
MedREK: Retrieval-Based Editing for Medical LLMs
with Key-Aware Prompts

Anonymous Author(s)
Affiliation
Address
email

Abstract

LLMs hold great promise for healthcare applications, but the rapid evolution of1

medical knowledge and errors in training data often cause them to generate outdated2

or inaccurate information, limiting their applicability in high-stakes clinical practice.3

Model editing has emerged as a potential remedy without full retraining. While4

parameter-based editing often compromises locality and is thus ill-suited for the5

medical domain, retrieval-based editing offers a more viable alternative. However,6

it still faces two critical challenges: (1) representation overlap within the medical7

knowledge space often causes inaccurate retrieval and reduces editing accuracy; (2)8

existing methods are restricted to single-sample edits, while batch-editing remains9

largely unexplored despite its importance for real-world medical applications. To10

address these challenges, we first construct MedVersa, an enhanced benchmark with11

broader coverage of medical subjects, designed to evaluate both single and batch12

edits under strict locality constraints. We then propose MedREK, a retrieval-based13

editing framework that integrates a shared query-key module for precise matching14

with an attention-based prompt encoder for informative guidance. Experimental15

results on various medical benchmarks demonstrate that our MedREK achieves16

superior performance across different core metrics and provides the first validated17

solution for batch-editing in medical LLMs.18

1 Introduction19

The remarkable success of large language models (LLMs) [1, 2, 3] in recent years has attracted20

significant attention from the medical community, leading to the emergence of specialized medical21

LLMs such as BioGPT [4], Med-PaLM [5], ChatDoctor [6] and PMC-LLaMA [7]. However, due22

to the rapid evolution of medical knowledge and limitations in training data, these models may23

generate inaccurate or even fabricated responses (hallucinations), which can be particularly harmful24

in real-world medical advising and decision-making scenarios [8, 9].25

To address this issue, model editing [10, 11, 12] has emerged as a promising approach for updating26

the knowledge of pre-trained LLMs without requiring full retraining. Despite its growing popularity,27

model editing remains underexplored in the medical domain. A pioneering effort, MedLaSA [13],28

follows the locate-then-edit paradigm and constructs medical benchmarks for evaluating single-edit29

scenarios. However, its benchmark remains confined to simple single-edit settings and overlooks the30

more realistic batch-edit scenario. Moreover, locate-then-edit methods, which modify a small subset31

of parameters, often induce side effects on unrelated knowledge and compromise locality [14]. This32

limitation is particularly concerning in medical applications, where reliability and consistency are33

critical.34

To enable more realistic evaluation, we introduce MedVersa, the first benchmark designed to explore35

batch-editing in medical scenarios. It better reflects real-world use cases in which multiple related36
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Figure 1: Pipeline of our MedREK. Left: Construction of the knowledge base by encoding medical
knowledge into key-value pairs. Right: Inference process where different types of queries are encoded
to retrieve relevant knowledge and generate attention-based prompts for precise model editing.

facts require simultaneous updates. We also substantially broaden subject coverage, yielding a37

more comprehensive benchmark that facilitates future research on knowledge editing for medical38

LLMs. Under batch-editing scenarios, we investigate retrieval-based approaches [15, 16] as an39

alternative to parameter-based editing, since they store new knowledge in an external memory module40

without altering the model’s original parameters and thereby better preserve locality. However, our41

preliminary experiments show that the state-of-the-art retrieval-based method RECIPE [17] often42

fails to retrieve the correct factual entries on the challenging medical evaluations. Further analysis43

indicates that the medical domain contains many textually similar but factually distinct knowledge44

items, which causes representation overlap in the retrieval space and thus hinders accurate knowledge45

matching. Based on these observations, we propose Medical Retrieval-based Editing with Key-aware46

prompts (MedREK).47

As shown in Fig. 1, our method introduces two key components: (1) a shared query-key MLP, which48

unifies the representation space of queries and keys for more precise knowledge retrieval; (2) an49

attention-based prompt encoder, which generates more informative prompts to guide editing. Building50

on these components, our MedREK achieves strong performance in both single-edit and batch-edit51

evaluations. Comprehensive experiments on various medical benchmarks further demonstrate that52

our MedREK achieves state-of-the-art performance across Efficacy, Generality, and Locality metrics,53

validating the effectiveness of the proposed shared query-key MLP and attention-based prompt54

encoder. In summary, our main contributions are as follows:55

• We construct MedVersa, a medical factual knowledge editing benchmark that enables a more56

realistic batch-editing setting and offers broader subject coverage than existing benchmarks.57

• We are the first to explore retrieval-based model editing for medical LLMs, proposing two novel58

components that separately enhance key-query alignment and prompt quality.59

• We propose MedREK, a novel method that markedly improves knowledge editing performance60

by enhancing key-query alignment. Extensive experiments confirm that MedREK achieves61

state-of-the-art results across core metrics, demonstrating particularly strong gains in locality.62

2 Related Works63

Model Editing aims to efficiently update a pre-trained model’s behavior in response to new or64

corrected knowledge, without full retraining or negatively affecting unrelated predictions. Existing65

methods fall into three categories: locate-then-edit methods [10, 18], meta-learning-based strate-66

gies [19, 20], and retrieval-based approaches [12, 17].67
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• Locate-then-edit methods, such as ROME [10] and MEMIT [11], identify the parameters associated68

with specific knowledge in LLMs and directly modify them to incorporate new information.69

• Meta-learning-based methods take a different route by manipulating gradients to perform global70

parameter updates, aiming for more generalizable knowledge integration. For example, both71

KE [21] and MEND [20] employ a lightweight hyper-network to adjust the updating gradient.72

InstructEdit [22] builds on MEND by introducing instruction tuning for handling various tasks.73

Moreover, MALMEN [19] further generalizes MEND to batch-editing under memory constraints.74

• Retrieval-based approaches edit model output by storing new knowledge in external memory75

modules, without altering pre-trained weights. These modules can take the form of codebooks,76

neurons, or auxiliary models, as demonstrated in SERAC [23], T-Patcher [15], GRACE [24], and77

