 92.39 89.77 91.06 89.01 98.17 90.16 93.99 80.71 90.06 81.61 85.63

Table 3: Performance Comparison (%) between MultiCFV and Slither in Terms of ACC, RE, PRE,
and F1

4.5 CODE CLONE DETECTION

In code clone detection, MultiCFV identifies contracts with similarity scores above a specified
threshold and outputs their names and contents. A randomly selected smart contract is used for this
analysis, with detailed contract content and detection results provided in Appendix A.10. Additionally,
we compare the performance of SmartEmbed and MultiCFV on the same dataset (Gao et al., 2020) to
evaluate the effectiveness of MultiCFV. Detection times are averaged over five runs for each threshold
value, with results in Table 4 showing that MultiCFV slightly outperforms SmartEmbed in terms of
speed. What’s more, Venn diagrams of the experimental results are plotted at a similarity threshold
of 0.95, as illustrated in Figure 5. SE represents SmartEmbed, MT represents MultiCFV, MT_rest
indicates the similar codes detected by MultiCFV but not by SmartEmbed, and SE_rest indicates
the similar codes detected by SmartEmbed but not by MultiCFV. SmartEmbed failed to detect clone
codes in 26% of the contract codes, whereas MultiCFV only in 17%. Along with Figure 5, it is
indicated that SmartEmbed is overly cautious in clone detection, potentially overlooking codes with
similar structures and functions. In contrast, our approach imposes fewer constraints on the syntax
and compilation versions of the contracts, resulting in more effective detection. We also plot a Venn
diagram with a similarity threshold of 1.0, which is presented in Appendix A.11.

Threshold Tool Average Time(s)

0.95 SmartEmbed 403.7637
MultiCFV 368.6572

1 SmartEmbed 396.9978
MultiCFV 356.8932

Table 4: The Detection Time of Code Clone
It is important to note that detecting clone codes with identical structures and functions does not
always equate to better performance when there is a higher overlap. In the remaining dataset,
variations in variable names, function names, and other code elements introduce differences, as
illustrated in Figure 8 in Appendix A.10.

5 RELATED WORK

5.1 VULNERABILITY DETECTION

Deep learning has significantly advanced vulnerability detection in smart contracts, enhancing perfor-
mance. Yu et al. introduced Deescvhunter, a deep learning framework for automatic vulnerability
detection (Yu et al., 2021). Liu et al. combined expert knowledge with graph neural networks to
improve contract vulnerability detection (Liu et al., 2021). Wu et al. developed Peculiar, which detects
reentrancy vulnerabilities using control flow graphs and graph neural networks (Wu et al., 2021).
Similarly, Chen et al. and Zhuang et al. employed control flow graphs and graph neural networks for
detecting diverse vulnerabilities (Chen et al., 2024; Zhuang et al., 2021). Cai et al. further integrated
control flow graphs, abstract syntax trees, and program dependency graphs, leveraging graph neural
networks for feature extraction (Cai et al., 2023). These methods highlight the effectiveness of graph
embedding in preserving structural information and enhancing detection accuracy.

Despite these advancements, the limitations of unimodal methods have driven the adoption of
multimodal approaches. Jie et al. proposed a multimodal framework for detecting contract vulnera-
bilities (Jie et al., 2023), while Qian et al. introduced a cross-modality mutual learning framework,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 5: Venn Diagram for Clones Detected by MultiCFV and SmartEmbed with Similarity Thresh-
old 0.95

showing that multimodal methods outperform unimodal ones (Qian et al., 2023). Wang et al.
developed SMARTINV, a cross-modal tool for identifying vulnerabilities by checking invariant
violations (Wang et al., 2024b). These approaches integrate information from multiple modalities,
achieving a more comprehensive understanding of vulnerabilities (Yang et al., 2021).

However, these methods rely on multi-class classification tasks and cannot achieve multiple down-
stream tasks like clone detection. They also lack generalization capabilities and struggle to adapt to
new vulnerability patterns.

5.2 CODE CLONE DETECTION

Kondo et al. reported that 79.2% of smart contracts are clones, with the number of clones rapidly
increasing (Kondo et al., 2020). Similarly, He et al.(He et al., 2020) and Chen et al.(Chen et al., 2021)
observed high code reuse rates, highlighting the critical need for clone detection to ensure smart
contract security and enable thorough analysis. To address this, Kondo et al.(Kondo et al., 2020)
developed Deckard, a tree-based clone detection tool, while Gao et al.(Gao et al., 2020) introduced
SmartEmbed, a Word2vec-based tool that outperformed Deckard. Further advancements include
Wang et al.’s (Wang et al., 2024a) SolaSim, leveraging weighted control flow graphs, and Ashizawa
et al.’s (Ashizawa et al., 2021) Eth2Vec, designed for code-rewriting clone detection.

