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(b) ShoeFit has demonstrated excellent preservation
of the fidelity of footwear across real-world scenes.

(a) We illustrate the challenges in VFTON. (1) Subtle variations make it difficult
to match data pairs. (2) Information needed by the target view is often not provided 

in the given product image. (3) Shoes often exhibit complex reflections and shadows 
that interact with environment lighting,  leading to a confusion of their natural color.
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Figure 1: VFTON presents three challenges, while ShoeFit gives a successful solution.

Abstract

Virtual footwear try-on (VFTON), a critical yet underexplored area in virtual try-on
(VTON), aims to synthesize faithful try-on results given diverse footwear and model
images while maintaining 3D consistency and texture authenticity. Unlike conven-
tional garment-focused VTON methods, VFTON presents unique challenges due
to (1) Data Scarcity, which arises from the difficulty of perfectly matching prod-
uct shoes with models wearing the identical ones, (2) Viewpoint Misalignment,
where the target foot pose and source shoe views are always misaligned, leading to
incomplete texture information and detail distortion, and (3) Background-induced
Color Distortion, where complex material of footwear interacts with environmen-
tal lighting, causing unintended color contamination. To address these challenges,
we introduce MVShoes, a multi-view shoe try-on dataset consisting of 7305 well-
annotated image triplets, covering diverse footwear categories and challenging
try-on scenarios. Furthermore, we propose a dual-stream DiT architecture, ShoeFit,
designed to mitigate viewpoint misalignment through Multi-View Conditioning
with 3D Rotary Position Embedding, and alleviate background-induced distortion
using the LayeredRefAttention which leverages background features to modulate
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footwear latents. The proposed framework effectively decouples shoe appear-
ance from environmental interferences while preserving high-quality texture detail
through decoupled denoising and conditioning branches. Extensive quantitative
and qualitative experiments demonstrate that our method substantially improves
rendering fidelity and robustness under challenging real-world product shoes, es-
tablishing a new benchmark in high-fidelity footwear try-on synthesis. The dataset
and benchmark will be publicly available upon acceptance of the paper.

1 Introduction

Virtual Footwear Try-On (VFTON) involves synthesizing product shoes onto human foot images,
preserving their geometric structure and material properties, based on input images of both the source
product and the target foot. VFTON offers significant commercial potential and academic value, with
Nike’s annual footwear sales reaching 33,427 million dollars (48), while shoes, as complex 3D multi-
view objects (57), present unique challenges in research on controllable generation. Unfortunately,
this field has not been sufficiently explored within the community.

There are three main challenges hindering the advancement of VFTON. (1) Data Scarcity: Due to
the prevalence of footwear with similar appearances but subtle variations, as in Fig. 1 (a-1), such
as slight differences in shoelaces, heels, and stripes, it is challenging to accurately match product
shoes with models wearing the identical ones. Further exacerbating this issue, companies tend to
keep data related to shoe try-ons confidential due to its clear commercial value (75; 19). As a result,
there is currently no available open-source dataset for footwear try-ons. (2) Viewpoint Misalignment:
Unlike flat-lay 2D garment VTON, where both the target garment and human pose are captured
from aligned front-facing perspectives, as in Fig. 1 (a-2), virtual footwear try-on inherently involves
mismatched viewpoints between in-shop product images (source view) and target human poses (target
view). Specifically, information needed by the target view is often not provided in the given product
image due to 3D constraints, creating an information-deficient scenario that results in detail distortion
and artifacts (42; 56). (3) Background-induced Color Distortion: Unlike the diffuse reflection
properties of knitted fabrics in clothing, which ensure visual color largely remains unaffected by the
background, shoes often exhibit complex reflective properties that interact with ambient lighting (32),
making them more susceptible to visual interference from background colors, as in Fig. 1 (a-3). This
interaction between appearance and background leads to color contamination from surroundings and
distorted material rendering in synthesized results. The above issues are first identified and explicitly
proposed in this paper, which make it impossible for VFTON to share the same pipeline as VTON,
thus presenting VFTON with unique challenges and research value.

To tackle these challenges, we introduce MVShoes, the first multi-view footwear try-on dataset. It
comprises 7305 annotated high-resolution image triplets, each containing two product shoe images
from different views and a corresponding try-on result, as shown in Fig. 2 (a). The dataset covers a
diverse range of shoe categories and try-on scenarios, supported by a comprehensive and rigorous data
cleaning pipeline to ensure accurate matching of identical product shoes with their human images.

Furthermore, we propose ShoeFit, a customized dual-image-stream DiT (51) architecture for VFTON,
which generates high-fidelity try-on results through decoupled denoising and conditioning branches.
ShoeFit is also equipped with two key improvements: (1) Multi-View Conditioning, incorporat-
ing reference concatenation (10) and corresponding 3D Rotary Position Embedding (3D RoPE).
While a single source product view often fails to provide complete shoe texture features required
for the target try-on view, the try-on results can significantly benefit from multiple source views,
effectively reducing uncertainty in target surface rendering and minimizing texture distortion.
(2)LayeredRefAttention Module. LayeredRefAttention leverages background features to modulate
shoe features (28), decoupling the intrinsic shoe appearance from the surroundings. Additionally, the
subsequent denoising attention suppresses background-related computations, effectively mitigating
background color contamination. This layer-aware attention mechanism significantly enhances
robustness in real-world footwear try-on scenarios. Our contributions are summarized as follows:

• We formally define the VFTON problem, reporting the unique issues of Data Scarcity, View-
point Misalignment and Background-induced color distortion across real-world scenarios.

• We curate the first shoe try-on dataset, containing 7305 pairs of high-quality multi-view
garment-model samples, paving the way for subsequent footwear try-on studies.
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Figure 2: We illustrate examples of the MVShoes dataset in (a) and data processing pipeline in (b).

• We introduce a dual-stream architecture with Multi-View Conditioning and LayeredRefAt-
tention modules to address the challenges in VFTON.

