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Abstract

Numerous decision-making tasks require estimating causal effects under inter-1

ventions on different parts of a system. As practitioners consider using large2

language models (LLMs) to automate decisions, studying their causal reasoning3

capabilities becomes crucial. A recent line of work evaluates LLMs ability to4

retrieve commonsense causal facts, but these evaluations do not sufficiently assess5

how LLMs reason about interventions. Motivated by the role that interventions6

play in causal inference, in this paper, we conduct empirical analyses to evaluate7

whether LLMs can accurately update their knowledge of a data-generating process8

in response to an intervention. We create benchmarks that span diverse causal9

graphs (e.g., confounding, mediation) and variable types, and enable a study of10

intervention-based reasoning. These benchmarks allow us to isolate the ability of11

LLMs to accurately predict changes resulting from their ability to memorize facts12

or find other shortcuts. We evaluate six LLMs on the benchmarks, finding that GPT13

models show promising accuracy at predicting the intervention effects.14

1 Introduction15

Large language models (LLMs) have achieved impressive performance on a variety of human-relevant16

tasks, from summarizing web-based information and answering complex questions, to carrying out17

tasks as web-based agents [Chen et al., 2021, Brown et al., 2020, Li et al., 2022, Katz et al., 2024,18

Drouin et al., 2024]. As LLMs become increasingly used to make decisions, which fundamentally19

require understanding the causal impact various actions can have, there has been a recent push to20

evaluate whether LLMs demonstrate causal reasoning ability [Cai et al., 2023, Jin et al., 2023, 2024,21

Kiciman et al., 2024, Liu et al., 2024]. The challenge for this emerging field is to operationalize22

notions of causal reasoning that can be verbalized as text-based questions for LLMs. Kiciman et al.23

[2024] address this question by evaluating the ability of LLMs to retrieve known cause-and-effect24

relations. In contrast, Jin et al. [2023, 2024], Liu et al. [2024], Cai et al. [2023] focus on defining25

various queries that could only be solved with knowledge of causality and graphical models, testing26

abstract causal reasoning that could generalize to unseen contexts. In this paper, we contribute to the27

growing body of work that evaluates the causal reasoning capabilities of LLMs by focusing on an28

aspect of causality that is both intuitive for humans [Waldmann and Hagmayer, 2005] and crucial for29

decision-making [Binz and Schulz, 2023]: the ability to adapt our model of the world in response to30

interventions.31

The notion of intervening on a variable is at the core of causality. In this paper, we focus on32

perfect interventions, where a variable in a system is manipulated and set to a particular new33

value. Interventions modify the causal graphical model [Pearl, 2009] of a system by deleting34

all incoming edges to the intervened variable. Experiments in the field of cognitive psychology35

[Waldmann and Hagmayer, 2005] suggest that humans instinctively recognize that an action (i.e., an36
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intervention) changes existing causal relationships, correctly making different inferences before and37

after interventions are performed on various variables.38

Besides being natural for humans, reasoning about interventions is crucial for causal inference.39

Consider the example of an LLM agent that acts as a “science assistant.” It knows about some causal40

relationships and must infer new ones given observational evidence to suggest candidate experiments.41

For ease, consider three variables, A, B and C, where A is known to cause B and C, but where the42

effect that B has on C is unknown. Initially, the agent cannot conclude anything about the effect43

of B on C due to the confounding effect of A, but if it encounters new information that B was44

intervened on, and B was observed to be correlated with C, the agent should correctly conclude that45

the intervention severs the confounding effect of A, allowing it to infer that B must actually have a46

causal effect on C. The ability to understand how interventions affect known causal relationships is47

central to drawing new causal conclusions when presented with new evidence.48

The key contribution of this paper is to evaluate intervention reasoning in LLMs by introducing49

intervention effects, binary classification tasks that evaluate which causal relations in a graph are50

modified by an observed intervention. We provide a framework for verbalizing a wide range of51

intervention effects to LLMs, varying the choice of causal graphs and names of variables. With52

this framework, we develop a benchmark of intervention effect tasks that help us disentangle the53

intervention reasoning capabilities of LLMs from other factors that contribute to performance such as54

memorization of facts and the ability to extract graphs from text.55

Related work. This paper relates most closely to recent papers that develop benchmarks to evaluate56

LLMs on various causal reasoning tasks. Kiciman et al. [2024] introduced multiple causal reasoning57

benchmarks for LLMs, including evaluating the ability of LLMs to recover the bivariate causal58

DAGs introduced in the Tübingen pairs dataset [Mooij et al., 2016]. Kiciman et al. [2024] found that59

GPT models recovered known causal relationships with up to 96% accuracy when experimenting60

with various prompting strategies such as including system prompts. However, evaluating LLMs on61

their ability to retrieve causal knowledge about known variables constitutes commonsense causal62

reasoning. In contrast, this paper contributes to work that evaluates abstract causal reasoning [Binz63

and Schulz, 2023, Jin et al., 2024, 2023, Cai et al., 2023, Liu et al., 2024], assessing the ability of64

LLMs to use axioms of causality to solve tasks involving general or even new variables.65

