
Published in Transactions on Machine Learning Research (04/2025)

Amphibian: A Meta-Learning Framework for Rehearsal-
Free, Fast Online Continual Learning

Gobinda Saha gsaha@purdue.edu
Department of Electrical and Computer Engineering
Purdue University

Kaushik Roy kaushik@purdue.edu
Department of Electrical and Computer Engineering
Purdue University

Reviewed on OpenReview: https: // openreview. net/ forum? id= n4AaKOBWbB

Abstract

Online continual learning is challenging as it requires fast adaptation over a stream of data
in a non-stationary environment without forgetting the knowledge acquired in the past. To
address this challenge, in this paper, we introduce Amphibian - a gradient-based meta-
learner that learns to scale the direction of gradient descent to achieve the desired balance
between fast learning and continual learning. For this purpose, using only the current batch
of data, Amphibian minimizes a meta-objective that encourages alignments of gradients
among given data samples along selected basis directions in the gradient space. From this
objective, it learns a diagonal scale matrix in each layer that accumulates the history of such
gradient alignments. Using these scale matrices Amphibian updates the model online only
in the directions having positive cumulative gradient alignments among the data observed
so far. With evaluation on standard continual image classification benchmarks, we show
that such meta-learned scaled gradient descent in Amphibian achieves better accuracy in
online continual learning than relevant baselines while enabling fast learning with less data
and few-shot knowledge transfer to new tasks. We also introduce Amphibian-β a unified
and principled framework for analyzing and understanding the fast learning and continual
learning dynamics. Additionally, with loss landscape visualizations, we show such gradient
updates incur minimum loss to the old task enabling fast continual learning in Amphibian.

1 Introduction

Autonomous intelligent systems are envisioned to operate in non-stationary environments where distribution
of online data streams changes over time. In such environments, AI models (usually artificial neural net-
works, ANNs) need to acquire knowledge quickly while maintaining the stability of past experiences. This
is a challenging scenario as the learning method needs to strike the right balance between learning with-
out forgetting and fast learning objectives. However, standard gradient-based training methods for ANNs
overwrite the past knowledge with the information from the new batch of data - leading to ‘catastrophic
forgetting’ (28; 46). Such forgetting prevents effective knowledge transfer from the past thus also hampering
fast learning ability.

To address these challenges, a popular line of work in continual learning (CL) (33; 17) uses memory re-
hearsal (34; 10; 26; 38) - where a subset of past data is stored in a memory buffer and used with the current
batch of data to jointly train the model. Such rehearsal-based strategy guides the optimization process
such that losses of the past data do not increase, preventing catastrophic forgetting. However, effectiveness
of these methods depends on large memory storage which also arises data privacy concerns. In contrast,
rehearsal-free methods (20; 50; 36; 39) in continual learning use explicitly designed regularization objectives

1

https://openreview.net/forum?id=n4AaKOBWbB

Published in Transactions on Machine Learning Research (04/2025)

and/or constrained gradient update rules to prevent forgetting. Though these methods are effective in of-
fline (multi-epoch) CL setups, compared to rehearsal-based methods they underperform in online continual
learning (OCL) (27). This is primarily due to the added objective or constraints that focus on forgetting mit-
igation rather than encouraging fast learning. From fast learning viewpoint, meta-learning (14) or ‘learning
to learn’ (42) is an exciting proposition since it optimizes a meta-objective that encourages representation
learning in ANNs suitable for fast adaptation. Such meta-objective is adapted in (18; 4; 8) for pre-training
models offline, then deployed for continual learning tasks. In contrast, (32; 16) adapted the meta-objective
for fully online continual learning. However, they use memory rehearsal to mitigate forgetting.

In this paper, we propose a meta-learner - Amphibian - that learns fast with minimum forgetting during
online continual learning. Without any memory rehearsal, Amphibian achieves better balance between
learning without forgetting and fast learning with three key components. First, to obtain meta-gradients,
it optimizes a meta-objective that on top of minimizing loss on the given batch of samples, encourages
their gradient alignments along the selected basis directions representing the gradient space. Second, from
the same meta-objective, it learns diagonal scaling matrices that contain learning/scaling rates along each
gradient basis. In our formulation, each scale value accumulates the history of gradient alignments (along
the corresponding basis) among the observed samples over the entire learning sequence. Finally, it scales
the meta-gradients with scaling matrices to update the model along the directions with cumulative positive
gradient alignments among the observed data. Thus, the combination of meta-objective optimization and
meta-learned gradient scaling enables Amphibian to learn fast and continually. We evaluate Amphibian in
both task- and class-incremental online continual learning setups (16; 40) on long and diverse sequences of
image classification tasks (including ImageNet-100) using different network architectures (including ResNet)
and achieve better performance in both continual and fast learning metrics compared to the twelve most
relevant baselines.

Additionally, we propose a regularized version of Amphibian - Amphibian-β that offers a unified and
principled framework for analyzing and understanding the dynamics of fast learning and continual learn-
ing in popular CL algorithms. Within this framework, by varying a single hyperparameter, β, we have
shown to achieve the functionality of meta-learning-based (this work), gradient-constraint-based (36; 37),
and regularization-based (20; 50) CL algorithms. We show explicit weight regularization or gradient con-
straints used in the regularization and gradinet-constrained-based methods trade off fast learning ability in
favor of mitigating forgetting, hence they underperform in the OCL setup. Our findings reveal it is hard to
design explicit regularization and gradient constraints for achieving the perfect balance between fast learning
and continual learning. Hence, Amphibian-like meta-learners that automatically learn these constraints from
the data would be a promising candidate for this OCL setup.

We summarize the contributions of this paper as follows:

• We introduce Amphibian which minimizes a novel meta-objective and uses meta-learned gradient
scaling to enable fast online continual learning without rehearsal.

• We provide a detailed derivation of this objective and provide justification for its effectiveness in
fast continual learning.

• With evaluation on long sequences of tasks, we show that Amphibian not only learns continually with
higher accuracy but also demonstrates the ability of a truly fast learner by learning fast with less
data and enabling few-shot knowledge transfer to the new tasks compared to the relevant baselines.

• We analyze a regularized version of Amphibian - Amphibian-β and provide insight that regularized
objectives or constraints used by the representative rehearsal-free methods to minimize forgetting
restrict the fast learning ability of the model in OCL.

• With visualization of loss landscapes of sequential tasks, we show that scaled model update in
Amphibian along gradient directions with positive cumulative gradient alignments induces minimum
to no increase in loss of the past tasks which enables continual learning.

2

Published in Transactions on Machine Learning Research (04/2025)

2 Related Works
Online Continual Learning (OCL). We consider a supervised learning setup where T tasks [τ1, τ2, ..τT]
are learnt by observing their training data [D1,D2, ..DT] sequentially. At any time-step j, the learning model
receives a batch of data, Bj

i or simply Bi = {(xj
n, yj

n)}Ni
n=0 as the set of Ni input-label pairs randomly drawn

from the current data stream, Di. In online continual learning (27), the model needs to learn from a single
pass over these data streams with the objective of minimizing the empirical risk on the data from all the t
tasks seen so far. The objective (16; 43) is given by:

t∑
i=1

EBi
[ℓi(θ;Bi)] = EB1:t

t∑
i=1

[ℓi(θ;Bi)]. (1)

Here ℓi(.; .) is the loss function to be minimized for task τi by updating the model parameters θ.

Rehearsal-based Methods. The above risk minimization requires all the data, B1:t−1 from past tasks
which may not be accessible to OCL agents at the same time. Rehearsal or experience replay (ER) (34; 10)
methods offer a solution by storing a limited amount of past data in episodic memory, DM. Such techniques
then sample a memory batch, BM

1:t−1 ∼ DM (that approximates B1:t−1) for jointly minimizing the objective
in Equation 1 with the current batch, Bt. Later works built on this idea where they differ in the way memory
is selected and replayed. For instance: GSS (2) selects memory based on gradients, MIR (1) selects memory
that incurs maximum change in loss, ASER (40) performs memory selection and retrieval using Shapley value
scores. To improve replay, RAR (51) uses repeated augmented rehearsal, CLS-ER (3) proposes dual memory
learning and DER (7) uses logit distillation loss. Gradient Episodic Memory (GEM) (26) and Averaged-GEM
(A-GEM) (9) use memory data to compute gradient constraints for new task so that loss on past tasks does
not increase. We refer to (6; 41) for a recent literature review on online continual learning.

Rehearsal-free Methods. One line of work in this category expands the network (35; 48) for contin-
ual learning but they are not evaluated for OCL. Other methods under this category minimize the loss
(EBt

[lt(θ;Bt)]) on the current batch with additional regularization terms and/or constraints on gradient
updates. For example, Elastic Weight Consolidation (EWC) (20) and Synaptic Intelligence (SI) (50) add
quadratic regularization terms that penalize changes in the important parameters for the past task. While
EWC computes parametric importance from the Fisher diagonal matrix after training, SI finds them online
during training from the loss sensitivity of the parameters. Gradient projection methods (49; 13; 36; 37)
constrain the current gradient, ∇θlt to be orthogonal to the past gradient directions. For instance, Gradient
Projection Memory (GPM) (36) optimizes a new task in the orthogonal directions to the gradient spaces im-
portant for the past tasks, whereas Scaled Gradient Projection (SGP) (37) relaxes the constraint in GPM to
allow gradient updates along the old gradient spaces. Natural Continual Learning (NCL) (19) learns contin-
ually by combining gradient projection with regularization. Our proposed Amphibian is also a rehearsal-free
method. However, unlike these methods it does not need any explicit regularization or constraints; rather it
meta-learns from data to scale the gradients for fast continual learning. In the next section, we introduce a
meta-learning method - MAML (14) and then discuss relevant meta-learning-based continual learning works.