However, these methods share a common issue: they fail to effectively preserve the structural
information and features of the code. The extracted features do not fully represent the contract’s
structure and variable scope. Moreover, some methods, such as SmartEmbed and Deckard, use partial
technologies, resulting in suboptimal performance in retaining code semantics and structure.

6 CONCLUSION AND FUTURE PERSPECTIVES

We propose MultiCFV, a multimodal deep learning-based approach for contract verification and code
clone detection, achieving superior generalization and accuracy. As the first to apply multimodal
deep learning to this domain, MultiCFV identifies erroneous control flow vulnerabilities and detects
code similarities between new input code and existing code, highlighting similar segments. It
outperforms Slither and Mythril across metrics such as accuracy, precision, and F1-score, while
effectively identifying similar contracts in clone detection. However, MultiCFV is currently limited
to contract-level clone detection, which is relatively coarse-grained. Future work will aim to develop
finer-grained detection methods to improve precision and practical applicability.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Elisabetta Adami. Introducing multimodality. The Oxford handbook of language and society, pp.
451–472, 2016.

Ali Saleh Alammary. Bert models for arabic text classification: a systematic review. Applied Sciences,
12(11):5720, 2022.

Nami Ashizawa, Naoto Yanai, Jason Paul Cruz, and Shingo Okamura. Eth2vec: learning contract-
wide code representations for vulnerability detection on ethereum smart contracts. In Proceedings
of the 3rd ACM international symposium on blockchain and secure critical infrastructure, pp.
47–59, 2021.

Daniel Bast. Mythril: Security analysis tool for evm bytecode. https://github.com/Consensys/
mythril, 2024. Accessed: 2024-07-28.

Jie Cai, Bin Li, Jiale Zhang, Xiaobing Sun, and Bing Chen. Combine sliced joint graph with graph
neural networks for smart contract vulnerability detection. Journal of Systems and Software, 195:
111550, 2023.

Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu. A survey on ethereum systems
security: Vulnerabilities, attacks, and defenses. ACM Computing Surveys (CSUR), 53(3):1–43,
2020.

Jinfu Chen, Weijia Wang, Bo Liu, Saihua Cai, Dave Towey, and Shengran Wang. Hybrid semantics-
based vulnerability detection incorporating a temporal convolutional network and self-attention
mechanism. Information and Software Technology, 171:107453, 2024.

Xiangping Chen, Peiyong Liao, Yixin Zhang, Yuan Huang, and Zibin Zheng. Understanding code
reuse in smart contracts. In 2021 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER), pp. 470–479. IEEE, 2021.

Filippo Contro, Marco Crosara, Mariano Ceccato, and Mila Dalla Preda. Ethersolve: Computing
an accurate control-flow graph from ethereum bytecode. In 2021 IEEE/ACM 29th International
Conference on Program Comprehension (ICPC), pp. 127–137. IEEE, 2021.

Monika di Angelo, Thomas Durieux, João F. Ferreira, and Gernot Salzer. SmartBugs 2.0: An
execution framework for weakness detection in Ethereum smart contracts. In Proceedings of the
38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023), 2023.
to appear.

Jianbo Gao, Han Liu, Chao Liu, Qingshan Li, Zhi Guan, and Zhong Chen. Easyflow: Keep ethereum
away from overflow. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), pp. 23–26. IEEE, 2019.

Zhipeng Gao. When deep learning meets smart contracts. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, pp. 1400–1402, 2020.

Zhipeng Gao, Lingxiao Jiang, Xin Xia, David Lo, and John Grundy. Checking smart contracts with
structural code embedding. IEEE Transactions on Software Engineering, 2020.

Asem Ghaleb and Karthik Pattabiraman. How effective are smart contract analysis tools? evaluating
smart contract static analysis tools using bug injection. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2020.

Daojing He, Rui Wu, Xinji Li, Sammy Chan, and Mohsen Guizani. Detection of vulnerabilities of
blockchain smart contracts. IEEE Internet of Things Journal, 10(14), 2023. https://doi.org/
10.1109/JIOT.2023.3241544.