MELO [16]. More recently, WISE [12] designs dual memory and routes the model to the side78

memory in FFN for editing. RECIPE [17] utilizes continuous prompt learning to prefix knowledge79

to the input query and dynamically retrieves knowledge from the knowledge base.80

Accurate and up-to-date medical knowledge is critical for the safe and reliable application of large81

language models in healthcare. As medical facts evolve rapidly with new research and clinical82

guidelines, the ability to edit existing knowledge without retraining is essential. Given the impor-83

tance of medical knowledge editing, MedLaSA [13] pioneers this area and introduces the MedCF84

benchmark, but direct model edits can degrade locality and are limited to single-edit protocols.85

Building on this medical model editing line, we extend the setting to batch-editing and adopt the86

retrieval-based strategy. We further identify medical domain retrieval failures and remedy them with87

targeted improvements, culminating in MedREK, which delivers more reliable knowledge updates.88

Prompt Tuning. As a representative parameter-efficient fine-tuning technique, prompt tuning is89

widely used in adapting foundation models to downstream tasks. It includes discrete prompts,90

expressed as actual text strings, and continuous prompts, encoded directly within the embedding91

space of the language model. Specifically, discrete prompts [25, 26, 27, 28] are manually designed or92

automatically searched to elicit desired behavior from the model, while continuous prompts [29, 30,93

31, 32] are trainable embeddings learned through optimization, capable of capturing more nuanced94

task-specific information. In this work, we train a prompt encoder to generate a continuous prompt95

that serves as external memory and enables targeted medical knowledge editing. These lightweight96

prompts can be stored efficiently, enabling effective editing with minimal resource overhead.97

3 Motivation98

3.1 Preliminaries99

Model Editing. Let fθ ∈F : Q7→A denote the large language model which can map an input query100

q ∈ Q to the output answer a= fθ(q). Given an edit sample pair (qe, oe) that fθ(qe) ̸= oe, model101

editing hopes to modify fθ to f ′
θ so that,102

f ′
θ = ME(fθ, qe, oe), f ′

θ(qe) = oe, (1)
where ME(·, ·, ·) means the model editor.103

For a factual knowledge triple KNe = (se, re, oe), the components se, re, and oe denote the subject,104

relation, and object, respectively [33]. We define the pair KNe/o := (se, re) as the pre-defined105

knowledge key, and thus KNe = (KNe/o, oe).106

Evaluation Metrics. Beyond accurate knowledge editing (i.e., f ′
θ(qe) = oe), an ideal model editor107

should meet a range of additional requirements, each evaluated through specific metrics [34, 35, 36].108

Generality. The edited model f ′
θ is expected to generalize beyond the editing query qe to correctly109

answer similar questions qg .110

E(qg,oe) I{f
′
θ(qg) = oe}, (2)

Locality. The edited model f ′
θ should preserve the overall capabilities of the original large language111

model (i.e., fθ) by ensuring that examples unrelated to the editing target remain unaffected.112

E(ql,ol) I{f
′
θ(ql) = fθ(ql) = ol}, (3)

where (ql, ol) denotes question-answer pairs that are semantically irrelevant to the edited samples113

(qe, oe) and should ideally remain unaffected. Note that, given the high precision requirements in114

medical domains, this metric becomes particularly critical when performing knowledge editing.115
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Which drug is involved in a drug-drug interaction 
with Clofedanol?

Which drug is involved in a drug-drug interaction 
with Camostat? Ozanezumab

（a）Distribution of key representations with RECIPE

Overlapping Reps

(c). Cosine similarity analysis of key representations using 
RECIPE under varying numbers of edited batches

(b). An Example of knowledge entry with 
textually similar but factually unrelated 

Input Query

Unrelated Entry

Figure 2: (a) Visualization of key representations in retrieval-based editing methods. Key overlap
raises retrieval errors, decreasing editing accuracy. (b) Example of incorrect retrieval caused by key
overlap. (c) Cosine similarity measurements quantifying degree of overlap among key representa-
tions.

Efficacy. This metric calculates the accuracy of the modified model f ′
θ on the edited examples (qe, oe),116

thereby reflecting the effectiveness of the edit.117

E(qe,oe) I{f
′
θ(qe) = oe}. (4)

Fluency. This metric is designed to reflect the linguistic coherence of the response. It is quantified by118

computing the weighted average of bi-gram and tri-gram entropies, given by:119 ∑
k

fn(k) log2 fn(k), (5)

where fn(·) is the n-gram frequency distribution, and k denotes a model-generated output.120

Editing Setting. Single-editing refers to modifying one knowledge item at a time, while batch-121

editing involves applying multiple edits simultaneously. Real-world updates such as revised treatment122

guidelines, newly discovered drug interactions, or retracted clinical findings often affect multiple123

related facts simultaneously. This makes batch-editing a realistic and practically valuable setting.124

However, within medical domains, current approaches are primarily designed for single-edit scenarios,125

leaving the more realistic challenge of batch-editing largely unexplored. This further highlights the126

necessity of more precise retrieval mechanisms.127

3.2 Locate-then-edit Methods Harm Locality128

Locate-then-edit approaches [11, 10] typically use causal tracing to identify influential model compo-129

nents and modify the corresponding parameters. However, such parameter updates often introduce130

undesirable side effects on unrelated knowledge, leading to a notable drop in locality metrics [14].131

This makes them ill-suited for medical applications, where high locality (i.e., preserving irrelevant132

knowledge) is essential to ensure reliability and safety. To mitigate these issues, we turn our attention133

to the alternative retrieval-based methods, which avoid direct parameter modification and generally134

offer better locality preservation.135

3.3 Retrieval-based Methods Struggle with Overlapping Knowledge136

In medical scenarios, many knowledge entries may be textually similar but factually unrelated,137

making accurate retrieval especially challenging. This calls for a more precise matching mechanism138

between queries and stored knowledge. In particular, competing retrieval-based methods, such as139

RECIPE [17], fail to retrieve the correct factual entry from the knowledge base on the medical140

knowledge editing benchmark. As shown in Figure 2 (a), the representation space of RECIPE141

exhibits significant overlap among distinct knowledge items, leading to frequent confusion. This142

issue is exemplified in Figure 2 (b): for the query "Which drug is involved in a drug-drug interaction143

with Clofedanol?", the model incorrectly retrieves the unrelated entry "Which drug is involved in a144

drug-drug interaction with Camostat? Ozanezumab" from the knowledge base, due to overlapping145

key representations.146
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Figure 3: Comparison of MedVersa and MedCF++ in terms of medical subjects and dataset statistics.
We provide the full distribution of medical subjects in the two datasets in Appendix.