3 Preliminaries
Model-Agnostic Meta-Learning (MAML). MAML (14) is a widely used gradient-based meta-learner
that utilizes bi-level (inner-loop and outer-loop) optimization to obtain model parameters, θ0 that is amenable
to fast adaptation to new tasks. MAML trains the model on a set of T tasks simultaneously where each
task, τi has a dataset, Dτi = {Dτi

in,Dτi
out} partitioned for inner and outer loop optimization. One step of

inner-loop optimization on task τi is defined as:

U(θτi
0 ;Dτi

in) = θτi
1 = θτi

0 − α∇θ
τi
0

ℓin(θτi
0 ;Dτi

in), (2)

where U(.; .) is a stochastic gradient descent (SGD) operator, α is learning rate and ℓin is inner-loop loss
function. U can be composed for k such updates as Uk(θτi

0 ;Dτi
in) = U.. ◦ U ◦ U(θτi

0 ;Dτi
in) = θτi

k . In the
outer-loop optimization, loss for each task is computed at corresponding, θτi

k on Dτi
out and expected loss

over all the tasks (meta-loss) is minimized (Equation 3) to obtain the parameters, θ0.

min
θ0

Eτ1:t [ℓout(θτi

k ;Dτi
out)] (3)

3

Published in Transactions on Machine Learning Research (04/2025)

𝜃0
𝑗

𝜃1
𝑗 𝜃𝑘−1

𝑗

(𝑥0
𝑗
, 𝑦0

𝑗
) (𝑥1

𝑗
, 𝑦1

𝑗
) (𝑥𝑘−1

𝑗
, 𝑦𝑘−1

𝑗
)

Λ𝑗 Λ𝑗

Λ𝑗𝜃0
𝑗
, 𝜃𝑘

𝑗

𝑙𝑜𝑢𝑡𝑙𝑖𝑛 𝑙𝑖𝑛 𝑙𝑖𝑛

Λ𝑗

𝑔𝑚𝑒𝑡𝑎(𝜃0
𝑗
)

𝑔𝑚𝑒𝑡𝑎(Λ𝑗) Λ𝑗

Meta Gradients

Scale

Update

𝜃0
𝑗

Λ𝑗+1

𝜃0
𝑗+1

Λ𝑗+1

Model Update

Meta Learning: Inner-loop Meta Learning: Outer-loop

ℬ𝑖 = {(𝑥0
𝑗
, 𝑦0

𝑗
), (𝑥1

𝑗
, 𝑦1

𝑗
), ..(𝑥𝑘−1

𝑗
, 𝑦𝑘−1

𝑗
)}

ℬ𝑖

Current data batch:

Initial

Parameters

Updated

Parameters

..

..

Figure 1: Illustration of continual learning in Amphibian on a batch of data. Given the model, θj
0 and

scale matrix, Λj , first we perform k inner-loop gradient update on θj
0 to obtain θj

k with the samples of the
current batch, βi. In second step, we compute the meta-loss on θj

k with the entire batch, βi to obtain meta
gradients. In third step we update Λj and finally the model, θj

0 with these gradients.

Meta-learning and Continual Learning. The above meta-loss minimization trains a model for fast
adaptation, however it does not explicitly encourage continual learning. Thus, (18) proposed online-aware
meta-learning where at first, a model is pre-trained offline on a set of tasks to learn a better representation for
CL, then keeping that representation frozen, the rest of the network is fine-tuned on CL tasks. The authors
in (4; 23; 8) used such meta-learning-based offline pre-training strategy, while allowing varying degrees of
adaptation to the model during CL tasks. In contrast, Meta Experience Replay (MER) (32) combines meta-
objective of Reptile (30) with memory rehearsal for OCL, whereas La-MAML (16) minimizes the MAML
objective (Equation 3) in online setup where losses on the past tasks are computed on the memory batch,
BM

1:t−1 ∼ DM. Unlike these methods, we train a model from scratch with a meta-objective (Section 4)
without rehearsal for fast online continual learning.

Representation of the Gradient Space in Neural Network: In (36) authors show that SGD (gradient)
updates lie in subspace spanned by the input data points. As inside any layer of neural network, the dimension
of inputs are smaller than the dimension of the gradients, the gradients thus lie in a low dimensional subspace.
Therefore the gradients (or gradient space) in each layer of the ANN can be represented by low dimensional
basis vectors. For details see Appendix Section 6. Let, θ0 ∈ RCo×Ci×k×k represent filters in a convolutional
(Conv) layer, where Ci (Co) is the number of input (output) channels of that layer and k is the kernel size
of the filters. Following (36), θ0 (hence gradient, ∇θ0ℓ) can be reshaped into a (Ci×k×k)×Co dimensional
matrix. Thus gradients in a Conv layer can be described by (Ci × k × k) dimensional space (instead of
Co×Ci×k×k). Similarly, if θ0 ∈ Rm×n represents a weight matrix in a fully-connected (FC) layer where m
(n) is the dimension of outgoing (incoming) hidden units, the gradient space will be n dimensional (instead
of m× n) in this layer.

4 Continual Learning with Amphibian
Here, we describe the steps (illustrated in Figure 1) for online continual learning in Amphibian.

Learning Overview: At any time j over the learning sequence, Amphibian receives a batch of data,
Bi ∼ Dτi with Ni input-label data pairs from current task, τi. We aim to update the current model, θj

0 using
the update rule:

θj+1
0 = θj

0 − Λj+1gmeta(θj
0). (4)

Here gmeta is the gradient obtained from the meta (inner-outer loop) learning process using only the current
data, Bi. In our method, we use the gradient space formulation as described in Section 3 and consider the
standard bases (em) of appropriate dimensions as the bases of gradient space to represent the gradients
inside the neural network. We introduce a scaling matrix, Λ in the update rule. This is a diagonal
matrix; for the convolution layer and FC layer (defined above) it is of size (Ci × k × k)× (Ci × k × k) and
n× n respectively. Each diagonal element, λm, of this matrix is initialized with λo

m and then meta-learned
simultaneously with gmeta. Over the continual learning trajectory, Λ accumulates the history of gradient
alignment among observed data samples. Then it scales the meta-gradient (Equation 4) accordingly to
update the model along the direction of positive gradient alignments. Thus Λ essentially learns the learning

4

Published in Transactions on Machine Learning Research (04/2025)

rate of the bases of the gradient space during continual learning. The number of learnable parameters in
this matrix is (Ci × k × k) for convolution layers and n for FC layers. Detailed calculations of the number
of learnable gradient scales in our different experiments are given in Appendix Section 5.3. It is to be noted
that the gradient (and parameters) in Equation 4 are appropriately reshaped before applying the scaled
transformation. To learn shared information among tasks during meta-learning, authors in (24) introduced
layer-wise transformation matrices (T) which (linearly) transform the network activations in forward pass
and transform (both scale and rotate) the gradients in backward pass. In contrast, we meta-learn shared
information for continual learning across tasks by Λ matrices that are strictly diagonal matrices and only
scale the gradient magnitudes in the backward pass.

Meta-Learning Step-1: At first, on the given batch, Bi we perform k inner-loop updates on θj
0 to obtain

θj
k as:

Uk(θj
0;Bi) = θj

k = θj
0 −

k−1∑
k′=0

Λj∇θj

k′
ℓin(θj

k′ ;Bi[k′]). (5)

These inner-loop steps differ in two ways from MAML inner-update step (Equation 2). First, for each inner
update, we use one sample (if k = Ni) or a subset of samples (if k < Ni) from Bi without replacement,
whereas MAML uses entire batch (Di

in = Bi). Second, in our method, each inner gradient is scaled by the
Λj matrix, whereas MAML uses a constant scalar learning rate, α. Though meta-learnable per parametric
learning rate (25; 16) vector, α and block diagonal preconditioners (31) have been used in such updates, we
learn diagonal Λ which differs in dimensions and interpretation.

Meta-Learning Step-2: In this online learning setup, unlike MAML, Amphibian does not have access
to the data from all the tasks seen so far. Moreover, as Amphibian is a rehearsal-free learner, we can not
store past examples in memory and use them to approximately minimize the outer-loop MAML objective
(Equation 3) as in (16). Instead, in the outer loop of meta-learning, we compute the meta-loss, ℓout on
current data (Bi = Dout) at θj

k and minimize the following objective :

min
θj

0,Λj

EBi
[ℓout(θj

k;Bi)] = min
θj

0,Λj

EBi
[ℓout(Uk(θj

0, Λj ;Bi);Bi)]. (6)

Minimizing this objective with respect to θj
0 is approximately equivalent to (see Appendix Section 1 for full

derivation):

min
θj

0

EBi
[ℓout(θj

k;Bi)] = min
θj

0

(
ℓout(θj

0)−
M∑

m=1
λj

m

∂ℓout(θj
0)

∂θj
0
· emeT

m

∂ℓin(θj
0)

∂θj
0

)
, (7)

where M is the dimension of gradient space. Here, ℓout is computed on entire batch Bi while ℓin is computed
on a sample (or subset) from Bi. First term on the right-hand side of the objective in Equation 7 minimizes
the loss on current batch of data, Bi. The second term encourages positive alignment (inner product) of
gradients computed on samples of Bi along selective gradient basis directions (em) depending on scale λm.
For instance, for positive λm, inner product of data gradients along em is maximized whereas for zero or
negative λm, such gradient alignments are not encouraged. Gradient of this objective is given by gmeta(θj

0)
which is used for model update in Equation 4.

Scale Update Step: Next, gradient of the meta-objective (in Equation 6) with respect to each scale, λj
m

in Λj can be simply expressed (using first-order approximation (14)) as follows:

gmeta(λj
m) = −

∂ℓout(θj
k)

∂θj
k

· emeT
m

k−1∑
k′=0

∂ℓin(θj
k′)

∂θj
k′

= − ℓ′
out(θ

j
k) · emeT

m

k−1∑
k′=0

ℓ′
in(θj

k′). (8)

Derivation is given in Appendix Section 2. Equation 8 denotes that if outer-loop gradient gout = ℓ′
out(θ

j
k)

and accumulated inner-loop gradient ḡin =
∑k−1

k′=0 ℓ′
in(θj

k′) has positive inner product (aligned) along em,
then gmeta(λj

m) will be negative, whereas if the inner product is zero (negative) then gmeta(λj
m) will be zero

5

Published in Transactions on Machine Learning Research (04/2025)

e1

e2

interference

alig
n
m

en
t

𝜆1

𝜆2

gout

ҧ𝑔𝑖𝑛
𝑔𝑖𝑛

𝑘′

Λ gout

scale

Figure 2: Conceptual illustration. Along e2 (e1) gout and ḡin has alignment (interference), hence λ2 (λ1) will
increase (decrease). Considering, gmeta(θj

0) ≈ gout, gmeta is scaled accordingly in model update to reflect
alignment history.