Ningyu He, Lei Wu, Haoyu Wang, Yao Guo, and Xuxian Jiang. Characterizing code clones in
the ethereum smart contract ecosystem. In Financial Cryptography and Data Security: 24th
International Conference, FC 2020, Kota Kinabalu, Malaysia, February 10–14, 2020 Revised
Selected Papers 24, pp. 654–675. Springer, 2020.

10

https://github.com/Consensys/mythril
https://github.com/Consensys/mythril
https://doi.org/10.1109/JIOT.2023.3241544
https://doi.org/10.1109/JIOT.2023.3241544

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alexander Hefele, Ulrich Gallersdörfer, and Florian Matthes. Library usage detection in ethereum
smart contracts. In On the Move to Meaningful Internet Systems: OTM 2019 Conferences: Con-
federated International Conferences: CoopIS, ODBASE, C&TC 2019, Rhodes, Greece, October
21–25, 2019, Proceedings, pp. 310–317. Springer, 2019.

Wanqing Jie, Qi Chen, Jiaqi Wang, Arthur Sandor Voundi Koe, Jin Li, Pengfei Huang, Yaqi Wu, and
Yin Wang. A novel extended multimodal ai framework towards vulnerability detection in smart
contracts. Information Sciences, 636:118907, 2023.

Feist Josselin. Slither: Static analyzer for solidity and vyper. https://github.com/crytic/
slither, 2024. Accessed: 2024-07-28.

Masanari Kondo, Gustavo A Oliva, Zhen Ming Jiang, Ahmed E Hassan, and Osamu Mizuno. Code
cloning in smart contracts: a case study on verified contracts from the ethereum blockchain
platform. Empirical Software Engineering, 25:4617–4675, 2020.

Tsung-Ting Kuo and Anh Pham. Quorum-based model learning on a blockchain hierarchical clinical
research network using smart contracts. International journal of medical informatics, 169:104924–
104933, 2023. https://doi.org/10.1016/j.ijmedinf.2022.104924.

Xingwei Lin, Mingxuan Zhou, Sicong Cao, Jiashui Wang, and Xiaobing Sun. The best of both
worlds: Integrating semantic features with expert features for smart contract vulnerability detection.
In International Conference on Blockchain and Trustworthy Systems, pp. 17–31. Springer, 2023.

Zhenguang Liu, Peng Qian, Xiaoyang Wang, Yuan Zhuang, Lin Qiu, and Xun Wang. Combining
graph neural networks with expert knowledge for smart contract vulnerability detection. IEEE
Transactions on Knowledge and Data Engineering, 35(2):1296–1310, 2021.

Zhenguang Liu, Peng Qian, Jiaxu Yang, Lingfeng Liu, Xiaojun Xu, Qinming He, and Xiaosong
Zhang. Rethinking smart contract fuzzing: Fuzzing with invocation ordering and important branch
revisiting. arXiv preprint arXiv:2301.03943, 2023.

Marius Mosbach, Maksym Andriushchenko, and Dietrich Klakow. On the stability of fine-tuning
bert: Misconceptions, explanations, and strong baselines. arXiv preprint arXiv:2006.04884, 2020.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized business review,
2008. http://dx.doi.org/10.2139/ssrn.3440802.

Hoang H Nguyen, Nhat-Minh Nguyen, Chunyao Xie, Zahra Ahmadi, Daniel Kudendo, Thanh-Nam
Doan, and Lingxiao Jiang. Mando: Multi-level heterogeneous graph embeddings for fine-grained
detection of smart contract vulnerabilities. In 2022 IEEE 9th International Conference on Data
Science and Advanced Analytics (DSAA), pp. 1–10. IEEE, 2022.

Debora Nozza, Federico Bianchi, and Dirk Hovy. What the [mask]? making sense of language-
specific bert models. arXiv preprint arXiv:2003.02912, 2020.

Purathani Praitheeshan, Lei Pan, Jiangshan Yu, Joseph Liu, and Robin Doss. Security analysis
methods on ethereum smart contract vulnerabilities: a survey. arXiv preprint arXiv:1908.08605,
2019.

Pian Qi, Diletta Chiaro, Fabio Giampaolo, and Francesco Piccialli. A blockchain-based secure
internet of medical things framework for stress detection. Information Sciences, 628:377–390,
2023. https://doi.org/10.1016/j.ins.2023.01.123.