To quantify this phenomenon, Figure 2 (c) further measures the overlap among key representations.147

Specifically, we report the percentage of unique samples involved in at least one pair with cosine148

similarity > 0.6, denoted as “High-Sim. Samples (%)”, which reflects how many representations149

are highly aligned with others in the same batch. It can be observed that, as batch size increases, the150

share of samples participating in at least one high-similarity pair rises, reaching 51.09%, indicating151

greater representation overlap in larger batches. This provides quantitative support for our motivation152

and underscores the need for more precise retrieval tailored to medical knowledge editing.153

4 Method154

To address the limitations discussed above, we first construct MedVersa (i.e., Medical Versatile155

Knowledge Editing Dataset), an enhanced benchmark with broader coverage of medical subjects,156

designed to systematically examine batch-edit scenarios in the medical domain. We then present157

the MedREK algorithm (i.e., Medical Retrieval-based Editing with Key-aware prompts), designed158

to mitigate knowledge forgetting from direct parameter updates and effectively tackle the issue of159

irrelevant retrievals highlighted in Figure 2.160

4.1 Construction of MedVersa Dataset161

Table 1: An example from the MedVersa dataset.
Medical Versatile Knowledge Editing Dataset
Efficacy Question: What is the treatment for multiple carboxylase deficiency?
Generality Question: What is the therapeutic management for multiple carboxylase deficiency?
Locality Question: At what age does purposeful movement typically start in infants?
Ground Truth: Biotin
Counterfactual Edit Target: Thiamine
Locality Ground Truth: 6 months
Efficacy QA Pair: (Efficacy Question, Counterfactual Edit Target)
Generality QA Pair: (Generality Question, Counterfactual Edit Target)
Locality QA Pair: (Locality Question, Locality Ground Truth)

The current MedCF [13] benchmark–162

built on the Drug Repurposing Knowl-163

edge Graph (DRKG) that links com-164

pounds, diseases, biological processes,165

side effects, and symptoms–presents two166

limitations: (i) Some prompts are reused167

for both Efficacy and Locality across168

the train/validation/test splits, which con-169

founds batch-edit evaluation because ed-170

its targeting the Efficacy answer should171

not influence unrelated Locality responses. (ii) MedCF [13] remains limited in its topical breadth:172

most selected entities come from drugs and compounds, concentrating the benchmark in pharmacol-173

ogy. To address these issues, we construct MedVersa built on MedMCQA [37], which eliminates174

Efficacy–Locality prompt overlap to enable reliable batch-edit assessment and broadens coverage175

across medical subjects for more comprehensive evaluation. For clarity, the intermediate version that176

fixes only limitation (i) is denoted as MedCF++. An illustrative example is shown in Table 1, and177

additional construction details are provided in Appendix B and C.178

Comparison of MedVersa and MedCF++. In Figure 3, we present a detailed comparison of179

MedVersa and MedCF++. MedVersa spans a broader range of 20 medical subjects, including areas180

absent in MedCF++ such as Pediatrics and Social & Preventive Medicine. In contrast, MedCF++181

covers only 12 medical subjects, with Pharmacology accounting for the majority (71.8%). The broader182

and more balanced subject coverage of MedVersa fills the gap in evaluating medical knowledge183

editing across a wider range of medical domains, enabling more comprehensive assessment.184
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4.2 The Proposed MedREK Algorithm185

As shown in Figure 1, our proposed MedREK comprises two main components: 1 a representation186

model featuring a unique shared query-key MLP (i.e., MLPqk) designed for effective knowledge187

retrieval, and 2 an attention-based prompt encoder for generating more informative prompts.188

4.2.1 The Shared Query-Key MLP189

To ensure precise retrieval in model editing, we design a retrieval mechanism that satisfies both190

relevance and selectivity. Specifically, it aims to (1) accurately retrieve the specific knowledge191

associated with the given query, which reflects the Efficacy and Generality criteria, and (2) avoid192

unnecessary retrieval when the query is unrelated to stored knowledge, which corresponds to the193

locality requirement. To this end, we employ a shared query-key MLP encoder that encodes both194

memory keys and incoming queries into a unified representation space. Importantly, by constructing195

keys solely from the subject–relation pair (si, ri) instead of the full triplet (si, ri, oi), our design196

avoids incorporating irrelevant object information, thereby reducing retrieval noise.197

Given an input sentence (either in the form of queries qe, qg or ql, knowledge key KNe/o or a full198

knowledge triplet KNe), we first tokenize it using a pre-trained RoBERTa [38] tokenizer and obtain199

contextualized embeddings from the last hidden layer:200

H ∈ RL×d, p ∈ Rd (6)

where L is the sequence length and d is the hidden dimension. We aggregate these embeddings by201

concatenating the CLS token embedding p with pooled statistics (mean, max, and min):202

x = [p;mean(H);max(H);min(H)] ∈ R4d. (7)

Next, this vector x is fed into the representation model’s MLP layers. For queries qe, qg or ql and203

knowledge key KNe/o, we apply a shared MLP encoder MLPqk:204

zq = MLPqk(x) = ReLU(Wq2(Wq1x)) +Wq1x, (8)
205

zk = MLPqk(x) = ReLU(Wq2(Wq1x)) +Wq1x, (9)
which projects them into a shared representation space for accurate matching in the retrieval stage.206