In the vein of causal reasoning, Jin et al. [2023] studied whether LLMs could correctly infer some66

causal relationships based on conditional independence statements, comparing LLM predictions67

to those made by an oracle causal discovery algorithm for observational data, where all causal68

relations cannot be resolved. In contrast to observational causal discovery, this paper focuses on69

reasoning about interventions. Also focusing on interventions, Jin et al. [2024] introduced CLadder,70

a comprehensive benchmark that includes the estimation of causal effects from quantitative data.71

Causal effect estimation is a complex task that requires solving multiple sub-tasks such as: (i)72

parsing the prompt to extract a causal DAG, (ii) inferring a function that estimates the effect given73

the DAG, and (iii) applying that function to the given quantitative data. Concurrently, Cai et al.74

[2023] introduced a task that asks LLMs to output only causal relationships given a tabular dataset75

that includes variable names. They focus on disentangling the impacts that prior knowledge (e.g.,76

variables names) and quantitative data have on LLM performance. The empirical study we conduct to77

assess whether LLMs are sensitive to the presence of plausibly memorized causal relations is similar78

to experiments conducted by Cai et al. [2023]. In contrast to these benchmarks, intervention effects79

target a narrower question than the general estimation of causal effects, since intervention effects80

involve binary classification only (i.e., the absence/presence of causal relations in DAGs). We argue81

that the evaluations we design better isolate causal reasoning from sub-tasks like drawing statistical82

inferences from quantitative data provided in-context, which both CLadder and the work of Cai et al.83

[2023] require.84

In focusing on intervention effects, we build on the work of Binz and Schulz [2023], who were85

motivated by prior work in psychology [Waldmann and Hagmayer, 2005] that shows humans weight86

collected observational evidence and experimental evidence differently when drawing causal con-87

clusions. Binz and Schulz [2023] adapted this psychology study for LLMs, creating prompts that88

describe observational and post-interventional findings to LLMs to see if they update their beliefs89

about a system after interventions. They found that GPT-3, unlike human subjects, fared poorly90

at understanding the implications of interventions. Motivated by their focus on intervention-based91

reasoning, we significantly expand on the evaluations designed by Binz and Schulz [2023], systemati-92

2



cally generating intervention effects with varying degrees of difficulty to further explore the effects of93

plausible memorization and shortcuts like relation retrieval.94

2 Understanding changes in causal relationships via Intervention Effects95

We begin by summarizing causal directed acyclic graphical models (DAGs) and perfect interventions,96

the two concepts central to this work. After reviewing these concepts, we introduce intervention97

effects, the binary prediction tasks that serve as key contributions of this paper.98

2.1 Background99

A causal DAG G = (V = {V1, . . . , Vn}, E) is defined by a vertex set V that consists of random100

variables {V1, . . . , Vn} and directed edges in the set E that represent causal relationships between101

the variables. A DAG defines a joint distribution over the random variables that factorizes according102

to the graph,103

P (V1, . . . , Vn) =

n∏
i=1

P (Vi|PaGi ), (1)

where PaGi denotes the parents of Vi in the DAG G. In general, we say that a causal relation exists104

between two variables u and v when there is a path from u to v in G.105

Figure 2 in the appendix illustrates the three causal DAGs that we focus on in this paper: bivariate,106

confounding, and mediation. In the confounding graph, the variable A causes both B and C, thus107

confounding our ability to infer the causal effect that B has on C from observational data alone. In108

the mediation graph, the variable A only has an indirect effect on C via B.109

Causal DAGs also entail distributions after interventions to these variables, distinguishing them from110

standard DAG models. In this paper, we focus on a class of interventions called perfect interventions,111

represented using the operation do(Vi = v), which means that the variable Vi is set to the value v.112

We define the distribution over variables post-intervention by modifying G to delete all incoming113

edges to Vi, severing the links between Vi and its parents.114

2.2 Intervention effects115

To formalize intervention effects, the key binary classification task that we consider in this work, we116

begin by defining causal relations in DAGs precisely.117

Definition 1 (Causal relation) Given a causal DAG G = (V,E), we say that there exists a causal118

relation between Vu and Vv in DAG G if there exists a directed path eua → . . . → ebv in G from Vu119

to Vv (where each edge eij along the path is in G). We define an indicator variable Cuv(G) ∈ {0, 1},120

such that Cuv(G) = 1 if and only if there is a causal relation between Vv and Vu.121

In words, a causal relation captures whether or not a variable exerts an indirect or direct causal122

influence on another variable in a particular DAG G that contains these variables.123

Definition 2 (Intervention effect) Given a causal DAG G = (V,E), a variable Vi on which we124

perform a perfect intervention captured by do(Vi = ∗) (where we use “*” to indicate that we do not125

care about the value that Vi is set to), and a query causal relation Cuv, an intervention effect (IE)126

defines a binary classification task as follows,127

IEG
i (Cuv) = Cuv(G)− Cuv(G

i), (2)

where the DAG Gi is the modification of DAG G under an intervention to the variable Vi.128

An IEG
i (Cuv) is defined with respect to a DAG G and intervention target Vi, and assigns each causal129

relation Cuv to a binary label of 1 or 0. When a causal relation Cuv in G is modified by a perfect130

intervention on Vi, i.e., the relation Cuv is different in the modified DAG Gi, IEG
i (Cuv) is 1 (and 0131

otherwise). Intuitively, since interventions sever edges between a variable and its parents, IEG
i (Cuv)132

is 1 when the intervention target is a variable along the path from u to v (including v itself).133
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xG = MG(G) xi = MI(Vi) xGB

uv = MC(Cuv(GB))
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In this intervened causal graphical model, 
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xGB

uv

Input
CB

A
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Figure 1: An illustration of the mapping functions that verbalize the information for a single
intervention effect estimation task into a prompt.

