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Abstract

Tactile sensation plays a crucial role in the development of
multi-modal large models and embodied intelligence. To col-
lect tactile data with minimal cost as possible, a series of stud-
ies have attempted to generate tactile images by vision-to-
touch image translation. However, compared to text modality,
visual modality-driven tactile generation cannot accurately
depict human tactile sensation. In this work, we analyze the
characteristics of tactile images in detail from two granular-
ities: object-level (tactile texture, tactile shape), and sensor-
level (gel status). We model these granularities of information
through text descriptions and propose a fine-grained Text-
to-Touch generation method (TextToucher) to generate high-
quality tactile samples. Specifically, we introduce a multi-
modal large language model to build the text sentences about
object-level tactile information and employ a set of learn-
able text prompts to represent the sensor-level tactile infor-
mation. To better guide the tactile generation process with
the built text information, we fuse the dual grains of text in-
formation and explore various dual-grain text conditioning
methods within the diffusion transformer architecture. Fur-
thermore, we propose a Contrastive Text-Touch Pre-training
(CTTP) metric to precisely evaluate the quality of text-driven
generated tactile data. Extensive experiments demonstrate the
superiority of our TextToucher method.

Code — https://github.com/TtuHamg/TextToucher

Introduction
Tactile sensation is one of the earliest developed senses in
humans (Ackerman, Nocera, and Bargh 2010). Infants be-
gin to explore the world by touching objects, which enables
them to build up their cognition of texture and shape. In the
field of Multimodal Large Language Models (MLLM), re-
searchers recognize the importance of tactile sensation in
physical reasoning (Yu et al. 2024; Wang et al. 2023) and
tactile sensation is regarded as an important component in
multimodal learning (Fu et al. 2024; Zambelli et al. 2021;
Rodriguez et al. 2024b,a; Li et al. 2024). It also plays a
fundamental role in embodied intelligence to interact with
the environments (Wu et al. 2024; Barreiros et al. 2022).
To construct effective tactile-based multimodal models, a

*Corresponding author.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Grainy, Firm

Smooth, Polished

Tactile Data

Textured, Firm 

Types of Information

Tactile 

Texture

Tactile 

Shape

Tactile 

Texture

Bumpy, Rubbery

Tactile 

Shape

Gel Status

Gel Status

Pencil

Basketball

Figure 1: We present tactile images captured by sensors un-
der different gel statuses. In our opinion, each tactile image
contains three types of information: tactile texture, tactile
shape, and gel status.

large volume of high-quality tactile data is required; how-
ever, obtaining tactile data is not straightforward. On the
one hand, manual collection (Yang et al. 2022; Fu et al.
2024; Song et al. 2020a; Sundaram et al. 2019; Owens et al.
2016) is quite labor-intensive and time-consuming; on the
other hand, robotic collection(Calandra et al. 2018; Li et al.
2019; Murali et al. 2018; Kerr et al. 2022) limits the ways
of interacting with objects, lacking flexibility and diversity.
Therefore, high-quality generation of tactile data(Yang et al.
2024; Yang, Zhang, and Owens 2023; Gao, Yuan, and Zhu
2023) is becoming a frontier research area.

In recent years, as large-scale generative models (Ramesh
et al. 2022) have demonstrated outstanding generative ca-
pabilities, some vision-conditioned methods attempt to uti-
lize these models to generate tactile images by visual-to-
tactile image translation (Yang, Zhang, and Owens 2023;
Gao, Yuan, and Zhu 2023; Yang et al. 2024; Dou et al.
2024). Nevertheless, we believe these methods have two fa-
tal shortcomings. 1) Humans tend to describe tactile sen-
sation using text rather than visual images. Consequently,
text-conditioned generation methods can utilize more ac-
curate information descriptions to produce data that align
closely with tactile experiences (Obrist, Seah, and Subrama-



nian 2013). 2) Tactile images capture the deformation of ob-
jects on an elastomer gel (Johnson and Adelson 2009; Yuan,
Dong, and Adelson 2017) which is embedded with cameras
and lighting systems. This implies that setting the same ob-
ject on tactile sensors under different gel conditions, includ-
ing changes in lighting design, camera placement, and gel
material, will produce distinctly different tactile images. To
our knowledge, existing works (Yang, Zhang, and Owens
2023; Yang et al. 2024; Gao, Yuan, and Zhu 2023) on tactile
generation have not considered the impact of different gels
on the quality of the synthesized data.