For full knowledge triplets KNe used in prompt generation, a separate MLP encoder MLPv is applied:207

zv = MLPv(x) = ReLU(Wk2(Wk1x)) +Wk1x, (10)

where zk is stored as the key of the (k, v) pair in the knowledge base, while zv is further passed to208

the prompt encoder to generate continuous prompt as discussed next.209

4.2.2 Attention-Based Prompt Encoder210

To enable precise edits, we further design a prompt encoder that maps each knowledge representation
into a sequence of continuous prompt tokens via multi-head attention. Unlike traditional prompt
tuning with fixed prompts for broad tasks, medical knowledge editing demands fine-grained, fact-
specific modifications. Given the subtle differences between medical facts, dynamically generating
prompts conditioned on the input knowledge is essential. Our prompt encoder learns to produce
knowledge-specific prompts, leading to more accurate and effective editing. Specifically, given the
knowledge representation zv ∈ Rdin obtained from the representation model, we first project it into a
set of query vectors for prompt tokens, and a single key and value vector:

Q = reshape(Wqzv) ∈ RT×d, K = Wkzv ∈ Rd×1, V = Wvzv ∈ Rd×1,

where T is the number of prompt tokens, din and d denote input and output dimensions, and211

Wq ∈ RTd×din , Wk,Wv ∈ Rd×din are learnable parameters in the attention mechanism, following212

the standard formulation in [39]. Next, a multi-head attention module is used to allow each prompt213

token to attend to the same knowledge vector and obtain contextualized prompt representations:214

p = MultiHeadAttn(Q,K,V) ∈ RT×d. (11)

In this way, pfinal ∈ RB×T×d, which is stored as the value of the (k, v) pair in the knowledge base.215

The number of continuous prompt tokens T is a hyper-parameter, and we describe its selection for216

different datasets in Section 5.1.217
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Table 2: The overall results for single-editing (# Editing=1) and batch-editing (# Editing>1) using
Meditron-7B on MedCF++ and MedVersa datasets.

# Editing Method
MedCF++ MedVersa

Eff. Gen. Loc. Flu. Avg. Eff. Gen. Loc. Flu. Avg.
TD EM SS TS

1

MEND 26.60 28.14 89.03 90.47 88.73 87.13 575.98 58.10 27.09 28.65 94.24 583.09 61.05
MEMIT 79.06 69.23 98.02 77.40 97.65 93.57 562.91 82.90 70.02 46.81 99.42 575.86 78.92

MedLaSA 72.16 68.84 80.11 85.13 80.03 79.54 578.48 75.85 74.30 71.57 87.01 555.69 79.97
RECIPE 72.66 77.12 92.64 99.80 90.29 90.59 586.68 84.11 57.89 57.44 99.03 599.66 78.35

Ours purple!10 78.50 80.61 99.42 98.96 99.34 98.67 587.00 89.33 74.49 70.46 100.00 579.63 86.24

10

MEND 27.48 28.18 76.24 79.57 77.55 76.73 579.21 52.68 28.52 29.85 86.30 585.75 57.74
MEMIT 79.24 69.81 94.93 75.99 93.88 89.34 562.82 81.53 66.60 46.25 97.41 574.47 76.92
RECIPE 72.09 76.46 89.06 96.07 88.17 87.81 586.29 82.28 57.89 57.41 96.72 600.27 77.18

Ours purple!10 78.52 80.63 99.33 98.89 99.35 98.51 589.56 89.30 74.49 70.46 99.90 600.17 86.19

50

MEND 25.05 25.80 62.99 61.33 64.78 60.25 578.74 43.88 27.29 28.07 68.97 583.66 48.33
MEMIT 75.59 67.08 90.14 77.04 89.53 85.99 562.07 78.51 68.98 48.51 93.04 573.18 75.89
RECIPE 70.33 73.82 78.75 87.20 79.15 76.48 589.75 76.23 57.89 57.44 89.65 599.59 73.66

Ours purple!10 78.54 80.61 98.55 98.70 98.80 97.87 589.79 89.03 74.49 70.39 99.68 599.25 86.06

100

MEND 24.88 25.14 65.03 62.49 66.24 66.24 578.46 44.52 26.07 26.26 61.43 577.92 43.80
MEMIT 76.36 66.42 87.91 76.74 87.26 83.52 562.53 77.62 70.26 49.20 89.73 573.27 74.73
RECIPE 68.30 70.74 72.74 79.73 72.48 71.58 588.21 71.83 57.89 57.37 84.19 600.31 70.91

Ours purple!10 77.96 79.88 97.76 98.20 97.57 97.19 588.01 88.30 74.49 70.46 99.45 598.67 85.96

4.3 Retrieval Pipeline and Training218

Retrieval Pipeline. We employ a trainable knowledge prototype representation zpt as a dynamic219

threshold for retrieval in the representation model. During inference, retrieval is performed before the220

query tokens are fed into the embedding layer:221

fr(q) =

{
pi, if zq · zki

> zq · zpt
∅, otherwise

(12)

where fr(·) denotes the retrieval process for the query q, and zki is the most similar key representation222

in the knowledge base. A prompt is retrieved only if it is more similar to the query than the learned223

prototype. If no prompt is returned, the model proceeds as usual, with inference unaffected.224

Training. Following RECIPE [17], we utilize the training loss as Ltotal = Lcontra + Ledit, where225

Ledit =
1
B

∑B
i=1

(
L(i)

eff + L(i)
gen + L(i)

loc

)
. Details of each sub-loss are provided in Appendix E.226

5 Experiments227

In this section, we conduct experiments to answer the following research questions: RQ1: Does228

outperform strong baseline editors on medical LLMs across core metrics and under batch-editing?229

RQ2: Do the proposed modules contribute significant gains individually and jointly? RQ3: Is the230

retrieval mechanism effective at locating the correct knowledge?231

5.1 Experimental Setup232

Settings & Benchmarks. We evaluate model editors under both Single-editing and Batch-editing233

settings to comprehensively assess their robustness and generalization capabilities. Experiments234

are conducted on the improved MedCF++ benchmark and our newly constructed MedVersa dataset.235