Given a causal DAG G, each possible intervention that we can perform defines a different classification134

task over causal relations, defined by a particular IEG
i (·), which serves as a labeling function for135

that task. We focus on the three causal DAGs in Figure 2 since they sufficiently capture many136

real scenarios without introducing unnecessary complexity that could render the empirical findings137

ambiguous. The key goal of this paper, addressed in the next section, is to evaluate LLMs on these IE138

classification tasks in a zero-shot way (i.e., without training examples) by verbalizing the tasks as139

prompts.140

3 Evaluating LLMs on Intervention Effects141

To evaluate an LLM on a binary classification problem defined by IEG
i (Cuv), we need to verbalize142

the causal DAG G, the concept of an intervention as well as the intervention target Vi, and the causal143

relation Cuv of interest. Figure 1 illustrates how we verbalize these three steps to generate a complete144

prompt.145

Step 1: Generating variable names. To verbalize an input causal DAG G = (V,E), we select146

names for the variables V and describe each edge Eij ∈ E using the format “[i] causes [j].” We147

further specify that these are all known causal relationships in the graph to avoid ambiguities, e.g.,148

around the presence of unobserved confounding variables. In the empirical studies, we assess multiple149

ways of choosing variable names, designing studies to tease apart how well LLMs generalize to novel150

contexts instead of relying on variable names and facts that were potentially encountered during151

training.152

Step 2: Describing an intervention. In the second step, we specify that a perfect intervention is153

performed, during the notation do(Vi = v) since the do-operator could have been encountered during154

training. To further study the robustness of LLMs to memorizing facts from training, the empirical155

studies include experiments that use random strings to describe do-operator.156

Step 3: Verbalizing the binary classification problem. In the final step, we verbalize the target157

IEG
i (Cuv), using the phrase “does [u] cause a change in [v]?” to query the presence or absence of a158

causal relation between u and v.159

Evaluation metric. After verbalizing an intervention effect as a prompt to an LLM, we receive a160

yes/no response that we refer to as ÎE
G

i (Cuv). Although prediction accuracy is a natural evaluation161

metric in this setting, it can misleading in this setting. To see this, we begin by noting that the LLM162

forms some belief about the presence or absence of a causal relation in a DAG G, denoted Ĉuv(G).163

Consider the scenario where,164

Cuv(G) = 1, Cuv(G
i) = 1,

Ĉuv(G) = 0, Ĉuv(G
i) = 0.

In this example, a target causal relation Cuv is true in both the base causal DAG G and its modified,165

post-intervention counterpart Gi, but the LLM incorrectly predicts that these causal relations are166

false under both graphical scenarios. The accuracy metric misleads us when the LLM correctly167

predicts that the causal relation does not vary, but does not parse the causal relation correctly in168

either graphical scenario. Thus, to ensure that the accuracy is 0 in such cases, we slightly modify the169
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Table 1: IE prediction accuracy on the Random Char benchmark. GPT-4 variants are the best
performing models, while LLaMA-2 appears to struggle with interventional reasoning. Performances
that are significantly(α = 0.05) worse than 80% accuracy are shown in red and top performances are
indicated by bolded figures.

Graph Type Bivariate Confounding Mediation
Intervened Variable A B A B C A B C

GPT-3.5 0.83± 0.08 0.87± 0.06 0.80± 0.09 0.69± 0.12 0.36± 0.09 0.58± 0.11 0.36± 0.12 0.67± 0.12

GPT-4 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.78± 0.09 0.82± 0.08 0.96± 0.03

GPT-4-turbo 1.0± 0.0 0.97± 0.03 0.96± 0.03 0.93± 0.05 1.0± 0.0 0.98± 0.02 1.0± 0.0 1.0± 0.0

GPT-4o 1.0± 0.0 1.0± 0.0 0.98± 0.02 0.91± 0.04 1.0± 0.0 0.93± 0.05 1.0± 0.0 0.87± 0.06

LLaMA-2 0.50± 0.12 0.40± 0.12 0.56± 0.12 0.53± 0.11 0.16± 0.06 0.69± 0.09 0.56± 0.12 0.64± 0.12

LLaMA-3 0.80± 0.09 0.83± 0.06 0.51± 0.1 0.47± 0.08 0.96± 0.03 0.38± 0.1 0.53± 0.08 0.4± 0.1

accuracy metric to be,170

1[IEG
i (Cuv) = ÎE

G

i (Cuv)] · 1[Cuv(G) = Ĉuv(G)] (3)