Peng Qian, Zhenguang Liu, Yifang Yin, and Qinming He. Cross-modality mutual learning for
enhancing smart contract vulnerability detection on bytecode. In Proceedings of the ACM Web
Conference 2023, pp. 2220–2229, 2023.

Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas Davi. Sereum: Protecting existing smart
contracts against re-entrancy attacks. arXiv preprint arXiv:1812.05934, 2018.

Hemang Subramanian and Susmitha Subramanian. Improving diagnosis through digital pathology:
Proof-of-concept implementation using smart contracts and decentralized file storage. Journal of
medical Internet research, 24(3):34207, 2022. https://doi.org/10.2196/34207.

11

https://github.com/crytic/slither
https://github.com/crytic/slither
https://doi.org/10.1016/j.ijmedinf.2022.104924
http://dx.doi.org/10.2139/ssrn.3440802
https://doi.org/10.1016/j.ins.2023.01.123
https://doi.org/10.2196/34207

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bill Toulas. Mixin network suspends operations following $200 mil-
lion hack. https://www.bleepingcomputer.com/news/security/
mixin-network-suspends-operations-following-\200-million-hack/, 2024. Accessed:
July 28, 2024.

Che Wang, Yue Li, Jianbo Gao, Ke Wang, Jiashuo Zhang, Zhi Guan, and Zhong Chen. Solasim:
Clone detection for solana smart contracts via program representation. In Proceedings of the 32nd
IEEE/ACM International Conference on Program Comprehension, pp. 258–269, 2024a.

Sally Junsong Wang, Kexin Pei, and Junfeng Yang. Smartinv: Multimodal learning for smart contract
invariant inference. In 2024 IEEE Symposium on Security and Privacy (SP), pp. 126–126. IEEE
Computer Society, 2024b.

Hongjun Wu, Zhuo Zhang, Shangwen Wang, Yan Lei, Bo Lin, Yihao Qin, Haoyu Zhang, and
Xiaoguang Mao. Peculiar: Smart contract vulnerability detection based on crucial data flow graph
and pre-training techniques. In 2021 IEEE 32nd International Symposium on Software Reliability
Engineering (ISSRE), pp. 378–389. IEEE, 2021.

Yinxing Xue, Mingliang Ma, Yun Lin, Yulei Sui, Jiaming Ye, and Tianyong Peng. Cross-contract
static analysis for detecting practical reentrancy vulnerabilities in smart contracts. In Proceedings of
the 35th IEEE/ACM International Conference on Automated Software Engineering, pp. 1029–1040,
2020.

Zhen Yang, Jacky Keung, Xiao Yu, Xiaodong Gu, Zhengyuan Wei, Xiaoxue Ma, and Miao Zhang.
A multi-modal transformer-based code summarization approach for smart contracts. In 2021
IEEE/ACM 29th International Conference on Program Comprehension (ICPC), pp. 1–12. IEEE,
2021.

Xingxin Yu, Haoyue Zhao, Botao Hou, Zonghao Ying, and Bin Wu. Deescvhunter: A deep learning-
based framework for smart contract vulnerability detection. In 2021 International Joint Conference
on Neural Networks (IJCNN), pp. 1–8. IEEE, 2021.

Gaoteng Yuan, Yi Zhai, Jiansong Tang, and Xiaofeng Zhou. Cscim_fs: Cosine similarity coefficient
and information measurement criterion-based feature selection method for high-dimensional data.
Neurocomputing, 552:126564, 2023.

Zibin Zheng, Jianzhong Su, Jiachi Chen, David Lo, Zhijie Zhong, and Mingxi Ye. Dappscan: building
large-scale datasets for smart contract weaknesses in dapp projects. IEEE Transactions on Software
Engineering, 2024.

Yuan Zhuang, Zhenguang Liu, Peng Qian, Qi Liu, Xiang Wang, and Qinming He. Smart contract vul-
nerability detection using graph neural networks. In Proceedings of the Twenty-Ninth International
Conference on International Joint Conferences on Artificial Intelligence, pp. 3283–3290, 2021.

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the paper writing process, LLMs have been utilized for English translation and polishing.

A.2 AST EXTRACTION PROCESS

The extraction process of AST is illustrated in Figure 6.