Unlike prior work [13], which only considers single-editing, we explore more realistic large-scale236

update scenarios by evaluating performance under 10/50/100-edit configurations.237

Implementation Details. Following MedLaSA [13], we use LLaMA2-based [40] Meditron-238

7B [6] as the primary model and include LLaMA3-based [41] HuatuoGPT-o1-8B [42] for additional239

evaluation. We train for 200 epochs and report the results using the checkpoint with the smallest loss.240

We use 3 and 8 prompt tokens for MedCF++ and MedVersa, respectively. See Appendix A for details241

of hyper-parameters.242

Baselines. We compare MedREK with several knowledge editing baselines, including MEND [20],243

MEMIT [11], MedLaSA [13], and RECIPE [17]. Note that MedLaSA [13] is excluded from batch-244

editing experiments, as its parameter modification strategy is inherently designed for single-edit245

settings and cannot be directly extended to handle multiple simultaneous edits. This limitation246

underscores the importance of developing batch-capable editing methods. We re-implement RECIPE247

in the medical domain for fair comparison.248
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Table 3: The overall results for single-editing (# Editing=1) and batch-editing (# Editing>1) using
HuatuoGPT-o1-8B on MedCF++ and MedVersa datasets.

# Editing Method
MedCF++ MedVersa

Eff. Gen. Loc. Flu. Avg. Eff. Gen. Loc. Flu. Avg.
TD EM SS TS

1

MEND 17.74 18.23 73.58 73.09 71.28 71.55 629.71 45.18 22.77 24.40 86.90 634.22 55.24
MEMIT 52.92 46.47 95.94 77.45 94.42 92.54 628.60 69.89 62.33 44.43 98.77 632.54 76.08

MedLaSA 61.32 60.98 70.39 75.30 69.65 69.95 626.28 66.24 66.93 65.27 86.43 625.09 76.27
RECIPE 72.98 77.31 91.84 99.64 92.91 91.70 652.46 84.58 51.52 51.54 98.99 633.00 75.26

Ours purple!10 77.05 78.66 99.60 97.90 98.95 98.24 653.11 88.26 69.47 63.43 100.00 634.05 83.22

10

MEND 15.13 16.18 54.80 57.32 53.05 51.63 630.62 34.93 20.96 22.05 68.76 636.48 45.13
MEMIT 52.09 46.39 89.10 76.47 85.42 83.67 627.76 66.45 63.97 45.25 93.16 631.95 73.89
RECIPE 72.82 76.86 88.80 96.24 90.89 88.02 659.48 82.91 51.52 51.57 96.34 662.74 73.94

Ours purple!10 77.07 78.67 99.31 97.74 98.78 98.07 659.16 88.17 69.47 63.48 99.88 662.68 83.17

50

MEND 10.72 11.47 31.29 34.16 29.89 31.00 603.95 21.34 16.19 16.72 16.72 636.52 31.62
MEMIT 49.47 44.06 82.71 74.03 77.14 77.88 628.15 62.35 65.66 47.47 81.81 631.25 69.19
RECIPE 72.20 75.90 79.31 87.38 81.36 79.57 659.15 77.98 51.52 51.46 86.56 662.54 69.02

Ours purple!10 77.10 78.63 98.11 97.45 97.60 97.18 659.39 87.72 69.47 63.40 99.62 662.87 83.03

100

MEND 7.45 7.54 19.69 21.91 19.49 17.87 555.39 13.62 13.62 13.90 32.66 554.89 23.21
MEMIT 51.40 45.77 75.82 72.04 73.90 73.71 627.77 61.23 55.71 45.17 79.54 631.35 64.99
RECIPE 70.73 74.23 72.25 78.62 73.60 72.65 659.67 73.38 51.52 51.35 79.55 663.31 65.49

Ours purple!10 76.42 78.15 96.59 96.34 96.57 96.00 659.51 86.83 69.47 63.28 99.06 663.02 82.72

Figure 4: Distribution of query and corresponding key representations (i.e., the keys of the k–v
pairs in the knowledge base) under a batch of 100 edits using Meditron-7B on the MedCF++ dataset.
Evaluation metrics. In line with MedLaSA [13], we adopt four evaluation metrics: Efficacy249

(Eff.), Generality (Gen.), Locality (Loc.), Fluency (Flu.). For Locality, we report the original four250

sub-metrics on MedCF++, and a simplified overall score on MedVersa. Definitions of each Loc. sub-251

metric are provided in Appendix A. The weighted average (Avg.) is computed as in MedLaSA [13]252

to capture the trade-off between editing success (Eff. and Gen.) and Loc.253

Average =

(
Eff.+Gen.

2 +

∑
m∈Loc.

m

|Loc.|

)/
2. (13)

5.2 Results on MedCF++ and Medversa (RQ1)254

Single-editing. From Table 2 and Table 3, we observe that MedREK achieves competitive single-255

editing performance across both MedCF++ and MedVersa, using different LLM backbones. It256

outperforms baselines on most sub-metrics, with a notably improved overall average. Interestingly,257

MedLaSA [13] exhibits a significant drop in Locality on both datasets, supporting our earlier claim258

(Section 3.2) that parameter-modifying methods introduce side effects on unrelated knowledge. In259

contrast, MedREK performs consistently well across all evaluation setups, highlighting its robustness.260

Batch-editing. Detailed evaluations with 10, 50, and 100 edits are shown in Table 2 and Table 3. We261

observe that RECIPE [17] suffers a clear performance drop compared to single-editing, with degrada-262

tion worsening as the number of edits increases. This suggests that overlapping key representations263

limit its effectiveness under batch-editing scenarios. In contrast, MedREK consistently performs well264

across all sub-metrics, achieving the best or second-best results, which highlights the strength of our265

improved representation model and prompt encoder in handling large-scale edits.266

Remark. The experimental results on the original MedCF dataset are provided in Appendix D.267

5.3 Abation Study (RQ2)268
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Figure 5: (a-b) Distribution of relative similarity between the query, the ground-truth knowledge, the
most similar knowledge and the prototype for test samples in 100-edit batch-editing using Meditron-
7B on MedCF++. For Eff. and Gen., x values < 1 indicate incorrect or no retrieval; values > 1 indicate
correct retrieval. For Loc., x values = 1 indicate no retrieval (locality preserved); values > 1 imply
unintended retrieval. (c) Retrieval statistics across Eff., Gen., and Loc.