Now, an LLM’s prediction is only considered correct when it understands the DAG G correctly and171

accurately solves an IE problem. To infer the belief Ĉuv(G) that an LLM has about a causal relation,172

we make a minor modification to the prompt in Figure 1, omitting the second step that verbalizes an173

intervention, and asking the LLM about a causal relation but in the “observed causal graphical model”174

instead of the intervened one. These additional prompts allow us to evaluate LLMs on IEs.175

In the next section, we investigate several research questions about LLMs and intervention reasoning176

ability using the proposed framework to define a suite of IE problems.177

4 Empirical Analysis178

To study the ability of LLMs to understand interventions, we use the introduced framework to develop179

three benchmarks that differ in how variable names are selected to verbalize IEs:180

1. Random Char: Variable names are randomly chosen English characters.181

2. Tübingen : Variables names are chosen from entities that appear in the Tübingen pairs (TP)182

dataset of causal relations [Mooij et al., 2016] such that some causal relations exist in the183

TP data.184

3. Random Tübingen : Variable names are chosen from entities that appear in the TP dataset185

so that no causal relations exist in the TP data.186

See Appendix A.2 for an illustration of the full details about the datasets. For each benchmark and187

IE, we sample variable names fifteen times to report significant differences.188

We investigate four research questions (RQs) on the proposed benchmarks, studying four LLMs: GPT-189

3.5, GPT-4, GPT-4-turbo [OpenAI, 2023], and LLaMA-2 [Touvron et al., 2023]. Unless otherwise190

specified, for each IE, we aggregate results over the enumerated causal relations. We present the191

findings for the first two questions in the main paper and discuss the remaining in Appendix B192

RQ1: How accurate are at LLMs at IEs generated with random characters as variables? To193

study this first question, we evaluate the performance of the four LLMs on the Random benchmark.194

Table 1 summarize these results. We see that GPT-based models perform notably better than the195

LLaMA models, with GPT-4-turbo demonstrating near-perfect accuracy across all effects. LLaMA-2196

and LLaMA-3’s performance suggests that they do not reliably model interventions. In what follows197

in the main paper, we focus on results for GPT models, deferring LLaMA results to Appendix B.2.198

RQ2: To what extent is LLM performance affected by possibly memorized causal rela-199

tions? While we might be tempted to conclude that GPT-4 reliably predicts changes to models200

after interventions are performed, we consider spurious factors that can affect model performance.201

In particular, Kiciman et al. [2024] found that GPT models reliably retrieved information about TP202

causal relations, suggesting that these relations could have been included in the training data for203

LLMs. (We reproduce their findings in Appendix Table 4.) This leads to a worrying possibility:204
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Table 2: For causal relations that appear in TP, and for interventions that modify these relations,
worse performance on the Tübingen benchmark compared to performance on Random Char or
Random Tübingen provides evidence that LLMs might be relying on memorized facts to achieve
high accuracy on IEs. Bolded figures indicate performances that are significantly (α = 0.05) worse
than the corresponding performance on Tübingen .

Model Graph Intervened Variable Random Char Tübingen Random Tübingen

GPT-3.5

Bivariate B 0.8± 0.1 0.8± 0.1 0.53± 0.13

Confounding C 0.47± 0.13 0.4± 0.13 0.47± 0.13

Mediation B 0.4± 0.13 0.4± 0.13 0.4± 0.13
C 0.67± 0.12 0.67± 0.12 0.6± 0.13

GPT-4

Bivariate B 1.0± 0.0 1.0± 0.0 1.0± 0.0

Confounding C 1.0± 0.0 1.0± 0.0 1.0± 0.0

Mediation B 0.8± 0.1 0.73± 0.11 0.93± 0.06
C 0.93± 0.06 1.0± 0.0 0.93± 0.06

GPT-4-turbo

Bivariate B 0.93± 0.06 0.8± 0.1 0.73± 0.11

Confounding C 1.0± 0.0 1.0± 0.0 1.0± 0.0

Mediation B 1.0± 0.0 1.0± 0.0 0.93± 0.06
C 1.0± 0.0 1.0± 0.0 0.93± 0.06

GPT-4o

Bivariate B 1.0± 0.0 0.93± 0.06 0.73± 0.11

Confounding C 1.0± 0.0 1.0± 0.0 1.0± 0.0

Mediation B 1.0± 0.0 1.0± 0.0 0.87± 0.09
C 0.93± 0.06 0.87± 0.09 0.8± 0.1

after interventions, could LLMs fail to update their beliefs about causal relations that they have205

potentially memorized? To study this, we consider only the subset of causal relations that appear in206

TP and the interventions that sever these relations. If an LLM achieves good performance in general207

by having memorized some known causal relations, then it would achieve worse performance on208

Tübingen for the selected IEs, which sever known causal relations and go against the LLM’s learned209

biases, compared its performance on Random or Random Tübingen , where post-interventional causal210

relations do not directly contradict known facts. In Appendix B.2, we specify which causal relations211

appear in TP for each causal DAG we study, and which interventions modify these relations. Table 2212

summarizes the results. Bolded figures indicate that the performance on Tübingen drops significantly213