• Both quantitative and qualitative experiments validate the superiority of our approach.

2 Related Works

Image-based Virtual Try-on. The virtual try-on task is concerned with synthesizing images of a
person donning the designated garment with appropriate fit (21), while retaining salient characteristics
of the original garment and person, given a pair of images depicting a person and a target garment.
To execute this task, numerous works (14; 26; 36; 4; 11; 20) have utilized Generative Adversarial
Networks (GANs) (17) with two-stage strategy (37; 16; 66): (1) warping the clothing to the desired
shape (5; 40) and (2) fusing the deformed clothing via try-on generator based on GAN. As significant
progress in Text-to-Image diffusion models (22; 47; 25; 8) is witnessed in recent years, some
works (6; 18; 45; 29; 38) have been motivated to incorporate pre-trained diffusion models (55; 52)
as priors into virtual try-on task. Most recently, OOTDiffusion (65), IDM (9), and MMTryon (75)
achieve garment feature extraction with a parallel U-Net and feed them through self-attention for
enhanced integration. CatVTON (10) concatenates the garment and person images along the spatial
dimension and feed them into a single UNet. Unfortunately, these methods serve for fabric clothing,
intrinsically lack support for faithful try-on to 3D multi-view shoes with various materials, exhibiting
severe color contamination from the background.

Controllable Diffusion Models. To attain conditional control in diffusion models, T2I-Adapter (46)
and IP-Adapter (69) incorporate additional trainable modules to fuse condition features. Additionally,
some investigations utilize various prompt engineering techniques (39; 68; 73) and implement cross-
attention constraints (7; 64; 27; 74) to facilitate more controllable generation. Recently, the release of
FLUX (33) and SD3 (15) has sparked renewed interest in DiT architectures (51) with subsequent
conditional frameworks such as Flux.1 Fill (34) and Flux.1 Redux (35) achieving inpainting and object
injection capabilities through enhanced encoder designs. However, these methods remain constrained
by coarse-grained conditioning mechanisms, which fail to ensure generation fidelity—particularly in
VFTON tasks with high geometric variability and stringent fidelity requirements.
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3 MVShoes Dataset

We collect the first footwear try-on dataset which contains a total of 7305 annotated high-resolution
image triplets, each consisting of two product shoe images from different views, and a corresponding
try-on result. The dataset features diverse shoe categories and includes foot-specific pose landmarks
and shoes-agnostic masks to facilitate precise alignment.

3.1 MVShoes Collection

All images are sourced from the Internet and include a diverse range of model scenarios such as
full-body models, half-body models, foot close-ups, as well as a comprehensive variety of shoe
categories, effectively meeting practical application needs. Initially, we collected approximately
25,000 raw shoe product image sets, each consisting of 2 to 5 images per shoe, including standalone
product images and images of people wearing the shoes from different perspectives.

Data Processing. We first employ Qwen-VL (3) to differentiate between product footwear images
(without humans) and try-on images featuring human models. Subsequently, we use the CLIP
model (53) to extract image features and set a similarity threshold to eliminate duplicate images
within the same raw image set. Next, we segment the shoe region in each image, match the DINO (43)
features and assess their similarity to filter those data pairs with different footwear colors and styles.
This process results in the formation of preliminary human-footwear try-on triplets, followed by
manual filtering to eliminate any errors or oversights. We then remove visually blurred images and
compile statistics on shoe categories and try-on scenarios. Finally, following the method proposed
in DWPose (67) and Grounding DINO (43), we extract foot poses and shoe-agnostic masks. This
process culminates in the creation of high-resolution, category-comprehensive try-on triplets. The
data processing pipeline is illustrated in Fig. 2 (b).

3.2 Dataset Statistic

Figure 3: The category distribution of MVShoes.

Rich Scenes. In conventional VTON tasks (37;
12), model images typically consist of full-body
or upper-body views. However, given that
footwear occupies a relatively small proportion
of the body in VFTON tasks, full-body and half-
body models are less effective in showcasing
shoe details. To address this, we simulate the
distribution of footwear model scenes observed
on e-commerce platforms and curate 4 model
scenarios: top-down foot close-up, horizontal
foot close-up, half-body model, and full-body
model, as illustrated in Fig. 3, where horizontal
foot close-ups constitute the largest proportion.
In such cases, accurate preservation of side de-
tails is particularly challenging, especially when
compounded by viewpoint misalignment.

Diverse Footwear Categories. We also prior-
itize the comprehensiveness of footwear cate-
gories. By annotating shoe attributes (2), we
establish a two-level product category label set
and ensure that its distribution aligns with ev-
eryday use, as depicted in Fig. 3. Notably, we
observe that environmental lighting often affects the visual appearance of footwear, where reflections
introduce background color contamination, particularly in categories such as boots, leather shoes,
and high heels.
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(a) Existing pipeline for image conditions:
integrate image conditions by concatenation

(b) Our proposed dual-image-stream ShoeFit with Multi-view 
Conditioning and LayeredRefAttention Module 
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Figure 4: We illustrate existing and our DiT framework comparison in (a)-(b), and heatmaps visual-
ization for component validation of Multi-view Conditioning and LayeredRefAttention in (c)-(d).

4 Method

An overview of the ShoeFit is presented in Fig. 4 (b). Given a human image X and target shoe images
C

(n)
I , ShoeFit is aimed to generate an authentic try-on image. The backbone of ShoeFit employs

the FLUX.1-Lite (33), with a customized dual-image-stream architecture in Sec. 4.1: denoising
image stream and a copy of it as as conditioning branch to replace text modality. The features
of human images and multi-view shoes are then integrated through Reference Concatenation and
LayeredRefAttention modules, which are described in Sec. 4.2 and 4.3.