(positive). The scale update rule: λj+1
m = λj

m − ηgmeta(λj
m) can be expressed as:

λj+1
m = λj

m + ηℓ′
out(θ

j
k) · emeT

m

k−1∑
k′=0

ℓ′
in(θj

k′) = λ0
m + η

∑
j

(
ℓ′

out(θ
j
k) · emeT

m

k−1∑
k′=0

ℓ′
in(θj

k′)
)

, (9)

where η is the learning rate for the scales. This update rule provides two valuable insights. First, the value of
a scale will increase (decrease) if, along the corresponding basis, em direction outer- and inner-loop gradient
trajectories have positive (negative) inner product or alignment (interference). Figure 2 provides a conceptual
illustration to this point. Here e1 and e2 represent the gradient basis directions and λ1 and λ2 are associated
scales. Since along e2, gout and ḡin has positive inner product, λ2 will increase. Whereas λ1 will decrease, as
along e1 components of gout and ḡin has negative inner product. Second, over the entire continual learning
sequence up to time j, λj

m accumulates the history of such gradient alignments or interferences. Now if
we do not use accumulation and update the scales as λj+1

m = λ0
m − ηgmeta(λj

m) with current gmeta(λj
m)

and use these scales for model update (Equation 4), we would get fast learning on the current data but
model will forget past data. In contrast, by using cumulatively updated (Equation 9) Λ in Equation 4, we
ensure that the gradient step on each incoming data is accelerated along the direction of positive cumulative
alignment, whereas blocked along the direction of zero or negative alignments thus minimizing catastrophic
forgetting. Therefore, this online accumulation of gradient alignments in scale matrices over the learning
sequence enables Amphibian to learn continually with minimum forgetting without any data rehearsal. An
analysis of the evolution of Λ during training is given in Appendix Section 5.4 in support of this point.

Model Update Step: Finally, with gmeta(θj
0) and the updated scale Λj+1 we perform model update on

the current batch as in Equation 4. As the scales, λm can take both positive and negative values, to
prevent gradient ascent (both in Equation 4 and inner loop Equation 5) we only use their positive part using
(λm)+ = 1λm≥0λm function, where 1.≥0 : R→ {0, 1}. In the meta-learning steps, we ensure differentiability
of this function using the straight-through estimator (5; 45). With the updated model θj+1

0 and scale
matrix Λj+1, we (continually) learn the next batch of data. The pseudocode of the algorithm is provided in
Algorithm 1 with more details provided in Appendix Section 3.

5 Experimental Setup
Datasets and Models. We evaluate Amphibian and the baselines in online continual learning (OCL) (27)
setups where models learn from the single pass over the data stream. We use 5 standard image classification
benchmarks in continual learning: 20 tasks split CIFAR-100 (16), 40 tasks split TinyImagenet (11), 25
tasks split 5-Datasets (36), 20 tasks split ImageNet-100 (47) and 10 tasks split miniImageNet (40).
Similar to (16; 11), we use 5-layer network for CIFAR-100 and 5-Datasets, and 6-layer network for Tiny-
Imagenet. For ImageNet-100 and miniImageNet experiments we use ResNet-18 (26) model. Details on
the dataset statistics/splits, and network architectures are provided in the Appendix Section 4.1 and 4.2
respectively.

Baselines and Training. We compare Amphibian with rehearsal-free methods: EWC (20) and SI (50)
which use parametric regularization; GPM (36) and SGP (37) which use gradient projection; and NCL (19)
which uses both gradient projection and regularization. Although comparisons with rehearsal-free and

6

Published in Transactions on Machine Learning Research (04/2025)

Algorithm 1 Amphibian Algorithm for Online Continual Learning
1: Inputs: θ: neural network parameters (weights), ℓin: inner-objective, ℓout: outer (meta) objective, λ0:

initial values for all the scales, η: scale learning rate, T : number of tasks.
2: j ← 0, θ0

0 ← θ ▷ Initialize
3: Λ0 ← initialize (λ0) ▷ For weights/filters in each layer initialize diagonal matrix Λ0 with λ0

4: for τi ∈ 1, 2,, T do
5: for batch, Bi ∼ Dτi do ▷ Dτi is data stream of current task τi

6: k ← size(Bi)
7: for k′ = 0 to k − 1 do
8: θj

k′+1 = θj
k′ − Λj∇θj

k′
ℓin(θj

k′ ;Bi[k′]) ▷ Inner-loop updates
9: end for

10: λj+1
m = λj

m − η∇λj
m

ℓout(θj
k;Bi) ▷ Update scales in Λj

11: θj+1
0 = θj

0 − Λj+1∇θj
0
ℓout(θj

k;Bi) ▷ Update model parameters
12: j ← j + 1
13: end for
14: end for

rehearsal-based methods are not always fair (especially with large data memory), we compare with : ER (10),
GEM (26), A-GEM (9), DER++ (7) and CLS-ER (3) having moderate data memory (100 to 400 samples).
We also compare with MER (32) and La-MAML (16) which uses meta-learning and memory rehearsal for
OCL. Following baselines, we do not use any offline pre-trained models, rather we train models from scratch.
In Amphibian, scale learning rate (η) and initial scale value (λ0

m) hyperparameters were set with grid search
(as in (16)) with held out validation data from training sets. Similarly, all the hyperparameters of the base-
lines were tuned. Details of training setup, implementations and a list of all the hyperparameters considered
in the baselines and our method are given in Appendix Section 4.

Evaluation Metrics. We measure OCL performance with two metrics: ACC - measures average test
classification accuracy of all tasks and BWT (backward transfer) - measures influence of new learning on
the past knowledge with negative BWT denotes forgetting. They are defined as:

ACC = 1
T

T∑
i=1

RT,i; BWT = 1
T − 1

T −1∑
i=1

RT,i −Ri,i. (10)

Here, T is the total number of tasks and RT,i is the accuracy of the model on ith task after learning
the T th task. Higher ACC in online setup signifies fast continual learning ability, however to gain better
insight on the fast learning ability we introduce two additional metrics - task learning efficiency (TLE)
and few-shot forward transfer (FWTF S). TLE (15) is defined as the size of Dt required to achieve certain
(γ%) classification accuracy on that task, t. This metric implies if less data (small TLE) is required to
achieve a certain performance level, then the model can transfer knowledge faster, hence is a fast learner.
For comparisons among the baselines, we set γ as 90% of the final Amphibian accuracies on each task, t.
Additionally, in meta-learning (14; 30), fast learning capability is measured with N-way K-shot adaptation
accuracy where a meta-learned model is trained on NK examples with few gradient steps and then tested.
Thus a truly fast learner should also perform well under this setup. To evaluate this, after learning each OCL
task, t we sample K examples from each of the N classes from the next task and fully adapt the model for
ns steps. Then record the test accuracy on this new task as FWT t

F S - the few-shot forward transfer capacity
of the model learned after task t. For all the tasks we measure and compare this capacity as FWTF S

= 1
T

∑T −1
t=0 FWT t

F S .

6 Results and Analyses
6.1 Continual Learning and Fast Learning Performance Comparisons
Accuracy and Forgetting. First, we evaluate and compare the performance in task-incremental OCL
setups where each task has a separate classifier and task identity is used during inference. In Table 1,
we provide comparisons of ACC and BWT among various methods within this setup across 3 different

7

Published in Transactions on Machine Learning Research (04/2025)

Table 1: Performance (mean ± std from 3 runs with random seeds) comparisons in online continual learn-
ing. (*) indicates results for CIFAR-100 and TinyImagenet are taken from (16).

CIFAR-100 TinyImagenet 5-Datasets

Rehearsal Methods ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

ER* 47.8 ± 0.73 - 12.4 ± 0.83 39.3 ± 0.38 - 14.3 ± 0.89 83.4 ± 0.69 - 9.43 ± 1.24
GEM* 48.2 ± 1.10 - 13.7 ± 0.70 40.5 ± 0.79 - 13.5 ± 0.65 86.9 ± 1.09 - 7.43 ± 0.61
A-GEM* 46.9 ± 0.31 - 13.4 ± 1.44 38.9 ± 0.47 - 13.6 ± 1.73 82.4 ± 1.18 - 9.66 ± 0.82

Yes MER* 51.3 ± 1.05 - 13.4 ± 1.44 38.9 ± 0.47 - 13.6 ± 1.73 88.5 ± 0.28 - 7.00 ± 0.33
DER++ 53.4 ± 1.75 - 8.16 ± 1.12 44.1 ± 0.29 - 14.5 ± 0.49 86.7 ± 0.86 - 4.5 ± 1.09
CLS-ER 60.5 ± 0.45 0.90 ± 0.50 51.8 ± 1.01 15.9 ± 0.71 89.1 ± 1.29 7.13 ± 0.09
La-MAML* 61.1 ± 1.44 - 9.00 ± 0.20 52.5 ± 1.35 - 3.70 ± 1.22 89.0 ± 1.45 - 5.97 ± 2.00

EWC 50.4 ± 1.88 - 1.53 ± 0.98 43.6 ± 0.83 - 0.83 ± 1.17 80.1 ± 1.76 - 8.06 ± 1.22
SI 51.1 ± 0.69 - 0.73 ± 0.24 42.3 ± 3.43 - 1.60 ± 0.14 80.9 ± 1.71 - 5.96 ± 2.45

No GPM 59.1 ± 1.26 - 0.00 ± 0.12 48.3 ± 2.69 - 0.30 ± 1.00 84.3 ± 2.57 - 2.06 ± 0.94
SGP 61.3 ± 1.25 - 0.00 ± 0.13 52.7 ± 0.26 - 0.00 ± 0.44 86.1 ± 3.52 - 5.56 ± 3.20
NCL 56.5 ± 1.08 - 0.00 ± 0.18 49.7 ± 0.91 - 0.83 ± 0.05 85.5 ± 0.58 - 0.00 ± 0.05

No Amphibian 65.0 ± 0.96 - 1.30 ± 0.25 54.8 ± 0.60 - 0.72 ± 0.22 89.3 ± 1.24 - 4.87 ± 0.96

(a) (b) (c) (d)

Figure 3: (a) Task learning efficiency (TLE) of Amphibian. (b) Average TLE (lower the better) of all
the methods for CIFAR-100 tasks. (c) TLE of Amphibian and (d) Average TLE of all the methods for
TinyImagenet.

datasets. Among the rehearsal-based methods, meta-learner La-MAML achieves better accuracy. Even
without memory rehearsal, Amphibian outperforms La-MAML (by up to ∼8.5% in ACC) with less forgetting.
Since the rehearsal-free methods are under-explored for OCL and Amphibian is a rehearsal-free method, in
the following analyses and discussions we focus primarily on rehearsal-free methods. EWC and SI achieve
similar performance, however, compared to Amphibian they severely underperform (by up to ∼14% in ACC).
This shows that the parametric importance-based regularization used in these methods to ensure stability
of knowledge (as indicated by small forgetting in Table 1) is not favorable for fast learning required in OCL.
In contrast, gradient projection methods such as GPM and SGP achieve up to ∼10% ACC gain over EWC
and SI. However, Amphibian outperforms these methods by up to ∼4% in ACC with marginally higher
forgetting. This shows without any explicit constraints of orthogonal gradient projections (as in GPM and
SGP), Amphibian properly learned to scale the gradient updates from the online data to perform better
in OCL. NCL performance lies in between gradient projection and regularization-based methods and is
outperformed by Amphibian. Moreover, in challenging 5-Dataset tasks where data arrives from dissimilar
domains over time, Amphibian obtains the best performance over all the methods. Next, in Table 2, we
compare Amphibian’s performance with the baselines on 20 split ImageNet-100 tasks using the ResNet-18
model. Here, Amphibian archives ∼ 2.4% better accuracy, demonstrating its scalability to larger datasets
and complex networks. We use a multi-glance OCL setup for CIFAR-100 and TinyImagenet experiments to
ensure direct comparability with the results reported in (16). However, we used a single glance OCL setup
for 5-Datasets and ImageNet-100 experiments to demonstrate Amphibian’s effectiveness in this configuration
as well.

