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ABSTRACT

We consider the problem of spatial path planning. In contrast to the classical
solutions which optimize a new plan from scratch and assume access to the full
map with ground truth obstacle locations, we learn a planner from the data in a
differentiable manner that allows us to leverage statistical regularities from past data.
We propose Spatial Planning Transformers (SPT), which given an obstacle map
learns to generate actions by planning over long-range spatial dependencies, unlike
prior data-driven planners that propagate information locally via convolutional
structure in an iterative manner. In the setting where the ground truth map is not
known to the agent, we leverage pre-trained SPTs to in an end-to-end framework
that has the structure of mapper and planner built into it which allows seamless
generalization to out-of-distribution maps and goals. SPTs outperform prior state-
of-the-art across all the setups for both manipulation and navigation tasks, leading
to an absolute improvement of 7-19%.

1 INTRODUCTION
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Figure 1: Spatial Path Planning: The raw obser-
vations (top left) and obstacles can be represented
spatially via top-down map in navigation (left) and
via configuration space in manipulation (right).

The problem of path planning has been a bedrock
of robotics. Given an obstacle map of an environ-
ment and a goal location in the map, the task is to
output a shortest path to the goal location starting
from any position in the map. We consider path
planning with spatial maps. Building a top-down
spatial map is common practice in robotic navigation
as it provides a natural representation of physical
space (Durrant-Whyte & Bailey, 2006). In fact, even
robotic manipulation can also be naturally phrased
via spatial map using the formalism of configuration
spaces (Lozano-Perez, 1990), as shown in Figure 1.
This problem has been studied in robotics for several
decades, and classic goto planning algorithms involve Dijkstra et al. (1959), PRM (Kavraki et al.,
1996), RRT (LaValle & Kuffner Jr, 2001), RRT* (Karaman & Frazzoli, 2011), etc.

Our objective is to develop methods that can learn to plan from data. However, a natural question
is why do we need learning for a problem which has stable classical solutions? There are two key
reasons. First, classical methods do not capture statistical regularities present in the natural world,
(for e.g., walls are mostly parallel or perpendicular to each other), because they optimize a plan from
scratch for each new setup. This also makes analytical planning methods to be often slow at inference
time which is an issue in dynamic scenarios where a more reactive policy might be required for fast
adaptation from failures. A learned planner represented via a neural network can not only capture
regularities but is also efficient at inference as the plan is just a result of forward-pass through the
network. Second, a critical assumption of classical algorithms is that a global ground-truth obstacle
space must be known to the agent ahead of time. This is in stark contrast to biological agents where
cognitive maps are not pixel-accurate ground truth location of agents, but built through actions in the
environment, e.g., rats build an implicit map of the environment incrementally through trajectories
enabling them to take shortcuts (Tolman, 1948). A learned solution could not only provides the
ability to deal with partial, noisy maps and but also help build maps on the fly while acting in the
environment by backpropagating through the generated long-range plans.
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Figure 2: Local vs Long-distance value propagation. Figure showing an example of number of iterations
required to propagate distance values over a map using local and long-distance value propagation. The obstacle
map and goal location shown on the left and the distance value predictions over 5 iterations is shown on the
right (distance values increase from blue to yellow). Prior methods based on convolutional networks use local
value propagation and require many iterations to propagate values accurately over the whole map (top right).
Our method is based on long-distance value propagation between points without any obstacle between them.
This type of value propagation can cover the whole map in 3 iterations in this example (bottom right).

Several recent works have proposed data-driven path planning models (Tamar et al., 2016; Karkus
et al., 2017; Nardelli et al., 2018; Lee et al., 2018). Similar to how classical algorithms, like Dijkstra
et al. (1959), move outward from the goal one cell at a time to predict distances iteratively based on
the obstacles in the map, current learning-based spatial planning models propagate distance values
in only a local neighborhood using convolutional networks. This kind of local value propagation
requires O(M) iterations, where M is the map dimension. In theory, however, the optimal paths can
be computed much more efficiently with total iterations that are on the order of number of obstacles
rather than the map size. For instance, consider two points with no obstacle between, an efficient
planner could directly connect them with interpolated distance. Nonetheless, this is possible only if
the model can perform long-range reasoning in the obstacle space which is a challenge.