4.1 Dual-image-stream DiT Framework

The original FLUX (33) is a text-to-image model composed of a series of stacked MM-DiT blocks.
Earlier works (60; 61) directly concatenate Image/Text condition tokens with noisy image tokens
such as [X;CI ;CT ], relying on a single denoising stream to finish condition extraction and denoising,
while the other deal with text modality, as shown in Fig. 4(a). However, for VFTON, the generated
try-ons are primarily determined by the given shoe images rather than limited semantic prompts.
Thus, we remove the text stream from FLUX, achieving approximately 40% parameter savings,
including those for T5 (54) and CLIP models (53). Instead, we replicate a portion of the denoising
stream’s architecture and weights to initialize the conditioning image stream, establishing a dual-
image-stream framework. This design decouples feature preservation of shoe details from the
high-quality generation process, allocating additional effective model capacity to enhance overall
fidelity performance compared to direct token concatenation approaches (60; 61).

4.2 Multi-view Conditioning

In VFTON, the information about shoes from the try-on view remains incomplete due to view mis-
match and 3D-to-2D projection occlusion (63). The inherent misalignment between source product
images and target human images leads to unfaithful and physically implausible try-on results. Ob-
serving that e-commerce platforms often provide multiple-view product images (e.g., front, side, top
views), we introduce a multi-view shoe image dataset and propose a multi-view conditional injection
mechanism via Reference Concatenation and 3D RoPE. The additional perspectives comprehensively
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encompass more aspects of the shoe, as illustrated in Fig. 4 (c), significantly reducing uncertainty
during generation and delivering high-fidelity and commercially viable synthetic results.

Reference Concatenation. Inspired by CatVTON (10), we adopt a simple yet effective multi-view
injection strategy: concatenate multi-view conditioning shoe images along the spatial dimension
as: Ccat

I = [C1
I , C

2
I , ...C

N
I ] ∈ Rb×N ·l×c, where b s the batch size, l denotes the number of image

tokens per conditioning image, and c is the feature channel. The concatenated multi-view latent
Ccat

I is then fed into the conditioning image stream for feature extraction and interaction with the
target human image. Concurrently, the denoising stream receives 4 concatenated components with
16 + 16 + 1 + 16 channels: the noisy human latents Xt, the latent shoe-agnostic masked image
E(Xmasked), the resized agnostic mask Xm, and the foot pose landmarks E(Xpose), where E(·)
represents VAE (30) encoding. The effectiveness of Reference Concatenation stems from the global
attention interactions in attention layers. Intuitively, during the attention, each Query patch in the
human image accesses and matches the most semantically relevant Key-Value pairs from the full
set of concatenated multi-view product features, as illustrated in Fig. 4 (c). As a result, our method
ensures consistent alignment between all regions in the target pose and their corresponding details in
the product images, thereby achieving high-fidelity virtual try-on.

3D RoPE. However, naive Reference Concatenation introduces position misalignment in the relative
positional relation of conditioning images. FLUX employs an essentially 2D RoPE scheme (58) to
encode spatial relative relationships along the height and width dimensions, where the inner product
in attention depends solely on the token embeddings xm, xn and their relative distances m− n:

⟨fq(xm,m), fk(xn, n)⟩ = g(xm, xn,m− n). (1)

When multi-view conditioning images are naively concatenated, discontinuous semantic jumps
emerge at the concatenation boundaries, where tokens with small relative distances may correspond
to semantically distant regions (i.e., different views of the footwear).

To address this issue, we extend the 2D RoPE to three dimensions. Specifically, EposID =
concat[En

posID;Eh
posID;Ew

posID] ∈ RH×W×3, where the first channel En
posID serves as a index

mask to separate different conditioning views, while the second and third channels E{h,w}
posID encode

spatial positions within each image along the height and width dimensions, respectively. Within each
channel of E{n,h,w}

posID , frequency encoding is performed given a base frequency of θ = 10000.

ωd =
1

θ2d/D
, for d = 0, 1, ...,

D

2
− 1, v{n,h,w} = E

{n,h,w}
posID · ωd ∈ RH×W×{Dn,Dh,Dw}

2 , (2)

where hype-parameters Dn, Dh, Dw is predefined as 16, 56, 56. Subsequently, we obtain positional
rotation matrices R1D for each of the n, h,w channels internally. By concatenating these matrices
along D dimension, we construct 3D RoPE matrix R3D ∈ RH×W× (Dn+Dh+Dw)

2 ×2×2 as follow:

R
{n,h,w}
1D =

[
cos(v{n,h,w} −sin(v{n,h,w})
sin(v{n,h,w}) cos(v{n,h,w})

]
, R3D = concat[Rn

1D;Rh
1D;Rw

1D] (3)

4.3 LayeredRefAttention Module

We observe that the appearance of the synthesized shoes is highly susceptible to contamination
from the background colors of the conditioning images. This phenomenon arises from the complex
reflective material of footwear interacting strongly with environmental lighting, termed Background-
induced Color Distortion. Specifically, the issue arises when Query patches from the human image
inadvertently match key-value pairs originating from the background regions of the conditioning
image, as illustrated in Fig. 4 (d). A naive solution involves masking out background regions during
attention, but this would neglect critical illumination cues embedded in the background, which are
essential for accurately inferring the shoe’s intrinsic appearance and texture (32).

To address this challenge, we propose a layer-aware attention module called LayeredRefAttention
to explicitly differentiate between background and foreground content in the conditioning images, as
illustrated in Fig. 4 (b). By leveraging background features to modulate foreground shoe features,
our method decouples the intrinsic shoe appearance from its background context (28). Subsequent
denoising stream attention computations are restricted to interactions between the foreground shoe
content and the target human image, effectively eliminating background illumination effects while
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Table 1: Quantitative comparison on MVshoes. ShoeFit significantly surpasses all baselines.
View Num. Method SSIM ↑ LPIPS ↓ FID ↓ KID ↓ DISTS ↓

1-View

FLUX.1-Fill (34) 0.725 0.201 24.44 2.221 0.1293
FLUX.1-Fill-Redux (35) 0.724 0.199 24.67 2.086 0.1274
OOTDiffusion-SDXL (65) 0.724 0.194 22.60 2.345 0.1114
CatVTON-Flux-Lite (10) 0.745 0.185 22.71 3.327 0.1179
ShoeFit-1V 0.772 0.159 21.07 0.944 0.1059