(with α = 0.05) compared to performance on either of the other benchmarks. Interestingly, GPT do214

not show evidence of relying purely on memorized causal relations, since performance is overall215

comparable across the benchmarks. Further, the models seem to struggle with the Random Tübingen216

benchmark more than they do with the other benchmarks, leading to a question about whether they217

are in fact sensitive to variations on the TP dataset.218

5 Discussion and Limitations219

The goal of this paper is to introduce a causal reasoning benchmark that stress-tests the ability of220

LLMs to accurately predict how knowledge should be updated after interventions are performed,221

without conflating other aspects of reasoning such as statistical inference on quantitative data. Our222

findings are optimistic, but we believe that nevertheless, they underscore the continued need for223

benchmarks and studies that evaluate varied aspects of abstract causal reasoning in LLMs, especially224

if practitioners wish to use LLMs to generate candidate decisions.225

While the intervention effect prediction task we define in this paper has the benefit of being easy to226

evaluate, since it requires binary responses, the findings that this task can suggest are also limited. For227

example, IE prediction cannot help us assess how accurately LLMs perform causal identification, the228

process of deciding which causal inferences can be made given a causal DAG. Moreover, we focus229

on evaluation in this paper and do not propose methods for improving causal reasoning in LLMs via230

few-shot learning or fine-tuning. Both of these limitations point to future research directions that we231

think are worth exploring.232
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A Experiment Setup Details279

A.1 Causal DAGs280

We consider 3 basic causal DAGs: Bivariate, Confounding and Mediation as shown in Figure 2281

Figure 2: Causal DAGs. In the empirical studies, we define intervention effects based on three causal
DAGs: bivariate, confounding and mediation graphs.

A.2 Dataset Generation282

Random Char (R). In the causal graphs used in this benchmark, the nodes are labeled with arbitrary283

English letters (E.g. ’z’, ’b’) that are independently generated for each graph.284

Tübingen (T). For the Tübingen benchmark, we select the graph nodes from the Tübingen pairs285

(TP) dataset in the following manner:286

• Bivariate. We sample cause-effect pairs from the TP dataset and each cause-effect pair is287

used to generate a graph.288

Example - Altitude (A) - Temperature (B) is a cause-effect pair in the TP dataset, and the289

input graph states: Altitude causes temperature.290

• Confounding. For variable B and C, we first sample cause-effect pairs and then for sampled291

pair we randomly select a variable (for A) from the TP dataset that it is different from the292

variables in the corresponding cause-effect pair.293

Example - Altitude (B) - Temperature (C) is the sampled cause-effect pair and Age (A) is294

the randomly selected variable from the TP dataset. The relationships in the input graph are295

as follows: Age causes altitude ; Age causes temperature.296

• Mediation. For variable A and C, we first randomly sample cause effect pairs and then for297

sampled pair we randomly select a variable (for B) from the TP dataset that it is different298

from the variables in the corresponding cause-effect pair.299

Example - Altitude (A) - Temperature (C) is the sampled cause-effect pair and Age (B) is300

the randomly selected variable from the TP dataset. The relationships in the input graph are301

as follows: Altitude causes age ; Age causes temperature.302

The rationale behind defining the Tübingen dataset in this manner is elaborated in Appendix B.2.303

Random Tübingen (RT). Similar to the Tübingen case, we select the graph nodes from the set304

of variables present in the TP dataset. However, none of the causal relations defined in the graphs305

are present in the TP dataset. Instead the causal relations defined are between randomly selected306

variables, as follows:307

• Bivariate. We randomly sample two unrelated variables from the TP dataset and define a308

cause-effect relationship in the input graph.309

Example - Age (A) - Temperature (B) are variables without a cause-effect relation in the TP310

dataset, and the input graph states: Age causes Temperature.311

• Confounding. We randomly sample 3 variables from the TP dataset that no two variables312

selected have a causal relation in the TP dataset and we define the graph.313

Example - Altitude (A) - Horsepower (B) - Cement (C) are randomly selected variables314

from the TP dataset. No two variables have a causal relationship in the TP dataset. The315
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relationships in the input graph is as follows: Altitude causes Horsepower ; Altitude causes316

Cement.317

• Mediation. We select the 3 variables exactly as we did for the confounding case and define318

the graph.319

Example - Altitude (A) - Horsepower (B) - Cement (C) are randomly selected variables320

from the TP dataset. The relationsihips in the input graph is as follows: Altitude causes321

Horsepower ; Horspower causes Cement.322

A.3 Details regarding LLMs323

A.3.1 Querying LLMs.324

To query the GPT models, we used the OpenAI API 1 through the Langchain interface 2. Meanwhile,325

VLLM library 3 was used for fast inference from LLaMA models.326

Regarding compute resources, since the GPT models are hosted remotely by OpenAI, we were able327

to make API calls locally with minimal CPU usage. Conversely, for LLaMA models, we first had328

to load the model onto a cluster equipped with a GPU (A100/80 GB RAM) before submitting our329

queries.330

A.3.2 LLM Output.331

To ensure that LLMs respond with a yes or no to queries, we formalized a response format requiring332

LLMs to encapsulate their yes or no answers within an <answer></answer> tag. If the LLM does333

not adhere to this format, we initiate a retry, instructing it to comply with the required format. After334

the first retry, we relax the response format requirements, expecting only a yes or no answer. If after335