A.3 RATIONALE FOR FOCUSING ON THE FOUR SPECIFIC VULNERABILITIES

We selected these four vulnerabilities for the following reasons: (i) In real-world attacks, 70%
of financial losses in Ethereum smart contracts are caused by these vulnerabilities (Chen et al.,
2020). (ii) Existing research indicates that these vulnerabilities are more prevalent in Ethereum smart
contracts, especially in newer versions of smart contract code. Studies have shown that contracts

12

https://www.bleepingcomputer.com/news/security/mixin-network-suspends-operations-following-\200-million-hack/
https://www.bleepingcomputer.com/news/security/mixin-network-suspends-operations-following-\200-million-hack/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 6: AST Information Extraction Process

compiled with post-2020 compiler versions (i.e., versions higher than 0.6) are particularly susceptible
to these vulnerabilities (Gao et al., 2019; Praitheeshan et al., 2019; Rodler et al., 2018). Zheng
et al. (Zheng et al., 2024) found that more than 50% of the code containing these four types of
vulnerabilities was present in 66.5% of high-version contract compilers. (iii) These vulnerabilities
represent typical erroneous control flow issues. For instance, a lack of permission control leads to
erroneous control flow (as seen in delegatecall and impermissible access control flaws vulnerabilities),
insufficient attention to inter-contract interactions results in erroneous control flow (as in reentrancy
vulnerabilities), and unchecked or inadequately checked external calls lead to erroneous control flow
(as in unchecked external call vulnerabilities).

A.4 RATIONALE FOR GRU-GCN

The detailed reason for choosing GRU-GCN is based on the following considerations:(1) Effective
Capture of Local Structural Information: GCN updates the representation of each node by aggregating
information from neighboring nodes, effectively capturing local structural information and features of

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

the nodes. It encodes the topological relationships in the graph as vector representations, preserving
the structural characteristics of the graph in the vector space (Zhuang et al., 2021; Liu et al., 2021).
This representation is particularly suited for downstream tasks such as code similarity analysis and
vulnerability detection, aligning well with our research objectives. (2) Dynamic Adjustment of
Feature Weights: When processing the node features generated by GCN, GRU can dynamically adjust
the weights of the features and retain important sequential information. This allows the model to
focus on nodes and edges more relevant to the current task, enhancing its ability to capture complex
relationships between nodes, improving learning effectiveness, and mitigating the risk of overfitting.

A.4.1 ALGORITHEM OF OBTAINING THE OUTPUT CONTROL FLOW GRAPH FEATURE VECTOR

The calculation of the node feature matrix H(1) output from the graph convolution layer is as follows:

H(1) = ReLU(ÂOcfgW
(1)) (4)

Here, H(1) has the shape Nbatch ×Doutput, where Nbatch is the batch size, representing the number of
contracts in the batch, set to 1024. Doutput is the dimension of the output features, set to 512. Ocfg is
the input control flow feature matrix of the contract with the shape Nbatch ×Dinput, where Dinput is
the dimension of the input features. Â is the normalized adjacency matrix, and W(1) is the weight
matrix for the graph convolution layer. ReLU denotes the rectified linear unit activation function.

The GRU computes the hidden state for each node. The update gate determines the proportion of the
current hidden state combined with the previous hidden state and the new candidate hidden state:

zt = σ(Wzxt +Uzht−1) (5)

where σ is the nonlinear activation function, Wz is the weight matrix for the update gate input, and
Uz is the weight matrix from the previous time step’s hidden state to the update gate. xt is the input
at the current time step t, and ht−1 represents the hidden state at the previous time step t− 1.

The reset gate determines the extent to which the previous hidden state influences the calculation of
the new candidate’s hidden state:

rt = σ(Wrxt +Urht−1) (6)

where Wr is the weight matrix for the reset gate input, and Ur is the weight matrix from the
previous time step’s hidden state to the reset gate.

The new candidate hidden state is computed as follows, incorporating the reset gate’s output to reflect
the combined information of the current input and the previous hidden state:

h̃t = tanh(Wxt + rt ⊙Uht−1) (7)

where tanh is the hyperbolic tangent activation function, W is the weight matrix for the new candidate
hidden state, and U is the weight matrix from the previous hidden state to the new candidate hidden
state. ⊙ denotes element-wise multiplication.

The final hidden state is computed as follows:

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (8)

Here, H(2) has the shape Nbatch ×Dhidden, with Dhidden set to 512.

H(2) = (h1 h2 h3 · · · hN)
⊤ (9)

Finally, we input H(2) into fully connected and regression layers to obtain the output control flow
graph feature vector Fcfg ∈ R512.