2-View CatVTON-Flux-Lite-2V (10) 0.756 0.171 22.64 3.318 0.1040
ShoeFit-2V 0.780 0.149 20.18 0.485 0.0941

avoiding background color contamination. Specifically, for n ∈ {1, ..., N} conditioning view C
(n)
I ,

we employ a Squeeze-and-Excitation (SE) block (24) followed by global average pooling over spatial
dimensions to compute channel-specific weights:

P (n) = AvgPool(SE(C
(n)
I ) ∈ Rb×c. (4)

Subsequently, we employ two linear layers F (·) to extract background modulation parameters
and modulate foreground shoe features, filtering irrelevant environmental lighting and background
reflection to ensure faithful material preservation of shoes as:

β
(n)
scale, β

(n)
shift = F (P (n)), C

(n)
fg = (1 + β

(n)
scale) · (LN(C

(n)
I ⊙M

(n)
fg )) + β

(n)
shift, (5)

where LN(·) means layer normalization and M
(n)
fg represents the binary shoe masks for conditioning

product image. The attention variables {K,V }(n)c,fg extracted from N views of modulated foreground
conditioning feature are concatenated with the corresponding {Q,K, V }img from human image for
subsequent denosing-stream attention:

Q
(n)
C,fg,K

(n)
C,fg, V

(n)
C,fg = QKV (C

(n)
fg ), (6)

Attnimage = softmax(
Qimg · concat(Kimg;K

1,...,N,⊤
C,fg )

√
d

) · concat(Vimg;V
1,...,N
C,fg ). (7)

Meanwhile, the conditioning-stream branch performs attention computation using unmasked condi-
tioning latents as:

Q
(n)
C ,K

(n)
C , V

(n)
C = QKV (LN(C

(n)
I )), AttnC = softmax(

Q1,...,N
C ·K1,...,N,⊤

C√
d

) · V 1,...,N
C . (8)

To clarify our contributions, we omit the distillation strength normalization and final residual con-
nections in the attention layer of FLUX.1-Lite (33) that remain unchanged from the original imple-
mentation. In summary, LayeredRefAttention effectively enables material-background decoupling
by modulating foreground shoe features to recover intrinsic color properties, resulting in texture-
preserving footwear try-on synthesis, as illustrated in Fig. 4 (d).

5 Experiments

5.1 Experimental Setup

Implementation Details. We employ the FLUX.1-Lite (33) as the backbone and customize a dual-
image-stream architecture as in Sec. 4.1. Our experiments are carried out on MVShoes at a resolution
of 768× 768, with 6305 pairs for training and 1000 pairs for testing. The model is trained for 7 days
on 8 80GB-A100 GPUs with DeepSpeed (1) ZeRO-2 to reduce memory usage, at a batch size of 4.
All parameters of DiT are trainable, using an AdamW optimizer (44) with a constant learning rate of
3e− 5. At inference time, we run ShoeFit on a single A10 GPU for 25 steps. The data augmentation
follows the same protocol as in StableVTON (29). Please refer to Appendix for more details.
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Figure 5: Comparisons on the hard scenes, where ShoeFit delivers high-fidelity and rubost results.
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Figure 6: Ablation study. We highlight the improvements by all three components of method in red.

Evaluation Protocols. Following evaluation in prior VTON works (45), we measure reconstruction
accuracy by LPIPS (72), SSIM (62) and DISTS (13) in a paired setting given ground truth images,
and authenticity of unpaired synthesized images by FID (50) and KID (59) without ground truth.

Baselines. As a subtask of inpainting, we first select two widely used inpainting FLUX variants
as baselines: FLUX.1-Fill (34) and FLUX.1-Fill-Redux (35). The former involves concatenating
product images with human images on the spatial dimension, similar to CatVTON (10). The latter
enhances the conditioning stream with SigLip (70) to incorporate product shoe images. Additionally,
we compare ShoeFit to two state-of-the-art methods in the VTON field: OOTDiffusion (65) based
on the SDXL (52) and CatVTON (10) built upon the FLUX.1-Lite. All models are implemented as
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originally deployed for single-view product shoe conditional generation. Considering CatVTON’s
capability to easily extend to multi-image injection, we further train a version of CatVTON to
simultaneously inject two product views, the same as ShoeFit, denoted as CatVTON-FLUX-Lite-2V.
Please refer to Appendix for more implementation details.

5.2 Qualitative Results

Fig. 5 provides a qualitative comparison between ShoeFit and the baselines on MVShoes, addressing
challenges such as complex structures, background interference, and difficult target poses. For a fair
comparison, we report the results of the single-view conditioning version of all methods. Notably,
we observe that OOTDiffusion (65) tends to exhibit extreme color variations, while FLUX.1-Fill-
Redux (35) and FLUX.1-Fill (34), possibly affected by the limitation of only LoRA (23) being
trainable (r=64), often produce visually plausible results that do not strictly adhere to the input
conditions. In contrast, ShoeFit accurately generates structural details of the shoes (rows 1 and 2),
decouples environmental lighting (row 3), avoids background confusion (row 4), and demonstrates
robustness to uncommon poses (row 5). Please refer to the Appendix for more results.

5.3 Quantitative Results

For a fair comparison, we report the results of one/two product view conditioning generation separately
in Tab. 1. FLUX.1-Fill-Redux (35) and FLUX.1-Fill (34) achieve the worst FID and DISTS scores,
while OOTDiffusion (65) and CatVTON (10) show complementary performance in unpaired and
paired evaluations. ShoesFit, benefiting from the additional specialized parameters provided by the
Dual-image-stream DiT framework and background decoupling enabled by the LayeredRefAttention,
significantly surpasses all baselines under both single-view and multi-view conditional generation.

