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Abstract

Explanations are crucial parts of deep neural network (DNN) classifiers. In high stakes
applications, faithful and robust explanations are important to understand DNN classifiers
and gain trust. However, recent work has shown that state-of-the-art attribution methods
in text classifiers are susceptible to imperceptible adversarial perturbations that alter expla-
nations significantly while maintaining the correct prediction outcome. If undetected, this
can critically mislead the users of DNNs. Thus, it is crucial to understand the influence
of such adversarial perturbations on the networks’ explanations. In this work, we estab-
lish a novel definition of attribution robustness (AR) in text classification. Crucially, it
reflects both attribution change induced by adversarial input alterations and perceptibility
of such alterations. Moreover, we introduce a set of measures to effectively capture several
aspects of perceptibility of perturbations in text, such as semantic distance to the original
text, smoothness and grammaticality of the adversarial samples. We then propose our novel
Context-AwareExplanationAttack (CEA), a strong adversary that provides a tight
estimation for attribution robustness in text classification. CEA uses context-aware masked
language models to extract word substitutions that result in fluent adversarial samples.
Finally, with experiments on several classification architectures, we show that CEA consis-
tently outperforms current state-of-the-art AR estimators, yielding perturbations that alter
explanations to a greater extent while being less perceptible.

1 Introduction

Attribution methods aim to give insights into causal relationships between deep neural networks’ (DNNs)
inputs and their outcome prediction. They are fundamental to unravel the black-box nature of DNNs and
are widely used both in the image and natural language domain. Commonly used attributions like Saliency
Maps (Simonyan et al., 2013), Integrated Gradients (Sundararajan et al., 2017), DeepLIFT (Shrikumar et al.,
2017) and Self-Attention (Bahdanau et al., 2015) highlight input features that are deemed important for
the DNNs in the inference process. These methods are especially attractive and useful, as they provide on-
the-fly explanations without requiring any domain-specific knowledge from users or extensive computation
resources.

However, it has been shown recently that many of these attributions lack robustness towards adversarial per-
turbations (Ghorbani et al., 2019). Carefully crafted, imperceptible input alterations change the explanations
significantly without modifying the output prediction of the DNNs. This violates the prediction assumption
of faithful explanations (Jacovi & Goldberg, 2020), which states that similar inputs should have similar
explanations for identical outputs. Figure 1 exemplifies this fragility of attributions. In many safety-critical
natural language processing problems, such as EHR classification (Girardi et al., 2018), robustness is a key
factor for DNNs to be deployed in real life. For instance, a medical professional assessing EHRs would neither
understand nor trust a model that yields two significantly different explanations for seemingly identical input
texts and predictions. Hence, it is fundamental to understand how the networks and attributions behave in
the presence of input perturbations and how perceptible those alterations are to the user.

In this work, we focus on understanding the adversarial robustness of attribution maps (AR) in text classi-
fication problems. Specifically, we are interested in investigating and quantifying the extent to which small
input perturbations can alter explanations in DNNs and how perceptible such alterations are. We do so by

1



Under review as submission to TMLR

Original sample CEA perturbed sample
(ours)

TEF perturbed sample
(Ivankay et al., 2022)

press the delete key . hit the delete key . newspaper the delete key .
F(s, “Negative”) = 0.99 F(s, “Negative”) = 0.95 F(s, “Negative”) = 0.95

r: 30 r: 1.1
SemS : 0.98 SemS : 0.8
PCC : -0.05 PCC : 0.6

peek at the week : ben vs. the
streak | yet another risky game
for that patriots winning streak ,
now at 21 . pittsburgh hasn #
39;t lost at home , and rookie
quarterback ben roethlisberger
hasn # 39;t lost , period .

peek at the playoffs : ben vs. the
steelers | yet another risky game
for that patriots winning streak ,
now at 21 . pittsburgh hasn #
34 lost at home , and rookie
quarterback ben roethlisberger
hasn # 39;t lost , period >

hoodwink at the zou : suis vs.
the wave | yet another risky
game for that patriots winning
streak , now at 21 . pittsburgh
hasn # 39;t lost at home , and
rookie quarterback ben
roethlisberger hasn # 39;t lost ,
period .

F(s, “Sports”) = 0.99 F(s, “Sports”) = 0.95 F(s, “Sports”) = 1.0
r: 14.9 r: 3.4

SemS : 0.97 SemS : 0.9
PCC : 0.02 PCC : 0.22

intel seen readying new wi - fi
chips | intel corp . this week
isexpected to introduce a chip that
adds support for a
relativelyobscure version of wi - fi
, analysts said on monday , in a
movethat could help ease
congestion on wireless networks .

intel seen readying wireless wi -
fi chips | intel corp . this week
isexpected to launch a
specification that added support
for a relativelyobscure version of
wi - fi , analysts said on monday ,
in a movethat could help ease
congestion on wireless networks .

intel seen readying nouveau wi -
fi chips | intel corp . this week
isexpected to insert a dies that
summing support for a
relativelyobscure version of wi - fi
, analysts said on monday , in a
movethat could help ease
congestion on wireless networks .

F(s, “Sci/Tech”) = 0.78 F(s, “Sci/Tech”) = 0.95 F(s, “Sci/Tech”) = 0.95
r: 20 r: 4

SemS : 0.98 SemS : 0.91
PCC : 0.27 PCC : 0.28

Figure 1: Three examples of fragile attribution maps in text sequence classifiers. In each row, careful
alteration of the original sample results in significantly different attribution maps while maintaining the
prediction confidence F in the correctly predicted class. Red words have positive attribution values, i.e.
contribute towards the true class, while blue words with negative attributions against it. Our novel CEA
attack yields perturbed samples that have lower Pearson Correlation Coefficient (PCC) values between the
words highlighted by the attribution method in the original and perturbed inputs, as well as higher semantic
similarity values (SemS) of the original and adversarial sentences, compared to the baseline TEF attack. This
results in higher estimated robustness constants r (see Section 4), thus lower robustness of the classifiers
against attacks.

focusing on methods to find perturbations that maximize the change in attribution while being as imper-
ceptible as possible. Characterizing and quantifying the robustness of attribution methods is an important
step towards training robust classifiers and attribution methods that can be deployed in a wide variety of
critical real-life use cases. We summarize our contributions as follows:

• We are the first to introduce a definition of attribution robustness (AR) in text classification that
takes both the attribution distance and perceptibility of perturbations into account.

• We propose a diverse set of metrics to effectively capture aspects like semantic distance to original,
smoothness and grammaticality of perturbed inputs. This is key to understand the perceptibility of
small adversarial input perturbations in text.
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• We introduce a novel and powerful attack algorithm, Context-AwareExplanationAttack
(CEA), which is shown to consistently outperform state-of-the-art adversaries and therefore allows
us to more accurately estimate attribution robustness in text classifiers.

• We are the first to utilize masked language models (MLMs) for context-aware candidate extraction
in attribution robustness estimation. This is important because domain-specific MLMs are becoming
increasingly available, making them a progressively attractive alternative to less effective, custom
synonym embeddings on which current estimation methods have to rely.

• We successfully speed up robustness estimation with the usage of distilled language models and
batch masking.

2 Related work

The robustness aspect of faithful explanations (Jacovi & Goldberg, 2020) has recently been studied with
increasing interest. The authors Ghorbani et al. (2019) were the first to show that attribution methods
like Integrated Gradients (Sundararajan et al., 2017) and DeepLIFT (Shrikumar et al., 2017), amongst
others, lack robustness to local, imperceptible perturbations in the input that lead to significantly altered
attribution maps while maintaining the correct prediction of the image classifier. The works of Dombrowski
et al. (2019), Chen et al. (2019), Moosavi-Dezfooli et al. (2019), Rigotti et al. (2022) and Ivankay et al. (2021)
have further studied this phenomenon and established theoretical frameworks to understand and mitigate
the lack of attribution robustness in the image domain.