In this work, our goal is to capture this long-range spatial relationship. Transformers (Vaswani et al.,
2017) are well suited for this kind of computation as they treat the inputs as sets and propagate
information across all the points within the set. Building on this, we propose Spatial Planning
Transformers (SPT) which consists of attention heads that can attend to any part of the input. The
key idea behind the design of the proposed model is that value can be propagated between distant
points if there are no obstacles between them. This would reduce the number of required iterations
to O(nO) where nO is the number of obstacles in the map. Figure 2 shows a simple example
where long-distance value propagation can cover the entire map within 3 iterations while local value
propagation takes more than 5 iterations – this difference grows with the complexity of the obstacle
space and map size. We compare the performance of SPTs with prior state-of-the-art learned planning
approaches, VIN (Tamar et al., 2016) and GPPN (Lee et al., 2018), across both navigation as well as
manipulation setups. SPTs achieve significantly higher accuracy than these prior methods for the
same inference time and show over 10% absolute improvement when the maps are large.

Next, we turn to the case when the map is not known apriori. This is a practical setting when the agent
either has access to a partially known map or just know it through the trajectories. In psychology, this
is known as going from route knowledge to survey knowledege (Golledge et al., 1995) where animals
aggregate the knowledge from trajectories into a cognitive map. We operationalize this setup by
formulating an end-to-end differentiable framework, which in contrast to having a generic parametric
policy learning (Glasmachers, 2017), has the structure of mapper and planner built into it. We first
pre-train the SPT planner to capture a generic data-driven prior, and then backpropagate through it to
learn a mapper that maps raw observations to obstacle map. This allows us to learn without requiring
map supervision or interaction. Learned mapper and planner not only allow us to plan for new goal
locations at inference but also generalize to unseen maps.

Our end-to-end mapping and planning approach provides a unified solution for both navigation and
manipulation. We perform thorough experiments in both manipulation and real-world navigation
maps as well as manipulation. Our approach outperforms prior state-of-the-art by a margin on both
mapping and planning accuracy without assuming access to the map at training or inference.
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Figure 3: Spatial Planning Transformer (SPT). Figure showing an overview of the proposed Spatial Planning
Transformer model. It consists of 3 modules: an Encoder E to encode the input, a Transformer network T
responsible for planning, and a Decoder D decoding the output of the Transformer into action distances.

2 PRELIMINARIES AND PROBLEM DEFINITION

We represent the input spatial map as a matrix, m, of size M ×M with each element being 1,
denoting obstacles, or 0, denoting free space. The goal location is also represented as a matrix, g, of
size M ×M with exactly one element being 1, denoting the goal location, and rest 0s. The input to
the spatial planning model, x, consists of matrices m and g stacked, x = [m, g], where x is of size
2×M ×M . The objective of the planning model is to predict y which is of size M ×M , consisting
of action distances of corresponding locations from the goal. Here, action distance is defined to be
the minimum number of actions required to reach the goal.

For navigation, m is a top-down obstacle map, and g represents the goal position on this map. For
manipulation, m represents the obstacles in the configuration space of 2-dof planar arm with joint
angles denoted by θ1 and θ2. Each element (i, j) in m indicate whether the configuration of the arm
with joint angles θ1 = i and θ2 = j, would lead to a collision. g represents the goal configuration
of the arm. In the first set of experiments, we will assume that m is known and in the second set of
experiments, m is not known and the agent receives observations, o, from its sensors instead.

3 METHODS

We design a spatial planning model capable of long-distance information propagation. We first
describe the design of this spatial planning module, called Spatial Planning Transformer(SPT), shown
in Figure 3, which takes in a map and a goal as input and predict the distance to the goal from all
locations. We then describe how the SPT model can be used as a planning module to train end-to-end
learning models, which take in raw sensory observations and goal location as input and predict action
distances without having access to the map.

3.1 SPT: SPATIAL PLANNING TRANSFORMERS

To propogate information over distant points, we use the Transformer (Vaswani et al., 2017) architec-
ture. The self-attention mechanism in a Transformer can learn to attend to any element of the input.
The allows the model to learn spatial reasoning over the whole map concurrently. Figure 3 shows an
overview of the SPT model, which consists of three modules, an Encoder E to encode the input, a
Transformer network T responsible for spatial planning, and a Decoder D decoding the output of the
Transformer into action distances.

Encoder. The Encoder E computes the encoding of the input x: xI = E(x). The input
x ∈ {0, 1}2×M×M consisting of the map and goal is first passed through a 2-layer convolutional
network (LeCun et al., 1998) with ReLU activations to compute an embedding for each input element.
Both layers have a kernel size of 1 × 1, which ensures that the embedding of all the obstacles is
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Figure 4: End-to-end Mapping and Planning. Figure showing an overview of end-to-end mapping and
planning model for both the navigation and manipulation tasks.

identical to each other, and the same holds true for free space and the goal location. The output of
this convolutional network is of size d×M ×M , where d is the embedding size. This output is then
flattened to get xI of size d×M2 and passed into the Transformer network.