5.4 Ablation Study

To validate our technical contributions, we define a Vanilla Model that uses FLUX.1-Lite as the
backbone, deploying both a text-stream and an image-stream as in Fig. 4 (a). Multi-view Conditioning
and LayeredRefAttention Module are removed, using only one footwear image as conditioning.

Dual-image-stream DiT Framework. Since the text-stream only provides high-level semantics,
its utility is limited in VFTON, which demands high image fidelity. Therefore, we first remove the
text-stream and replicate a portion of the denoising stream’s architecture and weights to initialize
the conditioning image stream, effectively decoupling the conditional feature extraction from the
denoising process, while keeping the Vanilla Model’s other settings unchanged(denoted as “+ D-i-s”).
As shown in Tab. 2 and Fig. 6, the vanilla model often generates artifacts and incorrect structures
facing high-frequency textures due to the limitation in effective network capacity and the weakness
in coupling of conditional images and noise. This demonstrates that the Dual-image-stream DiT
framework plays a fundamental role in enhancing the model’s expressive capabilities.

LayeredRefAttention Module. Observing the visual contamination from background and environ-
mental lighting, we further integrate the LayeredRefAttention into the “+ D-i-s” version, denoted as “+
D-i-s + LRA”, which effectively decouples the intrinsic appearance of the shoe from its surroundings.
As illustrated in Tab. 2 and Fig. 6, the model without LayeredRefAttention often fails to accurately
reproduce the natural colors of the shoe where environmental lighting or shadows of product images
are prominent, resulting in outputs that are mixed with environmental light or shadows. Additionally,
mismatches with background patches in Attention can introduce colors confusion from the back-
ground content, such as slippers being contaminated by floor colors in Column 3 of Fig. 6. In contrast,
the one with "LRA" effectively avoids such color contamination, delivering superior try-on results.

To investigate the efficacy of simple background masking, we conducted an ablation study utilizing
standard attention while removing the background from the product shoe images. Visually, this naive
approach exacerbates color artifacts, particularly for highly saturated hues. We hypothesize that this
occurs because removing the background discards crucial illumination cues embedded in the product
image, which are essential for the model to infer the shoe’s intrinsic material properties and texture.
Given that the training set contains inherent color variations between in-studio product shots and
on-foot images due to disparate lighting, forcing the model to operate without background context
introduces lighting ambiguity. Consequently, the model struggles to maintain color constancy, leading
to degraded try-on performance and reduced visual fidelity.
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Table 2: Quantitative ablation study of each component in Section of Method.

Method SSIM ↑ LPIPS ↓ FID ↓ KID ↓ DISTS ↓
Vanilla Model 0.745 0.185 22.71 3.327 0.1179
+ D-i-s 0.761 0.174 21.57 1.493 0.1038
+ D-i-s + Standard Attn (w/ mask) 0.756 0.181 21.70 1.698 0.1056
+ D-i-s + LRA (w/ mask) 0.772 0.159 21.07 0.944 0.1059

+ D-i-s + LRA + MC (w/o 3D RoPE) 0.778 0.152 20.18 0.695 0.0971
+ D-i-s + LRA + MC (Full) 0.780 0.149 20.18 0.485 0.0941

Multi-view Conditioning System. While a single source product view often fails to capture the
complete texture of footwear, try-on results can benefit from multiple source views, thereby effectively
reducing uncertainty in generation. Thus, we introduce the Multi-view Conditioning pipeline using
Reference Concatenation and 3D RoPE in the “+ D-i-s + LRA” version, denoted as “+ D-i-s +
LRA + MC”. As demonstrated in Tab. 2 and Fig. 6, the model without “MC”, which uses only
one product shoe image as input (yellow box), often generates unrealistic speculations and artifacts
in unseen areas due to insufficient conditional information. In contrast, ShoeFit benefits from
the Multi-view Conditioning system, producing details that are more faithful to the input across
different views. Furthermore, we also conduct an ablation study upon 3D RoPE’s impact in Tab. 2,
demonstrating the performance gain we achieve using the proposed RoPE without incurring any
additional computational overhead. Please refer to the Appendix for more ablation results.

5.5 Inference Time and Memory Usage

We evaluated the efficiency of our proposed enhancements by measuring inference time and memory
footprint on an NVIDIA H20 GPU (with batch size of 1, 25 steps, and torch.bfloat16 precision).
The results, presented in Table 3, reveal that the ShoeFit model with our Dual-image-stream (D-i-s)
architecture substantially outperforms CAT-VTON in both speed and memory efficiency. This stems
from removing the text stream and its computationally expensive T5 and CLIP encoders.

Table 3: Comparison of inference time and GPU memory usage across different architectures.

Method Inference Time per Image GPU Memory Usage
Cat-VTON (image + text streams) 22.27 seconds 35.5 GB
ShoeFit (Dual-image-stream, D-i-s) 17.44 seconds 22.0 GB
ShoeFit + D-i-s + LayeredRefAttention 21.15 seconds 28.5 GB

6 Conclusion

In conclusion, we formally define the VFTON problem and curate the first shoe try-on dataset,
MVShoes, containing 7305 pairs of high-quality multi-view garment-model samples. Our proposed
framework addresses the critical challenges of viewpoint misalignment and background-induced
color distortion by leveraging a dual-stream architecture with Multi-View Conditioning and Layere-
dRefAttention modules. Through a comprehensive evaluation on the proposed MVShoes dataset, we
demonstrate significant improvements in detail fidelity and texture consistency across diverse scenar-
ios. This indicates that our method effectively mitigates background interference while preserving
fine-grained shoe details across views, establishing a strong baseline for future VFTON research.

Broader impacts. With the ability to synthesize images, arises the risk that ShoeFit might be used for
inappropriate purposes such as producing media that breaches intellectual property rights or privacy
norms. Because of these risks, we strongly advocate for the conscientious use of this technology.