However, explanation robustness in natural language processing has not been explored as deeply. The
authors Jain & Wallace (2019) and Wiegreffe & Pinter (2020) show that similar inputs can lead to similar
attention values but different predictions, and that models can be retrained to yield different attention values
for identical inputs and outputs. This, however, does not directly contradict the prediction assumption of
faithfulness (Jacovi & Goldberg, 2020) as discussed by Wiegreffe & Pinter (2020). Closer to our work,
the works of Ivankay et al. (2022) and Sinha et al. (2021) are the first to prove that explanations in text
classifiers are also susceptible to input changes in a very small local neighbourhood of the input. Ivankay et al.
(2022) introduce TextExplanationFooler (TEF) as a baseline to alter attributions and estimate local
robustness of attributions in text. However, the authors’ definition of AR does not take semantic distances
between original and adversarial samples into account. Moreover, it draws token substitution candidates
from a separately trained custom synonym embedding. Thus, their attack results in out-of-context and
non-fluent adversarial samples, rendering such perturbations easily detectable. Our work aims to improve
the imperceptibility of input alterations and estimate AR with less detectable adversarial alterations that
change attributions to a greater extent.

3 Preliminaries

A text dataset S is comprised of N text samples si, each containing a series of tokens wi from a vocabulary
W and labels li drawn from the label set L. A text classifier F is a function that maps each sample si to
a label yi ∈ L. It consists of an embedding function E and a classifier function f . The embedding function
E : S → Rd×p, E(s) = X maps the text samples si to a continuous embedding Xi, while the classifier
function f : Rd×p → R|L|, f(X) = o maps the embeddings to the output probabilities for each class.

An attribution function A(s, F, l) = a assigns a real number to each token wj in sample s. This represents
the tokens influence towards the classification outcome. A positive value represents a token that is deemed
relevant towards the label l, a negative value against it. We consider the attribution methods Saliency
(S) (Simonyan et al., 2013), Integrated Gradients (IG) (Sundararajan et al., 2017) and Self-Attention (A)
(Bahdanau et al., 2015).

The perplexity (Brown et al.) of a text sample s with tokens wj , given a language model L, measures how
well the probability distribution given by L predicts the sample s, as defined in Equation (1):

PP (s|L) = 2
−

󰁓
wj ∈s

p(wj |L,s) log p(wj |L,s)
(1)
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where PP denotes the perplexity of the text sample s and p(wj |L, s) the probability of token wj given L and
s. Low perplexity values indicate that the model L has captured the true distribution of the text dataset S
well.

Sentence encoders are embedding functions Es : S → Rm, Es(s) = e that assign a continuous embedding
vector of dimension m to each text sample (Reimers & Gurevych, 2019). These embeddings are used to
capture higher-level representations of sentences or short paragraphs that can be used to train downstream
tasks effectively. As they are jointly trained on a diverse set of multi-task problems, they are argued to
capture the semantic meaning of the text well Reimers & Gurevych (2019).

4 Attribution Robustness

In this section, we introduce our novel definition of attribution robustness (AR) in text classifiers. We
describe our attribution and text distance measures, which are taken from current work. Furthermore, we
describe the optimization problem of estimating AR, our threat model as well as our new estimator algorithm.

4.1 Attribution Robustness in Text

Most related works define AR as the maximal attribution distance with a given locality constraint in the
search space (Ivankay et al., 2022; Sinha et al., 2021). We argue that this is potentially problematic, as the
extent of the input perturbation is not taken into account. Two adversarial samples with similarly altered
attributions might in fact strongly differ in terms of how well they maintain semantic similarity to the original
sample (see e.g. 3rd example in Figure 1). This suggests that a proper measure of attribution robustness
should ascribe higher robustness to methods that are only vulnerable to larger perturbations while being
impervious to imperceptible ones. Thus, we give a novel definition for attribution robustness for a given
text sample s with true and predicted label l as functions of both resulting attribution distance and input
perturbation size, written in Equation (2).

r(s) = max
s̃∈N (s)

d
󰀅
A(s̃, F, l), A(s, F, l)

󰀆

ds(s̃, s) (2)

with the constraint that the predicted classes of s̃ and s are equal, written in Equation (3).

arg max
i∈{1...|L|}

Fi(s̃) = arg max
i∈{1...|L|}

Fi(s) (3)

Here, d denotes the distance between attribution maps A(s̃, F, l) and A(s, F, l), F the text classifier with
output probability Fi for class i, and ds the distance of input text samples s̃ and s. N (s) indicates a
neighbourhood of s: {N (s) = s̃ | ds(s̃, s) < ε} for a small ε. This definition is inspired by the robustness
assumption of faithful explanations (Jacovi & Goldberg, 2020). The estimated robustness of an attribution
method A on a model F then becomes the expected per-sample r(s) on dataset S, see Equation (4).

r(A, F ) = Es∈S
󰀅
r(s)

󰀆
(4)

We call this r the estimated attribution robustness (AR) constant. The robustness of attribution method
A on the model F is inversely proportional to r(A, F ), as high values mean large attribution distances and
small input perturbations, which indicates low robustness.

4.2 Distances in Text Data

In order to compute the attribution robustness constant r from Equation (4), the distance measures in
the numerator and denominator of Equation (2) need to be defined. In explainable AI, it is often argued
that only the relative rank between input features or tokens is important when explaining the outcome
of a classifier, or even only the top few features. Users frequently focus on the features deemed most
important to explain a decision and disregard the less important ones (Ghorbani et al., 2019; Ivankay
et al., 2021; Dombrowski et al., 2019). Therefore, it is common practice (Sinha et al., 2021; Ivankay et al.,
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2022) to use correlation coefficients and top-k intersections as distance measures between attributions. For
this reason, we utilize the Pearson correlation coefficient (PCC) (Pearson, 1895) as attribution distance

d
󰀅
A(s̃, F, l), A(s, F, l)

󰀆
= 1 −

1 + PCC
󰀅
A(s̃, F, l), A(s, F, l)

󰀆

2 of Equation (2).

The denominator in Equation (2) contains the distance between original and adversarial text samples. In
textual input domains, measuring distance between inputs in the adversarial setting is not as straightforward
as in the image domain, where ℓp-norm induced distances are common. String distance metrics (Navarro,
2001) can only be used limitedly, as two words can have similar characters but entirely different semantics.
For this reason, we propose the following set of measures to effectively capture smoothness, semantic distance
to original, and correctness of grammar of adversarial text inputs.

First, we utilize pretrained sentence encoders to measure the semantic textual similarity between the original
and adversarial text samples. This can be computed by the cosine similarity between the sentence embeddings
of the two text samples, given as

ds(s̃, s) = 1 − scos[Es(s̃), Es(s)] + 1
2 (5)

where ds denotes the semantic distance between samples s̃ and s, scos the cosine similarity, and Es(s̃) and
Es(s) the sentence embeddings of the two input samples. The semantic textual similarity provides a measure
how close the two inputs are in their semantic meaning. To this end, the Universal Sentence Encoder (Cer
et al., 2018) is widely-used in adversarial text setups (Sun et al., 2020; Ivankay et al., 2022). However, this
architecture is not state-of-the-art on the STSBenchmark dataset (Cer et al., 2017), a benchmark used to
evaluate semantic textual similarity. Therefore, we utilize a second sentence encoder architecture trained by
the authors Wang et al. (2020), MiniLM. This model achieves close to state-of-the-art performance on the
benchmark while maintaining a low computational cost.

Our second input distance is derived from the perplexity of original and adversarial inputs s̃ and s. We
capture the relative increase of perplexity when perturbing the original sentence s, given the pretrained
GPT-2 language model (Radford et al., 2019) (Equation 6).

ds(s̃, s) = PP (s̃|L) − PP (s|L)
PP (s|L) + ε

(6)

where ds denotes the distance between inputs s̃ and s, PP the perplexity of the text sample given the GPT-2
language model L and ε is a small constant. Intuitively, this measure indicates how natural the resulting
adversarial inputs are.

Lastly, we capture the increase of grammatical errors in the input samples using the LanguageTool API
1. As grammatical errors are easily perceived by the human observer, they significantly contribute to the
perceptibility of adversarial perturbations (Ebrahimi et al., 2018).