As people usually describe tactile sensations in terms of
the smoothness or softness, a straightforward approach is to
use texture descriptions (Picard et al. 2003) to guide tac-
tile image generation. However, we carefully analyze the
characteristics of tactile images and divide them into two
granularities: 1) Object-level. Tactile texture (Hollins et al.
1993) and tactile shape (Johnson and Adelson 2009) are the
two types of information related to the object in tactile im-
ages. Tactile texture is the primary attribute associated with
tactile perception, such as smoothness and softness; tactile
shape refers to the shape of the contact surface of the object
and is manifested through changes in color and brightness.
2) Sensor-level. Gel status includes the sensor information
about the position of cameras, light sources, and gel mate-
rial. In Fig. 1, we extract texture and shape information from
tactile images, and present two different gel statuses, which
are reflected in the tactile images collected without contact.
The gel status affects the color variations of both tactile tex-
ture and shape, making this information crucial for the gen-
eration of tactile images.

In this paper, we introduce TextToucher, the first method
specially designed for the text-to-touch generation task. We
analyze the characteristics of tactile images in detail from
two granularities: object-level (tactile texture, tactile shape),
and sensor-level (gel status), which are modeled through text
descriptions. For object-level conditions, we employ a mul-
timodal large language model to build text sentences and
design a question template tailored for the tactile collec-
tion situation to improve the accuracy of model responses.
For sensor-level conditions, a set of learnable text prompts
is defined to represent gel statuses. We further employ a pre-
trained text model to encode text sentences and propose a
time-adaptive strategy to fuse the tactile information. In the
diffusion transformer architecture, various dual-grain text
conditioning methods are explored to better control the tac-
tile generation. Additionally, we introduce the Contrastive
Text-Touch Pre-training (CTTP) metric, akin to CLIP (Rad-
ford et al. 2021), for evaluating the alignment between the
generated tactile images and the text conditions. Extensive
results demonstrate that through fine-grained textual condi-
tions, TextToucher can effectively generate high-quality tac-
tile images.

In summary, our contributions can be outlined as follows:

• We are the first to explore the text-to-touch generation
task and demonstrate text-conditioned methods are more
suitable for tactile generation than vision-conditioned
methods.

• We conduct an in-depth analysis of tactile images, iden-
tifying two granularities of tactile images: object-level
(tactile texture, tactile shape) and sensor-level (gel sta-
tus). With fine-grained textual conditions, TextToucher
can effectively synthesize high-quality tactile images.

• We introduce the CTTP metric, a new measure for evalu-
ating the alignment between generated tactile images and
textual descriptions.

Related Work
Tactile Sensor
Recent years have witnessed the development of different
tactile sensors in many robotic applications, including slid-
ing detection, texture recognition, object pushing, insertion,
and tightening. Initial tactile sensors were designed to mea-
sure force, vibration and temperature by capturing simple,
low-dimensional sensory signals. Lately, vision-based tac-
tile sensors (e.g., GelSight (Yuan, Dong, and Adelson 2017;
Johnson and Adelson 2009), GelTip (Gomes, Lin, and Luo
2020), TacTip (Ward-Cherrier et al. 2018), DIGIT (Lam-
beta et al. 2020)) have been proposed and utilize the de-
formation of an illuminated membrane to provide detailed
information about shape and material properties. Compared
to traditional single-point tactile sensors and tactile arrays,
these vision-based tactile sensors offer higher-resolution tac-
tile data. With the development of tactile sensors, a vari-
ety of tactile datasets are created by simulation-based (Gao
et al. 2021, 2022), generation model-based (Yang, Zhang,
and Owens 2023; Yang et al. 2024; Gao, Yuan, and Zhu
2023), human-collected methods (Fu et al. 2024; Kerr et al.
2022; Yang et al. 2022). Our approach belongs to the gener-
ation model-based methods and focuses on generating high-
resolution tactile data with diffusion generative models.

