

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MULTICFV: DETECTING CONTROL FLOW VULNERABILITIES IN SMART CONTRACTS LEVERAGING MULTIMODAL DEEP LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

The introduction of smart contract functionality marks the advent of the blockchain 2.0 era, enabling blockchain technology to support digital currency transactions and complex distributed applications. However, many smart contracts have been found to contain vulnerabilities and errors, leading to the loss of assets within the blockchain. Despite a range of tools that have been developed to identify vulnerabilities in smart contracts at the source code or bytecode level, most rely on a single modality, reducing performance, accuracy, and limited generalization capabilities. This paper proposes a multimodal deep learning approach, MultiCFV, which is designed specifically to analyze and detect erroneous control flow vulnerability, as well as identify code clones in smart contracts. Bytecode is generated from source code to construct control flow graphs, with graph embedding techniques extracting graph features. Abstract syntax trees are used to obtain syntax features, while code comments capture key commentary words and comment features. These three feature vectors are fused to create a database for code inspection, which is used to detect similar code and identify contract vulnerabilities. Experimental results demonstrate our method effectively combines structural, syntactic, and semantic information, improving the accuracy of smart contract vulnerability detection and clone detection.

1 INTRODUCTION

The concept of smart contracts was first introduced by computer scientist Nick Szabo in 1994 and gradually received significant attention with the emergence of Bitcoin (Nakamoto, 2008). A smart contract is an automated agreement that operates on blockchain technology, removing the need for third-party involvement. These contracts commonly involve transactions such as the transfer of cryptocurrency or digital assets, which are automatically executed when predefined conditions are met. This automation spans various fields, making smart contracts tamper-resistant and ensuring transparency and reliability in transactions (Kuo & Pham, 2023; Subramanian & Subramanian, 2022; Qi et al., 2023). However, the substantial value of the assets involved makes smart contracts prime targets for attackers looking to exploit vulnerabilities or errors in the contract’s code. For instance, on October 7, 2023, the cryptocurrency exchange Mixin Network was hacked, resulting in a loss of approximately \$200 million (Toulas, 2024).

Due to the immutable nature of smart contracts, they cannot be altered once deployed on the blockchain. Therefore, it is crucial to minimize vulnerabilities and errors in the code before deployment to enhance the security of the contract. Significant research efforts have led to advancements in blockchain systems and the development of tools designed to analyze and prevent smart contract vulnerabilities (He et al., 2023; di Angelo et al., 2023). Nevertheless, these tools still face several limitations. For instance, some tools require experts to define error patterns and detection rules that are not only time-consuming and labor-intensive but also struggle to address new or variant vulnerabilities effectively (Liu et al., 2021; Lin et al., 2023). To overcome the time-consuming and labor-intensive, certain tools utilize deep learning models to identify specific patterns or features associated with vulnerabilities (Wu et al., 2021; Yu et al., 2021; Gao, 2020). However, these tools primarily operate from the unimodal perspective, which often results in extracted features failing

054 to fully capture the semantic information, leading to reduced detection accuracy and compromised
 055 reliability (Adami, 2016).

056 In this paper, a novel approach MultiCFV is proposed to overcome these challenges through multi-
 057 modal deep learning for smart contract clone detection and vulnerability verification. Our approach
 058 focuses on three key aspects: (1) Deep Learning Techniques: Deep learning is utilized to learn patterns
 059 and features of smart contract vulnerabilities, eliminating reliance on expert-defined detection rules
 060 and code design, which enables faster and more efficient detection. (2) Accuracy and Generalization:
 061 Detection accuracy and generalization capabilities are significantly enhanced through the use of multi-
 062 modal deep learning. (3) Comment Information: To further improve detection accuracy, additional
 063 code information and features are extracted from comments within the code. These comments often
 064 provide insights into the function’s purpose and considerations, offering valuable supplementary data.

065 The main contributions of this paper are as follows:

- 067 1. We propose a novel type of vulnerability and conduct an in-depth analysis. To the best of
 068 our knowledge, it’s the first application of multimodal deep learning to smart contracts with
 069 erroneous control flow vulnerabilities.
- 070 2. We propose an innovative feature extraction approach by using multimodal deep learning
 071 and graph embedding techniques. Our approach overcomes the limitations of unimodal
 072 methods while enhancing detection accuracy and robustness. We integrate control flow
 073 graphs generated from bytecode, abstract syntax trees(AST) derived from source code, and
 074 code comments.
- 075 3. We introduce comment word embeddings as supplementary features for smart contracts. We
 076 highlight the importance of comments and include them in the feature set, thereby improving
 077 detection accuracy and overall performance.
- 078 4. We have uploaded the source code, experimental data, and comprehensive README
 079 documentation of MultiCFV. These resources ensure the reproducibility of our work and
 080 will be made open-source following the paper’s publication.

082 Specifically, in the phase of code clone detection, the source code is not used directly as feature
 083 vectors. Instead, emphasis is placed on the control flow and semantic structure of smart contracts.
 084 Our approach avoids interference from irrelevant items such as variable and function names, leading
 085 to superior performance in both accuracy and generalization capability.

086 2 BACKGROUND

089 2.1 ERRONEOUS CONTROL FLOW VULNERABILITIES

091 Erroneous control flow vulnerabilities in smart contracts refer to design or implementation flaws that
 092 occur when handling exceptions or errors. These flaws can result in the smart contract failing to
 093 properly manage error situations, leading to unexpected behaviors or security issues.

094 Among the most common and severe erroneous control flow vulnerabilities in smart contracts is
 095 the reentrancy vulnerability (Xue et al., 2020; Wu et al., 2021). Reentrancy allows an attacker to
 096 repeatedly call a function during its execution, preventing the contract’s state from being updated
 097 promptly and creating significant security risks. To prevent such vulnerabilities, smart contracts
 098 must rigorously verify the correctness and security of their behavior flows. In addition to reentrancy,
 099 other critical vulnerabilities include impermissible access control flaws, dangerous delegatecall
 100 vulnerabilities, and unchecked external call vulnerabilities (Zheng et al., 2024). Our detection focuses
 101 primarily on these four types of vulnerabilities. The rationale for focusing on these vulnerabilities is
 102 detailed in Appendix A.3.

103 2.2 CONTROL FLOW GRAPH

105 The Control Flow Graph (CFG) consists of basic blocks and control flow edges. Basic blocks are
 106 sequences of consecutive instructions in a program that contain no branches, representing a single
 107 execution unit (Contro et al., 2021). In this paper, basic blocks are composed of bytecode blocks
 formed by Ethereum Virtual Machine (EVM) instruction sequences. Branch instructions (e.g., JUMP,

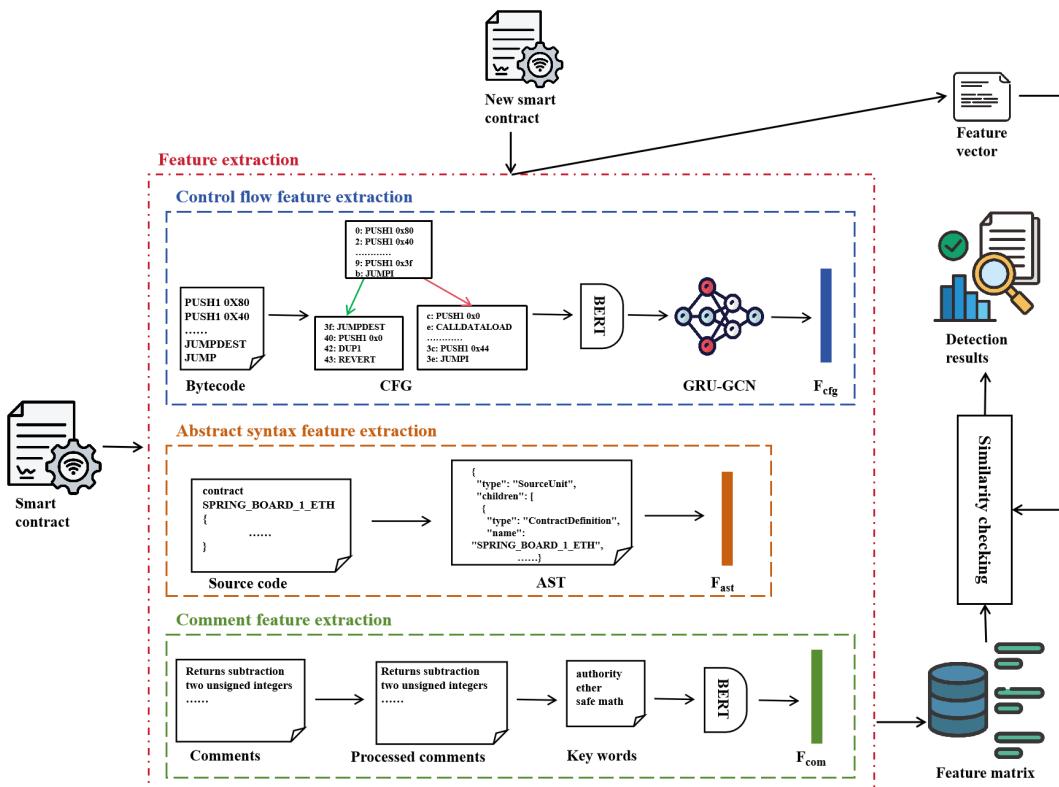
108 JUMPI, RETURN) are the end markers of basic blocks, which are used to segment the basic blocks.
 109 Appendix A.5 provides a list of unique bytecode values along with their corresponding definitions
 110 and instructions.