Transformer. The Transformer network T converts the input encoding into the output encoding:
xO = T (xI). It first adds the positional encoding to the input encoding. The positional encoding
enables the Transformer model to distinguish between the obstacles at different locations. We use a
constant sinusoidal positional encoding (Vaswani et al., 2017):

p(2i,j) = sin(j/C2i/d), p(2i+1,j) = cos(j/C2i/d)

where p ∈ Rd×M2

is the positional encoding, j ∈ {1, 2, . . . ,M2} is the position of the input,
i ∈ {1, 2, . . . , d/2}, and C =M2 is a constant.

The positional encoding of each element is added to their corresponding input encoding to get
Z = xI + p . Z is then passed through N = 5 identical Transformer layers (fTL) to get xO.

Decoder. The Decoder D computes the distance prediction ŷ from xO using a position-wise fully
connected layer:

ŷi =WT
DxT,i + bD

where xT,i ∈ Rd×1 is the input at position i ∈ 1, 2, . . . ,M2, WD ∈ Rd×1, bD ∈ R are parameters
of the Decoder shared across all positions i and ŷi ∈ R is the distance prediction at position i. The
distance prediction at all position are reshaped into a matrix to get the final prediction ŷ ∈ RM,M .
The entire model is trained using pairs of input x and output y datapoints with mean-squared error as
the loss function.

3.2 END-TO-END MAPPING AND PLANNING

The SPT model described above is designed to predict action distances given a map as input.
However, in many applications, the map of the environment is often not known. In such cases, an
autonomous agent working in a realistic environment needs to predict the map from raw sensory
observations. While it is possible to train a separate mapper model to predict maps from observations,
this often requires map annotations which are expensive to obtain and often inaccurate. In contrast,
demonstration trajectories consisting of observations and optimal actions are more readily available or
easier to obtain in many robotics applications. One of the key benefits of learning-based differentiable
spatial planning is that it can be used to learn mapping just from action supervision in an end-to-end
fashion without having access to ground-truth maps. To demonstrate this benefit, we train an end-
to-end mapping and planning model to predict action distances from sensor observations for both
navigation and manipulation tasks.

The end-to-end mapping and planning model consists of two modules, a Mapper (fM ) and a Planner
(fP ), as illustrated in Figure 4. The Mapper is used to predict the map m̂ from sensor observations o
and the Planner is a spatial planning model to predict action distances, ŷ, from the predicted map m̂:

ŷ = fP (m̂) = fP (fM (o))
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For navigation, o is the set of first-person RGB camera images each of size 3×H ×W . We sample
4 images, one for each orientation, at each valid location in the map. For invalid locations, we pass an
empty image of 0s for all orientations. Thus, for a map of size M ×M , observation o consist of 4M2

images for all locations and 4 orientations similar to the setup in Lee et al. (2018). For manipulation,
o is a top-down view of the operational space with obstacles of size P × P , where each element is
1 or 0 denoting obstacles or free space. We use different Mapper architectures for navigation and
manipulation experiments.

The Navigation Mapper module predicts a single value between 0 and 1 for each image in o indicating
whether the cell in the front of the image is an obstacle or not. The architecture of the Navigation
mapper consists of ResNet18 convolutional layers followed by fully-connected layers (see Appendix
for details). Each cell can have upto 4 predictions (from images corresponding to the four neighboring
cells facing the current cell), which are aggregated using max pooling to get a single prediction. This
map prediction consisting of continuous values is passed to the Planner module.

The Manipulation Mapper module needs to predict which configurations of the arm would lead to a
collision. To predict whether a particular configuration (θ1, θ2), the mapper module needs to check
whether any point in this configuration consists of an obstacle. A Transformer-based model is well
suited to learn this function as well as it can attend to arbitrary locations in the operational space to
predict the obstacles in the configuration space. We use the same architecture of the SPT model as
the Manipulation Mapper as well, with the only difference being the encoder consisting of 3 × 3
kernel size convolutional layers instead of 1× 1 to encode the P × P observation space to a M ×M
representation.

The Planner module is the entire SPT model with encoder, transformer and decoder units as described
in the previous subsection. It is pretrained on synthetic maps and its weights are frozen during
end-to-end training. We train the entire end-to-end Mapping and Planning model with pairs of
input observations o and output action distances y using standard supervised learning with the mean-
squared error as the loss function: L =MSE(y, ŷ) = 1/|L|

∑
i∈L(yi − ŷi)2, where L is the set of

navigable locations. Since the planning module is pretrained and it expects a structured map input,
the mapper model needs to predict the map accurately such that the predicted map, when passed
through the planner, minimizes the action level loss.