A.5 DEFINITIONS OF BYTECODE VALUES AND INSTRUCTIONS

The 11 categories of bytecode values and their corresponding definitions are presented, along with
the distinctive opcodes used as features to represent the binary instruction operations.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.5.1 STOP AND ARITHMETIC OPERATIONS

• 0x00 - 0x0B:
– 0x00 - STOP
– 0x01 - ADD
– 0x02 - MUL
– 0x03 - SUB
– 0x04 - DIV
– 0x05 - SDIV
– 0x06 - MOD
– 0x07 - SMOD
– 0x08 - ADDMOD
– 0x09 - MULMOD
– 0x0A - EXP
– 0x0B - SIGNEXTEND

A.5.2 COMPARISON AND BITWISE LOGIC OPERATIONS

• 0x10 - 0x1A:
– 0x10 - LT
– 0x11 - GT
– 0x12 - SLT
– 0x13 - SGT
– 0x14 - EQ
– 0x15 - ISZERO
– 0x16 - AND
– 0x17 - OR
– 0x18 - XOR
– 0x19 - NOT
– 0x1A - BYTE
– 0x1B - SHL
– 0x1C - SHR
– 0x1D - SAR

A.5.3 KECCAK256 METHOD

• 0x20:
– 0x20 - KECCAK256

A.5.4 ENVIRONMENTAL INFORMATION

• 0x30 - 0x3E:
– 0x30 - ADDRESS
– 0x31 - BALANCE
– 0x32 - ORIGIN
– 0x33 - CALLER
– 0x34 - CALLVALUE
– 0x35 - CALLDATALOAD
– 0x36 - CALLDATASIZE
– 0x37 - CALLDATACOPY
– 0x38 - CODESIZE
– 0x39 - CODECOPY
– 0x3A - GASPRICE

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

– 0x3B - EXTCODESIZE
– 0x3C - EXTCODECOPY
– 0x3D - RETURNDATASIZE
– 0x3E - RETURNDATACOPY

A.5.5 BLOCK INFORMATION

• 0x40 - 0x45:
– 0x40 - BLOCKHASH
– 0x41 - COINBASE
– 0x42 - TIMESTAMP
– 0x43 - NUMBER
– 0x44 - DIFFICULTY
– 0x45 - GASLIMIT
– 0x46 - CHAINID

A.5.6 STACK, MEMORY, STORAGE AND FLOW OPERATIONS

• 0x50 - 0x5B:
– 0x50 - POP
– 0x51 - MLOAD
– 0x52 - MSTORE
– 0x53 - MSTORE8
– 0x54 - SLOAD
– 0x55 - SSTORE
– 0x56 - JUMP
– 0x57 - JUMPI
– 0x58 - PC
– 0x59 - MSIZE
– 0x5A - GAS
– 0x5B - JUMPDEST

A.5.7 PUSH OPERATIONS

• 0x60 - 0x7F:
– 0x60 - PUSH1
– 0x61 - PUSH2
– ...
– 0x7F - PUSH32

A.5.8 DUPLICATION OPERATIONS

• 0x80 - 0x8F:
– 0x80 - DUP1
– 0x81 - DUP2
– ...
– 0x8F - DUP16

A.5.9 EXCHANGE OPERATIONS

• 0x90 - 0x9F:
– 0x90 - SWAP1
– 0x91 - SWAP2
– ...
– 0x9F - SWAP16

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.5.10 LOGGING OPERATIONS

• 0xA0 - 0xA4:

– 0xA0 - LOG0
– 0xA1 - LOG1
– 0xA2 - LOG2
– 0xA3 - LOG3
– 0xA4 - LOG4

A.5.11 SYSTEM OPERATIONS

• 0xF0 - 0xFF:

– 0xF0 - CREATE
– 0xF1 - CALL
– 0xF2 - CALLCODE
– 0xF3 - RETURN
– 0xF4 - DELEGATECALL
– 0xF5 - CREATE2
– 0xFA - STATICCALL
– 0xFD - REVERT
– 0xFE - INVALID
– 0xFF - SELFDESTRUCT

A.6 DETAILED INFORMATION ABOUT THE DATASET

The detailed information on the four distinct datasets is as follows:

1. Smartbugs Curated (di Angelo et al., 2023): This dataset is one of the most commonly used
real-world datasets for automatic reasoning and testing of Solidity smart contracts. It includes 143
annotated contracts with a total of 208 vulnerabilities.