8

Published in Transactions on Machine Learning Research (04/2025)

(b)(a) (c)

Figure 4: (a) Average accuracy for miniImageNet tasks in online class-incremental learning.(b) Few-shot
forward transfer, FWTF S (higher the better). (c) Training time memory overhead comparisons.

Table 2: Performance comparisons for 20
IamgeNet-100 tasks on ResNet-18.

ImageNet-100

Methods ACC (%) BWT(%)

GPM 45.5 ± 1.33 - 0.00 ± 0.23
La-MAML 51.7 ± 1.15 - 5.60 ± 0.80

Amphibian 54.1 ± 0.76 - 0.34 ± 0.20

Finally, we evaluate our method in a class-incremental OCL
setup. Following (40), we train a ResNet-18 model from scratch
on 10 miniImageNet tasks and during inference, task identity is
not used. In Figure 4(a), we compare the average accuracy of
the model trained with different rehearsal-based and free meth-
ods. After 10 tasks, our method achieves better accuracy than
the best rehearsal-based method - CLS-ER. However, we ac-
knowledge that Amphibian’s performance in class-incremental
learning (CIL) is not as strong as in the task-incremental learn-
ing setup. Rehearsal-free CIL is very challenging, but we believe
our proposed framework will serve as a solid foundation for future research in this area. All the following
analyses are performed in task-incremental setups.

Task Learning Efficiency (TLE). As discussed in Section 5, a fast online continual learner should achieve
high performance with less amount of data (smaller TLE per task). In Figure 3(a) we show TLE of Amphibian
for each CIFAR-100 task. Averaging over all the tasks we obtain an average TLE of 21% for Amphibian.
This means, on average, a new task in Amphibian can be learned to 90% of its final achievable accuracy
by learning on 21% of the data from that task. In Figure 3(c) TLE of Amphibian for each TinyImageNet
task is shown which gives an Average TLE of 35%. We compare the Average TLE of all the rehearsal-free
methods in Figure 3(b) and (d). In both datasets, Amphibian outperforms all the other methods, indicating
that Amphibian can obtain a high accuracy level on given tasks very quickly by observing fewer examples
from the data stream, hence it is a fast learner.

Few-shot Forward Transfer (FWTF S). In Figure 4(b) we compare FWTF S of different algorithms for
CIFAR-100 and TinyImagenet datasets, where higher FWTF S means better few-shot (rapid) learner. For
each FWTt

F S , we use 5-way 5-shot training data and adapt the network with ns = 10 steps. Compared
to the rehearsal-free methods, Amphibian achieves up to ∼ 5% better FWTF S , which demonstrates the
fast learning ability developed in the model from online continual learning in Amphibian. Here we show
the performance of (meta-learned) La-MAML, which also achieves better performance than other rehearsal-
free baselines but outperformed by Amphibian. This shows meta-learning plays a key role in building fast
learning capability in Amphibian and La-MAML.

Memory overhead and Training Times. In Figure 4(c) we compare the memory overhead during
training in each method for either storing the old model, important parameters and/or past data. The
numbers are normalized by the memory overhead of Amphibian. For both datasets, all the baseline methods
use orders of magnitude more memory than Amphibian. For instance, where Amphibian only requires up
to ∼ 0.5% extra memory compared to network size for gradient scale (λ) storage (scale numbers given in
Appendix Section 5.3), La-MAML requires 100% extra memory for per parametric learning rate storage and
up to 179% extra memory for replay buffer. Among all the methods NCL has the highest memory overhead
for model and projection matrix storage. Thus Amphibian most memory-efficient learner for OCL. Training
time comparisons are provided in Appendix Section 5.1.

9

Published in Transactions on Machine Learning Research (04/2025)

Table 3: Comparison of Amphibian with candidate rehearsal-free meta-learning methods for OCL.
CIFAR-100 TinyImagenet

Methods ACC (%) BWT(%) FWTF S(%) ACC (%) BWT(%) FWTF S(%)

Amphibian 65.0 ± 0.96 - 1.30 ± 0.25 47.6 ± 1.97 54.8 ± 0.60 - 0.72 ± 0.22 40.6 ± 0.87
La-MAML (No Rehearsal) 56.1 ± 0.87 - 12.8 ± 0.17 46.7 ± 1.89 49.2 ± 0.55 - 7.23 ± 0.16 39.5 ± 0.75
Online Meta-SGD 51.3 ± 2.54 - 15.7 ± 2.50 45.9 ± 1.44 45.1 ± 1.31 - 10.7 ± 0.57 37.7 ± 0.44
Online MAML 49.0 ± 1.81 - 18.0 ± 2.00 42.2 ± 1.48 40.4 ± 0.57 - 8.10 ± 0.74 31.8 ± 0.45

(a) (b) (c) (d)

Figure 5: Variations of (a) ACC, (b) BWT, with β in Amphibian-β. ACC vs. FWTF S comparisons for
various Amphibian-β with rehearsal-free baselines for (c) CIFAR-100 and (d) TinyImagenet.

6.2 Amphibian vs. Online Rehearsal-free Meta-Learning
To our knowledge, there are no rehearsal-free meta-learners for OCL, so we adapt popular meta-learning
approaches for OCL and compare them with Amphibian in Table 3. First method is La-MAML(No
Rehearsal), where we remove the memory buffer from La-MAML and compute the meta-loss with only
current data (as Amphibian). The notable difference between this method and the Amphibian is that it
learns learning rates for each parameter and uses that in inner- and outer-loop gradient updates, whereas
Amphibian learns a diagonal scale matrix at each layer and scale the gradient directions accordingly. From
Table 3, we find that La-MAML(No Rehearsal) vastly under-performs Amphibian, particularly it suffers from
large forgetting (up to ∼ 11.5% more than Amphibian). This shows the novel meta-objective optimization
and gradient scaling with the learned scale matrix (Λ) enable Amphibian to learn continually without
rehearsal. In second method, we replace the meta-learned learning rate in outer-loop update from La-
MAML(No Rehearsal) with a constant learning rate, whereas inner-loop still uses learnable learning rates.
This converts the method to online Meta-SGD (25). Results show that ACC drops further, forgetting
increases and fast learning capability reduces. Finally, we use constant inner- and outer-loop learning rates
in online Meta-SGD, which converts the method to online MAML (14). With no learnable scale matrix or
learning rate to encode the history of past data, this method performs the worst in OCL setup. In summary,
these analyses clearly show the functional difference between our method and La-MAML and MAML, and
highlight the importance of meta-learned gradient scaling in Amphibian for fast OCL performance.

6.3 Analysis of Amphibian: Amphibian-β

Here, we introduce a regularized version of Amphibian - Amphibian-β to understand the relationship be-
tween fast learning and forgetting. Amphibian-β uses the same online continual learning steps as Amphibian
except it performs model update using the following rule:

θj+1
0 = θj

0 − Λj+1gmeta(θj
0)− β(θj

0 − θ0
0) = θ0

0 −
j∑

j′=0
(1− β)j−j′

Λj′+1gmeta(θj′

0). (11)

So far, used j was used as the time index over the entire learning sequence (spreading across tasks). Here,
we denote j as jth time step at task τi. Thus, at the start of task τi, θ0

0 would denote optimum parameter
learned till task τi−1. Here, β ∈ [0, 1]. For β = 0 it reduces to Amphibian update whereas for β = 1 the

10

Published in Transactions on Machine Learning Research (04/2025)

model parameter stays at initial point θ0
0. Thus increasing β from 0 we can regularize the Amphibian update

to stay near the solution of the past tasks. This is a useful concept in continual learning as staying close
to the old solution point provides a degree of protection against catastrophic forgetting. In Figure 5(a) and
(b) we show how ACC and BWT vary when β is varied (from 0 to 0.1). For all datasets, increasing β
reduces forgetting in Amphibian (Figure 5(b)), especially for β > 1e−2 there is no forgetting. However, with
increasing β, ACC degrades (Figure 5(a)). These results indicate that explicit regularization for forgetting
reduction restricts the fast continual learning capacity of Amphibian. In Figure 5(c) and (d) we plot ACC
vs FWTF S for Amphibian-β with rehearsal-free baselines for CIFAR-100 and TinyImagenet. These plots
show as we increase β, both continual and fast learning performance of Amphibian becomes similar to the
baselines. Such functional similarities provide valuable insight that explicit regularization or constraints
used in these rehearsal-free methods primarily focus on forgetting mitigation at the expense of fast learning,
hence they underperform in OCL setup. These analyses call for a rethinking of regularization or constraint
design in rehearsal-free methods and provide motivation for exploring Amphibian-like learner that learns the
required constraints for optimal balance between fast and continual learning.

6.4 Understating Continual Learning Dynamics in Amphibian

ϴ1

ϴ5

ϴ10

ϴ15

ϴ20 ϴ5

ϴ15

ϴ20

(a) Task 1 test loss (b) Task 5 test loss

_

Figure 6: Dynamics of continual learning in Am-
phibian. Loss contour of (a) Task 1 and (b)
Task 5 plotted on 2D planes defined by parameters
(θ1, θ10, θ20) and (θ5, θ15, θ20) respectively.