4.3 Context-Aware Robustness Estimation

Given our AR definition in Equation (2), in order to estimate the true robustness of an attribution method for
a given model, all possible input sequences s̃ within the neighborhood N of s would have to be checked, which
is intractable. Therefore, we restrict the search space to sequences s̃ that only contain token substitutions
from the predefined vocabulary set W. Moreover, we restrict the ratio of substituted tokens in the original
sequence to ρmax, considering only |C| number of possible substitutions for each token in s. The number
|C| is chosen to yield high attribution distance while keeping the computation cost low, detailed in Section
5. This way, we reduce the total perturbation set from |W||s| to |C||s|·ρmax samples. These are widely used
simplifications of the adversarial search in text (Li et al., 2020). The adversarial sequence sadv then becomes
the perturbed sequence that maximizes r(s) from Equation (2)

We estimate AR with our novel Context-AwareExplanationAttack (CEA). CEA is a black-box attack,
only having access to the model’s prediction and the accompanying attributions, no intermediate represen-
tations or gradients. CEA consists of the following two steps.

1https://languagetool.org
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Algorithm 1 Context-AwareExplanationAttack
Input: Input sentence s with label l, classifier F , attribution A, attribution distance d, DistilBERT-MLM
L, number of candidates N , maximum perturbation ratio ρmax, batch masking ratio ρb

Output: Adversarial sentence sadv

1: sadv ← s, dmax ← 0, n ← 0
2: for wi ∈ s do
3: Iwi = d

󰀅
A(swi→0, F, l), A(s, F, l)

󰀆
⊲ Importance Ranking

4: sB ← 〈s1...b, sb+1...2b, ..., s|s|−b+1...|s|〉 with Iwb−1 ≥ Iwb
∀j ∈ {2, ..., |sB |} and ∀b ∈ {1, .., |sj |}

5: for sb ∈ sB do
6: Cb ← L(sb→[MASK], sadv) ⊲ Batch Masking and Candidate Extraction
7: for wj ∈ sb do
8: if wj ∈ SStopwords then ⊲ Stop Word Filter
9: continue

10: for ck ∈ Cj do ⊲ Iterate over Candidates
11: s̃wj →ck ← Replace wj in sadv with ck

12: if arg max
i∈{1:|L|}

F (s̃wj→ck
) ∕= l then ⊲ Prediction Filter

13: continue
14: d̃ = d

󰀅
A(s̃wi→ck , F, l), A(s, F, l)

󰀆

15: if d̃ > dmax then ⊲ Candidate Selection
16: sadv ← s̃wi→ck

17: dmax ← d̃
18: n ← n + 1
19: if ρ = n+1

|s| > ρmax then ⊲ Limit of Word Substitutions
20: break

Step 1: Word importance ranking. The first step extracts a priority ranking of tokens in the input
text sample s. For each word wi in s, CEA computes Iwi = d

󰀅
A(swi→0, F, l), A(s, F, l)

󰀆
, where swi→0

denotes the token wi in s set to the zero embedding vector and d denotes the attribution distance measure
in Equation (2), described in the previous subsection. The tokens in s are then sorted by descending values
of Iwi . Thus, we estimate words that are likely to result in large attribution distances and prioritize those
for substitutions towards building explanation attacks. Importance ranking has been shown to be effective
in prioritizing words that yield large changes in the outcomes (Li et al., 2020; Ivankay et al., 2022).

Step 2: Candidate selection and substitution. The second step substitutes each highest ranked
token in s, computed in Step 1, with a token from a candidate set C, in descending importance order. The
candidate set for a specific word is extracted by first substituting the specific word with the "<MASK>"
token, then propagating the whole sentence (with the "<MASK>" token) through a transformer-based
masked language model (MLM). The MLM then predicts what tokens or words are the most likely to fill
in the masked word by assigning a probability distribution over all possible tokens in the vocabulary. CEA
takes the |C| number of tokens with highest probabilities as candidate set to replace the specific word in the
sentence. Out of this candidate set C, the final substitution is then selected by maximizing the attribution
distance. CEA performs this candidate substitution with the MLM for each highest ranked word in the
sentence iteratively in a sequential order. In order to keep the computational costs low, we utilize the
DistilBERT pretrained masked language model (Sanh et al., 2019), a BERT-MLM with significantly fewer
parameters and more computationally efficient. Also, at most n = ⌊|s| · ρmax⌋ words are substituted. While
candidate extraction with masked language models has been introduced before, we are the first to apply this
concept to the AR estimation problem.

In order to further reduce computational cost, CEA uses batch masking. Thus, instead of masking each
word separately in Step 2, the first nb = |s| · ρb most important tokens are masked at once and the language
model is queried for candidates for all of these masked tokens. Here, nb denotes the number, ρb the ratio
of tokens in s to be masked at once. For instance, during AR estimation of a 100 word text sample, given

6



Under review as submission to TMLR

ρmax = 0.15 and ρb = 0.05, the MLM is queried only (100 · 0.15)/(100 · 0.05) = 3 times with batch masking
instead of 100 · 0.15 = 15 times without it. We compared the runtime of CEA using non-distilled (Devlin
et al., 2019) and distilled (Sanh et al., 2019) BERT MLMs, with and without batch masking, and found
considerable performance increase with batch masking and distillation. The results are reported in Section
5.

5 Experiments

In this section, we present our AR estimation experiments. Specifically, we describe the evaluation setup and
results with our novel robustness definition. We show that CEA consistently outperforms our direct state-
of-the-art competitor, TextExplanationFooler (TEF) in terms of the attribution robustness constant r
described in Section 4. Thus, we convey that CEA extracts smoother adversarial samples that are able to
alter attributions more significantly than TEF. Finally, we compare the runtime of CEA to TEF and show
that CEA achieves comparable runtimes, while still outperforming TEF in the previously mentioned aspects.

5.1 Setup

We evaluate the robustness constant r estimated by CEA on the AG’s News (Zhang et al., 2015), MR Movie
Reviews (Zhang et al., 2015), IMDB (Maas et al., 2011), Yelp (Asghar, 2016) and the Fake News datasets
Lifferth (2018). We train a CNN, an LSTM, an LSTM with an attention layer (LSTMAtt), a finetuned
BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019) and XLNet (Yang et al., 2019) classifier for each
dataset. A description of these can be found in the appendix. We estimate the robustness of the Saliency (S),
Integrated Gradients (IG) and Self-Attention (A) attribution methods. The CNN and LSTM architectures
are used in combination with S and IG, the remaining LSTMAtt, BERT, RoBERTA and XLNet are used
with all three attributions. Thus, we evaluate 16 combinations of models and attributions for each dataset.

We vary the ρmax parameter of CEA between 0.01 and 0.4. A value of ρmax does not necessarily lead to
the actual perturbed ratio of tokens ρ to be ρ = ρmax due to the prediction constraint. We set the batch
masking size ρb = min(ρmax, 0.15), as the MLM was trained by masking ∼15% of the tokens (Sanh et al.,
2019). We set |C| = 15, as larger values do not result in better estimation in terms of r, but in significantly
higher attack runtimes. This makes our experiments comparable to TEF (Ivankay et al., 2022).

Our attack and experiments are implemented in PyTorch (Paszke et al., 2019), utilizing the Hugging Face
Transformer library (Wolf et al., 2020), Captum (Kokhlikyan et al., 2020) and SpaCy (Honnibal et al., 2020).
We run each experiment on an NVIDIA A100 GPU with three different seeds and report the average results.

5.2 Results

We report the following metrics as functions of the true perturbed ratio ρ. The average PCC values of
original and adversarial attribution maps indicate the amount of change in explanations. Lower values
mean larger attribution changes, thus less robust attribution methods for the given dataset and classification
model. The input distance between text samples is captured by the semantic textual similarity values of
the original and adversarial samples, measured by the cosine similarity between the USE (Cer et al., 2018)
and MiniLM (Wang et al., 2020) sentence embeddings (SemSUSE and SemSMiniLM ), as well as the relative
perplexity increase (∆P P ). The average increase in number of grammatical errors (GE) after perturbation
is also reported. At constant attribution change, higher semantic similarities and lower perplexities indicate
lower attribution robustness, as smaller, more imperceptible alterations are enough to change the outcome
of the attributions.