Cross-Modal Synthesis with Generative Models
An emerging line of work has addressed the challenges of
learning from cross-modal synthesis with generative mod-
els (Dong et al. 2024; Zhang et al. 2024; Sun et al. 2024). Im-
ageBind (Girdhar et al. 2023) bridges multi-modality within
a joint embedding space, it aligns the encoders of audio,
video, depth, and text with the image encoder, thereby subtly
integrating all five modalities and facilitating downstream
cross-modal tasks, such as tactile image generation. Build-
ing on ImageBind, ImageBind-LLM (Han et al. 2023) in-
corporates a Large Language Model (LLM), enhancing the
model’s multi-modal understanding and reasoning capabili-
ties. ImageBind-LLM employs a visual encoder to connect
LLM with all other encoders; consequently, by leveraging
ImageBind-LLM, the images can be generated using LLM
or other modalities.

In the field of touch modality, Vision2Touch. (Li et al.
2019) introduces the VisGel dataset, which consists of
tactile-visual paired images, and employs conditional GANs
to achieve cross-modal image synthesis between GelSight
tactile images and visual images. GVST (Yang et al. 2022)
proposes the Touch and Go dataset, which encompasses
multiple scenarios of visuo-tactile paired images, and uti-
lizes diffusion models to accomplish cross-modal syn-
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Figure 2: Left: Our proposed TextToucher utilizes text modality to obtain tactile texture, tactile shape and gel status information.
We employ LLaVA, a vision-language large model, to caption the shape information in tactile images. Combining with texture
descriptions from tactile datasets, we encode them with a text encoder. Additionally, we define a set of special word tokens
to represent gel status information. Right: We train a tactile encoder using a contrastive loss function. In the shared space
of text and tactile modalities, we propose a metric called CTTP, which uses cosine similarity to represent the relationship
between tactile images and text descriptions. Our metric aims to effectively evaluate the quality of text-conditioned tactile
image generation.

thesis tasks from tactile images to visual images. Uni-
Touch (Yang et al. 2024) also integrates the tactile modal-
ity into ImageBind-LLM, enabling the model to generate
tacile images from various tactile sensors such as GelSight,
DIGIT. However, few works directly establish a bridge be-
tween text and tactile modalities, addressing the text-to-
touch generation task.

Methodology
Texture, shape, and gel status are three significant attributes
of tactile representations. The well-explored modality, text,
with its rich semantics, is a wise choice for expressing the
aforementioned attributes. In light of this, we aim to trans-
late text to tactile images using a generative model. we uti-
lize the Diffusion Transformer (DiT) (Peebles and Xie 2023)
to conduct this task.

Preliminaries
Before introducing our method for tactile generation, we
briefly review the fundamental of diffusion probabilistic
models (Ho, Jain, and Abbeel 2020; Song et al. 2020b)
(DPMs). Like most generative models (Kingma and Welling

2013; Goodfellow et al. 2020; Zhu et al. 2024), DPMs need
to learn a mapping from a simple distribution, such as a
Gaussian distribution, to the distribution of datasets. Given
a data distribution x0 ∼ qdata(x), we define that the noising
process iteratively adds Gaussian noise ϵt ∼ N (0, I) to the
sample data x0 until xT . This process can be described as
follows:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where βt denotes the noise intensity at each timestep t. As
highlighted by DDPM (Ho, Jain, and Abbeel 2020), the
Eq. 1 can be simplified with αt = 1−βt and ᾱt =