Continual learning works on the principle that learn-
ing a new task should not (or minimally) increase the
loss of the old tasks. Amphibian does not explicitly
minimize any such objectives, instead, it continually
updates models in the direction of positive cumula-
tive gradient alignments among the observed data. To
understand how Amphibian enables continual learn-
ing we use loss landscape visualizations (43; 29). In
Figure 6(a) we plot the loss contour of task 1 from
CIFAR-100 in 2D plane. Here θt indicates the net-
work model after learning task t. Here, the black line
indicates the learning trajectory, with each cross point
representing the projection of learned models on the
plane along the trajectory. In Amphibian when we
sequentially learn from task 1 to task 20, along the learning trajectory (θ1 → θ10 → θ20 in Figure 6(a))
loss of task 1 only increase minimally from the initial point (θ1). A similar trend can be seen for task 5
(in Figure 6(b), where along the learning trajectory (θ5 → θ15 → θ20) loss increases in task 5 is minimal.
Similar pattern is also found for TinyImagenet tasks (Appendix Section 5.2). Thus, in Amphibian, model
updates along the directions with positive cumulative gradient alignments prevent a significant increase in
the loss of past data enabling continual learning with minimum forgetting.

7 Conclusions

In this paper, we introduce a rehearsal-free meta-learner - Amphibian that in a fully online manner learns
to scale the gradient updates to enable fast online continual learning. To this end, Amphibian optimizes a
novel meta-objective and learns scale matrices that accumulate the history of gradient alignments among
the data samples observed over the learning trajectory. Using these scale matrices it updates the model in
the direction of positive cumulative gradient alignments. On various continual image classification tasks, we
show that such meta-learned scaled gradient update in Amphibian enables memory-efficient, data-efficient,
and fast online continual learning. In conclusion, we believe Amphibian offers a unified framework for
exploring meta-learning and continual learning, making it a valuable tool for dissecting inherent trade-offs
and ultimately facilitating the development of improved algorithms that strike a desired balance between
fast and continual learning.

11

Published in Transactions on Machine Learning Research (04/2025)

Acknowledgments

This work was supported by the Center for the Co-Design of Cognitive Systems (COCOSYS), a DARPA
sponsored JUMP center of Semiconductor Research Corporation (SRC), National Science Foundation and
United States Department of Energy.

References
[1] Aljundi, R., Belilovsky, E., Tuytelaars, T., Charlin, L., Caccia, M., Lin, M., Page-Caccia, L.: Online

continual learning with maximal interfered retrieval. In: Wallach, H., Larochelle, H., Beygelzimer, A.,
d'Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 32
(2019)

[2] Aljundi, R., Lin, M., Goujaud, B., Bengio, Y.: Gradient based sample selection for online continual
learning. In: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett, R. (eds.)
Advances in Neural Information Processing Systems. vol. 32. Curran Associates, Inc. (2019)

[3] Arani, E., Sarfraz, F., Zonooz, B.: Learning fast, learning slow: A general continual learning method
based on complementary learning system. In: International Conference on Learning Representations
(2022), https://openreview.net/forum?id=uxxFrDwrE7Y

[4] Beaulieu, S., Frati, L., Miconi, T., Lehman, J., Stanley, K.O., Clune, J., Cheney, N.: Learning to
continually learn. arXiv preprint arXiv:2002.09571 (2020)

[5] Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons
for conditional computation. arXiv preprint arXiv:1308.3432 (2013)

[6] Bidaki, S.A., Mohammadkhah, A., Rezaee, K., Hassani, F., Eskandari, S., Salahi, M., Ghassemi, M.M.:
Online continual learning: A systematic literature review of approaches, challenges, and benchmarks
(2025), https://arxiv.org/abs/2501.04897

[7] Buzzega, P., Boschini, M., Porrello, A., Abati, D., Calderara, S.: Dark experience for general continual
learning: a strong, simple baseline. In: Advances in Neural Information Processing Systems. vol. 33,
pp. 15920–15930. Curran Associates, Inc. (2020)

[8] Caccia, M., Rodriguez, P., Ostapenko, O., Normandin, F., Lin, M., Page-Caccia, L., Laradji, I.H., Rish,
I., Lacoste, A., Vázquez, D., et al.: Online fast adaptation and knowledge accumulation (osaka): a new
approach to continual learning. Advances in Neural Information Processing Systems 33, 16532–16545
(2020)

[9] Chaudhry, A., Ranzato, M., Rohrbach, M., Elhoseiny, M.: Efficient lifelong learning with A-GEM. In:
International Conference on Learning Representations (2019)

[10] Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T., Dokania, P.K., Torr, P.H.S., Ranzato, M.:
Continual learning with tiny episodic memories. ArXiv abs/1902.10486 (2019)

[11] Deng, D., Chen, G., Hao, J., Wang, Q., Heng, P.A.: Flattening sharpness for dynamic gradient pro-
jection memory benefits continual learning. Advances in Neural Information Processing Systems 34,
18710–18721 (2021)

[12] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image
database. In: 2009 IEEE conference on computer vision and pattern recognition. pp. 248–255. Ieee
(2009)

[13] Farajtabar, M., Azizan, N., Mott, A., Li, A.: Orthogonal gradient descent for continual learning. In:
International Conference on Artificial Intelligence and Statistics. pp. 3762–3773. PMLR (2020)

[14] Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In:
International conference on machine learning. pp. 1126–1135. PMLR (2017)

12

https://openreview.net/forum?id=uxxFrDwrE7Y
https://arxiv.org/abs/2501.04897

Published in Transactions on Machine Learning Research (04/2025)

[15] Finn, C., Rajeswaran, A., Kakade, S., Levine, S.: Online meta-learning. In: International Conference
on Machine Learning. pp. 1920–1930. PMLR (2019)

[16] Gupta, G., Yadav, K., Paull, L.: Look-ahead meta learning for continual learning. Advances in Neural
Information Processing Systems 33, 11588–11598 (2020)

[17] Hadsell, R., Rao, D., Rusu, A.A., Pascanu, R.: Embracing change: Continual learning in deep neural
networks. Trends in cognitive sciences 24(12), 1028–1040 (2020)

[18] Javed, K., White, M.: Meta-learning representations for continual learning. Advances in neural infor-
mation processing systems 32 (2019)

[19] Kao, T.C., Jensen, K., van de Ven, G., Bernacchia, A., Hennequin, G.: Natural continual learning:
success is a journey, not (just) a destination. Advances in Neural Information Processing Systems 34,
28067–28079 (2021)

[20] Kirkpatrick, J., Pascanu, R., Rabinowitz, N.C., Veness, J., Desjardins, G., Rusu, A.A., Milan, K.,
Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D., Clopath, C., Kumaran, D., Hadsell,
R.: Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of
Sciences 114, 3521 – 3526 (2017)

[21] Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech. rep. (2009)

[22] Le, Y., Yang, X.S.: Tiny imagenet visual recognition challenge (2015)

[23] Lee, E., Huang, C.H., Lee, C.Y.: Few-shot and continual learning with attentive independent mecha-
nisms. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 9455–9464
(2021)

[24] Lee, Y., Choi, S.: Gradient-based meta-learning with learned layerwise metric and subspace. In: Inter-
national conference on machine learning. pp. 2927–2936. PMLR (2018)

[25] Li, Z., Zhou, F., Chen, F., Li, H.: Meta-sgd: Learning to learn quickly for few-shot learning. arXiv
preprint arXiv:1707.09835 (2017)

[26] Lopez-Paz, D., Ranzato, M.A.: Gradient episodic memory for continual learning. In: Advances in Neural
Information Processing Systems. vol. 30 (2017)

[27] Mai, Z., Li, R., Jeong, J., Quispe, D., Kim, H., Sanner, S.: Online continual learning in image classifi-
cation: An empirical survey. Neurocomputing 469, 28–51 (2022)

[28] Mccloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: The sequential learn-
ing problem. The Psychology of Learning and Motivation 24, 104–169 (1989)

[29] Mirzadeh, S.I., Farajtabar, M., Gorur, D., Pascanu, R., Ghasemzadeh, H.: Linear mode connectivity in
multitask and continual learning. arXiv preprint arXiv:2010.04495 (2020)

[30] Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999 (2018)

[31] Park, E., Oliva, J.B.: Meta-curvature. Advances in Neural Information Processing Systems 32 (2019)

[32] Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., Tesauro, G.: Learning to learn without
forgetting by maximizing transfer and minimizing interference. In: International Conference on Learning
Representations (2019)

[33] Ring, M.B.: Child: A first step towards continual learning. In: Learning to Learn (1998)

[34] Robins, A.V.: Catastrophic forgetting, rehearsal and pseudorehearsal. Connect. Sci. 7, 123–146 (1995)

[35] Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu,
R., Hadsell, R.: Progressive neural networks. ArXiv abs/1606.04671 (2016)

13

Published in Transactions on Machine Learning Research (04/2025)

[36] Saha, G., Garg, I., Roy, K.: Gradient projection memory for continual learning. In: International
Conference on Learning Representations (2021), https://openreview.net/forum?id=3AOj0RCNC2

[37] Saha, G., Roy, K.: Continual learning with scaled gradient projection. Proceedings of the AAAI Confer-
ence on Artificial Intelligence 37(8), 9677–9685 (Jun 2023). https://doi.org/10.1609/aaai.v37i8.26157

[38] Saha, G., Roy, K.: Saliency guided experience packing for replay in continual learning. In: Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). pp. 5273–5283
(January 2023)

[39] Serrà, J., Surís, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forgetting with hard attention
to the task. In: Proceedings of the 35th International Conference on Machine Learning. Proceedings of
Machine Learning Research, vol. 80, pp. 4548–4557. PMLR (10–15 Jul 2018)

[40] Shim, D., Mai, Z., Jeong, J., Sanner, S., Kim, H., Jang, J.: Online class-incremental continual learning
with adversarial shapley value. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35,
pp. 9630–9638 (2021)

[41] Son, J., Lee, S., Kim, G.: When meta-learning meets online and continual learning: A sur-
vey. IEEE Transactions on Pattern Analysis and Machine Intelligence 47(1), 413–432 (2025).
https://doi.org/10.1109/TPAMI.2024.3463709

[42] Thrun, S., Pratt, L.: Learning to learn. Springer Science & Business Media (2012)