Using the aforementioned values, we report the estimated robustness constants rUSE , rMiniLM and rP P ,
according to Equation (4). We compare these metrics for our novel CEA algorithm and the direct competitor
TEF (Ivankay et al., 2022). The results are reported in Figure 2. The continuous lines contain the metrics
for our CEA attack, the dashed lines for the baseline TEF. The figures show that CEA perturbations alter
explanations more (lower PCC values) while yielding adversarial samples semantically equally or more similar
to the original inputs than TEF (higher average SemS, lower average ∆P P and GE values). Moreover, the
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LSTMAtt - Integrated Gradients (IG) on Fake News
PCC r SemS Ppl. and Grammar

0.16 ρ
−1

−0.5
0

0.5
1

0.16 ρ0
5

10
15
20
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0
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XLNet - Self-Attention (A) on Yelp
PCC r SemS Ppl. and Grammar

0.16 ρ
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0.16 ρ0.6

0.8

1

0.16 ρ
−2

0

2

4

PCC rUSE rMiniLM rP P SemSUSE SemSMiniLM ∆P P GE

CEA TEF

Figure 2: AR metrics as functions of the ratio of perturbed tokens ρ. We plot the mean and standard
deviation of the Pearson correlations (PCC) between original and adversarial attributions, the estimated AR
robustness constants (r), the semantic similarities (SemS), relative perplexity increase (∆P P ) and increase
of number of grammatical errors (GE) in original and adversarial text inputs. We compare these values for
our novel Context-AwareExplanationAttack (CEA - continuous lines) and the baseline TextExpla-
nationFooler (TEF - dashed lines). We observe consistent improvement in robustness estimation with
CEA compared to TEF, reflected in higher r-values in the second column. This is attributed to both lower
PCC values, higher semantic similarities of perturbed sentences to the original ones and lower adversarial
perplexity of CEA perturbations.

∆AUCUSE
r ∆AUCMiniLM

r ∆AUCPP
r

AG’sNews MR IMDB Yelp FakeNews

0

0.5

1

AG’sNews MR IMDB Yelp FakeNews

0

0.5

1

AG’sNews MR IMDB Yelp FakeNews

0

1

2

Figure 3: Relative increase ∆ of AUCr when estimating the robustness constants r (Equation 4) with CEA
compared to TEF. Each point corresponds to one of the 16 combinations of model and attribution method,
on the indicated dataset. The r-values are estimated with the PCC as attribution similarity, varying the
input distance measures ds as described in Section 4.2. We observe a relative increase of 0.3 − 1.5 for
almost all models, attribution maps and datasets evaluated on. This shows that CEA consistently provides
better perturbations that alter attributions more while being more fluent and semantically similar to the
unperturbed input.

perplexity increase is consistently lower for CEA perturbations, leading to more fluent adversarial samples.
This is well-captured by resulting robustness constants r, which are higher for CEA than TEF, showing
both that our AR definition of Equation (2) is a suitable indicator for AR in text classifiers, and that CEA
estimates this robustness better than the state-of-the-art TEF attack. The rest of the results is reported in
the appendix.
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CNN - IG on AG’s News RoBERTa - A on Fake News LSTM - S on IMDB

TEF CEA1 CEA2 CEA
0

4

s
ρmax = 0.1
ρmax = 0.25

TEF CEA1 CEA2 CEA
0

125

s
ρmax = 0.1
ρmax = 0.25

TEF CEA1 CEA2 CEA
0

35

s
ρmax = 0.1
ρmax = 0.25

Figure 4: Per-sample runtime (s) of our AR estimator algorithm versions. CEA, with a distilled MLM and
batch masking, achieves comparably fast estimation to TEF, while CEA with a non-distilled BERT MLM
(CEA1) is the slowest estimator, with a relative increase in runtime of approx. 1.5-2.5 compared to TEF.
Distillation of the MLM (CEA2) improves the runtime by around 25-35% compared to (CEA1).

5.2.1 Area Under the Curves

To quantify the overall performance of CEA over the whole operation interval of ρ, we compute the area under
the estimated r curves (2nd column in Figure 2). These are calculated as the integral AUCr =

󰁕
ρ

r(A, F )dρ.
High AUCr values correspond to high r-values, thus low overall attribution robustness. We then compare
the resulting AUCr estimated with our CEA algorithm to the competitor method TEF. Figure 3 shows the
relative increase of AUC when estimating with CEA rather than TEF, for each of the 16 combinations of
models and attribution methods for a given dataset. For instance, a value of 0.5 indicates an increase of 50%
in estimated AUCr, i.e. if TEF results in AUCr = 1.0, CEA yields AUCr = 1.5. We plot the AUCr increase
estimated with the semantic textual similarities from USE (AUCUSE

r ), MiniLM (AUCMiniLM
r ) and with the

relative perplexity increase (AUCPP
r ). The attribution distance in the numerator of r is set to the PCC,

described in Section 4. We observe an increase in AUCr of 0.3 − 0.5 with USE and MiniLM, and 0.5 − 1.5
with PP for most models, attribution maps and datasets. This further shows that CEA consistently yields
higher robustness constants r than TEF, providing better perturbations that alter attributions more while
being less perceptible.

5.2.2 Runtime Analysis

Querying transformer-based MLMs is computationally expensive. Substituting the synonym extraction from
TEF with an MLM-based candidate extraction results in a significant increase in estimation time. Therefore,
we use the methods described in Section 4 to lower the estimation time in CEA. Figure 4 contains the per-
sample attack time for TEF, CEA with the non-distilled BERT MLM (CEA1), CEA with DistilBERT
MLM (CEA2) and our CEA algorithm with DistilBERT MLM and batch masking, for ρmax ∈ {0.1, 0.25}.
We observe that CEA1 results in a significant increase in mean estimation time by a factor of around 2
compared to TEF on both a smaller, medium and a large datasets. Using CEA2 for estimating AR decreases
the runtime by a large margin compared to CEA1. Finally, when applying both a distilled MLM and batch
masking - CEA, the per-sample attack time is comparable to the baseline TEF, while maintaining better
AR estimation.

5.2.3 Ablation Studies

CEA differs from our direct competitor TEF (Ivankay et al., 2022) in Step 2 of the algorithms. Instead
of utilizing the synonym embeddings Mrkšic et al. (2016) to extract substitution candidates and passing
those through a part of speech filter, CEA uses MLMs to extract the candidates. Thus, our ablations focus
around this aspect. We compare TEFs AR performance to two versions of CEA, the original as formulated
in Algorithm 1 and one where the candidate extraction is still performed with an MLM as in Algorithm 1,
but the selection is random (i.e. Line 14-16). We do not experiment with ablating the stop word filter of
the prediction filter, as those are assumptions of robustness and constraints of the optimization problem,
not directly design choices of CEA. Figure 5 compares the AR metrics of these three estimators and reports
them as functions of ρ. We observe that CEA outperforms both TEF and the MLM-based random syno-
nym selection, supporting the choice of MLM-based candidate extraction over TEF’s synonym embeddings.
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RoBERTa - Integrated Gradients (IG) on AG’s News
PCC r SemS

0.16 ρ
−1

−0.5
0

0.5
1

0.16 ρ0

5

10

15

0.16 ρ0.6
0.7
0.8
0.9

1

RoBERTa - Integrated Gradients (IG) on MR
PCC r SemS

0.16 ρ
−1

−0.5
0

0.5
1

0.16 ρ0

5

10

15

0.16 ρ0.6
0.7
0.8
0.9

1

TEF MLM + Random Selection CEA

Figure 5: AR estimation performance of CEA, TEF and our ablated CEA with random candidate selection.
We observe that CEA out performs TEF both in terms of PCC as well as r, indicating the superior per-
formance of MLM-based candidate selection over pretrained, counter-fitted synonym embeddings. However,
randomly selecting the substitutions from the candidate set yields worse performance than TEF.

Randomly selecting the substitution from the candidate set significantly speeds up AR estimation, yields
however inferior results to both TEF and CEA in terms of both PCC and r.

6 Conclusion

In this work, we introduced a novel definition of attribution robustness in text classifiers. Crucially, our
definition incorporates perturbation size, which contributes significantly to the perceptibility of attacks. We
introduce semantic textual similarity measures, the relative perplexity increase and the number of gram-
matical errors as ways to effectively quantify perturbation size in text. Next, we introduced Context-
AwareExplanationAttack, a new state-of-the-art attack method that results in a tighter estimator for
attribution robustness in text classification problems. It is a black-box estimator using a distilled MLM
with batch masking to extract adversarial perturbations with small computational overhead. Finally, we
showed that our new algorithm CEA outperforms current attacks by altering DNN attributions more with
less perceptible perturbations.