111 Control flow edges refer to the transitions from one bytecode block to another based on conditional
 112 or call statements. In the CFG, different colors of control flow edges indicate different types of edges,
 113 mainly four types. An unconditional jump from one bytecode block to another is represented by a
 114 blue edge (unconditional edge, such as the JUMP instruction); the jump path when a conditional
 115 statement (conditional edge, such as JUMPI) is true is represented by a green edge; the jump path
 116 when a conditional statement is false is represented by a red edge (conditional edge, such as the
 117 JUMPI instruction); and the jump path involving calls to external functions within a bytecode block
 118 is represented by a yellow edge (function call edge).

120 3 METHODOLOGY

121 3.1 METHOD OVERVIEW

122 Erroneous control flow vulnerability is associated with smart contracts’ behavioral logic and state
 123 transitions. Addressing this vulnerability requires a deep understanding of the contract’s control
 124 flow and behavior across various states. However, a single graph alone cannot provide sufficient
 125 information. To obtain more adequate information, we apply multimodal deep learning to capture
 126 different features of smart contracts from three aspects: CFG, AST, and code comments.
 127



156 Figure 1: A High-level Overview of MultiCFV
 157

158 The CFG, supplemented by the AST, provides valuable semantic and structural context. Code
 159 comments further offer insights into the contract’s functionality and considerations, collectively
 160 enabling more effective features needed to identify erroneous control flow vulnerabilities. Our
 161 research considers the following aspects: (1) The CFG illustrates the control flow paths within the
 contract. By analyzing the graph, potential issues such as call errors, unchecked calls, and conditional

logic errors can be detected. This analysis helps in identifying control flow paths between basic blocks in the contracts, including conditional branches and jump paths. (2) The AST focuses on the structure and syntax of the code, including variable declarations, function definitions, and scopes. As a supplement to syntax and semantic checks, the AST facilitates error detection. (3) Combining CFG and AST enables a comprehensive analysis of smart contracts, leading to accurate detection and prevention of potential vulnerabilities in behavioral logic and state transitions.

Figure 1 presents the high-level overview of our approach MultiCFV, which comprises four key parts: control flow feature extraction, abstract syntax feature extraction, comment feature extraction, clone detection and contract verification. Specifically, bytecode is first generated from the source code, followed by the construction of the CFG by using this bytecode. A Graph Convolutional Network (GCN) combined with a Gated Recurrent Unit (GRU) is then employed to extract graph feature vectors from the CFG. The AST is extracted from the source code to obtain AST feature vectors. Additionally, key comment words and comment feature vectors are captured by utilizing attention mechanisms and fine-tuned BERT embeddings. Then, in the clone detection phase, these three feature vectors are integrated into a contract feature database for comparison with new input contracts. Contracts are considered as having similar codes if the similarity exceeds a defined threshold. In the contract verification phase, similarity measures are also used to assess new input contracts and detect erroneous control flow vulnerabilities.

3.2 CONTROL FLOW FEATURE EXTRACTION

3.2.1 EXTRACT CONTROL FLOW INFORMATION

The source code of contracts is converted into bytecode using a public compiler, and an automated tool called "Graphextractor" is developed to extract the CFG from the compiled bytecode. The extraction process is illustrated in Figure 2. Inspired by (Qian et al., 2023), the fine-tuned BERT model is used to process EVM instructions in the CFG, specifically named blocks, to extract features for these blocks as CFG node features.

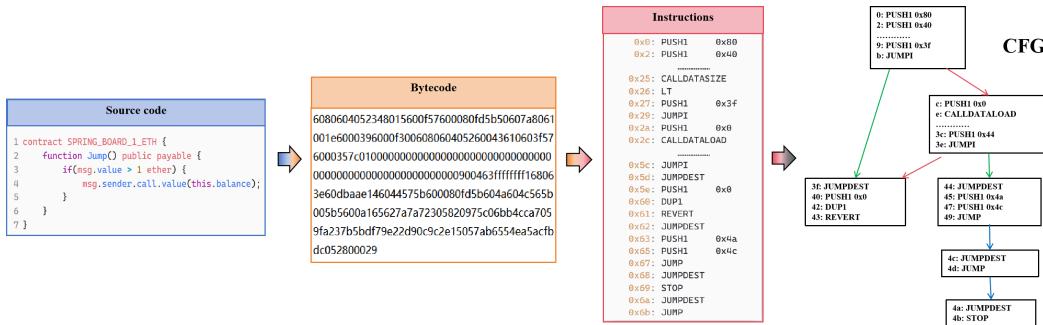


Figure 2: Control Flow Graph Extraction Process

The representation of control flow information for each contract is as follows.

$$O_{cfg} = (GP, NF, CN) \quad (1)$$

where G contains all bytecode blocks and their corresponding control flow edges. NF is the set of features for all bytecode blocks, represented by 256-dimensional vectors obtained from BERT embeddings, with each vector corresponding to a feature of a bytecode block. CN is the name of the contract file, ending with ‘.sol’. The formula for GP is as Equation 2.

$$GP \equiv \{(y, g, v) \mid y, v \in V, g \in G\} \quad (2)$$

where V is the set of nodes and G is the set of edge types

The formula for node features NE is as follows

$$NF \equiv (\mathbf{f}_1 \quad \mathbf{f}_2 \quad \mathbf{f}_3 \quad \cdots \quad \mathbf{f}_N)^\top \quad (3)$$

where N is the total number of nodes, and each node's feature vector has a length of 128. $\mathbf{f}_i \in \mathbb{R}^{128}$ represents the feature vector of node i , i.e. $\mathbf{f}_i = (f_{i,1}, f_{i,2}, \dots, f_{i,128})$.

216 3.2.2 BERT EMBEDDING
217218 The BERT model is employed as an embedding tool due to the contextual dependency of terms in
219 EVM instructions and comments within smart contracts. BERT's contextual awareness can more
220 accurately capture these dependencies (Jie et al., 2023). Moreover, smart contract code often involves
221 complex logic and structure, and BERT's Transformer architecture is well-suited to capture and
222 represent these intricate semantic details.223 During feature extraction, the BERT model is not applied to all types of vulnerability contracts
224 simultaneously. Instead, it is fine-tuned separately for each vulnerability type before being used
225 for BERT embedding (Mosbach et al., 2020). This targeted approach optimizes the model for each
226 vulnerability, improving the precision of feature extraction.
227228 3.2.3 GRAPH EMBEDDING ON CFG
229231 The graph embedding technique GRU-GCN is used to process control flow information and generate
232 graph features from the CFG. The detailed rationale for selecting the GRU-GCN model, along with
233 the complete process and formulas for generating the control flow graph features $F_{cfg} \in \mathbb{R}^{512}$
234 through graph embedding, are provided in Appendix A.4.
235236 3.3 ABSTRACT SYNTAX FEATURE EXTRACTION
237238 The process of extracting abstract syntax information is illustrated in Appendix A.2. An automated
239 tool called "ast-generation" is developed to generate ASTs and extract key information from them.
240 The extracted information is processed by a simple deep learning model to generate an abstract syntax
241 feature vector for each contract, denoted as $F_{ast} \in \mathbb{R}^{512}$.
242243 Appendix A.7 offers a detailed list of extracted roles and categories with their definitions. We
244 primarily pay attention to the following aspects: the role of nodes, the role of their children, the
245 number of child nodes, the presence of variables, the presence of input, and output parameters, etc.
246247 3.4 COMMENT FEATURE EXTRACTION
248249 The comment feature extractor operates as follows: comments are first extracted from the contract
250 and cleaned to remove invalid characters, symbols, and meaningless words, retaining only relevant
251 content. A convolutional neural network with a self-attention mechanism called "com-extractor"
252 extracts keywords and feature vectors from the comments. The number of keywords depends on
253 the comment length and represents the contract. The comment feature extraction process is the
254 same as detailed in Section 3.2.2, producing a comment feature vector for each contract, denoted as
255 $F_{ast} \in \mathbb{R}^{512}$. The specific rationale for selecting a convolutional neural network with a self-attention
256 mechanism is detailed in Appendix A.8.
257258 What's more, we compile the keywords from all comments and generate a word cloud, as shown in
259 Figure 3. The figure shows that most of these contracts use the SafeMath library, and a large portion
260 of the code content involves mathematical operations (Hefelev et al., 2019).
261262 3.5 CONTRACT VERIFICATION AND CLONE DETECTION
263264 The CFG feature vector F_{cfg} , the AST feature vector F_{ast} , and the comment feature vector F_{com}
265 described above are vertically stacked to form the comprehensive feature representation matrix \mathbf{F} for
266 each smart contract, which is used to verify the presence of erroneous control flow vulnerabilities and
267 similar code. The comprehensive feature representation matrices \mathbf{F} for all smart contracts are stored
268 in a database for code clone detection. Due to the high-dimensional and sparse nature of the data,
269 the RBF kernel function is multiplied with cosine similarity for code similarity computation. The
detailed reasons are listed in Appendix A.9.