[43] Verwimp, E., De Lange, M., Tuytelaars, T.: Rehearsal revealed: The limits and merits of revisiting
samples in continual learning. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 9385–9394 (2021)

[44] Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning.
Advances in neural information processing systems 29 (2016)

[45] Von Oswald, J., Zhao, D., Kobayashi, S., Schug, S., Caccia, M., Zucchet, N., Sacramento, J.: Learning
where to learn: Gradient sparsity in meta and continual learning. Advances in Neural Information
Processing Systems 34, 5250–5263 (2021)

[46] Wickramasinghe, B., Saha, G., Roy, K.: Continual learning: A review of techniques, chal-
lenges and future directions. IEEE Transactions on Artificial Intelligence pp. 1–21 (2023).
https://doi.org/10.1109/TAI.2023.3339091

[47] Yan, S., Xie, J., He, X.: Der: Dynamically expandable representation for class incremental learning. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3014–3023
(2021)

[48] Yoon, J., Yang, E., Lee, J., Hwang, S.J.: Lifelong learning with dynamically expandable networks. In:
6th International Conference on Learning Representations (2018)

[49] Zeng, G., Chen, Y., Cui, B., Yu, S.: Continual learning of context-dependent processing in neural
networks. Nature Machine Intelligence 1(8), 364–372 (2019)

[50] Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence. In: Proceedings of
the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research,
vol. 70, pp. 3987–3995. PMLR (06–11 Aug 2017)

[51] Zhang, Y., Pfahringer, B., Frank, E., Bifet, A., Lim, N.J.S., Jia, Y.: A simple but strong baseline for
online continual learning: Repeated augmented rehearsal. arXiv preprint arXiv:2209.13917 (2022)

14

https://openreview.net/forum?id=3AOj0RCNC2

Published in Transactions on Machine Learning Research (04/2025)

Appendix
Derivation of Amphibian meta-objective and meta-gradients are provided in Section 1 and 2 respectively.
A detailed explanation of the Amphibian algorithm is given in Section 3. Experimental details including
dataset statistics, network architectures, a list of hyperparameters along with implementation details are
provided in Section 4. Additional results and analyses are provided in Section 5.

1 Derivation of Amphibian Meta-Objective

In this section, we will show that when we optimize the following meta-objective in Amphibian:

min
θj

0

EBi
[ℓout(θj

k;Bi)] = min
θj

0

EBi
[ℓout(Uk(θj

0, Λj ;Bi);Bi)]. (A.1)

where each of the k inner-update is taken using a sample (or subset of samples) from current batch, Bi

from task τi and the meta-loss, ℓout is computed on the entire current batch data, Bi, it is equivalent to
minimizing the following objective:

min
θj

0

(
ℓout(θj

0)−
M∑

m=1
λj

m

∂ℓout(θj
0)

∂θj
0
· emeT

m

∂ℓin(θj
0)

∂θj
0

)
. (A.2)

For that, let us define,

gk =
∂ℓout(θj

k)
∂θj

k

(gradient of meta-loss at θj
k) (A.3)

ḡk = ∂ℓout(θj
0)

∂θj
0

(gradient of meta-loss at θj
0) (A.4)

gk′ =
∂ℓin(θj

k′)
∂θj

k′

(gradient of inner-loss at θj
k′ , where k′ < k) (A.5)

ḡk′ = ∂ℓin(θj
0)

∂θj
0

(gradient of inner-loss at θj
0, where k′ < k) (A.6)

θj
k′+1 = θj

k′ − Λjgk′ (sequence of parameter vectors) (A.7)

H̄k = ℓ′′
out(θ

j
0) (Hessian of meta-loss at θj

0) (A.8)

H̄k′ = ℓ′′
in(θj

0) (Hessian of inner-loss at θj
0) (A.9)

First, let’s write the gradient of meta-loss (outer-loop loss) at θj
k from Equation A.3 as (using Taylor’s

expansion (30)):

gk = ℓ′
out(θ

j
k) = ℓ′

out(θ
j
0) + ℓ′′

out(θ
j
0)(θj

k − θj
0) + O(||θj

k − θj
0||2)

(′ implies derivative w.r.t argument)
= ḡk + H̄k(θj

k − θj
0) + O(||θj

k − θj
0||2) (using definition of ḡk, H̄k)

= ḡk − H̄k

k−1∑
k′=0

Λjgk′ + O(Λ2) (using θj
k − θj

0 = −
k−1∑
k′=0

Λjgk′ , from Equation 5)

= ḡk − H̄k

k−1∑
k′=0

Λj ḡk′ + O(Λ2) (using gk′ = ḡk′ + O(Λ))

= ḡk − H̄k

k−1∑
k′=0

ḡΛ
k′ + O(Λ2) (let scaled update, ḡΛ

k′ = Λj ḡk′)

(A.10)

1

Published in Transactions on Machine Learning Research (04/2025)

Now, let’s derive the meta-gradient (or MAML gradient (14)) for parameters θj
0, denoted as gmeta(θj

0):

gmeta(θj
0) =

∂ℓout(θj
k)

∂θj
0

=
∂ℓout(θj

k)
∂θj

k

∂U(θj
k−1)

∂θj
0

= gk

∂U(θj
k−1)

∂θj
k−1

...
∂U(θj

0)
∂θj

0

(repeatedly applying chain rule and using, θj
k = U(θj

k−1))

=
k−1∏
k′=0

(
∂

∂θj
k′

(θj
k′ − Λjgk′)

)
gk

=
k−1∏
k′=0

(
∂

∂θj
k′

(θj
k′ − gΛ

k′)
)

gk

=
k−1∏
k′=0

(
I −HΛ

k′

)
gk (where, HΛ

k′ is Hessian of scaled gradient, gΛ
k′ at θj

k′)

(A.11)

Using Taylor’s theorem and dropping higher order (O(Λ2)) terms (30), we can write HΛ
k′ ≈ H̄Λ

k′ and then
using gk from Equation A.10 in Equation A.11 we get:

gmeta(θj
0) =

(
k−1∏
k′=0

(I − H̄Λ
k′)
)(

ḡk − H̄k

k−1∑
k′=0

ḡΛ
k′

)
+ O(Λ2)

=
(

I −
k−1∑
k′=0

H̄Λ
k′)
)(

ḡk − H̄k

k−1∑
k′=0

ḡΛ
k′

)
+ O(Λ2)

= ḡk −
k−1∑
k′=0

H̄Λ
k′ ḡk − H̄k

k−1∑
k′=0

ḡΛ
k′ + O(Λ2)

(A.12)

Now, using k = 1 in Equation A.12 we can derive the equivalent objective in Equation A.2. For higher k, the
form of objective becomes complicated but has a similar set of terms. Thus putting k = 1 in Equation A.12:

∂ℓout(θj
k)

θj
0

= gmeta(θj
0) = ḡ1 − H̄Λ

0 ḡ1 − H̄1ḡΛ
0 + O(Λ2)

= ḡ1 −
∂

∂θj
0

(ḡ1 · ḡΛ
0) (using ∂

∂θj
0

(ḡ1 · ḡΛ
0) = H̄Λ

0 ḡ1 + H̄1ḡΛ
0)

= ∂ℓout(θj
0)

∂θj
0
− ∂

∂θj
0

(
∂ℓout(θj

0)
∂θj

0
· Λj ∂ℓin(θj

0)
∂θj

0

)
(expressing terms as derivatives)

= ∂

∂θj
0

(
ℓout(θj

0)−
M∑

m=1
λj

m

∂ℓout(θj
0)

∂θj
0
· emeT

m

∂ℓin(θj
0)

∂θj
0

)
,

(A.13)

which is precisely the gradient of the Amphibian meta-objective in Equation A.2.

2

Published in Transactions on Machine Learning Research (04/2025)

2 Derivation of Meta-Gradients

In this section we first derive the meta-gradients of scales λj
m which is defined as:

gmeta(λj
m) =

∂ℓout(θj
k)

∂λj
m

=
∂ℓout(θj

k)
∂θj

k

·
∂θj

k

∂λj
m

=
∂ℓout(θj

k)
∂θj

k

· ∂

∂λj
m

(
U(θj

k−1)
)

=
∂ℓout(θj

k)
∂θj

k

· ∂

∂λj
m

(
θj

k−1 − (λj
m)+emeT

m

∂ℓin(θj
k−1)

∂θj
k−1

)

=
∂ℓout(θj

k)
∂θj

k

·

(
∂

∂λj
m

θj
k−1 −

∂

∂λj
m

(
(λj

m)+emeT
m

∂ℓin(θj
k−1)

∂θj
k−1

))

=
∂ℓout(θj

k)
∂θj

k

·

(
∂

∂λj
m

θj
k−1 − emeT

m

∂ℓin(θj
k−1)

∂θj
k−1

∂(λj
m)+

∂λj
m

)

(taking
∂ℓin(θj

k−1)
∂θj

k−1
as constant w.r.t λj

m to get the first-order MAML

approximation as in (30; 16))

=
∂ℓout(θj

k)
∂θj

k

·

(
∂

∂λj
m

θj
k−1 − emeT

m

∂ℓin(θj
k−1)

∂θj
k−1

)

(∂(λj
m)+

∂λj
m

is equal to identity using approximations from straight-through

estimation as in (5; 45))

=
∂ℓout(θj

k)
∂θj

k

·

(
∂

∂λj
m

U(θj
k−2)− emeT

m

∂ℓin(θj
k−1)

∂θj
k−1

)

=
∂ℓout(θj

k)
∂θj

k

·

(
∂

∂λj
m

θj
0 − emeT

m

k−1∑
k′=0

∂ℓin(θj
k′)

∂θj
k′

)
(repeatedly expanding and differentiating the update function U(.))

gmeta(λj
m) = −

∂ℓout(θj
k)

∂θj
k

· emeT
m

k−1∑
k′=0

∂ℓin(θj
k′)

∂θj
k′

(assuming initial parameters, θj
0 at time j is constant w.r.t λj

m)

(A.14)

This meta-gradient is used in Equation 9 (main paper) for scale updates.