∏t
s=1 αs:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (2)

where ϵ ∼ N (0, I). DPMs adopt a neural network
to represent pθ(xt−1|xt) and approximate the posterior
q(xt−1|xt, x0) with it. Then the loss function can be writ-
ten as follows:

Lsimple = Et,x0,ϵt

[
||ϵ− ϵθ(xt, t)||2

]
. (3)

where ϵθ(xt, t) is the predicted noise by diffusion model at
time t.
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Figure 3: LLaVA engages in a step-by-step reasoning pro-
cess based on carefully designed questions to achieve accu-
rate data annotation.

To make image generation more controllable, conditional
diffusion models incorporate additional inputs, such as tex-
tural descriptions (Rombach et al. 2022; Chen et al. 2023;
Wang et al. 2024a; Tu et al. 2024; Wang et al. 2024b)
and segmentation map (Zhang, Rao, and Agrawala 2023).
Classifier-free guidance (Ho and Salimans 2022) aims to
find a x that maximizes log p(c|x). With Bayes theorem, the
model ϵ̃θ(xt, t, c) can be modified as follows:

ϵ̃θ(xt, t, c) ∝ s · ϵθ(xt, t, c) + (1− s) · ϵθ(xt, t, ∅), (4)

where s represents the scale of the guidance and c = ∅
indicates DPMs generate data with non-conditions. Since
classifier-free guidance can significantly improve the qual-
ity of vision images, we also adopt the technique in tactile
image generation.

Multimodal Large Language Model Annotation
This subsection discusses how to construct the object-level
conditions corresponding to a tactile image. Existing tactile
datasets (Fu et al. 2024; Kerr et al. 2022) already include
tactile images along with texture descriptions and visual im-
ages. For simplicity, we derive the tactile shape based on
these datasets.

As demonstrated in Fig. 1, we plan to use the text modal-
ity to describe the tactile shape. For example, a tactile image
collected from the surface of a basketball is composed of in-
terlocking pentagons; however, only a few tactile images can
be precisely described the shape in words, as most shape in
tactile images is irregular. TextToucher proposes to use the
object that is contacted as a surrogate for tactile shape. Our
motivation for this approach stems from the human ability
to associate objects with their corresponding shape. When
we mention a pencil, we can always imagine its shape. Text-
Toucher aims to incorporate this ability into the generation
of tactile images, allowing the model to learn the relation-
ship between objects and their tactile shape.

Since manually labeling tactile images is time-
consuming, we adopt LLaVA (Liu et al. 2024), a large
language-vision model, to caption objects in the corre-
sponding vision images automatically. As shown in Fig. 3,
we immerse the model in the process of tactile data acqui-
sition. By explicitly providing descriptions of the stages
“about to touch”, “in contact”, and “special situations”, we
guide the model to complete reasoning step by step (Zhang
et al. 2022), thereby enhancing LLaVA’s understanding
of the acquisition scenarios. Additionally, we check the
annotation results of step four to ensure the accuracy of the
model’s annotations.

Gel Status Prompts

For sensor-level conditions, the gel status encompasses the
placement of cameras and light sources, as well as the ma-
terial properties of gels in vision-based tactile sensors. This
status is evident in the tactile images captured by the sen-
sor when it is not in contact with any object. The sensor-
level conditions significantly influence the tactile images
when the sensor is in contact with objects. Therefore, in
addition to object-level conditions, we consider the gel sta-
tus to be a critical aspect of tactile images. To represent
different gel statuses, TextToucher employs special words.
Specifically, we define a set of learnable prompts cseni =
(c1i , c

2
i , . . . , c

ngs

i ) to denote the i-th gel status, where each
status consists of ngs tokens. These prompts capture the
unique characteristics of each gel status, enabling the model
to accurately reflect the influence of the gel properties on the
generated tactile images.