Figure 3: Comment Wordcloud

4 EXPERIMENTS

4.1 DATA COLLECTION

To obtain a large number of smart contracts, we select four distinct datasets: Smartbugs Curated (di Angelo et al., 2023), SolidiFI-Benchmark (Ghaleb & Pattabiraman, 2020), MessiQ-Dataset (Qian et al., 2023; Liu et al., 2023), and Clean Smart Contracts from Smartbugs Wild (Nguyen et al., 2022). Detailed information on these four datasets is provided in Appendix A.6.

4.2 EXPERIMENTAL SETUP

The GRU-GCN, and "com-extractor" are implemented using PyTorch. GRU-GCN has a hidden layer size of 512 and consists of a convolutional layer, two dropout layers, three GRU layers, a fully connected layer, and a regression layer. The learning rate is 0.0001, and the Adam optimizer is used for training. Moreover, the "com-extractor" has a hidden layer size of 512 with 4 convolutional layers.

The dataset is split with an 8:2 ratio for contract vulnerability and code clone detection. Due to the dataset's imbalance from an abundance of negative samples in vulnerability detection, a balanced dataset is created using SMOTE and data augmentation. The model processes three modalities: comment features, AST features, and CFG features, employing Binary Cross-Entropy Loss and the Adam optimizer with a 0.005 learning rate. To reduce overfitting, Dropout regularization (probability 0.3) is applied. Features from all modalities are concatenated and passed through a fully connected layer with ReLU activation, followed by a sigmoid layer to output probabilities. During 500 epochs, the model with the lowest loss is saved for evaluation. Vulnerabilities are identified if probabilities exceed 0.95.

4.3 ABLATION EXPERIMENTS

Given the wide range of vulnerabilities detected in this study, Reentrancy vulnerability, one of the most common types, is selected as the reference for ablation experiments.

4.3.1 LEARNING RATE SELECTION

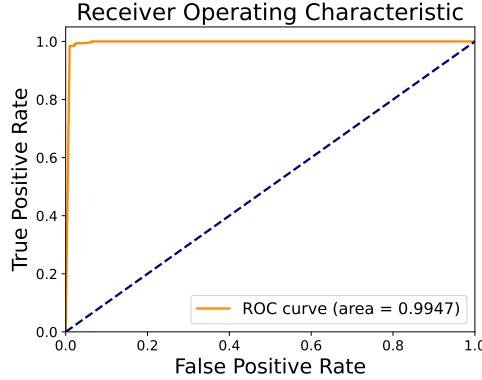
A comparative analysis of different learning rates is conducted to determine the optimal value for achieving the best performance. Table 1 shows that the model achieves the highest accuracy and performance at a learning rate of 0.005. Meanwhile, the ROC curve for our approach's detection results is illustrated in Figure 4, showing an AUC of 0.9947.

4.3.2 MULTI-MODAL INTEGRATION

Ablation studies highlight the essential role of multimodal deep learning in the proposed approach. Models trained on single features (e.g., comment, AST, or CFG) or dual-modal combinations

324
325
326
327
328
329

Learning Rate	ACC	RE	PRE	F1
0.01	98.25	99.42	97.15	98.27
0.005	99.13	98.25	98.65	98.45
0.001	98.35	99.03	97.70	98.36
0.0005	98.16	99.42	96.97	98.18

330
331 Table 1: Performance Comparison (%) Across Different Learning Rates in Terms of Accuracy (ACC),
332 Recall (RE), Precision (PRE), and F1-Score (F1)347
348 Figure 4: ROC Curve of MultiCFV Detection Results
349

Modality	ACC	RE	PRE	F1
Comments	52.04	36.12	75.00	48.75
AST	62.33	50.68	89.38	64.68
CFG	85.74	92.49	91.77	92.13
AST & CFG	96.88	95.48	92.99	94.22
AST & Comments	71.84	54.05	97.07	61.54
CFG & Comments	90.45	94.26	92.75	93.45
All	99.13	98.25	98.65	98.45

350
351 Table 2: Performance Comparison (%) between Single-Modal (AST, CFG, or Comments Features),
352 Dual-Modal (AST + CFG, AST + Comments, or CFG + Comments), and Multi-Modal (AST + CFG
353 + Comments) Approaches in Vulnerability Detection in Terms of ACC, RE, PRE, and F1
354355
356
357
358 (e.g., AST & CFG or comment & AST) consistently underperformed the multimodal approach,
359 underscoring the complementary benefits of integrating multiple modalities. Experimental results
360 show that CFG achieved the highest accuracy among single-modal features, while CFG & AST
361 outperformed other dual-modal pairings. However, neither single-modal nor dual-modal setups
362 matched the performance of the fully integrated multimodal approach.
363364
365
366
367
368
369 4.4 CONTRACT VERIFICATION
370371 According to Zheng et al., Slither and Mythril currently exhibit the highest accuracy in contract
372 vulnerability detection (Zheng et al., 2024; Josselin, 2024; Bast, 2024). Comparative experiments
373 are conducted using the Slither and Mythril tool. Table 3 presents comparative experiments using
374 these tools. Notably, Slither failed to analyze 66 contracts, while Mythril encountered even more
375 failures, primarily due to limitations related to the supported ranges of Solidity compiler versions.376 Additionally, MultiCFV is tested on a new vulnerability dataset (Unprotected Ether Withdrawal). The
377 detection results showed an accuracy of 82.86%, a precision of 92.07%, a recall of 83.34%, and an
F1-score of 87.49%. This demonstrates that MultiCFV is very generalizable.

Tool	Reentrancy				Access Control				External Call				Delegatecall			
	ACC	RE	PRE	F1	ACC	RE	PRE	F1	ACC	RE	PRE	F1	ACC	RE	PRE	F1
Mythril	66.17	64.33	65.09	64.71	0	0	0	0	50.14	51.25	54.01	52.59	59.56	60.59	61.40	60.99
Slither	72.76	71.11	73.67	72.36	0	0	0	0	63.12	60.56	66.20	63.22	66.91	67.97	69.44	68.70
Slither & Mythril	76.71	77.37	77.03	77.20	0	0	0	0	64.39	63.84	67.67	65.71	68.46	68.52	70.26	69.38
MultiCFV	99.13	98.25	98.65	99.12	82.89	92.39	89.77	91.06	89.01	98.17	90.16	93.99	80.71	90.06	81.61	85.63

Table 3: Performance Comparison (%) between MultiCFV and Slither in Terms of ACC, RE, PRE, and F1

4.5 CODE CLONE DETECTION

In code clone detection, MultiCFV identifies contracts with similarity scores above a specified threshold and outputs their names and contents. A randomly selected smart contract is used for this analysis, with detailed contract content and detection results provided in Appendix A.10. Additionally, we compare the performance of SmartEmbed and MultiCFV on the same dataset (Gao et al., 2020) to evaluate the effectiveness of MultiCFV. Detection times are averaged over five runs for each threshold value, with results in Table 4 showing that MultiCFV slightly outperforms SmartEmbed in terms of speed. What’s more, Venn diagrams of the experimental results are plotted at a similarity threshold of 0.95, as illustrated in Figure 5. SE represents SmartEmbed, MT represents MultiCFV, MT_rest indicates the similar codes detected by MultiCFV but not by SmartEmbed, and SE_rest indicates the similar codes detected by SmartEmbed but not by MultiCFV. SmartEmbed failed to detect clone codes in 26% of the contract codes, whereas MultiCFV only in 17%. Along with Figure 5, it is indicated that SmartEmbed is overly cautious in clone detection, potentially overlooking codes with similar structures and functions. In contrast, our approach imposes fewer constraints on the syntax and compilation versions of the contracts, resulting in more effective detection. We also plot a Venn diagram with a similarity threshold of 1.0, which is presented in Appendix A.11.