Table 4: Ablation of Important Modules on
MedCF++ using Meditron-7B.

# Editing Variant
MedCF++

Eff. Gen. Loc. Flu. Avg.

TD EM SS TS

100

w/o shared
MLP 56.74 59.28 81.59 83.90 80.00 81.79 591.65 69.91

w/o Attn.
Prompt Enc. 73.17 75.63 97.07 94.28 96.73 96.21 590.21 85.24

w/ both (Ours)
purple!10 77.96 79.88 97.76 98.20 97.57 97.19 588.01 88.30

To understand the contribution of each proposed269

component, i.e., the shared query-key MLP and270

the attention-based prompt encoder, we conduct271

an ablation study on batch-editing with 100 ed-272

its using MedCF++. From Table 4, we observe273

both components contribute significantly to the274

final performance of our . The shared query-key275

MLP is critical for precise alignment between276

queries and stored knowledge, enabling more ef-277

fective retrieval. Without it, performance drops278

notably due to mismatched representations, highlighting the importance of this component for accu-279

rate query-key interaction. The attention mechanism in the prompt encoder also plays a key role by280

generating high-quality prompts, which further enhances overall editing performance.281

5.4 Knowledge Retrieval Effectiveness (RQ3)282

Obs1: achieves better retrieval via precise query-key alignment. We analyze the distribution of283

query representations and key representations from the k–v pairs in one 100-edit batch. As shown in284

Figure 4, aligns query and key representations well for both Efficacy and Generality inputs, indicating285

precise retrieval. In contrast, RECIPE [17] shows more scattered and distant representations, leading286

to lower scores in Eff. (68.30 vs. 77.96) and Gen. (70.74 vs. 79.88). These observations suggest that287

RECIPE struggles to retrieve the correct knowledge, while benefits from more accurate query-key288

alignment, resulting in better editing success.289

Obs2: MedREK achieves more accurate and controlled retrieval. To evaluate retrieval effec-290

tiveness, we visualize the distribution of test samples across Eff., Gen., and Loc. metrics in the291

100-edit batch setting on MedCF++, along with quantitative retrieval statistics (Figure 5). For Eff.292

and Gen., the x-axis denotes the ratio between the query’s similarity to ground-truth knowledge vs.293

to the prototype. Values < 1 indicate incorrect or no retrieval. Samples are categorized as correct294

(green), incorrect, or no retrieval. MedREK achieves a significantly higher rate of correct retrievals295

than RECIPE [17]. For Loc., the x-axis represents the ratio between the query’s similarity to the most296

similar knowledge entry (including prototype) and the prototype itself. Values > 1 indicate unintended297

retrieval of real knowledge, which harms locality. MedREK shows fewer such cases, indicating better298

locality preservation. Quantitative results further confirm these observations: MedREK retrieves299

correct knowledge in nearly all Eff. and Gen. cases while avoiding unwanted retrievals in Loc., in300

stark contrast to RECIPE. More details are provided in Appendix A.301

6 Conclusion302

To address the practical challenge of updating clinical knowledge in medical LLMs, we introduce303

MedVersa, a benchmark for batch-wise model editing with broad coverage of medical domains. We304

further propose MedREK, a retrieval-based editing framework tailored for medical LLMs. By incor-305

porating a shared query–key MLP and an attention-based prompt encoder, MedREK enables precise306

retrieval and effective knowledge updates. Experiments showcase the superiority of MedREK.307
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Appendix463

A More Implementation Details.464

Table 5: Hyper-parameters for MedREK on MedCF++ and MedVersa.

Hyper-parameter MedCF++ MedVersa

Meditron-7B

Learning Rate 1× 10−5 1× 10−5

Batch Size 8 8
Repsresentation Dimension 4096 4096
Model Hidden Size 4096 4096
# Prompt Tokens 3 8
# Knowledge Prototype Tokens 10 10

HuatuoGPT-o1-8B

Learning Rate 1× 10−5 1× 10−5

Batch Size 8 8
Repsresentation Dimension 4096 4096
Model Hidden Size 4096 4096
# Prompt Tokens 3 8
# Knowledge Prototype Tokens 10 10

Training Setup. We train our and RECIPE [17] on the training set of MedCF++ and MedVersa. As465

we observe the checkpoints after around 150 epochs all exhibit a trend of increasing loss for both466

methods, we stop our training at epoch 200. The hyper-parameters for training and evaluation are467

kept the same as the baseline methods, except for the number of continuous prompt tokens, which we468

tune for RECIPE [17]. For RECIPE [17] and MedREK, we both use 3 prompt tokens on MedCF++469

and 8 prompt tokens on MedVersa. The complete hyper-parameter settings of training for MedREK470

are shown in Table 5. All experiments are conducted on NVIDIA RTX 5090 GPUs.471

Locality Metrics of MedCF and MedCF++. Following MedLaSA [13], the sub-metrics of Locality472

in MedCF [13] and MedCF++ are defined as follows:473

• Target Distribution (TD): Does the editing operation alter the probability distribution of the ground474

truth tokens?475

• Entity Mapping (EM): Does the editing operation solely learn the mapping relationship between476

head and tail entities?477

• Structural Similarity (SS): Does the editing operation influence unrelated knowledge with similar478

graph structures?479

• Textual Similarity (TS): Does the editing operation have an impact on unrelated knowledge that480

contains similar semantic text?481

Details for Figure 5. We present the visualization of the distribution of test samples for each metric482

focusing on the effectiveness of the knowledge retrieval, i.e., whether the correct piece of knowledge483

is retrieved for Eff. and Gen, and whether the knowledge is “ignored” for Loc. The result is obtained484

with batch-editing of 100 edits on MedCF++. The y-axis corresponds to the batch index the test485