2. SolidiFI-Benchmark (Ghaleb & Pattabiraman, 2020): This synthetic dataset contains vulnerable
smart contracts. It comprises 350 different contracts with 9,369 injected vulnerabilities, covering
seven different vulnerability types.

3. MessiQ-Dataset (Qian et al., 2023; Liu et al., 2023): This is the most recent dataset with the highest
variety of vulnerabilities, containing 12,000 vulnerable smart contracts, which can be downloaded at
https://drive.google.com/file/d/1iU2J-BIstCa3ooVhXu-GljOBzWi9gVrG/view

4. Clean Smart Contracts from Smartbugs Wild (Nguyen et al., 2022): Based on the results of 11
integrated detection tools, the Smartbugs framework identified 2,742 out of 47,398 contracts as free
of errors. These 2,742 contracts are used as a set of clean contracts for comparison purposes.

A.7 AST INFORMATION

Here are all the types we extracted, including contract types, function types, and variable types:
"StateVariableDeclaration", "EmitStatement", "contract", "Conditional", "FunctionCall", "Number-
Literal", "ThrowStatement", "ExpressionStatement", "MemberAccess", "ReturnStatement", "Index-
Access", "ForStatement", "StringLiteral", "interface", "TupleExpression", "BooleanLiteral", "IfS-
tatement", "ModifierDefinition", "StructDefinition", "EventDefinition", "InlineAssemblyStatement",
"WhileStatement", "library", "Identifier", "UnaryOperation", "VariableDeclarationStatement", "Prag-
maDirective", "BinaryOperation", "ElementaryTypeNameExpression", "EnumDefinition", "Contract-
Definition", "FunctionDefinition", "UsingForDeclaration", "block".

We categorized these types into different classes and explained the specific meaning of each type.

A.7.1 CONTRACT STRUCTURE RELATED

• ContractDefinition - A contract definition node, representing a smart contract.

17

https://drive.google.com/file/d/1iU2J-BIstCa3ooVhXu-GljOBzWi9gVrG/view

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

– contract - Indicates this is a regular contract.
– interface - Indicates this is an interface.
– library - Indicates this is a library.

• StructDefinition - A struct definition node, representing a structure.
• EnumDefinition - An enum definition node, representing an enumeration.
• StateVariableDeclaration - A state variable declaration node, representing a state variable.
• EventDefinition - An event definition node, representing an event.
• ModifierDefinition - A modifier definition node, representing a function modifier.
• UsingForDeclaration - A using statement node, representing a using for declaration.

A.7.2 FUNCTION RELATED

• FunctionDefinition - A function definition node, representing a function.
• ReturnStatement - A return statement node, representing a ’return’ statement.
• ThrowStatement - A throw statement node, representing a ’throw’ statement.
• EmitStatement - An emit statement node, representing an ’emit’ statement.
• FunctionCall - A function call node, representing a function call.

A.7.3 EXPRESSION RELATED

• ExpressionStatement - An expression statement node, representing an expression.
• MemberAccess - A member access node, representing access to a member of an object (e.g.,

object.member).
• IndexAccess - An index access node, representing access to an array or mapping index (e.g.,

array[index]).
• TupleExpression - A tuple expression node, representing a tuple (e.g., (a, b)).
• UnaryOperation - A unary operation node, representing a unary operation (e.g., -a).
• BinaryOperation - A binary operation node, representing a binary operation (e.g., a + b).
• Conditional - A conditional expression node, representing a ternary operator (e.g., a ? b : c).
• ElementaryTypeNameExpression - An elementary type name expression node, representing

a basic type (e.g., uint256).An elementary type name expression node, representing a basic
type (e.g., uint256).

A.7.4 LITERAL RELATED

• NumberLiteral - A number literal node, representing a number (e.g., 123).
• StringLiteral - A string literal node, representing a string (e.g., "hello").
• BooleanLiteral - A boolean literal node, representing a boolean value (e.g., true or false).

A.7.5 STATEMENT RELATED

• IfStatement - An if statement node, representing an ’if’ statement
• ForStatement - A for statement node, representing a ’for’ loop.
• WhileStatement - A while statement node, representing a ’while’ loop.
• InlineAssemblyStatement - An inline assembly statement node, representing an inline

assembly block.
• VariableDeclarationStatement - A variable declaration statement node, representing a vari-

able declaration.