Threshold	Tool	Average Time(s)
0.95	SmartEmbed	403.7637
	MultiCFV	368.6572
1	SmartEmbed	396.9978
	MultiCFV	356.8932

Table 4: The Detection Time of Code Clone

It is important to note that detecting clone codes with identical structures and functions does not always equate to better performance when there is a higher overlap. In the remaining dataset, variations in variable names, function names, and other code elements introduce differences, as illustrated in Figure 8 in Appendix A.10.

5 RELATED WORK

5.1 VULNERABILITY DETECTION

Deep learning has significantly advanced vulnerability detection in smart contracts, enhancing performance. Yu et al. introduced Deescvhunter, a deep learning framework for automatic vulnerability detection (Yu et al., 2021). Liu et al. combined expert knowledge with graph neural networks to improve contract vulnerability detection (Liu et al., 2021). Wu et al. developed Peculiar, which detects reentrancy vulnerabilities using control flow graphs and graph neural networks (Wu et al., 2021). Similarly, Chen et al. and Zhuang et al. employed control flow graphs and graph neural networks for detecting diverse vulnerabilities (Chen et al., 2024; Zhuang et al., 2021). Cai et al. further integrated control flow graphs, abstract syntax trees, and program dependency graphs, leveraging graph neural networks for feature extraction (Cai et al., 2023). These methods highlight the effectiveness of graph embedding in preserving structural information and enhancing detection accuracy.

Despite these advancements, the limitations of unimodal methods have driven the adoption of multimodal approaches. Jie et al. proposed a multimodal framework for detecting contract vulnerabilities (Jie et al., 2023), while Qian et al. introduced a cross-modality mutual learning framework,

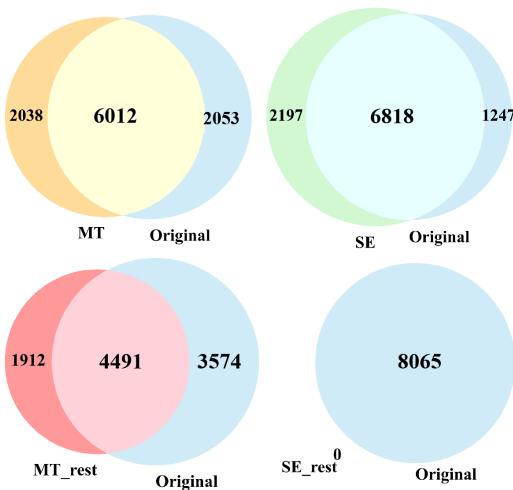


Figure 5: Venn Diagram for Clones Detected by MultiCFV and SmartEmbed with Similarity Threshold 0.95

showing that multimodal methods outperform unimodal ones (Qian et al., 2023). Wang et al. developed SMARTINV, a cross-modal tool for identifying vulnerabilities by checking invariant violations (Wang et al., 2024b). These approaches integrate information from multiple modalities, achieving a more comprehensive understanding of vulnerabilities (Yang et al., 2021).

However, these methods rely on multi-class classification tasks and cannot achieve multiple downstream tasks like clone detection. They also lack generalization capabilities and struggle to adapt to new vulnerability patterns.

5.2 CODE CLONE DETECTION

Kondo et al. reported that 79.2% of smart contracts are clones, with the number of clones rapidly increasing (Kondo et al., 2020). Similarly, He et al.(He et al., 2020) and Chen et al.(Chen et al., 2021) observed high code reuse rates, highlighting the critical need for clone detection to ensure smart contract security and enable thorough analysis. To address this, Kondo et al.(Kondo et al., 2020) developed Deckard, a tree-based clone detection tool, while Gao et al.(Gao et al., 2020) introduced SmartEmbed, a Word2vec-based tool that outperformed Deckard. Further advancements include Wang et al.’s (Wang et al., 2024a) SolaSim, leveraging weighted control flow graphs, and Ashizawa et al.’s (Ashizawa et al., 2021) Eth2Vec, designed for code-rewriting clone detection.

However, these methods share a common issue: they fail to effectively preserve the structural information and features of the code. The extracted features do not fully represent the contract's structure and variable scope. Moreover, some methods, such as SmartEmbed and Deckard, use partial technologies, resulting in suboptimal performance in retaining code semantics and structure.

6 CONCLUSION AND FUTURE PERSPECTIVES

We propose MultiCFV, a multimodal deep learning-based approach for contract verification and code clone detection, achieving superior generalization and accuracy. As the first to apply multimodal deep learning to this domain, MultiCFV identifies erroneous control flow vulnerabilities and detects code similarities between new input code and existing code, highlighting similar segments. It outperforms Slither and Mythril across metrics such as accuracy, precision, and F1-score, while effectively identifying similar contracts in clone detection. However, MultiCFV is currently limited to contract-level clone detection, which is relatively coarse-grained. Future work will aim to develop finer-grained detection methods to improve precision and practical applicability.

486 REFERENCES
487

488 Elisabetta Adami. Introducing multimodality. *The Oxford handbook of language and society*, pp.
489 451–472, 2016.

490 Ali Saleh Alammay. Bert models for arabic text classification: a systematic review. *Applied Sciences*,
491 12(11):5720, 2022.

492

493 Nami Ashizawa, Naoto Yanai, Jason Paul Cruz, and Shingo Okamura. Eth2vec: learning contract-
494 wide code representations for vulnerability detection on ethereum smart contracts. In *Proceedings*
495 *of the 3rd ACM international symposium on blockchain and secure critical infrastructure*, pp.
496 47–59, 2021.

497 Daniel Bast. Mythril: Security analysis tool for evm bytecode. <https://github.com/ConsenSys/mythril>, 2024. Accessed: 2024-07-28.

498

499 Jie Cai, Bin Li, Jiale Zhang, Xiaobing Sun, and Bing Chen. Combine sliced joint graph with graph
500 neural networks for smart contract vulnerability detection. *Journal of Systems and Software*, 195:
501 111550, 2023.

502

503 Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu. A survey on ethereum systems
504 security: Vulnerabilities, attacks, and defenses. *ACM Computing Surveys (CSUR)*, 53(3):1–43,
505 2020.

506

507 Jinfu Chen, Weijia Wang, Bo Liu, Saihua Cai, Dave Towey, and Shengran Wang. Hybrid semantics-
508 based vulnerability detection incorporating a temporal convolutional network and self-attention
509 mechanism. *Information and Software Technology*, 171:107453, 2024.

510 Xiangping Chen, Peiyong Liao, Yixin Zhang, Yuan Huang, and Zibin Zheng. Understanding code
511 reuse in smart contracts. In *2021 IEEE International Conference on Software Analysis, Evolution
512 and Reengineering (SANER)*, pp. 470–479. IEEE, 2021.

513

514 Filippo Contro, Marco Crosara, Mariano Ceccato, and Mila Dalla Preda. Ethersolve: Computing
515 an accurate control-flow graph from ethereum bytecode. In *2021 IEEE/ACM 29th International
516 Conference on Program Comprehension (ICPC)*, pp. 127–137. IEEE, 2021.

517

518 Monika di Angelo, Thomas Durieux, João F. Ferreira, and Gernot Salzer. SmartBugs 2.0: An
519 execution framework for weakness detection in Ethereum smart contracts. In *Proceedings of the
520 38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023)*, 2023.
521 to appear.

522

523 Jianbo Gao, Han Liu, Chao Liu, Qingshan Li, Zhi Guan, and Zhong Chen. Easyflow: Keep ethereum
524 away from overflow. In *2019 IEEE/ACM 41st International Conference on Software Engineering:
525 Companion Proceedings (ICSE-Companion)*, pp. 23–26. IEEE, 2019.

526

527 Zhipeng Gao. When deep learning meets smart contracts. In *Proceedings of the 35th IEEE/ACM
528 International Conference on Automated Software Engineering*, pp. 1400–1402, 2020.

529

530 Zhipeng Gao, Lingxiao Jiang, Xin Xia, David Lo, and John Grundy. Checking smart contracts with
531 structural code embedding. *IEEE Transactions on Software Engineering*, 2020.

532

533 Asem Ghaleb and Karthik Pattabiraman. How effective are smart contract analysis tools? evaluating
534 smart contract static analysis tools using bug injection. In *Proceedings of the 29th ACM SIGSOFT
535 International Symposium on Software Testing and Analysis*, 2020.