samples belonging to.486

Recall that the prompt selection criteria for each metric is as follows: For Eff. and Gen., the correct487

prompt is supposed to be selected. We calculate the similarity between the query and the top-1 similar488

key of the knowledge entry in the knowledge base, sim(q, top1), and the similarity between the489

query and the knowledge prototype, sim(q, proto). If sim(q, top1) > sim(q, proto), we select the490

prompt that generates sim(q, top1). Note that there are three cases here: (1) Correct selection, where491

the prompt corresponding to sim(q, top1) is the target knowledge. (2) Wrong selection, where the492

prompt corresponding to sim(q, top1) is a piece of unrelated knowledge. (3) No selection, where493

sim(q, top1) = sim(q, proto), meaning the most similar entry is the prototype, and no retrieval is494

triggered. For Loc., no prompt is supposed to be selected. There are two cases: (1) If sim(q, top1)495
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Table 6: The prompts for querying Gemini 2.0 Flash.

Prompts for Querying LLMs

Question Transformation:
You are given a phrase and its corresponding answer. Please rewrite the phrase into a clear question.
Input:
Phrase: {original question}
Answer: {correct answer}
Output only the rewritten question.

Question Rephrase:
Please rephrase the following question using precise medical terminology, ensuring that the original
meaning is fully preserved.
Question: {question}
Output only the rephrased question.

= sim(q, proto), which is the desired behavior, no prompt will be retrieved. (2) If sim(q, top1) >496

sim(q, proto), the query will falsely retrieve a prompt.497

We calculate the relative magnitude between sim(q, top1), sim(q, gt) (for Eff. and Gen.) and498

sim(q, proto) to obtain the x value. For editing success (Eff. and Gen.), we present cases of correct499

retrieval, wrong retrieval, and no retrieval and label the three cases out. For Loc., we do not label500

correct or wrong, instead, if x = 1, it means the query selects no prompt as desired, and if x > 1, it501

means the query falsely selects a prompt, which is not desired. For editing success, more samples502

labeled as Correct Retrieval (green) means better retrieval performance. For Loc., less samples with x503

> 1 means better retrieval.504

Analysis of MedLaSA. We find that MedLaSA [13] has the following critical design flaw and major505

weaknesses. First, it violates the spirit of knowledge editing since it considers the rephrase and506

locality queries for evaluation as known knowledge and applies causal tracing on them to calculate507

the corresponding layer-wise scaling factors. When testing, it retrieves the scaling factors calculated508

beforehand with the query text as key. In real-world scenarios, input queries are often unknown or509

unavailable in advance, making it impractical to apply causal tracing to determine the scaling factors510

for the adapters. As a result, effective knowledge editing cannot be achieved in practice. Second,511

despite the utilization of scaling factors to control the impact of adapters on each layer, it does512

not guarantee precise control. The LoRA [43] process may still introduce unintended intervention513

in model where no modification is desired, thereby affecting unrelated knowledge. In contrast,514

our method transforms the queries into representations and matches them with the knowledge key515

representations for prompt retrieval without operations on the queries in advance, making it practical516

in real-world scenarios. Additionally, we achieve better locality by leaving the original model517

parameters frozen and only retrieving the prompt when necessary, which is crucial for editing medical518

LLMs.519

B Construction of MedCF++ Dataset.520

As mentioned in 4.1, the only existing medical factual knowledge editing benchmark, MedCF [13],521

suffers from design issues that prevent it from supporting batch-editing, which we address by522

proposing an improved version, MedCF++. Specifically, we remove any records in which the same523

prompt is used for both Eff. and Loc., as well as any records where Eff. and Loc. share the same524

prompt across different data entries. As a result, 181 records are removed from the training set,525

47 from the validation set, and 47 from the test set. The cleaned dataset MedCF++ avoids prompt526

overlap to ensure reliable evaluation for batch-editing.527

C Construction of MedVersa Dataset.528

Although MedCF++ supports batch-editing, it is still limited in its size and range of medical domains,529

as most of the entities it selects from the source dataset DRKG are drugs and compounds, causing the530

majority of the knowledge to fall under the pharmacology domain. To address these limitations, we531

construct the MedVersa dataset derived from MedMCQA [37], which allows for broader coverage of532

medical knowledge and supports batch-editing.533

15



Table 7: The distribution of medical subjects in MedVersa (%).

Medical Subject Percentage (%)

Anatomy 11.22
Microbiology 10.18
Physiology 10.08
Surgery 10.02
Social & Preventive Medicine 9.97
Gynaecology & Obstetrics 8.14
Ophthalmology 7.94
Forensic Medicine 6.78
Pediatrics 6.61
ENT 6.02
Medicine 2.71
Pathology 2.62
Pharmacology 2.05
Biochemistry 1.98
Orthopaedics 0.94
Radiology 0.82
Psychiatry 0.64
Anaesthesia 0.47
Dental 0.44
Skin 0.37

Table 8: The distribution of medical subjects in MedCF++ (%).

Medical Subject Percentage (%)

Pharmacology 71.78
Biochemistry 6.96
Pathology 5.24
Medicine 4.48
Anatomy 2.98
Gynaecology & Obstetrics 1.94
Physiology 1.86
Psychiatry 1.44
Ophthalmology 1.31
Skin 0.73
Orthopaedics 0.73
Surgery 0.55

Efficacy and Generality Data Construction. The Efficacy QA pair (qe, oe) is used to measure534

the effectiveness of model editing. We utilize the MedMCQA [37] dataset, which contains medical535

knowledge in the form of multiple-choice questions, each comprising a correct answer and three536

incorrect options. Since the original “question” field in MedMCQA [37] is often expressed as a537

phrase instead of an interrogative, we first employ Gemini to rewrite it into a clear question form to538

ensure linguistic clarity and consistency. To construct the Efficacy QA pair, the rewritten question539

is paired with the correct answer as the ground truth, while one incorrect option is sampled as the540

counterfactual edit target. For example, as shown in Table 1, the original question in MedMCQA [37]541

“Treatment of multiple carboxylase deficiency” is reformulated into the well-formed interrogative542

“What is the treatment for multiple carboxylase deficiency?”. The original correct answer “Biotin”543

is retained as the ground truth, while one incorrect option “Thiamine” is selected as the edit target.544

For the Generality QA pair (qg, oe), which evaluates editing effectiveness on similar questions, we545

employ Gemini to rephrase the Efficacy question. The prompts for querying Gemini are shown in546

Table 6.547

Locality Data Construction. Locality aims to evaluate whether the edited model preserves unrelated548

knowledge, and the model is expected to generate the same answer as before editing. To construct549
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Table 9: The overall results for single editing using Meditron-7B on original MedCF dataset.