10 retries the LLM fails to meet this criterion, we mark the attempt as a failure and attribute zero336

accuracy on the intervention effect prediction task.337

A.3.3 Model Ids.338

The specific model-ids of the LLMs are:339

• GPT-3.5: gpt-3-turbo-16k340

• GPT-4: gpt-4341

• GPT-4-turbo: gpt-4-turbo342

• GPT-4o: gpt-4o343

• LLaMA-2: llama-2-7b344

• LLaMA-3: llama-3.1-8b345

A.4 Substitution Task346

For this task, we first describe the concept of interventions to LLM and refer to them as some arbitrary347

string of characters (E.g. ’xyz’). We then follow the same prompt template (Figure 1) to test the348

intervention effect performance, except we never use the word intervention again and replace it with349

the chosen substitution word. The prompt verbalization for this task is illustrated in Figure 3.350

A.5 Ground Truth Intervention Effects351

We provide the ground truth value for every intervention effect task in our analysis in Table 3, i.e., we352

provide the true change in the causal relations after interventions.353

This should help the reader understand clearly what queries we considered for the different research354

questions in our analysis.355

1https://openai.com/blog/openai-api
2https://python.langchain.com/docs/expression_language/interface
3hhttps://docs.vllm.ai/en/latest/
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Figure 3: Prompt design for intervention reasoning in the substitution task. Instead of using the
word intervention directly in the prompt, we illustrate the concept of interventions and define it with
a random word, for instance, operation ’xyz’ in the prompt template above.

Table 3: Ground truth intervention effects for all the scenarios (causal graph, intervention variable,
causal relation) considered in our benchmark.

Graph Intervention Questions Ground Truth IE

Bivariate
A A → B 0

B → A 0

B A → B 1
B → A 0

Confounding

A
A → B 0
A → C 0
B → C 0

B
A → B 1
A → C 0
B → C 0

C
A → B 0
A → C 1
B → C 0

Mediation

A
A → B 0
A → C 0
B → C 0

B
A → B 1
A → C 1
B → C 0

C
A → B 0
A → C 1
B → C 1
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B Additional Results356

We now go over the empirical studies in detail and provide the results for the remaining research357

questions.358

B.1 Reproducing results on the Tübingen dataset359

We reproduced the results of Kiciman et al. [2024] on the Tübingen dataset as shown in Table 4.360

Since their task did not involve the LLM to reason about the effect of interventions, we term this task361

of inferring relations from the input graph in the prompt as relation retrieval.362

Table 4: Relation Retrieval accuracy of GPT models on the Tübingen dataset.
Model Accuracy

GPT-3 (text-davinci-003) 0.80
GPT-3.5 0.89
GPT-4 0.96

Table 5: Relation Retrieval accuracy of models on Random benchmark. The GPT models show
good performance but LLaMA-2 performs poorly. Hence, as per our criteria we drop the LLaMA-2
model for analysis in RQ3.

Model Bivariate Confounding Mediation
GPT-3.5 1.0± 0.0 1.0± 0.0 0.98± 0.02
GPT-4 1.0± 0.0 1.0± 0.0 1.0± 0.0

GPT-4-turbo 1.0± 0.0 1.0± 0.0 1.0± 0.0
GPT-4o 1.0± 0.0 1.0± 0.0 1.0± 0.0

LLaMA-2 0.73± 0.11 0.59± 0.13 0.84± 0.09
LLaMA-3 1.0± 0.0 1.0± 0.0 0.94± 0.06

B.2 Research Questions363

RQ1: How accurate are LLMs at predicting the effects of interventions?364

To understand how effective LLMs are at IE prediction, we focused on the Random (R) benchmark365

in the main paper (Table 1), as we wanted to remove any distracting effect of semantically meaningful366

entities as graph nodes. We now present the same results on the Tübingen (T) and Random367

Tübingen (RT) benchmarks as well in Table 6.368

We find that the results in both the cases are very similar to the case with the Random benchmark;369

GPT-4-turbo performs the best and GPT models outperform LLaMA models by a big margin.370

RQ2: To what extent is LLM performance affected by memorized causal relations? In RQ1,371

we computed the IE performace by considering all the causal relationship queries for each of the372

interventions. In the case of RQ2, we only consider specific causal relations that could be potentially373

memorized by the LLMs and interventions that sever these relations. For:374

1. Bivariate DAG, we consider A → B with the intervention on B.375

2. Confounding DAG, we consider B → C with the intervention on C.376

3. Mediation DAG, we consider A → C with an intervention on B and C separately.377

The Tübingen benchmark (Appendix A.2) is defined in such a way that, all of the causal relations378

under consideration above are cause-effect pairs present in the TP dataset that could be potentially379

memorized by the LLM.380

We provide results for role of memorization in LLaMA models in Table 7. Given their overall poor381

IE performance in the random benchmark, it is difficult to draw conclusions about the impact of382

memorization but they have similar performance across the benchmarks.383
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Table 6: IE prediction accuracy on all three benchmarks. GPT-4 variants are the best performing
models, while LLaMA models struggle with interventional reasoning.