536

537 Daojing He, Rui Wu, Xinji Li, Sammy Chan, and Mohsen Guizani. Detection of vulnerabilities of
538 blockchain smart contracts. *IEEE Internet of Things Journal*, 10(14), 2023. <https://doi.org/10.1109/JIOT.2023.3241544>.

539

540 Ningyu He, Lei Wu, Haoyu Wang, Yao Guo, and Xuxian Jiang. Characterizing code clones in
541 the ethereum smart contract ecosystem. In *Financial Cryptography and Data Security: 24th
542 International Conference, FC 2020, Kota Kinabalu, Malaysia, February 10–14, 2020 Revised
543 Selected Papers 24*, pp. 654–675. Springer, 2020.

540 Alexander Hefele, Ulrich Gallersdörfer, and Florian Matthes. Library usage detection in ethereum
 541 smart contracts. In *On the Move to Meaningful Internet Systems: OTM 2019 Conferences: Con-*
 542 *federated International Conferences: CoopIS, ODBASE, C&TC 2019, Rhodes, Greece, October*
 543 *21–25, 2019, Proceedings*, pp. 310–317. Springer, 2019.

544 Wanqing Jie, Qi Chen, Jiaqi Wang, Arthur Sandor Voundsi Koe, Jin Li, Pengfei Huang, Yaqi Wu, and
 545 Yin Wang. A novel extended multimodal ai framework towards vulnerability detection in smart
 546 contracts. *Information Sciences*, 636:118907, 2023.

547 Feist Josselin. Slither: Static analyzer for solidity and vyper. <https://github.com/crytic/slither>, 2024. Accessed: 2024-07-28.

548 Masanari Kondo, Gustavo A Oliva, Zhen Ming Jiang, Ahmed E Hassan, and Osamu Mizuno. Code
 549 cloning in smart contracts: a case study on verified contracts from the ethereum blockchain
 550 platform. *Empirical Software Engineering*, 25:4617–4675, 2020.

551 Tsung-Ting Kuo and Anh Pham. Quorum-based model learning on a blockchain hierarchical clinical
 552 research network using smart contracts. *International journal of medical informatics*, 169:104924–
 553 104933, 2023. <https://doi.org/10.1016/j.ijmedinf.2022.104924>.

554 Xingwei Lin, Mingxuan Zhou, Sicong Cao, Jiashui Wang, and Xiaobing Sun. The best of both
 555 worlds: Integrating semantic features with expert features for smart contract vulnerability detection.
 556 In *International Conference on Blockchain and Trustworthy Systems*, pp. 17–31. Springer, 2023.

557 Zhenguang Liu, Peng Qian, Xiaoyang Wang, Yuan Zhuang, Lin Qiu, and Xun Wang. Combining
 558 graph neural networks with expert knowledge for smart contract vulnerability detection. *IEEE*
 559 *Transactions on Knowledge and Data Engineering*, 35(2):1296–1310, 2021.

560 Zhenguang Liu, Peng Qian, Jiaxu Yang, Lingfeng Liu, Xiaojun Xu, Qinming He, and Xiaosong
 561 Zhang. Rethinking smart contract fuzzing: Fuzzing with invocation ordering and important branch
 562 revisiting. *arXiv preprint arXiv:2301.03943*, 2023.

563 Marius Mosbach, Maksym Andriushchenko, and Dietrich Klakow. On the stability of fine-tuning
 564 bert: Misconceptions, explanations, and strong baselines. *arXiv preprint arXiv:2006.04884*, 2020.

565 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. *Decentralized business review*,
 566 2008. <http://dx.doi.org/10.2139/ssrn.3440802>.

567 Hoang H Nguyen, Nhat-Minh Nguyen, Chunyao Xie, Zahra Ahmadi, Daniel Kudendo, Thanh-Nam
 568 Doan, and Lingxiao Jiang. Mando: Multi-level heterogeneous graph embeddings for fine-grained
 569 detection of smart contract vulnerabilities. In *2022 IEEE 9th International Conference on Data*
 570 *Science and Advanced Analytics (DSAA)*, pp. 1–10. IEEE, 2022.

571 Debora Nozza, Federico Bianchi, and Dirk Hovy. What the [mask]? making sense of language-
 572 specific bert models. *arXiv preprint arXiv:2003.02912*, 2020.

573 Purathani Praitheeshan, Lei Pan, Jiangshan Yu, Joseph Liu, and Robin Doss. Security analysis
 574 methods on ethereum smart contract vulnerabilities: a survey. *arXiv preprint arXiv:1908.08605*,
 575 2019.

576 Pian Qi, Diletta Chiaro, Fabio Giampaolo, and Francesco Piccialli. A blockchain-based secure
 577 internet of medical things framework for stress detection. *Information Sciences*, 628:377–390,
 578 2023. <https://doi.org/10.1016/j.ins.2023.01.123>.

579 Peng Qian, Zhenguang Liu, Yifang Yin, and Qinming He. Cross-modality mutual learning for
 580 enhancing smart contract vulnerability detection on bytecode. In *Proceedings of the ACM Web*
 581 *Conference 2023*, pp. 2220–2229, 2023.

582 Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas Davi. Sereum: Protecting existing smart
 583 contracts against re-entrancy attacks. *arXiv preprint arXiv:1812.05934*, 2018.

584 Hemang Subramanian and Susmitha Subramanian. Improving diagnosis through digital pathology:
 585 Proof-of-concept implementation using smart contracts and decentralized file storage. *Journal of*
 586 *medical Internet research*, 24(3):34207, 2022. <https://doi.org/10.2196/34207>.

594 Bill Toulas. Mixin network suspends operations following \$200 mil-
 595 lion hack. <https://www.bleepingcomputer.com/news/security/mixin-network-suspends-operations-following-\200-million-hack/>, 2024. Accessed:
 596 July 28, 2024.

597

598 Che Wang, Yue Li, Jianbo Gao, Ke Wang, Jiashuo Zhang, Zhi Guan, and Zhong Chen. Solasim:
 599 Clone detection for solana smart contracts via program representation. In *Proceedings of the 32nd*
 600 *IEEE/ACM International Conference on Program Comprehension*, pp. 258–269, 2024a.

601

602 Sally Junsong Wang, Kexin Pei, and Junfeng Yang. Smartinv: Multimodal learning for smart contract
 603 invariant inference. In *2024 IEEE Symposium on Security and Privacy (SP)*, pp. 126–126. IEEE
 604 Computer Society, 2024b.

605

606 Hongjun Wu, Zhuo Zhang, Shangwen Wang, Yan Lei, Bo Lin, Yihao Qin, Haoyu Zhang, and
 607 Xiaoguang Mao. Peculiar: Smart contract vulnerability detection based on crucial data flow graph
 608 and pre-training techniques. In *2021 IEEE 32nd International Symposium on Software Reliability*
 609 *Engineering (ISSRE)*, pp. 378–389. IEEE, 2021.

610

611 Yinxing Xue, Mingliang Ma, Yun Lin, Yulei Sui, Jiaming Ye, and Tianyong Peng. Cross-contract
 612 static analysis for detecting practical reentrancy vulnerabilities in smart contracts. In *Proceedings of*
 613 *the 35th IEEE/ACM International Conference on Automated Software Engineering*, pp. 1029–1040,
 614 2020.

615

616 Zhen Yang, Jacky Keung, Xiao Yu, Xiaodong Gu, Zhengyuan Wei, Xiaoxue Ma, and Miao Zhang.
 617 A multi-modal transformer-based code summarization approach for smart contracts. In *2021*
618 IEEE/ACM 29th International Conference on Program Comprehension (ICPC), pp. 1–12. IEEE,
 619 2021.

620

621 Xingxin Yu, Haoyue Zhao, Botao Hou, Zonghao Ying, and Bin Wu. Deescvhunter: A deep learning-
 622 based framework for smart contract vulnerability detection. In *2021 International Joint Conference*
 623 *on Neural Networks (IJCNN)*, pp. 1–8. IEEE, 2021.

624

625 Gaoteng Yuan, Yi Zhai, Jiansong Tang, and Xiaofeng Zhou. Cscim_fs: Cosine similarity coefficient
 626 and information measurement criterion-based feature selection method for high-dimensional data.
 627 *Neurocomputing*, 552:126564, 2023.

628

629 Zibin Zheng, Jianzhong Su, Jiachi Chen, David Lo, Zhijie Zhong, and Mingxi Ye. Dappscan: building
 630 large-scale datasets for smart contract weaknesses in dapp projects. *IEEE Transactions on Software*
 631 *Engineering*, 2024.