Limitation and future work. ShoeFit demonstrates substantial improvements in generating high-
fidelity footwear try-on images across diverse scenes. However, certain limitations persist. Firstly,
the model occasionally struggles with accurately rendering small logos and intricate text, particularly
critical for e-commerce sellers. Secondly, we hope to introduce explicit 3D geometric and material
priors in the future to achieve more robust multi-view representation and refined visual fidelity.
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one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We introduce the first usable dataset in this area. Should our paper be accepted,
we will release the dataset and benchmark to the public. While the code for the paper is not
open-sourced, we have provided comprehensive instructions necessary for replication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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Justification: We have provided all the training and test details. Please refer to the "Experi-
mental Setup" part in the main paper and other related sections in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We adhered to the common evaluation practices established by prior work
in the similar field. Error bars are not reported because it would be too computationally
expensive. We believe that the metrics reported in main paper prove the efficacy of the
model we proposed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the sufficient information on the computer resources for each
experiment in "Experimental Setup" part.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper fully conforms to the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please refer to the broader impacts part in the main paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We propose a comprehensive and rigorous data cleaning pipeline to ensure
safe and clean image pairs as described in the Section of MVShoes Dataset.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We follow the instructions by the creators of each asset. We also cite the
original paper that produced the code package or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide a detailed description of the collection and processing procedures
for the new dataset, along with comprehensive reporting on its statistical characteristics and
structure in the Section of MVShoes Dataset. Examples are included in the supplementary
materials.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM is used only for writing, editing, or formatting purposes and does
not impact the core methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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• In Section A, we provide a more detailed discussion about the limitations of ShoeFit.
• In Section B, we provide additional details about the MVShoes datasets, including data

processing and data statistics.
• In Section C, we provide preliminary knowledge about the FLUX (33) model, as well as

how LayeredRefAttention modules are applied in the Single Stream DiT Block.
• In Section D, we provide additional details about the experimental setup, including baseline

training, data augmentation, and hyperparameters.
• In Section E, we present a multitude of ShoeFit generated images, including more ablation

results, more comparisons with the baselines, with additional results displayed in challenging
scenarios.

A Limitations and Future Work

Input human feet Input product shoes Generated results

Figure 7: Similar to the common constraints faced
by existing generative models, ShoeFit occasion-
ally struggles to accurately render small logos and
intricate text due to their small portion in images
and high-frequency variations.

We propose ShoeFit, a dual-stream DiT frame-
work that addresses the critical challenges
of viewpoint misalignment and background-
induced color distortion in VFTON by Multi-
View Conditioning and LayeredRefAttention
modules. However, certain limitations persist.
Firstly, similar to the common constraints faced
by existing generative models, the model oc-
casionally struggles to accurately render small
logos and intricate text due to their small portion
in images and high-frequency variations. We il-
lustrate this limitation in Fig. 7. These small
logos are particularly critical for e-commerce
sellers as they often convey brand information
that consumers care about. Therefore, we plan
to develop a detailed supplementary condition-
ing method in future research to pre-detect and
enhance the injection of such patterns, funda-
mentally addressing this issue. Secondly, we
aim to introduce explicit 3D geometric and ma-
terial priors in the future to achieve more robust
multi-view representation and refined visual fidelity.

B MVShoes Dataset Supplement

In the main body of the paper, we provide a brief description of the data processing pipeline and
a rough visual presentation of the dataset statistics in terms of Rich Scenes and Diverse Footwear
Categories due to space constraints. In this section, we offer more detailed information on the data
processing pipeline to ensure reader comprehension. Additionally, we present the specific distribution
statistics of MVShoes in a quantitative table format.

Data Processing Details. Given a dataset comprising raw images of various shoes and human
models, we employ Qwen2.5-VL (3), which operates with 7 billion parameters, to distinguish
between footwear images and human model images. The prompting framework utilized is as follows:
“Analyze the provided image and determine whether it depicts a model image or a shoe image. A
model image is defined as one that portrays a human model’s lower body or legs adorned with shoes,
while a shoe image solely comprises images of shoes without any human presence. Assign a value of
‘1’ if it qualifies as a model image and ‘0’ if it does not. ”

Following this classification, we extract image features from the shoe images using the CLIP (53)
model, implementing a similarity threshold of 0.9 to effectively eliminate duplicate images within
the dataset. Subsequently, we perform segmentation by SAM (31) to isolate the shoe regions in
each image, aligning the DINO (49) features to filter out shoes-model data pairs exhibiting inner
similarities greater than 0.8.
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This procedure facilitates the initial construction of human-footwear try-on triplets, which are then
subjected to manual filtering to address any potential errors or oversights. Additionally, we exclude
visually blurred images and compile statistical analyses pertaining to shoe categories and try-on
scenarios. In accordance with methodologies established in DWPose (67) and GroundingDINO (43),
we extract foot poses and shoe masks, ultimately resulting in the generation of high-resolution,
category-comprehensive try-on triplets. All models referenced above are open-source, and their
respective URLs are provided as follows:

• Qwen2.5-VL-7B (3): https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct

• SAM (31): https://github.com/facebookresearch/segment-anything

• CLIP (53): https://github.com/openai/CLIP

• DINO (49): https://github.com/facebookresearch/dinov2

• DWPose (67): https://github.com/IDEA-Research/DWPose

• GroundingDINO (43): https://github.com/IDEA-Research/GroundingDINO

Dataset Statistics. The dataset features diverse shoe categories and rich human scenes. We present
the quantitative distribution statistics of MVShoes in Tab. 4 and Tab. 5. We also provide more visual
samples from MVShoes datasets in Fig. 8.

Pose Estimation for Shoe Try-On. Traditional open-source pose estimation methods (e.g., Open-
Pose, DWPose) in VITON pipeline, struggle to capture lower-body/foot poses in VFTON, which
often only include partial leg shots or full lower-body views. To address this, we fine-tune the
dwpose model on specially collected datasets containing diverse lower-body and close-up leg poses.
This enables our model to generate accurate pose descriptions for various leg postures, significantly
enhancing its generalization capability for shoe-related applications.