Graph Type Benchmark Bivariate Confounding Mediation
Intervened Variable A B A B C A B C

GPT-3.5
R 0.83± 0.08 0.87± 0.06 0.8± 0.09 0.69± 0.12 0.36± 0.09 0.58± 0.11 0.36± 0.12 0.67± 0.12
T 0.87± 0.06 0.83± 0.06 0.82± 0.05 0.67± 0.11 0.31± 0.07 0.64± 0.08 0.42± 0.1 0.67± 0.12

RT 0.83± 0.1 0.7± 0.12 0.87± 0.09 0.67± 0.12 0.47± 0.13 0.64± 0.12 0.33± 0.12 0.63± 0.12

GPT-4
R 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.78± 0.09 0.82± 0.08 0.96± 0.03
T 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.84± 0.07 1.0± 0.0

RT 1.0± 0.0 1.0± 0.0 0.93± 0.06 0.87± 0.09 1.0± 0.0 0.98± 0.04 0.97± 0.05 0.97± 0.05

GPT-4-turbo
R 1.0± 0.0 0.97± 0.03 0.96± 0.03 0.93± 0.05 1.0± 0.0 0.98± 0.02 1.0± 0.0 1.0± 0.0
T 0.93± 0.04 0.9± 0.05 0.62± 0.09 0.78± 0.08 0.96± 0.03 0.69± 0.09 0.96± 0.04 0.96± 0.04

RT 0.8± 0.1 0.8± 0.1 0.73± 0.11 0.6± 0.13 1.0± 0.0 0.8± 0.1 0.97± 0.05 0.97± 0.05

GPT-4o
R 1.0± 0.0 1.0± 0.0 0.98± 0.02 0.91± 0.04 1.0± 0.0 0.93± 0.05 1.0± 0.0 0.87± 0.06
T 0.87± 0.06 0.97± 0.03 0.89± 0.04 0.93± 0.03 1.0± 0.0 0.84± 0.05 0.96± 0.04 0.87± 0.06

RT 0.87± 0.09 0.83± 0.1 0.9± 0.08 0.8± 0.1 1.0± 0.0 0.93± 0.06 0.93± 0.06 0.87± 0.09

LLaMA-2
R 0.5± 0.12 0.4± 0.12 0.56± 0.11 0.53± 0.11 0.16± 0.06 0.69± 0.09 0.56± 0.12 0.64± 0.12
T 0.4± 0.12 0.2± 0.08 0.42± 0.11 0.4± 0.11 0.09± 0.04 0.47± 0.12 0.31± 0.12 0.44± 0.1

RT 0.43± 0.13 0.23± 0.11 0.47± 0.13 0.47± 0.13 0.2± 0.1 0.62± 0.13 0.4± 0.13 0.7± 0.12

LLaMA-3
R 0.8± 0.1 0.83± 0.1 0.47± 0.13 0.6± 0.13 0.87± 0.09 0.38± 0.13 0.5± 0.13 0.47± 0.13
T 0.73± 0.11 0.87± 0.09 0.53± 0.13 0.53± 0.13 1.0± 0.0 0.38± 0.13 0.6± 0.13 0.27± 0.11

RT 0.67± 0.12 0.87± 0.09 0.47± 0.13 0.4± 0.13 1.0± 0.0 0.4± 0.13 0.53± 0.13 0.43± 0.13

Table 7: IE prediction performance of LLaMA models on specific scenarios for all the bench-
marks to understand the role memorization. LLaMA models demonstrate relatively similar
performance across the three benchmarks.

Model Graph Intervened Variable Random Tübingen Random Tübingen

LlaMA-2

Bivariate B 0.4± 0.13 0.4± 0.13 0.27± 0.11

Confounding C 0.0± 0.0 0.07± 0.06 0.33± 0.12

Mediation B 0.33± 0.12 0.33± 0.12 0.4± 0.13
C 0.53± 0.13 0.53± 0.13 0.6± 0.13

LlaMA-3

Bivariate B 0.67± 0.12 0.73± 0.11 0.8± 0.1

Confounding C 1.0± 0.0 1.0± 0.0 1.0± 0.0

Mediation B 0.67± 0.12 0.53± 0.13 0.67± 0.12
C 0.53± 0.13 0.33± 0.12 0.4± 0.13

RQ3: Could LLMs be learning a shortcut to predict intervention effects? Consider the confound-384

ing DAG (Figure 2) and the causal relation CBC(G) which does not change under intervention on385

the variable A. In these examples, LLMs that accurately parse causal relations from text descriptions386

of DAGs would also obtain accurate IE estimates. Hence, predicting causal relations from the input387

graph in text – call this task relation retrieval – offers a shortcut: an LLM can attend to tokens in the388

context to solve relation retrieval and still perform good at IE estimation, thereby confounding the389

conclusions that can be drawn with this benchmark.390

However, the intervention effects we defined to study RQ2 offer an insight into how we can disentangle391

relation retrieval and accurate IE prediction. Notice that the IEs we defined to study RQ2 characterize392

scenarios where causal relations differ between the base DAG G and the post-intervention DAG.393