632

633 Yuan Zhuang, Zhenguang Liu, Peng Qian, Qi Liu, Xiang Wang, and Qinming He. Smart contract vul-
 634 nerability detection using graph neural networks. In *Proceedings of the Twenty-Ninth International*
 635 *Conference on International Joint Conferences on Artificial Intelligence*, pp. 3283–3290, 2021.

636

637 A APPENDIX

638 A.1 THE USE OF LARGE LANGUAGE MODELS (LLMs)

639 During the paper writing process, LLMs have been utilized for English translation and polishing.

640 A.2 AST EXTRACTION PROCESS

641 The extraction process of AST is illustrated in Figure 6.

642 A.3 RATIONALE FOR FOCUSING ON THE FOUR SPECIFIC VULNERABILITIES

643 We selected these four vulnerabilities for the following reasons: (i) In real-world attacks, 70%
 644 of financial losses in Ethereum smart contracts are caused by these vulnerabilities (Chen et al.,
 645 2020). (ii) Existing research indicates that these vulnerabilities are more prevalent in Ethereum smart
 646 contracts, especially in newer versions of smart contract code. Studies have shown that contracts

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688

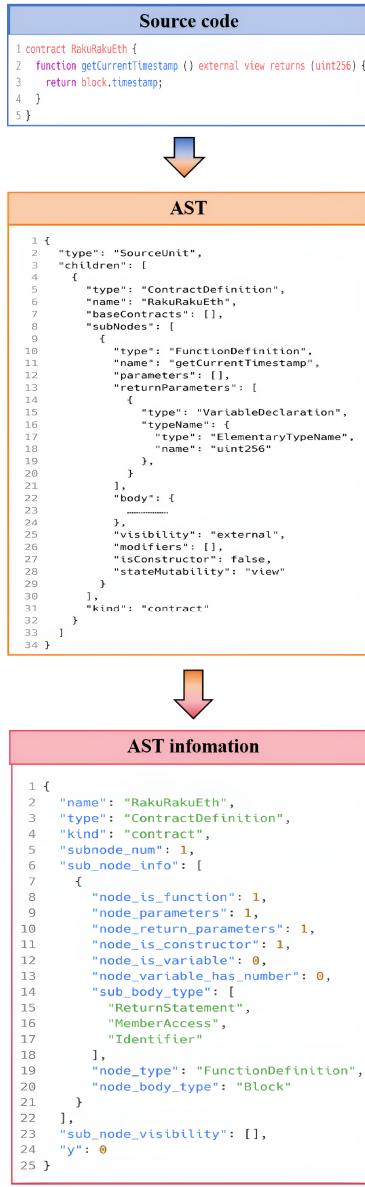


Figure 6: AST Information Extraction Process

689 compiled with post-2020 compiler versions (i.e., versions higher than 0.6) are particularly susceptible
690 to these vulnerabilities (Gao et al., 2019; Praitheeshan et al., 2019; Rodler et al., 2018). Zheng
691 et al. (Zheng et al., 2024) found that more than 50% of the code containing these four types of
692 vulnerabilities was present in 66.5% of high-version contract compilers. (iii) These vulnerabilities
693 represent typical erroneous control flow issues. For instance, a lack of permission control leads to
694 erroneous control flow (as seen in delegatecall and impermissible access control flaws vulnerabilities),
695 insufficient attention to inter-contract interactions results in erroneous control flow (as in reentrancy
696 vulnerabilities), and unchecked or inadequately checked external calls lead to erroneous control flow
697 (as in unchecked external call vulnerabilities).

698 A.4 RATIONALE FOR GRU-GCN

699
700 The detailed reason for choosing GRU-GCN is based on the following considerations:(1) Effective
701 Capture of Local Structural Information: GCN updates the representation of each node by aggregating
information from neighboring nodes, effectively capturing local structural information and features of

702 the nodes. It encodes the topological relationships in the graph as vector representations, preserving
 703 the structural characteristics of the graph in the vector space (Zhuang et al., 2021; Liu et al., 2021).
 704 This representation is particularly suited for downstream tasks such as code similarity analysis and
 705 vulnerability detection, aligning well with our research objectives. (2) Dynamic Adjustment of
 706 Feature Weights: When processing the node features generated by GCN, GRU can dynamically adjust
 707 the weights of the features and retain important sequential information. This allows the model to
 708 focus on nodes and edges more relevant to the current task, enhancing its ability to capture complex
 709 relationships between nodes, improving learning effectiveness, and mitigating the risk of overfitting.

710

711 A.4.1 ALGORITHEM OF OBTAINING THE OUTPUT CONTROL FLOW GRAPH FEATURE VECTOR

712 The calculation of the node feature matrix $\mathbf{H}^{(1)}$ output from the graph convolution layer is as follows:

713

$$\mathbf{H}^{(1)} = \text{ReLU}(\hat{\mathbf{A}}\mathbf{O}_{\text{cfg}}\mathbf{W}^{(1)}) \quad (4)$$

714 Here, $\mathbf{H}^{(1)}$ has the shape $N_{\text{batch}} \times D_{\text{output}}$, where N_{batch} is the batch size, representing the number of
 715 contracts in the batch, set to 1024. D_{output} is the dimension of the output features, set to 512. \mathbf{O}_{cfg} is
 716 the input control flow feature matrix of the contract with the shape $N_{\text{batch}} \times D_{\text{input}}$, where D_{input} is
 717 the dimension of the input features. $\hat{\mathbf{A}}$ is the normalized adjacency matrix, and $\mathbf{W}^{(1)}$ is the weight
 718 matrix for the graph convolution layer. ReLU denotes the rectified linear unit activation function.

719 The GRU computes the hidden state for each node. The update gate determines the proportion of the
 720 current hidden state combined with the previous hidden state and the new candidate hidden state:

721

$$\mathbf{z}_t = \sigma(\mathbf{W}_z \mathbf{x}_t + \mathbf{U}_z \mathbf{h}_{t-1}) \quad (5)$$

722 where σ is the nonlinear activation function, \mathbf{W}_z is the weight matrix for the update gate input, and
 723 \mathbf{U}_z is the weight matrix from the previous time step's hidden state to the update gate. \mathbf{x}_t is the input
 724 at the current time step t , and \mathbf{h}_{t-1} represents the hidden state at the previous time step $t-1$.

725 The reset gate determines the extent to which the previous hidden state influences the calculation of
 726 the new candidate's hidden state:

727

$$\mathbf{r}_t = \sigma(\mathbf{W}_r \mathbf{x}_t + \mathbf{U}_r \mathbf{h}_{t-1}) \quad (6)$$

728 where \mathbf{W}_r is the weight matrix for the reset gate input, and \mathbf{U}_r is the weight matrix from the
 729 previous time step's hidden state to the reset gate.

730 The new candidate hidden state is computed as follows, incorporating the reset gate's output to reflect
 731 the combined information of the current input and the previous hidden state:

732

$$\tilde{\mathbf{h}}_t = \tanh(\mathbf{W} \mathbf{x}_t + \mathbf{r}_t \odot \mathbf{U} \mathbf{h}_{t-1}) \quad (7)$$

733 where \tanh is the hyperbolic tangent activation function, \mathbf{W} is the weight matrix for the new candidate
 734 hidden state, and \mathbf{U} is the weight matrix from the previous hidden state to the new candidate hidden
 735 state. \odot denotes element-wise multiplication.

736 The final hidden state is computed as follows:

737

$$\mathbf{h}_t = (1 - \mathbf{z}_t) \odot \mathbf{h}_{t-1} + \mathbf{z}_t \odot \tilde{\mathbf{h}}_t \quad (8)$$

738 Here, $\mathbf{H}^{(2)}$ has the shape $N_{\text{batch}} \times D_{\text{hidden}}$, with D_{hidden} set to 512.

739

$$\mathbf{H}^{(2)} = (\mathbf{h}_1 \quad \mathbf{h}_2 \quad \mathbf{h}_3 \quad \dots \quad \mathbf{h}_N)^{\top} \quad (9)$$

740 Finally, we input $\mathbf{H}^{(2)}$ into fully connected and regression layers to obtain the output control flow
 741 graph feature vector $F_{\text{cfg}} \in \mathbb{R}^{512}$.

742

743 A.5 DEFINITIONS OF BYTECODE VALUES AND INSTRUCTIONS

744 The 11 categories of bytecode values and their corresponding definitions are presented, along with
 745 the distinctive opcodes used as features to represent the binary instruction operations.