4 EXPERIMENTS & RESULTS: SPATIAL PLANNING

Datasets. We generate synthetic datasets for training the spatial planning models for both navigation
and manipulation settings. For the navigation setting, we perform experiments with M ×M maps
with three different map sizes, M ∈ {15, 30, 50}. For manipulation, we experiment with two map
sizes, M ∈ {18, 36}, corresponding to 20◦ and 10◦ bins for each link. In each map, we randomly
generate omin = 0 to omax = 5 obstacles. Dataset generation details are provided in the Appendix.

For both the settings, we generate training, validation, and test sets of size 100K/5K/5K maps. The
set of maps in each set are distinct. For each map, we choose a random free space cell as the goal
location. The action space consists of 4 actions: north, south, east, west. For the navigation task, the
map boundaries are considered as obstacles, while for the manipulation task the cells on the left and
right boundaries and top and bottom boundaries are connected to each other since angles are circular.
The ground truth shortest path distances are calculated using the Dijkstra algorithm (Dijkstra et al.,
1959). Unreachable locations and obstacles are denoted by −1 in the ground truth.

In addition to testing on unseen maps with the same distribution, we also test the spatial planning
models on two types of out-of-distribution datasets: More Obstacles where we generate omin = 15
to omax = 20 obstacles per map, and Real-world where the top-down maps are generated from
reconstructions of real-world scenes in Gibson dataset (Xia et al., 2018).

Hyperparameters and Training. For training the SPT model, we use Stochastic Gradient De-
scent (Bottou, 2010) for optimization with a starting learning rate of 1.0 and a learning rate decay of
0.9 per epoch. We train the model for 40 epochs with a batch size of 20. We use N = 5 Transformer
layers each with h = 8 attention heads and a embedding size of d = 64. The inner dimension of the
fully connected layers in the transformer is dfc = 512. We use the same architecture with the same
hyperparameters for training the SPT model for both navigation and manipulation for all map sizes.
We will open-source the code including dataset generation, model implementation and training.
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Navigation Manipulation Overall
Method M=15 M=30 M=50 M=18 M=36

VIN 86.19 83.62 80.84 75.06 74.27 80.00
GPPN 97.10 96.17 91.97 89.06 87.23 92.31
SPT 99.07 99.56 99.42 99.24 99.78 99.41
Table 1: Generalization to in-distribution maps. Table showing the average planning accuracy of the proposed
model Spatial Planning Transformer (SPT) as compared to the baselines on in-distribution test sets for both the
navigation and manipulation experiments.

Navigation Manipulation Overall
More Obstacles Real-World More Obstacles

Method M=15 M=30 M=50 M=15 M=30 M=50 M=18 M=36

VIN 49.05 62.05 70.64 49.91 56.67 71.16 65.27 59.81 60.57
GPPN 90.68 89.93 84.86 90.11 91.07 88.32 79.86 80.79 86.95
SPT 93.34 92.71 92.03 95.96 94.70 95.39 98.16 99.18 95.18
Table 2: Generalization to out-of-distribution maps. Table showing the average planning accuracy of the
proposed model Spatial Planning Transformer (SPT) as compared to the baselines on out-of-distribution test sets
for both the navigation and manipulation experiments.

Baselines. We use prior spatial planning models as baselines. These include Value Iteration Networks
(VIN) (Tamar et al., 2016) and Gated Path-Planning Networks (GPPN) (Lee et al., 2018). For tuning
the hyperparameter (K) for the number of iterations in both the baselines, we consider all values
of K in multiples of 10 such that the inference time of the baseline is comparable to the inference
time of the SPT model (≤ 1.1 times). For each setting, we tune K and the learning rate to maximize
performance on the validation set.

Metrics. We use average action prediction accuracy as the metric. Distance prediction is converted to
actions by finding the minimum distance cell among the 4 neighboring cells for each location. When
multiple actions are optimal, predicting any optimal action is considered to be a correct prediction.
The accuracy is averaged over all free space locations over all maps in the test set.

Results. The planning accuracy of all the methods for both the navigation and manipulation tasks on
the in-distribution test sets are shown in Table 1 and on the out-of-distribution test sets are shown in
Table 2. The proposed SPT model outperforms both the baselines across all settings achieving an
overall accuracy of 99.41% vs 92.31% (in-distribution) and 95.18% vs 86.95% (out-of-distribution)
as compared to the best baseline. The performance of the SPT model is stable as the map size
increases while the performance of the baselines drop considerably. We believe this is because both
the baselines need to use a larger number of iterations to cover a larger map (K = 60 iterations for
GPPN and K = 90 iterations for VIN for M = 50) since the information propagation is local in VIN
and GPPN. The optimization becomes difficult for such deep models. In contrast, the SPT model
uses a constant N = 5 layers for all map sizes.