Thus, LLMs that rely only on relation retrieval cannot accurately estimate IEs. Building on this394

insight, we divide all the IEs κi
G(Cuv) into two groups:395

1. IE = 0: Graph doesn’t change as a result of intervention; Cuv(G) = Cuv(G
i).396

2. IE = 1: Graph changes as a result of intervention; Cuv(G) ̸= Cuv(G
i)397

Table 3 clearly categorizes the causal relations under intervention into these two groups.398

Note that drop in performance on group (IE = 1) as compared to the group (IE = 0) can indicate399

reliance on shortcuts based on relation retrieval. We consider the average performance of the LLMs400

on the effects in each group, selecting only those LLMs which achieve an accuracy ≥ 0.95 on relation401

retrieval (which we report in Appendix Table 5). We focus on the Random benchmark to exclude any402

impacts due to memorized variable names. Table 8 summarizes this study. We find that the general403

trend does not show strong reliance on shortcuts across LLMs; only GPT-3.5 has a significant drop404
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Table 8: IE prediction performance across sub-cases to isolate the effect of relation retrieval on
Random benchmark. LLMs do not significantly rely on shortcuts related to relation retrieval from
the input prompt. Since intervening on variable A never changes the causal graph in any scenario, we
don’t consider them for this analysis.

Graph Type Bivariate Confounding Mediation
Intervened Variable B B C B C

GPT-3.5 IE = 0 0.93± 0.06 0.6± 0.13 0.47± 0.13 0.33± 0.12 0.67± 0.12

IE = 1 0.8± 0.1 0.67± 0.12 0.2± 0.1 0.37± 0.12 0.67± 0.12

GPT-4 IE = 0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.87± 0.09 1.0± 0.0

IE = 1 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.8± 0.1 0.93± 0.06

GPT-4-turbo IE = 0 1.0± 0.0 0.96± 0.05 1.0± 0.0 1.0± 0.0 1.0± 0.0

IE = 1 0.93± 0.06 0.93± 0.06 1.0± 0.0 1.0± 0.0 1.0± 0.0

GPT-4o IE = 0 1.0± 0.0 0.87± 0.09 1.0± 0.0 1.0± 0.0 0.87± 0.09

IE = 1 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.87± 0.09

LlaMA-2 IE = 0 0.4± 0.13 0.5± 0.13 0.0± 0.0 0.33± 0.12 0.67± 0.12

IE = 1 0.4± 0.13 0.53± 0.13 0.13± 0.09 0.33± 0.12 0.6± 0.13

LlaMA-3 IE = 0 1.0± 0.0 0.4± 0.13 1.0± 0.0 0.6± 0.13 0.27± 0.11

IE = 1 0.67± 0.12 0.6± 0.13 0.87± 0.09 0.5± 0.13 0.47± 0.13

Table 9: IE prediction accuracy on the Random benchmark for the substitution task. The
performance of GPT-3.5 & GPT-4 is worse under substitution compared to the non-substitution case
(Table 1), while GPT-4-turbo does not show significant change.

Graph Type Bivariate Confounding Mediation
Intervened Variable A B A B C A B C

GPT-3.5 0.67± 0.12 0.83± 0.06 0.56± 0.11 0.58± 0.11 1.0± 0.0 0.62± 0.10 0.44± 0.10 0.4± 0.12

GPT-4 0.97± 0.03 1.0± 0.0 0.89± 0.05 0.82± 0.07 1.0± 0.0 0.96± 0.03 0.76± 0.10 1.0± 0.0

GPT-4-turbo 0.9± 0.07 0.97± 0.03 0.96± 0.03 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GPT-4o 0.67± 0.12 0.83± 0.1 0.67± 0.12 0.73± 0.11 1.0± 0.0 0.76± 0.11 0.83± 0.1 0.73± 0.11

LLaMA-2 0.57± 0.13 0.37± 0.12 0.6± 0.13 0.6± 0.13 0.73± 0.11 0.62± 0.13 0.6± 0.13 0.43± 0.13

LLaMA-3 0.67± 0.12 0.83± 0.1 0.6± 0.13 0.4± 0.13 1.0± 0.0 0.4± 0.13 0.67± 0.12 0.33± 0.12

in its relative performance on group (IE = 1) vs group (IE = 0) for the confounding DAG case.405

Since, the LLaMA-2 model does not satisfy our constraint of high relation retrieval accuracy, we406

don’t consider it for further analysis.407

RQ4: Are LLMs robust to descriptions of interventions in-context? Consider the verbalization408

of an intervention in Figure 1. It mentions the do(·) operator and refers to a “perfect intervention”409

to prompt an LLM to rely on facts about causal reasoning that could have appeared in the training410

dataset. We ask whether LLMs can achieve the same performance on the intervention effects in the411

random benchmark if we varied the verbalization to instead “teach” an LLM [Patel et al., 2023] about412

a new graphical operation that behaves identically to an intervention. We randomly generate strings413

to instantiate this operation. Figure 3 in the appendix illustrates how we generate prompts for this414

task which we refer to as the substitution task. Table 9 summarizes IE prediction accuracy for the415

substitution task on the Random benchmark. Contrasting these results against Table 1, we see that416

for GPT-3.5, GPT-4 and GPT-4o, the performance generally suffers. However, GPT-4-turbo appears417

to be robust to changes in the way interventions are described.418
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