Next to obtain the meta-gradients of (weight) parameters, θj
0 lets recall Equation A.11:

gmeta(θj
0) =

k−1∏
k′=0

(
I −HΛ

k′

)
gk =

k−1∏
k′=0

(
∂

∂θj
k′

(θj
k′ − Λj ∂ℓin(θj

k′)
∂θj

k′

)
)

gk (A.15)

Setting all the first-order terms as constant in the right-hand side of this equation (to ignore the second-order
derivatives), we get the first-order approximation of the meta-gradient as:

gF O
meta(θj

0) = gk = ℓ′
out(θ

j
k), (A.16)

which is used in model updates in Equation 4 (main paper). This approximation drastically reduces memory
consumption while preserving the performance. This allows scaling of Amphibian to the larger networks
with complex datasets (Table 2 (main paper)).

3

Published in Transactions on Machine Learning Research (04/2025)

3 Amphibian Algorithm

The pseudocode of the Amphibian algorithm is provided in Algorithm 1 in the main paper. For the given
online batch of data, Bi, Amphibian performs k inner-loop updates, where in each update it uses a sample
(or a subset of samples) from Bi (Line 8). On the final parameters obtained after inner-updates, θj

k, it
evaluates meta-loss on the entire batch, Bi to obtain meta-gradients for scales, ∇λj

m
ℓout(θj

k;Bi) and weights,
∇θj

0
ℓout(θj

k;Bi). With this meta-gradients, Ampibian first update the scales (Line 10) and then model weights
(Line 11). In inner-updates (Line 8) and outer-update (Line 11), to avoid gradient ascent, only positive parts
of the scales are used using: (λm)+ = 1λm≥0λm function, where 1.≥0 : R → {0, 1}. For bias parameters in
each layer, we use λ vectors instead of diagonal Λ matrices in inner-updates (Line 8) and outer-update (line
11). Each element of λ, learns the learning rate of the corresponding bias parameter which is updated using
the similar update step in Line 10.

4 Experimental Details

4.1 Dataset Splits and Statistics

Split CIFAR-100 has 20 tasks each having 5 distinct classes from CIFAR-100 (21). Split TinyImagenet has
40 tasks where each task has 5 distinct classes from TinyImagenet-200 (22). Finally, we use a sequence of
5-Datasets including CIFAR-10, MNIST, SVHN, Fashion MNIST, and notMNIST where each dataset is split
into five tasks (each having a 2 classes) to obtain a total of 25 tasks in the split 5-Datasets sequence. Dataset
statistics used in these experiments are given in Table A.1 and A.2. Split miniImageNet (40) consists of
splitting the miniImageNet dataset (44) into 10 disjoint tasks, where each task contains 10 classes. Here
each image is of size 3× 84× 84. ImageNet-100 is built by selecting 100 classes from the ImageNet-1k (12)
dataset. Split ImageNet-100, which is used in our experiment, consists of splitting the ImageNet-100 into 20
disjoint tasks, where each task contains 5 classes. Here each image is of size 3 × 224 × 224. For both split
miniImageNet and ImageNet-100, 2% training data from each task is kept aside as validation sets.

Table A.1: Dataset Statistics. 10% training data from each task is kept aside as validation sets.

Split CIFAR-100 Split Tinyimagenet Split 5-Datasets

num. of tasks 20 40 25
input size 3× 32× 32 3× 64× 64 3× 32× 32
Classes/task 5 5 2
Training samples/tasks 2,250 2,250 See Table A.2
Validation Samples/tasks 250 250 See Table A.2
Test samples/tasks 500 250 See Table A.2

Table A.2: 5-Datasets statistics (36). For the datasets with monochromatic images, we replicate the image
across all RGB channels so that size of each image becomes 3× 32× 32. In split 5-Datasets, each dataset (in
this table) is split into 5 tasks, each with 2 disjoint classes. 10% training data from each task is kept aside
as validation sets.

CIFAR-10 MNIST SVHN Fashion MNIST notMNIST

Classes 10 10 10 10 10
Training samples 45,000 54,000 65,931 54,000 15,167
Validation Samples 5,000 6,000 7,325 6,000 1,685
Test samples 10,000 10,000 26,032 10,000 1,873

4.2 Network Architecture Details

For split CIFAR-100 experiments, similar to La-MAML (16), we used a 5-layer neural network with 3
convolutional layers each having 160 filters with 3× 3 kernels, followed by two fully connected layers having

4

Published in Transactions on Machine Learning Research (04/2025)

320 units each. For split 5-Datasets, we used a 5-layer neural network with 3 convolutional layers each
having 200 filters with 3× 3 kernels, followed by two fully connected layers having 400 units each. For split
TinyImagenet experiments, similar to La-MAML (16), we used a 6-layer neural network with 4 convolutional
layers each having 160 filters with 3×3 kernels, followed by two fully connected layers having 640 units each.
For ImageNet-100 and miniImageNet experiments, we have used ResNet-18 model. This network consists
of a front convolutional layer followed by 4 residual blocks each having four convolutional layers followed by
a classifier layer. We used 40 filters in front convolutional layer and in the first residual block layers. For
second, third and fourth residual blocks we used 80, 120 and 160 filters respectively. For ImageNet-100, in
the front convolution layer, we used convolution with 7 × 7 kernel with stride 5. For miniImageNet, in the
front convolution layer, we used convolution with 3×3 kernel with stride 2. For both of these cases, we used
2× 2 average-pooling with stride 1 before the classifier layer. All the networks use ReLU in the hidden units
and softmax with cross-entropy loss in the final layer.

4.3 List of Hyperparameters

A list of hyperparameters in our method and baseline approaches is given in Table A.3. As in (16), hyper-
parameter for all the approaches are tuned by performing a grid-search using validation sets. For all the
experiments, except split ImageNet-100, a batch size of 10 was used for training. In split ImageNet-100
experiments a batch size of 25 samples was used.

4.4 Baseline Implementations

For rehearsal-based methods - ER, GEM, A-GEM, MER and La-MAML, we used the implementation pro-
vided in La-MAML (16). CLS-ER and DER++ are implemented by adapting the codes by (3). EWC (20),
SI (50) and NCL (19) are implemented adapting the codes from1. GPM (36) and SGP (37) are implemented
using the respective official open-sourced code repositories.

4.5 Amphibian Implementation: Software, Hardware and Code

We implemented Amphibian in python (version 3.7.6) with pytorch (version 1.5.1)
and torchvision (version 0.6.1) libraries.We ran the codes on a single NVIDIA TITAN Xp GPU
(CUDA version 12.1) and reported the results in the paper.

1https://github.com/GMvandeVen/continual-learning (MIT License)

5

Published in Transactions on Machine Learning Research (04/2025)

Table A.3: Hyperparameters grid considered for the baselines and Amphibian. The best values are given
in parentheses. Here, ‘lr’ represents the learning rate. All the methods use SGD optimizer unless otherwise
stated. The number of epochs in the OCL setup for all methods is 1. To maximally utilize the current batch
of data in OCL, each method has a hyperparameter called glances (16; 51) which indicates the number of
gradient updates or meta-updates made on each of these batches. In the table we represent Split CIFAR-100
as ‘cifar’, Split TinyImagenet as ‘tinyimg’ and Split 5-Datasets as ‘5data’.

Methods Hyperparameters

ER lr : 0.01 (5data), 0.03 (cifar), 0.1 (tinyimg); glances : 1 (5data), 10 (cifar, tinyimg)
memory size (data samples) : 100 (5data), 200 (cifar), 400 (tinyimg)

GEM lr : 0.01 (5data), 0.03 (cifar, tinyimg); glances : 1 (5data), 2 (cifar, tinyimg)
memory size (data samples) : 100 (5data), 200 (cifar), 400 (tinyimg)

A-GEM lr : 0.01 (tinyimg, 5data), 0.03 (cifar); glances : 1 (5data), 2 (cifar, tinyimg)
memory size (data samples) : 100 (5data), 200 (cifar), 400 (tinyimg)

MER lr (α) : 0.05 (5data), 0.1 (cifar, tinyimg)
lr (β) : 0.1 (cifar, tinyimg, 5data)
lr (γ) : 1.0 (cifar, tinyimg, 5data)
glances : 1 (5data), 10 (cifar, tinyimg)
memory size (data samples) : 100 (5data), 200 (cifar), 400 (tinyimg)

DER++ lr : 0.01 (5data), 0.03 (cifar), 0.1 (tinyimg) ; glances : 1 (5data), 2 (tinyimg), 10 (cifar)
α: 0.1 (tinyimg), 0.2 (cifar, 5data) ; β: 0.5 (cifar, tinyimg), 1.0 (5data)
memory size (data samples) : 100 (5data), 200 (cifar), 400 (tinyimg)

CLS-ER lr : 0.01, 0.03, 0.05 (cifar, tinyimg, 5data) ; glances : 1 (5data), 2 (tinyimg), 10 (cifar)
rs: rp: 0.3 (5data), 0.5 (cifar), 0.9 (tinyimg) ; rp: 0.5 (cifar), 0.8 (tinyimg), 1.0 (5data)
λ: 0.1 (cifar, tinyimg, 5data), 0.15
memory size (data samples) : 100 (5data), 200 (cifar), 400 (tinyimg)

La-MAML α0 : 0.1 (cifar, tinyimg, 5data)
lr (η) : 0.25 (5data), 0.3 (cifar, tinyimg)
glances : 1 (5data), 2 (tinyimg), 10 (cifar)
memory size (data samples) : 100 (5data), 200 (cifar), 400 (tinyimg)

EWC lr : 0.1 (cifar, tinyimg, 5data)
regularization coefficient, λ : 1e2, 1e3 (cifar), 1e4, 2e4 (5data), 1e5 (tinyimg)
glances : 1 (5data), 2 (tinyimg), 5 (cifar)

SI optimizer : Adam (cifar, tinyimg, 5data)
lr : 1e−3 (cifar, tinyimg, 5data)
regularization coefficient, c : 1, 50 (tinyimag, 5data), 100 (cifar), 1000
glances : 1 (5data), 2 (tinyimg), 5 (cifar)

GPM lr : 0.05, 0.1 (cifar, tinyimg, 5data)
ϵth : 0.96 (tinyimg), 0.975 (5data), 0.98 (cifar)
ϵth (increment/task) : 0.001 (cifar, tinyimg, 5data)
ns : 120 (cifar, tinyimg, 5data)
glances : 1 (5data), 2 (tinyimg), 5 (cifar)

SGP lr : 0.05, 0.1 (cifar, tinyimg, 5data)
ϵth : 0.96 (tinyimg), 0.975 (5data), 0.98 (cifar)
ϵth (increment/task) : 0.001 (cifar, tinyimg, 5data)
scale coefficient (α) : 1 (5data), 5 (cifar), 10 (tinyimg)
ns : 120 (cifar, tinyimg, 5data)
glances : 1 (5data), 2 (tinyimg), 5 (cifar)

NCL lr : 0.05, 0.1 (cifar, 5data), 0.2 (tinyimg)
p−2

w : 2250 (cifar, tinyimg), 9000 (5data)
glances : 1 (5data), 2 (tinyimg), 5 (cifar)

Amphibian λ0 : 0.1, 0.25 (tinyimg), 0.5 (cifar, 5data)
lr (η) : 0.25, 0.5 (tinyimg), 1.0 (cifar, 5data)
glances : 1 (5data), 2 (tinyimg), 5 (cifar)

6

Published in Transactions on Machine Learning Research (04/2025)

5 Additional Results

5.1 Memory Overhead and Training Time

In Figure A.1(a) we show memory overhead comparisons during training for 5-Datasets tasks. In this
case also, we observe that other baseline methods have orders of magnitude more memory overhead than
Amphibian. Wall-clock training time comparisons among different methods for all three datasets are shown
in Figure A.1(b). Training times for all the tasks in the continual learning sequence for different experiments
are measured on a single NVIDIA TITAN Xp GPU. As Amphibian uses inner-and outer-loop meta-learning
steps, it requires more wall clock time for each model update during training compared to the other rehearsal-
free baselines. However, other rehearsal-based meta-learners such as La-MAML and MER take up to ∼2.7×
and ∼70× more training time than Amphibian.