The improvement in the performance of SPT over the baselines is larger in the manipulation task
because the baselines based on convolution operations are not well suited for propagating information
looping over the edges of the map. In contrast, the SPT model can use self-attention to attend to any
part of the map and learn to propagate information over the map edges.

Runtime per map in ms

Method M=15 M=30 M=50

Dijkstra 4.17 43.82 371.05
A* 3.02 35.38 294.70
SPT 2.44 4.72 18.35

Table 3: Runtime comparison. Com-
parison of average runtime per map in
milli seconds for different methods. All
values are averaged over 10000 maps.

Visualizations. In Figure 5, we show examples of predictions
of the SPT model as compared to the baselines for 3 different
input maps and goals from 3 different test sets. The examples
show that the baselines are not able to predict the distances
of distant cells accurately. This is because they propagate
information in a local neighborhood that can not reach distant
cells in the limited inference time budget (K = 30 for VIN
andK = 20 for GPPN). In contrast, the SPT is able to predict
distances of distant cells more accurately with N = 5 layers
indicating that it learns long-range information propagation.
Additional examples are provided in the Appendix.

Runtime Comparison. To demonstrate one of the benefits of learning-based planners over classical
planning algorithms, we compare the runtime of SPT to Dijkstra (Dijkstra et al., 1959) and A* (Hart
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Figure 5: Spatial Planning Examples. Figure showing 3 examples of the input, the predictions using the
proposed SPT model and the baselines, and the ground truth for map size M = 30. The obstacles are shown in
blue, free space in purple and goal in yellow in the leftmost input column. The predictions and ground truth in
the rest of the column are color-coded from blue to yellow to represent increasing action distance.

et al., 1968) algorithms in Table 3. The results indicate that SPT is 1.24× to 20.22× faster than
classical planning algorithms with the runtime benefit improving with the increase in map size.

5 EXPERIMENTS & RESULTS: END-TO-END MAPPING AND PLANNING

In the above experiments, we compared the planning performance of different methods under perfect
knowledge of the map m. In this section, we test the efficacy of spatial planning methods when map
m is unknown and needs to be predicted from sensor observations o.

Datasets. For manipulation, we generate synthetic datasets of size M = 18 using the same process
as described in Section 4. We discretize the operation space into a P × P image with P = 90 which
is used as the observation o. The train/test sets are of size 100K/5K.

For navigation, we use the Gibson dataset (Xia et al., 2018) to sample maps of size M = 15 where
each cell is 0.25m2 area. We get the camera images at the navigable locations in all 4 orientations
using the Habitat simulator (Savva et al., 2019). The set of camera images each of size 3×H ×W
act as the observation o for the navigation task, where H =W = 128. The train and test sets consist
of 72 and 14 distinct scenes identical to the standard train and val splits in the Habitat simulator.
We sample 500 maps in each scene creating training/test sets of size 36K/7K. Each sampled map is
rotated to a random orientation.

Training. We load the weights of different models trained on synthetic data from the previous section.
We then train the end-to-end model using the same action distance prediction loss while keeping the
planner weights frozen. The architecture of the mapper module is identical across different planning
methods. Metrics. We report both map accuracy and planning accuracy for both the tasks.

Baselines. In addition to using VIN and GPPN as baselines, we also use a classical mapping and
planning baseline for the navigation task. Since there is no depth input available, we used Monocular
depth estimation model from Hu et al. (2019) for predicting the map which is then used for planning
using Dijkstra as suggested by Mishkin et al. (2019).

Results. Table 4 shows the end-to-end mapping and planning results. SPT outperforms both GPPN
and VIN by a large margin across both the tasks achieving an overall plan accuracy of 82.29%
vs 63.91%. Table 4 also shows that the mapper learnt using end-to-end training with a pretrained
SPT model is able to achieve an accuracy of 98.96% for manipulation and 82.58% for navigation,
without receiving any map-level supervision. SPT also outperforms the classical mapping and
planning baseline. These results demonstrate a key benefit of learning-based differentiable planners
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Navigation Manipulation Overall
Method Map Acc Plan Acc Map Acc Plan Acc Map Acc Plan Acc

Classical 64.43 45.20 - - - -
VIN 60.92 47.77 81.25 66.45 71.08 57.11
GPPN 69.06 45.70 85.57 82.13 77.31 63.91
SPT 82.58 66.16 98.96 98.42 90.77 82.29
Table 4: End-to-End Mapping and Planning Results. Table showing the average mapping and planning
accuracy of the proposed model Spatial Planning Transformer (SPT) as compared to the baselines for end-to-end
mapping and planning experiments.

as compared to classical analytical planning algorithms. As SPT outperforms VIN and GPPN at
spatial planning, it also leads to a better map accuracy (90.77% vs 77.31%).