756 A.5.1 STOP AND ARITHMETIC OPERATIONS

757

758 • **0x00 - 0x0B:**

759

- 0x00 - STOP
- 0x01 - ADD
- 0x02 - MUL
- 0x03 - SUB
- 0x04 - DIV
- 0x05 - SDIV
- 0x06 - MOD
- 0x07 - SMOD
- 0x08 - ADDMOD
- 0x09 - MULMOD
- 0x0A - EXP
- 0x0B - SIGNEXTEND

772

773 A.5.2 COMPARISON AND BITWISE LOGIC OPERATIONS

774

775 • **0x10 - 0x1A:**

776

- 0x10 - LT
- 0x11 - GT
- 0x12 - SLT
- 0x13 - SGT
- 0x14 - EQ
- 0x15 - ISZERO
- 0x16 - AND
- 0x17 - OR
- 0x18 - XOR
- 0x19 - NOT
- 0x1A - BYTE
- 0x1B - SHL
- 0x1C - SHR
- 0x1D - SAR

791

792 A.5.3 KECCAK256 METHOD

793

794 • **0x20:**

795

- 0x20 - KECCAK256

796

797 A.5.4 ENVIRONMENTAL INFORMATION

798

799 • **0x30 - 0x3E:**

800

- 0x30 - ADDRESS
- 0x31 - BALANCE
- 0x32 - ORIGIN
- 0x33 - CALLER
- 0x34 - CALLVALUE
- 0x35 - CALLDATALOAD
- 0x36 - CALLDATASIZE
- 0x37 - CALLDATACOPY
- 0x38 - CODESIZE
- 0x39 - CODECOPY
- 0x3A - GASPRICE

810 – 0x3B - EXTCODESIZE
 811 – 0x3C - EXTCODECOPY
 812 – 0x3D - RETURNDATASIZE
 813 – 0x3E - RETURNDATACOPY
 814

815 **A.5.5 BLOCK INFORMATION**

816 • **0x40 - 0x45:**
 817 – 0x40 - BLOCKHASH
 818 – 0x41 - COINBASE
 819 – 0x42 - TIMESTAMP
 820 – 0x43 - NUMBER
 821 – 0x44 - DIFFICULTY
 822 – 0x45 - GASLIMIT
 823 – 0x46 - CHAINID
 824

825 **A.5.6 STACK, MEMORY, STORAGE AND FLOW OPERATIONS**

826 • **0x50 - 0x5B:**
 827 – 0x50 - POP
 828 – 0x51 - MLOAD
 829 – 0x52 - MSTORE
 830 – 0x53 - MSTORE8
 831 – 0x54 - SLOAD
 832 – 0x55 - SSTORE
 833 – 0x56 - JUMP
 834 – 0x57 - JUMPI
 835 – 0x58 - PC
 836 – 0x59 - MSIZE
 837 – 0x5A - GAS
 838 – 0x5B - JUMPDEST
 839

840 **A.5.7 PUSH OPERATIONS**

841 • **0x60 - 0x7F:**
 842 – 0x60 - PUSH1
 843 – 0x61 - PUSH2
 844 – ...
 845 – 0x7F - PUSH32
 846

847 **A.5.8 DUPLICATION OPERATIONS**

848 • **0x80 - 0x8F:**
 849 – 0x80 - DUP1
 850 – 0x81 - DUP2
 851 – ...
 852 – 0x8F - DUP16
 853

854 **A.5.9 EXCHANGE OPERATIONS**

855 • **0x90 - 0x9F:**
 856 – 0x90 - SWAP1
 857 – 0x91 - SWAP2
 858 – ...
 859 – 0x9F - SWAP16
 860

864 A.5.10 LOGGING OPERATIONS

865

866 • **0xA0 - 0xA4:**
867 - 0xA0 - LOG0
 868 - 0xA1 - LOG1
 869 - 0xA2 - LOG2
 870 - 0xA3 - LOG3
 871 - 0xA4 - LOG4
 872

873 A.5.11 SYSTEM OPERATIONS

874

875 • **0xF0 - 0xFF:**
876 - 0xF0 - CREATE
 877 - 0xF1 - CALL
 878 - 0xF2 - CALLCODE
 879 - 0xF3 - RETURN
 880 - 0xF4 - DELEGATECALL
 881 - 0xF5 - CREATE2
 882 - 0xFA - STATICCALL
 883 - 0xFD - REVERT
 884 - 0xFE - INVALID
 885 - 0xFF - SELFDESTRUCT
 886
 887

888 A.6 DETAILED INFORMATION ABOUT THE DATASET

889 The detailed information on the four distinct datasets is as follows:
 890

891 1. Smartbugs Curated (di Angelo et al., 2023): This dataset is one of the most commonly used
 892 real-world datasets for automatic reasoning and testing of Solidity smart contracts. It includes 143
 893 annotated contracts with a total of 208 vulnerabilities.
 894
 2. SolidiFI-Benchmark (Ghaleb & Pattabiraman, 2020): This synthetic dataset contains vulnerable
 895 smart contracts. It comprises 350 different contracts with 9,369 injected vulnerabilities, covering
 896 seven different vulnerability types.
 897
 3. MessiQ-Dataset (Qian et al., 2023; Liu et al., 2023): This is the most recent dataset with the highest
 898 variety of vulnerabilities, containing 12,000 vulnerable smart contracts, which can be downloaded at
 899 <https://drive.google.com/file/d/1iU2J-B1stCa3ooVhXu-G1j0BzWi9gVrG/view>
 900
 4. Clean Smart Contracts from Smartbugs Wild (Nguyen et al., 2022): Based on the results of 11
 901 integrated detection tools, the Smartbugs framework identified 2,742 out of 47,398 contracts as free
 902 of errors. These 2,742 contracts are used as a set of clean contracts for comparison purposes.
 903

904 A.7 AST INFORMATION

905 Here are all the types we extracted, including contract types, function types, and variable types:
 906 "StateVariableDeclaration", "EmitStatement", "contract", "Conditional", "FunctionCall", "Number-
 907 Literal", "ThrowStatement", "ExpressionStatement", "MemberAccess", "ReturnStatement", "Index-
 908 Access", "ForStatement", "StringLiteral", "interface", "TupleExpression", "BooleanLiteral", "IfS-
 909 tatement", "ModifierDefinition", "StructDefinition", "EventDefinition", "InlineAssemblyStatement",
 910 "WhileStatement", "library", "Identifier", "UnaryOperation", "VariableDeclarationStatement", "Prag-
 911 maDirective", "BinaryOperation", "ElementaryTypeNameExpression", "EnumDefinition", "Contract-
 912 Definition", "FunctionDefinition", "UsingForDeclaration", "block".
 913

914 We categorized these types into different classes and explained the specific meaning of each type.
 915

916 A.7.1 CONTRACT STRUCTURE RELATED

917

- ContractDefinition - A contract definition node, representing a smart contract.

918 – contract - Indicates this is a regular contract.
 919 – interface - Indicates this is an interface.
 920 – library - Indicates this is a library.
 921
 922 • StructDefinition - A struct definition node, representing a structure.
 923 • EnumDefinition - An enum definition node, representing an enumeration.
 924 • StateVariableDeclaration - A state variable declaration node, representing a state variable.
 925 • EventDefinition - An event definition node, representing an event.
 926 • ModifierDefinition - A modifier definition node, representing a function modifier.
 927 • UsingForDeclaration - A using statement node, representing a using for declaration.
 928
 929

930 A.7.2 FUNCTION RELATED

931 • FunctionDefinition - A function definition node, representing a function.
 932 • ReturnStatement - A return statement node, representing a 'return' statement.
 933 • ThrowStatement - A throw statement node, representing a 'throw' statement.
 934 • EmitStatement - An emit statement node, representing an 'emit' statement.
 935 • FunctionCall - A function call node, representing a function call.
 936
 937

938 A.7.3 EXPRESSION RELATED

939 • ExpressionStatement - An expression statement node, representing an expression.
 940 • MemberAccess - A member access node, representing access to a member of an object (e.g.,
 941 object.member).
 942 • IndexAccess - An index access node, representing access to an array or mapping index (e.g.,
 943 array[index]).
 944 • TupleExpression - A tuple expression node, representing a tuple (e.g., (a, b)).
 945 • UnaryOperation - A unary operation node, representing a unary operation (e.g., -a).
 946 • BinaryOperation - A binary operation node, representing a binary operation (e.g., a + b).
 947 • Conditional - A conditional expression node, representing a ternary operator (e.g., a ? b : c).
 948 • ElementaryTypeNameExpression - An elementary type name expression node, representing
 949 a basic type (e.g., uint256).
 950 An elementary type name expression node, representing a basic
 951 type (e.g., uint256).
 952
 953

954 A.7.4 LITERAL RELATED

955 • NumberLiteral - A number literal node, representing a number (e.g., 123).
 956 • StringLiteral - A string literal node, representing a string (e.g., "hello").
 957 • BooleanLiteral - A boolean literal node, representing a boolean value (e.g., true or false).
 958
 959

960 A.7.5 STATEMENT RELATED

961 • IfStatement - An if statement node, representing an 'if' statement
 962 • ForStatement - A for statement node, representing a 'for' loop.
 963 • WhileStatement - A while statement node, representing a 'while' loop.
 964 • InlineAssemblyStatement - An inline assembly statement node, representing an inline
 965 assembly block.
 966 • VariableDeclarationStatement - A variable declaration statement node, representing a vari-
 967 able declaration.
 968
 969

970 A.7.6 IDENTIFIER RELATED

971 • Identifier - An identifier node, representing the name of a variable or object.