A.7.6 IDENTIFIER RELATED

• Identifier - An identifier node, representing the name of a variable or object.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.7.7 OTHERS

• PragmaDirective - A pragma directive node, representing a pragma directive (e.g., ’pragma
solidity 0̂.8.0’).

• block - Represents a block of code.

A.8 RATIONALE FOR UTILIZING SELF-ATTENTION MECHANISM WITH A CONVOLUTIONAL
NEURAL NETWORK

based on the following considerations: (1) The self-attention mechanism can identify relationships
between distant words in the comments, which may be important for keyword extraction (Alammary,
2022). (2) The self-attention mechanism can assign different weights to each word in the sequence,
reflecting the importance of the words and more accurately identifying the keywords (Nozza et al.,
2020). (3) Combining the self-attention mechanism with a convolutional neural network allows for
the extraction of local features (through the convolutional layers) while enhancing the global semantic
representation (through the self-attention mechanism), thereby providing a more comprehensive
understanding of the text.

A.9 RATIONALE FOR MULTIPLYING RBF KERNEL AND COSINE SIMILARITY

The detailed reasons for using the multiplication of the RBF kernel function and cosine similarity
are as follows: (1) The RBF kernel function captures nonlinear relationships in the input data by
computing similarities in a high-dimensional space, thus handling complex relationships and patterns
more effectively. Additionally, the RBF kernel is robust to noise and variations in the input data.
It calculates similarity by considering the distance between input data and the central point, which
effectively manages minor variations and noise. (2) According to Yuan et al. (Yuan et al., 2023),
cosine similarity is well-suited for high-dimensional sparse data, making it particularly appropriate
for comparing texts or feature vectors. (3) The product computation ensures that if either similarity
measure is low, the final result is also low. This guarantees that high similarity is achieved only when
both measures are high, thereby enhancing the accuracy of similarity computation.

A.10 EXAMPLE OF CODE CLONE DETECTION

Figure 7 shows the randomly input contract content used for clone detection. Figure 8 displays the
content of two contracts from the clone detection output results.

Figure 7: Example Code of Code Clone Detection

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 8: Two Contracts from the Code Clone Detection Results

A.11 VENN DIAGRAM

Figure 9 is a Venn diagram with a similarity threshold of 1.0 between MultiCFV and SmartEmbed. SE
represents SmartEmbed, MT represents MultiCFV, MT_rest indicates the similar codes detected by
MultiCFV but not by SmartEmbed, and SE_rest indicates the similar codes detected by SmartEmbed
but not by MultiCFV. SmartEmbed failed to detect clone codes in 26% of the contract codes, whereas
MultiCFV only in 17%.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 9: Venn Diagram for Clones Detected by MultiCFV and SmartEmbed with Similarity Thresh-
old 1.0

21

	Introduction
	Background
	Erroneous Control Flow Vulnerabilities
	Control Flow Graph

	Methodology
	Method Overview
	Control Flow Feature Extraction
	Extract Control Flow Information
	BERT Embedding
	Graph Embedding on CFG

	Abstract Syntax Feature Extraction
	Comment Feature Extraction
	Contract Verification and Clone Detection

	Experiments
	Data Collection
	Experimental Setup
	Ablation Experiments
	Learning Rate Selection
	Multi-Modal Integration

	Contract Verification
	Code Clone Detection

	Related Work
	Vulnerability Detection
	Code Clone Detection

	Conclusion and Future Perspectives
	Appendix
	The Use of Large Language Models (LLMs)
	AST Extraction Process
	Rationale for Focusing on the Four Specific Vulnerabilities
	Rationale for GRU-GCN
	Algorithem of obtaining the output control flow graph feature vector

	Definitions of Bytecode Values and Instructions
	Stop and Arithmetic Operations
	Comparison and Bitwise Logic Operations
	KECCAK256 Method
	Environmental Information
	Block Information
	Stack, Memory, Storage and Flow Operations
	Push Operations
	Duplication Operations
	Exchange Operations
	Logging Operations
	System Operations

	Detailed Information About the Dataset
	Ast Information
	Contract Structure Related
	Function Related
	Expression Related
	Literal Related
	Statement Related
	Identifier Related
	Others

	Rationale for Utilizing Self-Attention Mechanism with a Convolutional Neural Network
	Rationale for Multiplying RBF Kernel and Cosine Similarity
	Example of Code Clone Detection
	Venn Diagram