Editing Type Method
MedCF

Eff. Gen. Loc. Flu. Avg.

TD EM SS TS

Single Editing

FT 65.97 65.36 48.91 50.39 48.13 46.25 327.76 57.04
LoRA 72.19 71.80 92.29 91.11 91.36 92.42 572.33 81.90
MEND 22.87 22.93 71.16 71.21 71.03 72.29 428.38 47.16
ROME 72.69 72.91 92.79 61.80 90.06 86.93 559.82 77.84
MEMIT 83.10 83.23 95.01 62.62 92.99 90.50 563.31 84.22

MedLaSA 72.37 71.06 95.71 94.84 95.04 94.90 582.80 83.42
RECIPE 72.34 75.40 93.63 97.09 92.91 93.91 573.97 84.13

Ours 77.91 79.83 99.45 96.80 99.36 98.75 586.34 88.73

Table 10: Average edit time taken across different methods for single-editing using Meditron-7B on
MedVersa.

Method Edit Time (s)

MEND 3.301
MEMIT 18.239
MedLaSA 16.787
RECIPE 0.006
MedREK (Ours) 0.012

the Locality data, we sample a different entry from MedMCQA [37] than the one used for Efficacy,550

but within the same medical subject, leveraging the “subject name" field in MedMCQA [37]. The551

original question is then converted into a standard interrogative, with the correct answer as the ground552

truth for the Locality question. For example, as shown in Table 1, the Locality question “At what age553

does purposeful movement typically start in infants?" represents a different piece of knowledge from554

the Efficacy question, while sharing the same medical subject “Pediatrics". This design assesses the555

reliability of the model in preserving unrelated but same-domain knowledge after editing.556

Comparison of Medical Subjects in MedVersa and MedCF++. Table 7 and Table 8 show the557

full distribution of medical subjects in MedVersa and MedCF++. Compared with MedCF++, which558

is dominated by Pharmacology, MedVersa exhibits a more balanced coverage across subjects. In559

addition, MedVersa includes 8 subjects that are absent in MedCF++. These underscore the broader560

coverage of medical domains of MedVersa, enabling a more comprehensive evaluation of medical561

knowledge editing.562

D More Experimental Results.563

Results of Single Editing on MedCF. In Table 9,we present the results of single-editing using564

Meditron-7B on the original MedCF [13] dataset, which contains duplicate prompts for Efficacy565

and Locality in a single record. MedREK performs consistently well on it, and obtains better result566

especially in Loc.-EM on the cleaned dataset MedCF++ as shown in Table 2. This supports our567

earlier claim (Section 4.1) that duplicated prompts in MedCF [13] can lead to unreliable evaluations.568

Edit Time of Different Methods. To compare the efficiency of different methods, we conduct569

single-edit experiments using Meditron-7B [6] on MedVersa and report the average edit time in570

Table 10. We observe that MedREK and RECIPE [17]—both retrieval-based methods—significantly571

outperform parameter-modifying methods. In particular, MedLaSA [13] is a parameter-modifying572

method that leverages LoRA [43] finetuning to perform edits. However, it requires 70 epochs of573

finetuning for each single edit, which results in substantially longer editing time. This makes it less574

efficient and impractical for scenarios requiring rapid or frequent knowledge updates.575

E Training Loss of MedREK576

Following RECIPE [17], the loss functions are defined as follows:577
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L(i)
eff = − log f̂_θ

(
o(i)_e | p(i) ⊕ f_emb(q(i)_e)

)
(1)

L(i)
gen = − log f̂_θ

(
o(i)_g | p(i) ⊕ f_emb(q(i)_g)

)
(2)

L(i)
loc = KL

(
f_θ(q(i)_l) ∥ f̂_θ

(
p(i) ⊕ f_emb(q(i)_l)

))
(3)

where fθ is the large language model (LLM) to be editied, and f̂θ is fθ with the embedding layer femb

removed. The editing loss is then defined as Ledit =
1
B

∑B
i=1

(
L(i)

eff + L(i)
gen + L(i)

loc

)
. The contrastive

learning loss for prompt learning are defined as follows:

L(i)
no = δ

(
z(i)qe , z

(i)
v , R

)
+ δ

(
z(i)qg , z

(i)
v , R

)
(4)

L(i)
so = δ

(
z(i)ql

, zpt, R
)
+ δ

(
z(i)qe , zpt, R \ vi

)
+ δ

(
z(i)qg , zpt, R \ vi

)
(5)

Lcontra =
1

b

b∑
i=1

(
L(i)

no + L(i)
so

)
(6)

where R = {z(i)v }bi=1 ∪ {rΘ} and R \ z
(i)
v = R \ {z(i)v }. z

(i)
v is the representation of the editing

knowledge triple KN(i)
e transformed through Equation (9) in the paper. The query representations

z
(i)
qe , z(i)qg , and z

(i)
ql for q(i)e , q(i)g , and q

(i)
l are attained via Equation (8) in the paper, respectively. δ is

the InfoNCE loss [2], formulated as:

δ
(
q,KN+

e , {KN(i)
e }ni=1

)
= − log

(
exp(q ·KN+

e /τ)∑n
i=1 exp(q ·KN(i)

e /τ)

)
(7)

where τ is the temperature, typically set to 1 by default. Finally, the total training loss is defined as578

Ltotal = Lcontra + Ledit.579
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