972 A.7.7 OTHERS

973

- 974 • PragmaDirective - A pragma directive node, representing a pragma directive (e.g., 'pragma
- 975 solidity 0.8.0').
- 976
- 977 • block - Represents a block of code.
- 978
- 979

980 A.8 RATIONALE FOR UTILIZING SELF-ATTENTION MECHANISM WITH A CONVOLUTIONAL
981 NEURAL NETWORK

982
983 based on the following considerations: (1) The self-attention mechanism can identify relationships
984 between distant words in the comments, which may be important for keyword extraction (Alammary,
985 2022). (2) The self-attention mechanism can assign different weights to each word in the sequence,
986 reflecting the importance of the words and more accurately identifying the keywords (Nozza et al.,
987 2020). (3) Combining the self-attention mechanism with a convolutional neural network allows for
988 the extraction of local features (through the convolutional layers) while enhancing the global semantic
989 representation (through the self-attention mechanism), thereby providing a more comprehensive
990 understanding of the text.

991
992
993 A.9 RATIONALE FOR MULTIPLYING RBF KERNEL AND COSINE SIMILARITY
994

995 The detailed reasons for using the multiplication of the RBF kernel function and cosine similarity
996 are as follows: (1) The RBF kernel function captures nonlinear relationships in the input data by
997 computing similarities in a high-dimensional space, thus handling complex relationships and patterns
998 more effectively. Additionally, the RBF kernel is robust to noise and variations in the input data.
999 It calculates similarity by considering the distance between input data and the central point, which
1000 effectively manages minor variations and noise. (2) According to Yuan et al. (Yuan et al., 2023),
1001 cosine similarity is well-suited for high-dimensional sparse data, making it particularly appropriate
1002 for comparing texts or feature vectors. (3) The product computation ensures that if either similarity
1003 measure is low, the final result is also low. This guarantees that high similarity is achieved only when
1004 both measures are high, thereby enhancing the accuracy of similarity computation.

1005
1006
1007 A.10 EXAMPLE OF CODE CLONE DETECTION
1008

1009 Figure 7 shows the randomly input contract content used for clone detection. Figure 8 displays the
1010 content of two contracts from the clone detection output results.

```
1014 1 contract ELTWagerLedger {
1015 2     mapping (address => mapping (address => uint)) public tokens;
1016 3     function withdraw(uint amount) {
1017 4         if (tokens[0][msg.sender] < amount) throw;
1018 5         if (!msg.sender.call.value(amount)()) throw;
1019 6         tokens[0][msg.sender] = tokens[0][msg.sender] - amount;
1020 7     }
1021 8 }
```

1022
1023
1024
1025 Figure 7: Example Code of Code Clone Detection

```

1026
1027     1 contract ELTWagerLedger {
1028         2     mapping (address => mapping (address => uint)) public tokens;
1029         3     function withdraw(uint amount) {
1030             4         if (tokens[0][msg.sender] < amount) throw;
1031             5         if (!msg.sender.call.value(amount)()) throw;
1032             6         tokens[0][msg.sender] = tokens[0][msg.sender] - amount;
1033             7     }
1034     8 }                                     result1
1035
1036
1037
1038     1 contract Private_Bank {
1039         2     mapping (address => uint) public balances;
1040         3     function CashOut(uint _am) {
1041             4         if(_am <= balances[msg.sender]) {
1042             5             if(msg.sender.call.value(_am)()){
1043             6                 balances[msg.sender] -= _am;
1044             7             }
1045             8         }
1046     9     }
1047 10 }                                     result2
1048
1049
1050
1051
1052
1053 A.11 VENN DIAGRAM
1054
1055 Figure 9 is a Venn diagram with a similarity threshold of 1.0 between MultiCFV and SmartEmbed. SE
1056 represents SmartEmbed, MT represents MultiCFV, MT_rest indicates the similar codes detected by
1057 MultiCFV but not by SmartEmbed, and SE_rest indicates the similar codes detected by SmartEmbed
1058 but not by MultiCFV. SmartEmbed failed to detect clone codes in 26% of the contract codes, whereas
1059 MultiCFV only in 17%.
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

```

Figure 8: Two Contracts from the Code Clone Detection Results

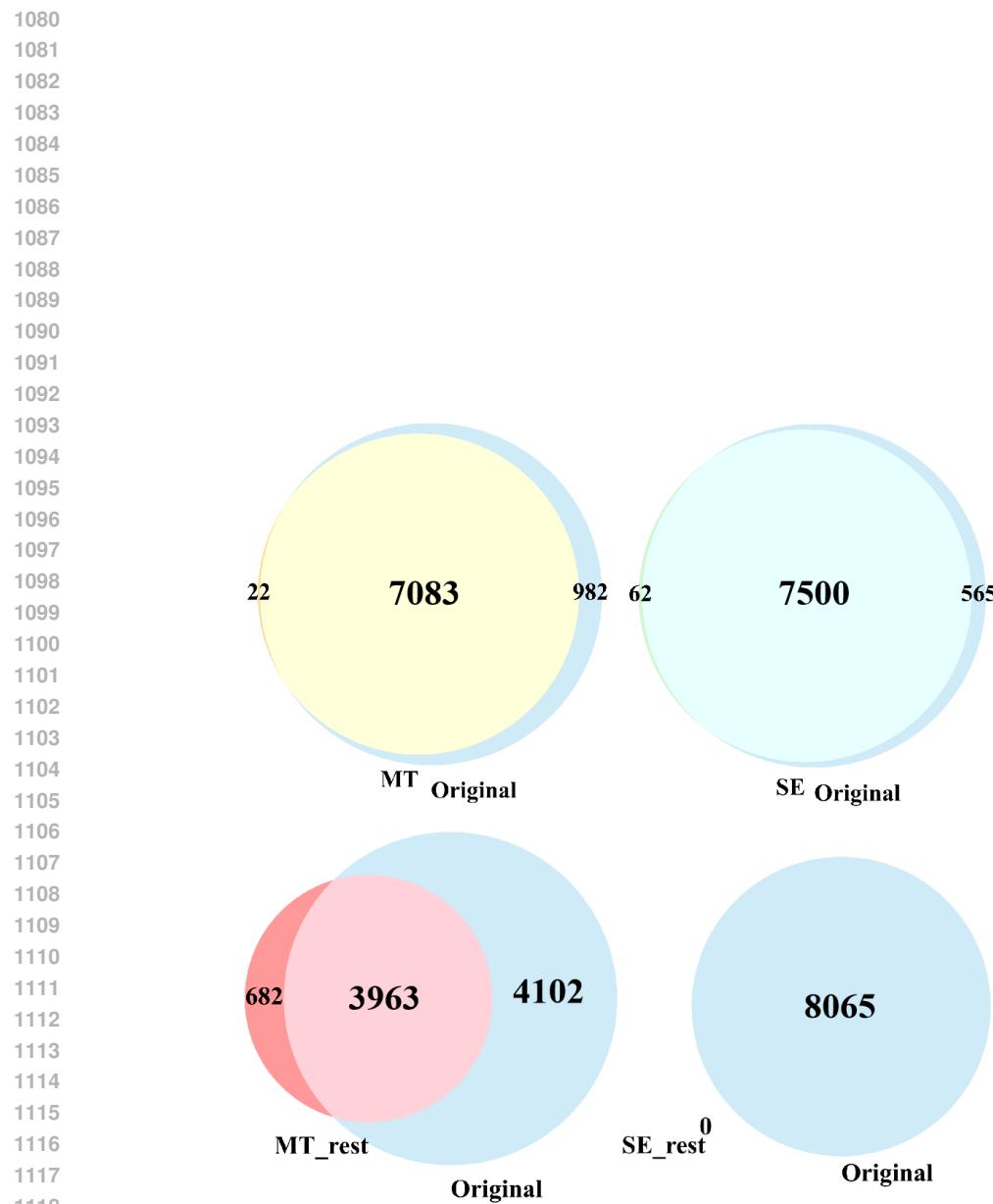


Figure 9: Venn Diagram for Clones Detected by MultiCFV and SmartEmbed with Similarity Threshold 1.0