One important question arises from the robustness assumption of interpretations: are more robust explana-
tions indeed more faithful? Current work has already started to look into this research question. The authors
Ivankay et al. (2023) examine the interplay between robustness and plausibility. However, understanding
the impact of robustness on the faithfulness of explanation still remains an open question that we plan to
examine in future work.

To sum up, our contributions allow for estimating the robustness of attributions more accurately and are a
first step towards training robust, safely applicable DNNs in critical areas like medicine, law or finance.

10



Under review as submission to TMLR

References
N. Asghar. YELP Dataset Challenge: Review Rating Prediction. arXiv preprint arXiv:1605.05362, 2016.

D. Bahdanau, K. H. Cho, and Y. Bengio. Neural Machine Translation by Jointly Learning to Align and
Translate. In International Conference on Learning Representations, 2015.

P. E. Brown, V. J. Della Pietra, S. A. Della Pietra, and J. C. Lai. An Estimate of an Upper Bound for the
Entropy of English. Computational Linguistics, 18(1).

D. Cer, M. Diab, E. Agirre, I. Lopez-Gazpio, and L. Specia. SemEval-2017 Task 1: Semantic Textual
Similarity Multilingual and Crosslingual Focused Evaluation. In International Workshop on Semantic
Evaluation (SemEval-2017), pp. 1–14, 2017.

D. Cer, Y. Yang, S.-Y. Kong, N. Hua, N. Limtiaco, R. St John, N. Constant, M. Guajardo-Céspedes, S. Yuan,
and C. Tar. Universal Sentence Encoder. arXiv preprint arXiv:1803.11175, 2018.

J. Chen, X. Wu, V. Rastogi, Y. Liang, and S. Jha. Robust Attribution Regularization. In Advances in
Neural Information Processing Systems, pp. 14300–14310, 2019.

J. Devlin, M.-W. Chang, L. Kenton, and L. K. Toutanova. BERT: Pre-Training of Deep Bidirectional
Transformers for Language Understanding. In NAACL-HLT, pp. 4171–4186, 2019.

A.-K. Dombrowski, M Alber, C. Anders, M. Ackermann, K.-R. Müller, and P. Kessel. Explanations can
be Manipulated and Geometry is to blame. In Advances in Neural Information Processing Systems, pp.
13589–13600, 2019.

J. Ebrahimi, A. Rao, D. Lowd, and D. Dou. HotFlip: White-Box Adversarial Examples for Text Classifica-
tion. In Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp.
31–36, 2018.

A. Ghorbani, A. Abid, and J. Zou. Interpretation of Neural Networks is Fragile. In AAAI Conference on
Artificial Intelligence, volume 33, pp. 3681–3688, 2019.

I. Girardi, P. Ji, A.-P. Nguyen, N. Hollenstein, A. Ivankay, L. Kuhn, C. Marchiori, and C. Zhang. Patient
Risk Assessment and Warning Symptom Detection Using Deep Attention-Based Neural Networks. In
International Workshop on Health Text Mining and Information Analysis, pp. 139–148, 2018.

M. Honnibal, I. Montani, S. Van Landeghem, and A. Boyd. spaCy: Industrial-strength Natural Language
Processing in Python, 2020. URL https://doi.org/10.5281/zenodo.1212303.

A. Ivankay, I. Girardi, C. Marchiori, and P. Frossard. FAR: A General Framework for Attributional Robust-
ness. The 32nd British Machine Vision Conference, 2021.

A. Ivankay, I. Girardi, C. Marchiori, and P. Frossard. Fooling Explanations in Text Classifiers. In Interna-
tional Conference on Learning Representations, 2022.

Adam Daniel Ivankay, Mattia Rigotti, and Pascal Frossard. DARE: Towards Robust Text Explanations in
Biomedical and Healthcare Applications. In The 61st Annual Meeting Of The Association For Computa-
tional Linguistics, 2023.

A. Jacovi and Y. Goldberg. Towards Faithfully Interpretable NLP Systems: How Should We Define and
Evaluate Faithfulness? In Annual Meeting of the Association for Computational Linguistics, pp. 4198–
4205, 2020.

S. Jain and B. C. Wallace. Attention is not Explanation. In Proceedings of NAACL-HLT, pp. 3543–3556,
2019.

N. Kokhlikyan, V. Miglani, M. Martin, E. Wang, B. Alsallakh, J. Reynolds, A. Melnikov, N. Kliushkina,
C. Araya, and S. Yan. Captum: A Unified and Generic Model Interpretability Library for PyTorch. arXiv
preprint arXiv:2009.07896, 2020.

11

https://doi.org/10.5281/zenodo.1212303


Under review as submission to TMLR

L. Li, R. Ma, Q. Guo, X. Xue, and X. Qiu. BERT-ATTACK: Adversarial Attack Against BERT Using
BERT. In Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 6193–6202.
Association for Computational Linguistics, November 2020.

W. Lifferth. Fake News, 2018. URL https://kaggle.com/competitions/fake-news.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov.
RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv preprint arXiv:1907.11692, 2019.

A. Maas, R. E Daly, P. T Pham, D. Huang, A. Y. Ng, and C. Potts. Learning Word Vectors for Senti-
ment Analysis. In Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies, pp. 142–150, 2011.

S.-M. Moosavi-Dezfooli, A. Fawzi, J. Uesato, and P. Frossard. Robustness via Curvature Regularization,
and vice versa. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9078–9086,
2019.

N. Mrkšic, D. OSéaghdha, B. Thomson, M. Gašic, L. Rojas-Barahona, P.-H. Su, D. Vandyke, T.-H. Wen,
and S. Young. Counter-fitting Word Vectors to Linguistic Constraints. In NAACL-HLT, pp. 142–148,
2016.

G. Navarro. A Guided Tour to Approximate String Matching. ACM Computing Surveys (CSUR), 33(1):
31–88, 2001.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, and
L. Antiga. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In International
Conference on Neural Information Processing Systems, pp. 8026–8037, 2019.

K. Pearson. Notes on Regression and Inheritance in the Case of Two Parents. Proceedings of the Royal
Society of London, 58(347-352):240–242, 1895.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language Models are Unsupervised
Multitask Learners. OpenAI blog, 1(8):9, 2019.

N. Reimers and I. Gurevych. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. In
Conference on Empirical Methods in Natural Language Processing and International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pp. 3982–3992, 2019.

M. Rigotti, C. Miksovic, I. Giurgiu, T. Gschwind, and P. Scotton. Attention-Based Interpretability with
Concept Transformers. In International Conference on Learning Representations, 2022.

V. Sanh, L. Debut, J. Chaumond, and T. Wolf. DistilBERT, a distilled version of BERT: smaller, faster,
cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

A. Shrikumar, P. Greenside, and A. Kundaje. Learning Important Features through Propagating Activation
Differences. In International Conference on Machine Learning, pp. 3145–3153. PMLR, 2017.

K. Simonyan, A. Vedaldi, and A. Zisserman. Deep Inside Convolutional Networks: Visualising Image Clas-
sification Models and Saliency Maps. arXiv preprint arXiv:1312.6034, 2013.

S. Sinha, H. Chen, A. Sekhon, Y. Ji, and Y. Qi. Perturbing Inputs for Fragile Interpretations in Deep
Natural Language Processing. In BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks
for NLP, pp. 420–434, 2021.

L. Sun, K. Hashimoto, W. Yin, A. Asai, J. Li, P. Yu, and C. Xiong. Adv-BERT: BERT is not Robust on
Misspellings! Generating Nature Adversarial Samples on BERT. arXiv preprint arXiv:2003.04985, 2020.

M. Sundararajan, A. Taly, and Q. Yan. Axiomatic Attribution for Deep Networks. In International Confer-
ence on Machine Learning, volume 70, pp. 3319–3328, 2017.

12

https://kaggle.com/competitions/fake-news


Under review as submission to TMLR

W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou. MiniLM: Deep Self-Attention Distillation
for Task-Agnostic Compression of Pre-Trained Transformers. Advances in Neural Information Processing
Systems, 33:5776–5788, 2020.