5.1 SPARSE AND NOISY SUPERVISION

In the above experiments, we assumed access to perfect and dense action-distance supervision. In
practice, if we were to get supervision from human trajectories, the supersion could be sparse, as we
might not have access to the optimal distance from all locations in the map, and noisy as humans
might not take the optimal actions always and computing distances from human trajectories might
be noisy. To study the effect of not having dense and perfect supervision for training the end-to-end
mapping and planning model, we consider three settings:
Noisy supervision: We add zero mean gaussian noise to all ground-truth distance values with
standard deviation, σ = 1.
Sparse supervision: Instead of providing distances from all navigable locations in the ground truth,
we provide distances for only 5 trajectories to the same goal in the training maps.
Noisy and Sparse supervision: We provide noisy distances for only 5 trajectories as supervision.

Figure 6 shows an example of noisy and sparse supervision. The results are shown in Table 5. The
SPT model maintains performance benefits over the baselines under all the settings. Interestingly,
under sparse supervision, the map prediction accuracy drops, but the planning accuracy does not drop
as much. This is because the model learns to predict minimum map required to predict the action
distances of all valid locations accurately as seen in examples shown in Figure 15 in the Appendix.

6 RELATED WORK

Path planning in known or inferred maps, also known as motion planning in robotics, is a well
explored problem led by the seminal papers (Canny, 1988; Kavraki et al., 1996; LaValle & Kuffner Jr,
2001; Karaman & Frazzoli, 2011). Although there are learned variants of motion planners proposed
in the literature using gaussian processes (Ijspeert et al., 2013; Ratliff et al., 2018), data-driven motion
planners using neural networks is a recent direction (Qureshi et al., 2019; Bhardwaj et al., 2020;
Qureshi et al., 2020). Prior work has also studied the use of neural networks to learn the heuristics and
sampling stratergies in classical planners Ichter et al. (2018); Guez et al. (2018); Satorras & Welling
(2020); Khan et al. (2020). Learning for planning is more common in Markov Decision Process
(MDPs) for computing value function via dynamic programming based value iterations (Bellman,
1966; Bertsekas et al., 1995). Planning and learning in neural networks has been explored (Ilin et al.,
2007) with a successful general formulation provided by value iteration networks (VIN) (Tamar et al.,
2016) with follow-ups to improve scalability and efficiency (Lee et al., 2018; Karkus et al., 2017;
Nardelli et al., 2018; Schleich et al., 2019; Khan et al., 2018; Chen et al., 2020). However, these
models only capture local value propagation using CNNs and are mostly applied in navigation setups.
In contrast, proposed SPTs capture long-range spatial dependency and easily scale to both navigation
and manipulation.

Differentiable planning structure has also been explored in reinforcement learning with model-free
methods (Silver et al., 2017; Oh et al., 2017; Zhu et al., 2017; Farquhar et al., 2018) as well as
off-policy RL (Eysenbach et al., 2019; Laskin et al., 2020). Recent works also backpropagate through
learned planners to train the policy (Pathak et al., 2018; Srinivas et al., 2018; Amos et al., 2018) and
use imagined rollouts of a learned world model for long-term plans (Racanière et al., 2017; Hafner
et al., 2019; Sekar et al., 2019). Unlike our work, these works lack the structure of a spatial planner.
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Figure 6: Sparse and Noisy Supervision. Figure showing examples of a map and goal with different levels of
supervision. Noisy supervision adds gaussian noise to the ground truth distance values, and sparse supervision
samples 5 trajectories for random starting locations to the goal location.

Dense and Perfect
supervision

Noisy
supervision

Sparse
supervision

Noisy and Sparse
supervision

Method Map Acc Plan Acc Map Acc Plan Acc Map Acc Plan Acc Map Acc Plan Acc

VIN 81.25 66.45 75.68 60.78 70.16 60.23 70.22 58.97
GPPN 85.57 82.13 80.13 76.11 72.73 75.13 70.08 72.85
SPT 98.96 98.42 96.35 95.83 80.15 97.18 77.17 94.34
Table 5: Sparse and Noisy Supervision Results. Table showing the average mapping and planning accuracy
of the proposed model Spatial Planning Transformer (SPT) as compared to the baselines for end-to-end mapping
and planning experiments under noisy and sparse supervision settings for the manipulation task.