(a) (b)

Figure A.1: (a) Comparison of memory overhead (normalized by the Amphibian memory overhead) during
training for 5-Datasets experiments. (b) Wall-clock training time comparisons for sequential training of all
the tasks in different datasets. Normalized with respect to the time taken by Amphibian.

_

ϴ2 ϴ40

ϴ20

ϴ7 ϴ40

ϴ20

(b) Task 7 test loss

ϴ11 ϴ40

ϴ25

(c) Task 11 test loss(a) Task 2 test loss

Figure A.2: Dynamics of continual learning in Amphibian. Loss contours of (a) Task 2, (b) Task 7, and
(c) Task 11 from split TinyImagenet dataset are plotted on 2D planes defined by parameters (θ2, θ20, θ40),
(θ7, θ20, θ40) and (θ11, θ25, θ40) respectively. Black lines indicate learning trajectories.

5.2 Continual Learning Dynamics in Amphibian: A Loss Landscape View

Loss Contour Plots. We used visualization tools developed in (29; 43) to plot the loss contours (in Figure 6
(main paper) and A.2) on 2D planes defined by model parameters (θt). Each of these hyperplanes in the
parameter space is defined by three points θ1, θ2 and θ3. Orthogonalizing θ2 − θ1 and θ3 − θ1 gives a two
dimensional coordinate system with base vectors u and v. The value at point (x, y) is then calculated as the
loss of a model with parameters θ1 + u · x + v · y. Please see the code/appendix in (29) for more details.

Continual Learning Dynamics in Amphibian. In Figure 6 (main paper) we showed that Amphibian
updates incur minimum to no increase in losses of the past tasks for split CIFAR-100 tasks. Here, in
Figure A.2, we show the loss contours for three split TinyImagenet tasks. In Figure A.2(a) we plot the loss

7

Published in Transactions on Machine Learning Research (04/2025)

contour of task 2 from TinyImagenet in a 2D plane. This figure shows when we sequentially learn from task
2 to task 40, along the entire learning trajectory (θ2 → θ20 → θ40) loss of task 2 only increases minimally
from the initial point (θ2). A similar trend is also observed for other tasks. Here we show such trends for
task 7 (Figure A.2(b)) and task 11 (Figure A.2(c)).

Table A.4: Number of meta-learnable gradient scales (in diagonal matrix, Λ) in each layer in Amphibian.

Network Layer Size of Filters / Weights Number of Scales
(Co × Ci × k × k) / (m× n) (in Scale Matrix, Λ)

5-layer Network Conv1 160× 3× 3× 3 27
(CIFAR-100) Conv2 160× 160× 3× 3 1400

Conv3 160× 160× 3× 3 1400
FC1 320× 2560 2560
FC2 320× 320 320

6-layer Network Conv1 160× 3× 3× 3 27
(TinyImagenet) Conv2 160× 160× 3× 3 1400

Conv3 160× 160× 3× 3 1400
Conv4 160× 160× 3× 3 1400
FC1 640× 2560 2560
FC2 640× 640 640

5-layer Network Conv1 200× 3× 3× 3 27
(5-Datasets) Conv2 200× 200× 3× 3 1800

Conv3 200× 200× 3× 3 1800
FC1 400× 3200 3200
FC2 400× 400 400

5.3 Number of Gradient Scales in Amphibian

As we adopt low-dimensional gradient space representation (as discussed in Section 3 (main paper)) for
gradients of weights/filters in the neural network, the number of learnable scales for gradient bases (in scale
matrix, Λ) in Amphibian is very small compared to the size of the weights/filters. Table A.4 shows the
number of meta-learnable scales for each layer. Such a small number of scales explains the extremely low
memory overhead of Amphibian during training as shown in Figure 4(c) (main paper) and Figure A.1(a).

5.4 Analysis of Λ During Training

To demonstrate the inner workings of the proposed algorithm, in Figure A.3 we plot the layer-wise evolution
of the Λ during training of 20 CIFAR-100 tasks. For each layer, we show a box plot of λ values contained
the diagonal matrix Λ. In Figure A.3(a)-(e), the horizontal red dotted line indicates 0 value, whereas Task
Id 0 indicates model initialization point where all the λ have a positive value of 0.5. In Figure A.3(f) this
corresponds to 100% active gradient directions, meaning all the gradient directions are available for gradient
descent. As we learn more and more tasks, across the layers, more λ becomes negative. In our algorithm,
to ensure the stability of the old knowledge (hence less forgetting), we avoid taking gradient steps along the
directions with negative λ. This trend is captured in the Figure A.3(f) where, as we learn more tasks, the
total number of (active) gradient directions along which optimization steps can be taken is gradually reduced.
This finding is in agreement with the previous findings in the EWC (20) (where a higher number of weight
changes are heavily penalized as more tasks are learned continually) and GPM (36) (where the number of
active gradient directions is reduced as more tasks are learned). The main difference is in those methods an
explicit constraint or regularization is used to control stability-plasticity of the model for continual learning,
whereas in Amphibian that constraint is learned implicitly from the data. Figure A.3(a)-(e) also reveals that
at different layers different level of constraints are needed for online continual learning and it would be hard
to hand design them explicitly. This is where learning from data offers the most benefits compared to the
other methods in achieving optimal performance for fast online continual learning.

8

Published in Transactions on Machine Learning Research (04/2025)

Task Id Task Id

Task Id Task Id

Task Id Task Id

(a) Layer 1 (b) Layer 2

(c) Layer 3 (d) Layer 4

(e) Layer 5 (f)

Λ

Ac
tiv

e
gr

ad
ie

nt
 d

ire
ct

io
ns

 (%
)

Λ

Λ Λ

Λ

Figure A.3: (a)-(e) Layer-wise evolution of the Λ during training of 20 CIFAR-100 tasks. For each layer, we
show a box plot of λ values contained in the diagonal matrix Λ. The horizontal red dotted line indicates 0
value and Task Id 0 indicates the model initialization point where all the λ are 0.5. As we learn more tasks
more λ in each layer become negative. (f) Percentage (%) of active gradient directions after learning each
CL task.

6 Representation of the Gradient Space in Neural Network

Here we elaborate on the point that SGD (gradient) updates lie subspace spanned by the input data points.
Following (36), let’s consider a single layer linear neural network in supervised learning setup where x ∈ Rn

is the input vector, y ∈ Rm is the label vector in the dataset and W ∈ Rm×n are the parameters (weights)
of the network. The network is trained by minimizing the following mean-squared error loss function

L = 1
2 ||W x− y||22. (A.17)

We can express gradient of this loss with respect to weights as

∇W L = (W x− y)xT = δxT , (A.18)

9

Published in Transactions on Machine Learning Research (04/2025)

where δ ∈ Rm is the error vector. Thus, the gradient update will lie in the span of input (x), where
elements in δ scale the magnitude of x by different factors. Here, we have considered per-example loss (batch
size of 1) for simplicity. In the batch/mini-batch setting, the batch loss is the summation of the losses due
to individual examples, the total batch loss for k samples can be expressed as

Lbatch =
k∑

i=1
Li =

k∑
i=1

1
2 ||W xi − yi||22. (A.19)

The gradient of this loss with respect to weights can be expressed as

∇W Lbatch = δ1xT
1 + δ2xT

2 + ... + δkxT
k . (A.20)

Therefore, the gradient update will remain in the subspace spanned by the k input examples. In
deep neural networks, the number of input examples is very large compared to the dimension of the inputs,
k >> n. Assuming this, the largest subspace these k input examples can span will be n dimensional.

In this example, since weight W is m× n dimensional, naturally the corresponding gradients are m× n
dimensional. However, according to Equation A.20, gradients will lie in the n dimensional subspace. So,
in the paper, when we refer to: “the gradients lie in a low dimensional subspace”, we imply gradients will
lie in the n dimensional subspace within the original m× n dimensional space. With the n one hot vector
e, we defined the canonical basis of that subspace. Following the definition in (36), we denoted that space
as gradient space. We can draw the same conclusions by analyzing the convolutional layers of the neural
networks, for that we refer to Section 4 in (36).

10

	Introduction
	Related Works
	Preliminaries
	Continual Learning with Amphibian
	Experimental Setup
	Results and Analyses
	Continual Learning and Fast Learning Performance Comparisons
	Amphibian vs. Online Rehearsal-free Meta-Learning
	Analysis of Amphibian: Amphibian-
	Understating Continual Learning Dynamics in Amphibian

	Conclusions
	Derivation of Amphibian Meta-Objective
	Derivation of Meta-Gradients

	Amphibian Algorithm
	Experimental Details
	Dataset Splits and Statistics
	Network Architecture Details
	List of Hyperparameters
	Baseline Implementations
	Amphibian Implementation: Software, Hardware and Code

	Additional Results
	Memory Overhead and Training Time
	Continual Learning Dynamics in Amphibian: A Loss Landscape View
	Number of Gradient Scales in Amphibian
	Analysis of During Training

	Representation of the Gradient Space in Neural Network