S. Wiegreffe and Y. Pinter. Attention is not not Explanation. In Conference on Empirical Methods in Nat-
ural Language Processing and International Joint Conference on Natural Language Processing, EMNLP-
IJCNLP, pp. 11–20. Association for Computational Linguistics, 2020.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz,
J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao, S. Gugger, M. Drame,
Q. Lhoest, and A. M. Rush. Transformers: State-of-the-Art Natural Language Processing. In Conference
on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38–45, Online, Octo-
ber 2020. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/2020.
emnlp-demos.6.

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le. XLNet: Generalized Autoregressive
Pretraining for Language Understanding. In International Conference on Neural Information Processing
Systems, pp. 5753–5763, 2019.

X. Zhang, J. Zhao, and Y. Lecun. Character-Level Convolutional Networks for Text Classification. Advances
in Neural Information Processing Systems, 2015:649–657, 2015.

13

https://www.aclweb.org/anthology/2020.emnlp-demos.6


Under review as submission to TMLR

A Appendix

A.1 Study on Randomized Explanations

RoBERTa - IG on AG’s News RoBERTa - IG on MR
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Figure 6: Attribution robustness metric r as function of the ratio of randomized word attributions ν. During
AR estimation with CEA, we set a certain ratio of word attributions to a random number in [-1, 1]. A value
ν = 0.4 corresponds to 40% of word attributions being random. Our AR metric r positively correlates with
ν. This supports our argument that the metric is a suitable measure of AR, as higher r values indicate less
robust attributions, which is the case for higher ν-s, given our assumption that bad quality explanations are
less robust than good quality ones.

This experimental study shows how our CEA algorithm behaves in, and our AR metric correlates with,
cases where the models fail to give correct explanations. Even though assessing the true quality (for instance
faithfulness or completeness) of attribution methods used is out of scope for this work, we would like to
understand how our metric correlates with partially randomized explanations. We assume that robustness of
explanations correlates with their quality, and random attributions do not reflect the true decision process,
thus are bad quality explanations. Therefore, a metric that represents AR well would correlate with the
amount of randomness in the explanations. Higher randomness would indicate lower robustness. In Figure
6, we examine the behaviour of r as a function of ν, the ratio of randomized word attributions in each
sentence. We observe a positive correlation between r and ν, which supports our hypothesis that r is a good
measure for AR and reflects the correlation between AR and quality of explanations well.

A.2 Datasets

We estimate the robustness of our attribution methods and models on five publicly available datasets. These
are AG’s News, MR movie review, IMDB movie review, Yelp and Fake News, all of which are in English.
AG’s News consists of 127552 news article samples, categorized into the classes World, News, Business and
Sci/Tech. We use the concatenation of title and text of the samples to feed into our text classifiers, stripping
any sample that is longer than 64 tokens. The MR Movie Review dataset contains 10592 short samples of
positive or negative movie reviews. We only use the first 32 tokens in each sample as input to the classifiers.
IMDB Movie Review is a dataset consisting of 49952 positive and negative movie reviews, with a maximum
token length of 256. Yelp categorizes 700000 reviews of several topics into 5 classes, each representing a
rating from 1 to 5. We strip the samples to a maximum length of 256. Fake News is a collection of 20080
news samples, each categorized into reliable or unreliable. These are rather long articles, thus we use a
maximum sequence length of 512 for this dataset.

We apply basic preprocessing to all samples in each dataset, which includes converting them to lowercase,
removing any special characters not in the English alphabet and emojis. We use 60% of the samples for
training the classifier models, 20% for validation and 20% for testing and estimating the robustness of
attribution methods.

A.3 Models

As described in the main paper, we train six classification architectures for each dataset, three DNN-based
architectures, which are a CNN, an LSTM, an LSTM with an attention layer (LSTMAtt), as well as three
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Dataset CNN LSTM LSTMAtt BERT RoBERTa XLNet
AG’s News 89.7% 90.8% 91.4% 94.2% 94.0% 93.8%

MR 73.0% 76.4% 78.0% 82.2% 87.7% 86.3%
IMDB 82.0% 87.2% 87.3% 89.4% 93.3% 93.7%
Yelp 49.0% 54.8% 60.0% 62.6% 67.6% -

Fake News 98.9% 99.6% 99.6% 99.8% 100.0% 100.0%

Table 1: Accuracies of each classifier trained. Our models achieve comparable results to state-of-the-art
performance for each dataset.

AG’s News MR IMDB Yelp Fake News

CNN

Input shape (64, 300) (32,300) (256, 300) (256, 300) (512, 300)
Num. classes 4 2 2 5 2
Filter sizes [3, 5, 7] [3, 5] [3, 5, 7] [3, 5, 7] [3, 5, 7]

Feature sizes [8, 8, 8] [8, 8] [16, 16, 16] [128, 128, 128] [32, 32, 32]
Pooling sizes [2, 2, 2] [2, 2] [2, 2, 2] [2, 2, 2] [2, 2, 2]

Lin. layer dim. 8 8 16 64 32
Num. params 67748 27946 567458 16428293 4091714

LSTM

Input shape (64, 300) (32,300) (256, 300) (256, 300) (512, 300)
Num. classes 4 2 2 5 2
Hidden dim. 8 8 16 256 16
Num. layers 1 1 2 2 1
Pooling sizes 2 2 1 2 2

Lin. layer dim. 8 8 16 32 16
Num. params 10988 10458 18162 2146693 85986

LSTMAtt

Input shape (64, 300) (32,300) (256, 300) (256, 300) (512, 300)
Num. classes 4 2 2 5 2
Hidden dim. 8 8 16 256 16
Num. layers 4 1 2 2 1

Lin. layer dim. 8 8 16 32 16
Num. params 25004 19994 47666 2752901 41826

BERT
Input shape (64,) (32,) (256,) (256,) (512,)
Num. classes 4 2 2 5 2

Model ID bert-base-uncased
Num. params 109485316 109483778 109483778 109486085 109483778

RoBERTa
Input shape (64,) (32,) (256,) (256,) (512,)
Num. classes 4 2 2 5 2

Model ID roberta-base
Num. params 124648708 124647170 124647170 124649477 124647170

XLNet
Input shape (64,) (32,) (256,) (256,) (512,)
Num. classes 4 2 2 5 2

Model ID xlnet-base-cased
Num. params 117312004 117310466 117310466 117312773 117310466

Table 2: Model specifications

transformer-based architectures, which are a finetuned BERT, RoBERTa and XLNet. The CNN, LSTM and
LSTMAtt architectures use the 6B-300-dimensional Glove word embeddings, while the transformer-based
architectures use the pretrained Hugging Face embeddings of the respective base-uncased versions. The
DNN-based classifiers each contain a linear layer on top of their feature extractors and use the built-in
SpaCy English tokenizer, the transformers directly map the feature outputs to the output logits with a
fully-connected layer and utilize the Hugging Face pretrained tokenizers for each architecture respectively.
Table 2 contains the model specifications. We train each model with a standard learning rate of 0.001, using
the Adam optimizer with the cross-entropy loss and early stopping. We utilize NVIDIA A100 GPUs to speed
up training and AR estimation. The resulting accuracies of the models can be found in Table 1.
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A.4 Additional Examples

Original sample CEA perturbed sample
(ours)

TEF perturbed sample
(Ivankay et al., 2022)

with the nations media raining
heavy criticism down upon him,
spain coach luis aragones chose to
pin a galling nil-nil uefa world cup
qualifying result with lithuania on
the large playing

with the nations media raining
heavy criticism down upon him,
spain coach luis aragones chose to
pin a galling nil-nil uefa world
junior classification result with
lithuania on the large yellow

with the nations media raining
heavy criticism down upon him,
spain buses luis aragones chose to
pin a galling nil-nil uefa world
goblet qualifying result with
lithuania on the large replay

F(s, “Sports”) = 1.00 F(s, “Sports”) = 1.00 F(s, “Sports”) = 1.00
r: 31.69 r: 5.37

SemS : 0.98 SemS : 0.95
PCC : -0.22 PCC : 0.42

when stonehill hired chris woods
as its football coach after last
season, the hope was he could
once again revive a disappointing

when Rutgers hired chris woods as
its head coach after last season,
the hope was he could once again
revive a disappointing

when vassar hired chris woods as
its balloon coach after last season,
the hope was he could once again
revive a disappointing