Decomposing learning a controller into mapping and planning is common in robot navigation (Khatib,
1986; Elfes, 1987). Some works have explored joint mapping and planning (Elfes, 1989; Fraundorfer
et al., 2012). Maps can also be built from vision (Konolige et al., 2010; Fuentes-Pacheco et al., 2015)
with a learned mapper (Parisotto & Salakhutdinov, 2017; Karkus et al., 2020). There has been some
work on learning maps without using map annotations as well (Gregor et al., 2019). For navigation
specific applications, recent works proposed joint mapping and planning for navigation (Gupta et al.,
2017; Zhang et al., 2017; Savinov et al., 2018; Chaplot et al., 2020). However, most of these works
either require access to ground truth map or assume interaction. Hence, they will first need to be
trained in simulation. In contrast, we show results when the map is not known to the agent by learning
just from trajectories and can be directly learned from data collected in the real-world.

7 DISCUSSION

The SPT model is designed to learn long-range spatial planning and it outperforms baselines across
multiple experimental settings on both navigation and manipulation tasks. End-to-end learning
experiments demonstrate that the SPT model can deal with unknown maps by learning mapping
without any map-supervision. However, there are some limitations that need to be addressed before
learning-based planning methods can be used for large-scale applications. We showed that the SPT
model scales much better with increasing map sizes as compared to the baselines, however larger map
sizes lead to a high inference time. In the future, we plan to tackle larger map sizes by learning an
encoding which reduces the size of the map before spatial planning. The action space was limited to
4 actions in our experiments. Actions can be more fine-grained with smaller cells in the map, which
can also be incorporated by tackling larger map sizes in the future.
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A BACKGROUND: TRANSFORMERS

The proposed spatial planning method is based on the Transformer model (Vaswani et al., 2017). A
Transformer layer, denoted by fTL, takes a tensor X ∈ Rd×S as input, where d is the embedding size
and S is the size of the input. It consists of two sublayers, a multi-head self-attention layer (fSA)
and a position-wise fully connected layer (fFC). There is a residual connection around each sublayer,
followed by layer normalization (Ba et al., 2016) (LN):

R = LN(fSA(X) +X), Y = fTL(X) = LN(fFC(R) +R)

where R, Y ∈ Rd×S are the intermediate and final representations, respectively.

The multi-head self-attention (fSA) layer has h attention heads, each computes a scaled dot-product
attention over queries Q, keys K and values V , which are all different projections of the input X:

Qi =WT
Q,iX, Ki =WT

K,iX, V =WT
V,iX

Zi = Attention(Qi,Ki, Vi) = softmax

(
QiK

T
i√

dk

)
Vi

where Q,K ∈ Rdk×S , V ∈ Rdv×S , i ∈ 1, 2, . . . , h dk and dv are hyper-parameters and all W s
are parameters. The output of all attention heads, Zis, are concatenated and projected to the same
dimension as the input. Finally, the position-wise fully connected (fFC) layer applies two linear
transformations to each position with a ReLU activations to the output of the multi-head attention.

B DATASET DETAILS

We generate synthetic datasets for training the spatial planning models for both navigation and
manipulation settings. For the navigation setting, we perform experiments with M ×M maps with
two different map sizes, M ∈ {15, 30}. We randomly generate omin = 0 to omax = 5 obstacles in
each map, where each obstacle is an rectangle at a random location with each side being a random
length from 1 to M/2. All the rectangular obstacles are rotated in two random orientations.

For the manipulation setting, we consider a reacher task using a planar arm with 2 degrees of freedom.
We use an operational space of size P × P . Each link of the arm is of size P/4. The arm is centered
at the center of the operational space. Let the orientation of two links be denoted by θ1 and θ2.
We assume both the links can freely rotate in a plane, θ1, θ2 ∈ [0, 2π). For each environment, we
generate omin = 0 to omax = 5circular obstacles centered at a random location 0.25P to 0.75P
distance away from the center, with a random radius between 0.05P and D − 0.15P where D is
the distance of the center of the obstacle from the center of the operational space. We convert each
environment to a configuration space map of size M ×M , where each cell (i, j) denotes whether
the arm will collide with an obstacle when θ1 = 2πi/M and θ2 = 2πj/M . We experiment with two
map sizes, M ∈ {18, 36}, corresponding to 20◦ and 10◦ bins for each link. The choice of P does
not affect the map as the collision check for each cell in the configuration space is performed in the
continuous operational space where all distances are relative to P .