Generalizable Foot Mask Design. Given the diversity of shoe types (e.g., sneakers, boots, sandals)
and their varying leg coverage, we propose a leg-pose-aware mask generation strategy. Unlike
VTON’s body-centric masks, our method combines leg pose information with bounding box expansion
from shoe detection to create adaptive masks. This allows seamless cross-shoe category try-on
capabilities, for example, a model wearing long boots or flip-flops can be transformed into sneakers
while maintaining anatomical alignment and realistic occlusion. As illustrated in the first row in
Fig. 11, this approach lays the foundation for robust, universal shoe try-on systems.

However, our mask generation strategy is not without its limitations. A failure case is presented in
the second row of Fig. 5(b). Here, the region of the rear shoe is both heavily occluded and minimally
visible, which leads to the failure of our keypoint and shoe detection modules. Consequently, this
rear shoe area is erroneously classified as background, and only the front foot is designated as the
inpainting region. This incomplete mask ultimately results in an unsuccessful virtual try-on. We
contend that this is an inherent challenge for all methods reliant on an explicit masking strategy,
and developing more robust solutions to handle such severe occlusion cases remains an important
direction for our future work.

Shoe Expansion Phenomenon. The volumetric expansion of footwear observed during the try-on
process is a naturally occurring phenomenon. In real-world datasets, it is common to find that
shoes with stiffer tongues tend to bulge outwards when worn, resulting in a slight expansion of the
shoe’s overall volume. This effect is illustrated in Fig. 5, where the third column clearly shows a
prominent bulge in the tongue area, leading to body expansion. This expansion occurs stochastically
in real-world data pairs, as exemplified in the third row of Fig. 1(a), where the shoe upper in the
second column exhibits a slightly thicker contour. Consequently, by effectively fitting to the training
data distribution, our model learns to replicate this real-world phenomenon, accurately rendering the
corresponding deformations inherent to the try-on process.

2



Table 4: Shoe Category Statistics. We report the sample count for each subcategory, with its
proportion indicated in parentheses.

Primary Categories Subcategory
Casual Shoes: 3158 (43.23%) Lifestyle Casual Shoes: 803 (10.99%)

Sneakers: 1428 (19.55%)
Canvas Shoes: 141 (1.93%)
Children Casual Shoes: 99 (1.36%)
Men Casual Shoes: 687 (9.40%)

Athletic Shoes: 558 (7.64%) Running Shoes: 322 (4.41%)
Basketball Shoes: 121 (1.66%)
Training Shoes: 45 (0.62%)
Football Shoes: 70 (0.96%)

High-Heel Shoes: 895 (12.25%) Classical High-heel Shoes: 340 (4.65%)
Ladies Casual Shoes: 401 (5.49%)
Mary Jane Shoes: 154 (2.11%)

Boots: 1045 (14.31%) Ankle Boots: 416 (5.69%)
Chelsea Boots: 56 (0.77%)
High Boots: 153 (2.09%)
Snow Boots: 183 (2.51%)
Martin Boots: 237 (3.24%)

Sandals: 279 (3.82%) Flip Flops: 183 (2.51%)
Beach Sandals: 36 (0.49%)
Strap Sandals: 60 (0.82%)

Dress Shoes: 389 (5.33%) Loafers: 209 (2.86%)
Formal Leather Shoes: 180 (2.46%)

Slippers: 981 (13.43%) Clogs: 82 (1.12%)
Thong Slippers: 18 (0.25%)
House Slippers: 881 (12.06%)

Table 5: Human scene statistics.

Scene Types Number of samples Percentage

Top-down Foot 1719 23.53%
Horizontal Foot 4330 59.27%
Half-body Model 833 11.40%
Full-body Model 423 5.79%

C Method Supplement

C.1 Preliminary

FLUX.1 Our ShoeFit is an extension of Stable Diffusion 3 (55) and FLUX.1 (33), which are the
most commonly used text-to-image diffusion models based on Flow Matching(41) and DiT(51).
FLUX.1 (33) employs a variational autoencoder (30) (VAE) that consists of an encoder E and a
decoder D to enable image representations in the latent space. It is also equipped with rotary positional
embeddings (RoPE)(58) and denoise-text-stream attention layers to improvement performance.
FLUX.1 implements an actual two-dimensional RoPE scheme for encoding spatial positions in the
latent space:

ωd =
1

θ2d/D
, forD = 0, 1, ..., D/2− 1, (9)

where θ is typically set to 10000. The position encoding applies a rotation matrix:[
cos(ωd · pos) − sin(ωd · pos)
sin(ωd · pos) cos(ωd · pos)

]
(10)

This rotation is applied to query and key vectors in the attention mechanism, enabling the model to
capture relative positional relationships in the latent space.
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Flow Matching Flow matching (41) aligns the flow of information between noise ϵ and data
distributions by optimizing a velocity field ut, which progressively converts noise into data over
time. This technique ensures that the generative model maps the noise distribution to the actual data
distribution in a structured manner. The text encoders (53) τθ are employed to deal with the given
text prompt y. The flow matching loss is defined as follows:

L = Et,pt(z|ϵ),p(ϵ),y

[
∥vΘ(z, t, τθ(y))− ut(z|ϵ)∥2

]
. (11)

In this context, vΘ(z, t, τθ(y)) signifies the conditional velocity field determined by the weights of
the neural network, while ut(z|ϵ) represents the vector field created by the model to delineate the
probabilistic trajectory between the noise and actual data distributions. The symbol E stands for the
expectation, which involves either integration or summation over time t, latent variables z, conditions
y, and noise ϵ. This expectation computes the mean of the squared differences for all conditions,
ensuring that the model’s performance is evaluated over numerous instances to yield a dependable
estimate of its generative capability.