F(s, “Sports”) = 1.00 F(s, “Sports”) = 1.00 F(s, “Sports”) = 1.00
r: 3.22 r: 2.96

SemS : 0.88 SemS : 0.85
PCC : 0.25 PCC : 0.12

the space shuttle will not fly
before may 2005, according to
nasa officials. this pushes the
shuttle #39;s return-to-flight
schedule back by two months, and
postpones a vital servicing mission
to the international space

the Atlantis capsules will not fly
before may 2005, according to
nasa officials. this pushes the
ISS #39;s return-to-flight schedule
back by two months, and
postpones a vital servicing mission
to the international space

the separation shuttles will not fly
before may 2005, according to
nasa officials. this pushes the
ferry #39;s return-to-flight
schedule back by two months, and
postpones a vital servicing mission
to the international space

F(s, “Sci/Tech”) = 1.00 F(s, “Sci/Tech”) = 1.00 F(s, “Sci/Tech”) = 1.00
r: 1.46 r: 3.62

SemS : 0.85 SemS : 0.88
PCC : 0.57 PCC : 0.15

dueling cisco systems inc. and
juniper networks inc. are both
jockeying for the spotlight on the
high end of the routing market
with announcements of new
developments around their
respective crs-1 and t-series core

The cisco systems inc. and juniper
networks inc. are both jockeying
for the spotlight on the high end
of the networking market with
announcements of new
developments around their
respective crs-1 and t-series core

jousting belkin systems inc. and
juniper grids inc. are both
jockeying for the spotlight on the
high end of the routing market
with announcements of new
developments around their
respective crs-1 and t-series core

F(s, “Sci/Tech”) = 0.98 F(s, “Sci/Tech”) = 0.99 F(s, “Sci/Tech”) = 0.99
r: 2.90 r: 4.58

SemS : 0.93 SemS : 0.90
PCC : 0.61 PCC : 0.04

playboy enterprises inc. (pla.n:
quote, profile, research) , the adult
entertainment company, on
tuesday reported a third-quarter
profit, reversing a year-earlier

playboy enterprises inc. (pla.n:
quote, profile, research) , the
largest tech company, on tuesday
reported a third-quarter profit,
reversing a year-earlier

playboy enterprises inc. (pla.n:
quote, profile, research) , the
adulthood entertainment
company, on yesterday reported a
third-quarter profit, reversing a
year-earlier

F(s, “Business”) = 1.00 F(s, “Business”) = 0.98 F(s, “Business”) = 1.00
r: 2.01 r: 21.20

SemS : 0.98 SemS : 0.99
PCC : 0.92 PCC : 0.65
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Original sample CEA perturbed sample
(ours)

TEF perturbed sample
(Ivankay et al., 2022)

jimmie johnson has fought
through mistakes, mechanical
failures and the despair of losing
friends in a plane crash to charge
back into nascar #39;s closest
championship battle

jimmie johnson has fought through
mistakes, mechanical failures and
the despair of losing friends in a
plane crash to charge back into
Halo #39;s closest Halo battle

jimmie johnson has fought
through mistakes, mechanical
failures and the despair of losing
friends in a plane crash to charge
back into daytona #39;s closest
champion battle

F(s, “Sports”) = 1.00 F(s, “Sports”) = 0.56 F(s, “Sports”) = 1.00
r: 2.46 r: 27.69

SemS : 0.90 SemS : 0.98
PCC : 0.53 PCC : 0.11

islamabad : pakistan and
afghanistan have reaffirmed they
are partners in fighting terrorism,
afghan president hamid karzai
declared at the end of a two-day

islamabad : pakistan and
afghanistan have reaffirmed they
are partners in fighting
terrorism afghan ia hamid karzai
declared at the end of a two-day

islamabad : pakistan and
afghanistan have reaffirmed they
are allies in fighting terrorism,
afghan chairmen hamid karzai
declared at the end of a two-day

F(s, “World”) = 1.00 F(s, “World”) = 1.00 F(s, “World”) = 1.00
r: 61.30 r: 11.94

SemS : 1.00 SemS : 0.97
PCC : 0.43 PCC : 0.31

lusty koalas in southern australia
are going to be put on the pill to
stop them breeding too quickly
and putting too much strain on
their eucalyptus-forest

lusty koalas in southern australia
are going to be put on the spot to
stop them disappearing too
quickly and putting too much
strain on their eucalyptus-forest

lusty koalas in southern australia
are going to be put on the
tablet to stop them rearing too
quickly and putting too much
strain on their eucalyptus-forest

F(s, “Sci/Tech”) = 1.00 F(s, “Sci/Tech”) = 0.89 F(s, “Sci/Tech”) = 1.00
r: 8.67 r: 9.29

SemS : 0.94 SemS : 0.94
PCC : -0.02 PCC : -0.10

embarcadero technologies on
monday is unveiling its dbartisan
workbench 8.0 database
administration tool, featuring
enhanced backup capabilities for
microsoft sql server databases and
support for performance metrics in
the oracle10g

database technologies
vendor monday is showcasing its
dbartisan workbench 8.0 database
administration tool, featuring
enhanced backup capabilities for
microsoft sql server databases and
support for performance metrics in
the oracle10g

alameda techs on monday is
brandishing its dbartisan
workbench 8.0 database
administration tool, featuring
enhanced backup capabilities for
microsoft sql server databases and
support for performance metrics in
the oracle10g

F(s, “Sci/Tech”) = 0.99 F(s, “Sci/Tech”) = 0.99 F(s, “Sci/Tech”) = 0.99
r: 4.38 r: 2.08

SemS : 0.92 SemS : 0.88
PCC : 0.33 PCC : 0.49

in a move likely to have major
ramifications for the library world,
google announced december 14
that it would embark on an
ambitious project to digitally scan
books from the collections of five
major research libraries and make
them searchable

in a move likely to have major
repercussions for the digital world,
Cambridge announced december
14 that it would embark on an
ambitious project to digitally scan
data from the collections of five
major research libraries and make
them searchable

in a move likely to have major
implications for the library world,
iphone announced december 14
that it would embark on an
ambitious plans to digitally scan
livres from the collections of five
major research libraries and make
them searchable

F(s, “Sci/Tech”) = 0.94 F(s, “Sci/Tech”) = 1.00 F(s, “Sci/Tech”) = 1.00
r: 4.21 r: 3.71

SemS : 0.91 SemS : 0.83
PCC : 0.20 PCC : -0.25
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Original sample CEA perturbed sample
(ours)

TEF perturbed sample
(Ivankay et al., 2022)

stitch is a bad mannered , ugly
and destructive little * * * * . no
cute factor here . not that i mind
ugly ; the problem

stitch is a bad mannered , ugly
and cute little * * * * . no
limiting factor here . not that i
mind ugly ; the problem

stitch is a bad mannered , ugly
and detrimental little * * * * . no
lovely factor here . not that i
mind ugly ; the problem

F(s, “Negative”) = 1.00 F(s, “Negative”) = 0.98 F(s, “Negative”) = 1.00
r: 18.75 r: 2.21

SemS : 0.99 SemS : 0.98
PCC : 0.54 PCC : 0.93

miyazaki has created such a
vibrant , colorful world , it’s
almost impossible not to be swept
away by the sheer beauty of his
images

miyazaki has created such a
vibrant ly imaginative world , it’s
almost impossible not to be swept
away by the sheer beauty of his
images

miyazaki has created such a
bustling , picturesque world , it’s
almost impossible not to be swept
away by the sheer beauty of his
images

F(s, “Positive”) = 1.00 F(s, “Positive”) = 1.00 F(s, “Positive”) = 1.00
r: 6.26 r: 3.67

SemS : 0.97 SemS : 0.98
PCC : 0.64 PCC : 0.82

it is a challenging film , if not
always a narratively cohesive one

it is a beautiful film , if not always
a narratively cohesive one

it is a problematic film , if not
always a narratively cohesive one

F(s, “Positive”) = 1.00 F(s, “Positive”) = 1.00 F(s, “Positive”) = 0.98
r: 2.31 r: 2.89