C NAVIGATION MAPPER ARCHITECTURE DETAILS

The Navigation Mapper module predicts a single value between 0 and 1 for each image in o indicating
whether the cell in the front of the image is an obstacle or not. The architecture of the Navigation
mapper consists of ResNet18 convolutional layers followed by 3 fully-connected layers of size 256,
128 and 1 as shown in Figure 7. Each cell can have upto 4 predictions (from images corresponding to
the four neighboring cells facing the current cell), which are aggregated using max pooling to get a
single prediction.

D HIGHER DIMENSIONAL STATE AND ACTION SPACES

To test whether SPT maintains performance benefits in higher dimensional state and action spaces,
we conducted some experiments for the navigation task. We relaxed the action space from 4 actions
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Figure 7: Navigation Mapper Architecture. Figure showing the architecture of the Navigation Mapper.

to 100 actions by just allowing the agent to take any action in a 10x10 grid around it (and using
a low-level controller to go to any cell). The state space used for planning is discretized but the
agent moves in a continuous state space in the Habitat simulator. We compute the continuous ground
truth distance using Fast Marching Method (instead of Dijkstra) for training with a larger action
space, which allows us to accurately compute distance for all locations and not be constrained by
axis-aligned actions and distances.

SPT and the baselines are trained only on synthetic navigation mazes for this experiment. During
evaluation, we assume perfect map based on part of the environment seen in the observations so far
for planning. If the overall map size at this level of discretization is higher than planning map size,
we simply use greedy planning in a window around the agent resulting in an “anytime” variant just
like the classical RRT algorithms. This setup results in much finer-grained action space as shown in
the demo example here 1. SPT achieve navigation success rate of 78.0% as compared to 47.2% for
GPPN and 43.5% for VIN baselines.

E ATTENTION VISUALIZATION

We show the visualization of attention map corresponding to two different locations in Figure 8.
Interestingly, we noticed three consistent patterns: a) at least one of the attention head out of eight
captures obstacles (left), b) one of the attention heads focuses on goal location (middle), and c) some
attention maps focus on nearby obstacles to get accurate planning distance (right).

Figure 8: Attention Visualization. Visualization of the attention heads learned by Spatial Planning Transform-
ers. SPTs learn an attention for each location in the map with respect to every other location.

F EXAMPLES

We show additional examples for navigation task for in-distribution test set (in Figure 9), out-of-
distribution More Obstacles test set (in Figure 10) and Real-World test set (in Figure 11) each with
map size M = 30. Additional examples for manipulation task are shown for in-distribution test set
(in Figure 12) and for out-of-distribution More Obstacles test set (in Figure 13).

We also visualize examples for the end-to-end mapping and planning experiments for the manipulation
task. We show examples of map and action distance predictions using the SPT model trained with
dense and perfect supervision in Figure 14 and with noisy and sparse supervision in Figure 15.

1https://youtu.be/sNHDhb3t7AM
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Figure 9: Navigation in-distribution test set examples. Figure showing 3 examples of the input, the predic-
tions using the proposed SPT model and the baselines, and the ground truth for the Navigation in-distribution
test set for map size M = 30.

Figure 10: Navigation out-of-distribution More Obstacles test set examples. Figure showing 3 examples
of the input, the predictions using the proposed SPT model and the baselines, and the ground truth for the
Navigation out-of-distribution More Obstacles test set for map size M = 30.
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Figure 11: Navigation out-of-distribution Real-World test set examples. Figure showing 3 examples of the
input, the predictions using the proposed SPT model and the baselines, and the ground truth for the Navigation
out-of-distribution Real-World test set for map size M = 30.

Figure 12: Manipulation in-distribution test set examples. Figure showing 3 examples of the input, the
predictions using the proposed SPT model and the baselines, and the ground truth for the Manipulation in-
distribution test set for map size M = 36.
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Figure 13: Manipulation out-of-distribution More Obstacles test set examples. Figure showing 3 examples
of the input, the predictions using the proposed SPT model and the baselines, and the ground truth for the
Manipulation out-of-distribution More Obstacles test set for map size M = 36.

Figure 14: Dense and Perfect Supervision. Figure showing examples of map and distance predictions using
the SPT model trained with dense and perfect action-level supervision.
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Figure 15: Sparse and Noisy Supervision. Figure showing examples of map and distance predictions using
the SPT model trained with sparse and noisy action-level supervision.
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