C.2 LayeredRefAttention in Single-stream DiT Block

The original FLUX is a text-to-image model composed of a series of stacked MM-DiT (double-
stream) blocks, followed by a series of stacked single-stream DiT blocks. Due to space constraints,
the framework of the LayeredRefAttention module shown in the main text is its structure within
the double-stream DiT blocks. Here, we provide how it is used within a single-stream DiT block
in Fig. 10. Similar to the way in double-stream blocks, we employ a Squeeze-and-Excitation (SE)
block (24) followed by global average pooling over spatial dimensions to compute channel-specific
weights:

P (n) = AvgPool(SE(C
(n)
I ) ∈ Rb×c. (12)

Subsequently, we employ two linear layers F (·) to extract background modulation parameters
and modulate foreground shoe features, filtering irrelevant environmental lighting and background
reflection to ensure faithful material preservation of shoes as:

β
(n)
scale, β

(n)
shift = F (P (n)), C

(n)
fg = (1 + β

(n)
scale) · (LN(C

(n)
I ⊙M

(n)
fg )) + β

(n)
shift, (13)

where LN(·) means layer normalization and M
(n)
fg represents the binary shoe masks for conditioning

product image. The subsequent operations are then performed as in regular single-stream DiT blocks.

D Implementation Supplement

D.1 Baseline Training Details
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Figure 10: We provide how LayeredRefAttention
is used within a single-stream DiT block.

We here provide detailed descriptions of the
training processes for the baseline models, focus-
ing specifically on the training configurations.
All models are trained on MVShoes at a res-
olution of 768 × 768, utilizing 6305 pairs for
training and 1000 pairs for testing.

For Flux.1 Fill (34), we implement the train-
ing and inference pipeline by concatenating
footwear images with human model images. In
the trainable components, we apply LoRA (23)
with a rank of 64 to all attention modules in the
model and a Flux ControlNet (71) comprising
6 single layers and 6 double layers, injecting
the poses at every denoising step. The model is
trained for 6 days on 8 80GB-A100 GPUs using
DeepSpeed ZeRO-2, with a batch size of 4. We
utilize the AdamW optimizer, setting a constant
learning rate of 3e-5 for training, and operate
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the model on a single A100 GPU for 25 steps
during inference.

For Flux.1 Redux (35), we adopt the same train-
ing settings as those used for FLUX.1-Fill. Ad-
ditionally, we incorporate two linear layers for
projecting SigLip (70) features of the product shoe images, training these two layers concurrently
with the attention LoRAs and ControlNet. The parameters of SigLip remain frozen throughout the
training process. We retain the same inference settings as employed in FLUX.1-Fill.

For OOTDiffusion (65), we execute the training and inference pipelines based on the official code.
We also implement ControlNet to facilitate pose injection. The model is trained for 6 days on 4
80GB-A100 GPUs with DeepSpeed ZeRO-2, at a batch size of 8. During inference, the model is run
on a single A10 GPU for 25 steps.

For CatVTON-Flux-Lite-2V, we maintain the text stream for FLUX-lite and concatenate footwear
images with human model images. The model undergoes training for 7 days on 12 80GB-A100 GPUs
utilizing DeepSpeed ZeRO-2, with a batch size of 2. All other training and inference configurations
align with those of ShoeFit-2V.

D.2 Data Augmentation

We have implemented data augmentation techniques that could potentially enhance the model’s
generalization ability as well as its fidelity performance. Specifically, the data augmentation operations
include (a) horizontal flipping of images, (b) resizing footwear and human figures through padding
(up to 10% of the image size), (c) randomly adjusting the image’s hue within a range of -5 to +5, and
(d) randomly adjusting the image’s contrast within a specified range (between 0.8 and 1.2 times the
original contrast). Each of these operations occurs independently with a 50% probability. Moreover,
these operations are simultaneously applied to both the footwear and model images.

D.3 LayeredRefAttention Hyperparameters

In the LayeredRefAttention layer, we primarily introduced a new Linear layer and an SE block.
The Linear layer for the foreground follows the same dimensions as other linear layers within the
module, which is the hidden size. The SE block takes input features with the same dimensions
of hidden size, and internally, we use a compression rate of reduction = 4 for SE Block, as
Linear(channels, channels/4), ReLU(), Linear(channels/4, channels).

E More visual results

Fig. 9 provides more results about the ablation study. We highlight the improvements by all three
components of the method in red.

Fig. 11 provides more results on MVShoes for comparisons between the baselines and ShoeFit. For a
fair comparison, we report the results of the single-view conditioning version of all methods. Our
method substantially improves rendering fidelity and robustness under challenging real-world product
shoes, establishing a new benchmark in high-fidelity footwear try-on synthesis.

Fig. 12 provides more results on MVShoes for inspection to demonstrate that ShoeFit synthesizes
high-fidelity and detail-faithful try-on results.

Fig. 13 details two key limitations of our model. First, in the early training phase, the model has not
yet mastered spatial reasoning, resulting in structurally distorted outputs (row (a)). Second, generating
precise masks for tall footwear remains a challenge. As shown in the row (b), inaccurate masks for
items like boots can cause significant visual artifacts or fitting errors.

Fig. 14 illustrate more results on out-of-distribution (OOD) samples not present in the MVShoes
dataset. The high-quality try-on results demonstrate the model’s notable stability and strong general-
ization capabilities.
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Figure 8: We provide more visual samples from MVShoes datasets.
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Figure 9: More visual results of the ablation study. We highlight the improvements by all three
components of the method in red. Best viewed when zoomed in.
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Figure 11: More visual comparisons on the MVShoes by ShoeFit. Best viewed when zoomed in.
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Figure 12: More visual results on the MVShoes by ShoeFit. Best viewed when zoomed in.

9



(a)

(b)

Generated 
results

Conditional
shoes

Generated 
results

Conditional
shoes

Generated 
results

Conditional
shoes

Figure 13: More visual results on two primary failure modes of our method: (a) structural failure
observed during early training stages, and (b) artifacts arising from inaccurate masks in long footwear
scenarios.
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Figure 14: More visual results on out-of-distribution (OOD) samples not present in the MVShoes
dataset. The high-quality try-on results demonstrate the model’s notable stability and strong general-
ization capabilities.
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