SemS : 0.93 SemS : 0.91
PCC : 0.68 PCC : 0.50

much like its easily dismissive take
on the upscale lifestyle , there isn’t
much there here

much like its easily readable take
on the upscale lifestyle , there isn’t
much there here

much like its easily snide take on
the upscale lifestyle , there isn’t
much there here

F(s, “Negative”) = 1.00 F(s, “Negative”) = 1.00 F(s, “Negative”) = 1.00
r: 4.53 r: 4.67

SemS : 0.93 SemS : 0.95
PCC : 0.40 PCC : 0.53

it’s a nicely detailed world of
pawns , bishops and kings , of
wagers in dingy backrooms or
pristine forests

it’s a surprisingly rich world of
pawns , bishops and kings , of
wagers in dingy backrooms or
pristine forests

it’s a politely thorough world of
pawns , bishops and kings , of
wagers in dingy backrooms or
pristine forests

F(s, “Positive”) = 1.00 F(s, “Positive”) = 1.00 F(s, “Positive”) = 0.98
r: 8.09 r: 20.51

SemS : 0.96 SemS : 0.97
PCC : 0.35 PCC : -0.04

an atonal estrogen opera that
demonizes feminism while gifting
the most sympathetic male of the
piece with a nice vomit bath at his
wedding

an appalling estrogen opera that
demonizes feminism while
distracting the most sympathetic
male of the piece with a nice
vomit bath at his wedding

an atonal hormone teatro that
demonizes feminism while gifting
the most sympathetic male of the
piece with a nice vomit bath at his
wedding

F(s, “Negative”) = 1.00 F(s, “Negative”) = 1.00 F(s, “Negative”) = 1.00
r: 11.64 r: 7.93

SemS : 0.97 SemS : 0.96
PCC : 0.25 PCC : 0.35
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Original sample CEA perturbed sample
(ours)

TEF perturbed sample
(Ivankay et al., 2022)

a brutal and funny work . nicole
holofcenter , the insightful
writer/director responsible for this
illuminating comedy doesn’t wrap
the proceedings up neatly

a brilliant and funny work . nicole
holofcenter , the insightful
writer/director responsible for this
illuminating comedy doesn’t wrap
the proceedings up ...

a barbaric and funny work . nicole
holofcenter , the insightful
writer/director responsible for this
illuminating comedy doesn’t wrap
the proceedings up pleasantly

F(s, “Positive”) = 1.00 F(s, “Positive”) = 1.00 F(s, “Positive”) = 1.00
r: 14.80 r: 7.92

SemS : 0.98 SemS : 0.97
PCC : 0.52 PCC : 0.60

leigh isn’t breaking new ground ,
but he knows how a daily grind
can kill love

leigh isn’t breaking new ground ,
but he knows how a daily
workout can kill love

leigh isn’t breaking new ground ,
but he knows how a daily
smoothing can kill love

F(s, “Positive”) = 1.00 F(s, “Positive”) = 1.00 F(s, “Positive”) = 1.00
r: 9.09 r: 3.94

SemS : 0.96 SemS : 0.96
PCC : 0.27 PCC : 0.69

new ways of describing badness
need to be invented to describe
exactly how bad it is

new ways of describing
cancer need to be invented to
describe exactly how bad it is

new ways of describing
perversity need to be invented to
describe exactly how bad it is

F(s, “Negative”) = 1.00 F(s, “Negative”) = 1.00 F(s, “Negative”) = 1.00
r: 1.13 r: 1.45

SemS : 0.82 SemS : 0.90
PCC : 0.60 PCC : 0.70

to the degree that ivans xtc .
works , it’s thanks to huston’s
revelatory performance

to the degree that ivans xtc .
works , it’s thanks to huston’s
outstanding performance

to the degree that ivans xtc .
works , it’s thanks to huston’s
revelatory execution

F(s, “Positive”) = 1.00 F(s, “Positive”) = 1.00 F(s, “Positive”) = 1.00
r: 16.14 r: 4.44

SemS : 0.98 SemS : 0.96
PCC : 0.50 PCC : 0.60

quiet , adult and just about more
stately than any contemporary
movie this year . . . a true study ,
a film with a questioning heart
and

mature , funny and just about
more stately than any
contemporary movie this year . . .
a true study , a film with a
questioning heart and

quiet , adulthood and just about
more stately than any
topical movie this year . . . a true
study , a film with a questioning
heart and

F(s, “Positive”) = 1.00 F(s, “Positive”) = 1.00 F(s, “Positive”) = 1.00
r: 1.83 r: 1.37

SemS : 0.95 SemS : 0.97
PCC : 0.82 PCC : 0.92

a markedly inactive film , city is
conversational bordering on
confessional

a markedly inactive
neighbourhood , city is
conversational bordering on
confessional

a markedly idle film , city is
conversational bordering on
confessional

F(s, “Negative”) = 1.00 F(s, “Negative”) = 1.00 F(s, “Negative”) = 1.00
r: 3.92 r: 17.79

SemS : 0.91 SemS : 0.98
PCC : 0.32 PCC : 0.21

an entertaining , if somewhat
standardized , action movie

an excellent , if somewhat
standardized , action movie

an entertain , if somewhat
standardized , action movie

F(s, “Positive”) = 1.00 F(s, “Positive”) = 1.00 F(s, “Positive”) = 0.99
r: 3.65 r: 11.43

SemS : 0.94 SemS : 0.97
PCC : 0.59 PCC : 0.22
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Original sample CEA perturbed sample
(ours)

TEF perturbed sample
(Ivankay et al., 2022)

wonder of wonders – a teen movie
with a humanistic message

Land of wonders – a teen movie
with a humanistic message

astonishment of wonders – a teen
movie with a humanistic message

F(s, “Positive”) = 1.00 F(s, “Positive”) = 1.00 F(s, “Positive”) = 1.00
r: 9.92 r: 7.05

SemS : 0.97 SemS : 0.94
PCC : 0.32 PCC : 0.21

star trek was kind of terrific once ,
but now it is a copy of a copy of a
copy

star trek was kind of lame once ,
but now it is a hell of a copy of a
copy

star trek was kind of superb once ,
but now it is a copies of a copy of
a copy

F(s, “Negative”) = 1.00 F(s, “Negative”) = 0.81 F(s, “Negative”) = 1.00
r: 20.64 r: 4.23

SemS : 0.96 SemS : 0.98
PCC : -0.57 PCC : 0.82

A.5 Additional AR Results

As described in the main body of our paper, we plot the Pearson Correlation Coefficient between original
and adversarial attribution values of the words (1st column from left), the estimated robustness constants r
(2nd column from left) as well as the semantic similarities between unperturbed and perturbed input texts,
the perplexity increase and the increase in number of grammatical errors (3rd and 4th column from left) after
perturbation. We consider a high estimated robustness constant r as successful attack, thus low PCC values
accompanied by high semantic similarities, low perplexity increase values and grammatical errors. Based on
the graph below, we conclude that CEA consistently yields higher estimated robustness constants r than the
reference method TEF, due to lower Pearson correlation between adversarial and original attribution maps,
higher semantic similarities and smaller perplexity increases after applying the adversarial perturbations.

A.5.1 AG’s News
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LSTM - Saliency Maps (S) on AG’s News
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BERT - Integrated Gradients (IG) on AG’s News
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XLNet - Integrated Gradients (IG) on AG’s News
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A.5.2 MR

CNN - Saliency Maps (S) on MR
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LSTM - Integrated Gradients (IG) on MR
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BERT - Self-Attention (A) on MR
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XLNet - Self-Attention (A) on MR
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A.5.3 IMDB

CNN - Saliency Maps (S) on IMDB
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LSTMAtt - Saliency Maps (S) on IMDB
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RoBERTa - Saliency Maps (S) on IMDB
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A.5.4 Yelp

CNN - Saliency Maps (S) on Yelp
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LSTMAtt - Integrated Gradients (IG) on Yelp
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RoBERTa - Integrated Gradients (IG) on Yelp
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A.5.5 Fake News

CNN - Saliency Maps (S) on Fake News
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CNN - Integrated Gradients (IG) on Fake News
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BERT - Integrated Gradients (IG) on Fake News
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XLNet - Integrated Gradients (IG) on Fake News
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