Dual-Grain Text Conditioning Design

The information of tactile images is divided into two gran-
ularities: the object level and the sensor level. For object-
level conditions, we specially design a text template P that
includes both tactile texture pt and tactile shape ps: “the
touch of [ps] is [pt]”. In the text-to-touch generation task,
T5 language model (Raffel et al. 2020) is applied to translate
tactile texture and shape conditions to embeddings cobj =
(c1, c2, . . . , cl) ∈ Rl×dc . To refine condition fusion, we pro-
pose a time-adaptive condition method. Specifically, we first
concatenate dual grains of text conditions c̃ = (csen, cobj)
to generate a rough image containing gel information when
the sampling timestep t is larger than a certain threshold θt.
After that, object-level conditions are applied to focus on
generating the tactile details.

We further design three different conditioning mecha-
nisms and explore how to apply texture, shape and gel status
to guide the generation of tactile images.

Text Modulation. Similar to AdaLN in DiT (Peebles and
Xie 2023; Chen et al. 2023), we explore modulating the out-
put of layer norm layers, self-attention layers and MLP lay-
ers. Rather than directly translate class embeddings to scale
and shift parameters γ and β, we employ learnable MLP lay-
ers to fuse the sequence information in condition c̃ and add
the result to timestep t.



Joint Attention. We concatenate the text tokens c̃ with the
input tokens x ∈ Rn×dc of transformer blocks. The joint se-
quence x̃ = [csen, cobj , x1, x2, . . . , xn] is then fed into the
self-attention layer. To ensure the scalability of transformer
blocks, the output discards tokens related to the text condi-
tions before being fed into subsequent layers.

Cross Attention. We insert a multi-head cross attention
layer after the multi-head self-attention layer within the
transformer block. Each tactile token calculates the atten-
tion scores with text tokens that include texture, shape, and
gel status. As shown in Fig. 2, we retain the modulation part
of timestep embeddings t as employed in DiT, which is cru-
cial for incorporating temporal information into the model.

Contrastive Text-Touch Pre-training (CTTP)
In the text-to-touch generation task, it is difficult to evaluate
the correlation between a generated tactile image and its text
description by visual inspection. Following other works in
cross-modal synthesis (Yang, Zhang, and Owens 2023), we
propose a new metric, Contrastive Text-Touch Pre-training
(CTTP), to measure the alignment between the tactile im-
ages and text descriptions.

We refer to the instances from the same tactile-textual
record {taci, texi} as positive pairs, and instances from dif-
ferent tactile-textual record {taci, texj} as negative pairs.
Our goal is to minimize the embedding distance between
positive sample pairs and maximize the embedding distance
between negative sample pairs. Inspired by the CLIP (Rad-
ford et al. 2021) training method, we use InfoNCE (Oord,
Li, and Vinyals 2018) to maximize the probability of posi-
tive sample pairs in each training batch B in Fig. 2:

Ltac,tex
i = − log

exp(Etac(taci) · Etex(texi)/τ)∑B
j=1 exp(Etac(taci) · Etex(texj)/τ)

,

(5)

where Etac and Etex are corresponding encoders, and τ is a
temperature parameter. Similarly, we obtain the symmetric
objective Ltex,tac

i and minimize it:

L = Ltac,tex + Ltex,tac. (6)

Once the tactile encoder Etac and text encoder Etex have
been trained, we use Eq. 7 to evaluate the similarity between
the tactile images and text prompts:

CTTP (taci, texi) =
Etac(taci) · Etex(texi)

∥Etac(taci)∥2 · ∥Etex(texi)∥2
.

(7)

Experiment
Experiment Settings
Datasets We conduct experiments on two representative
datasets. HCT (Fu et al. 2024) comprises visual-tactile data
collected using a handheld 3D-printed data collection de-
vice. This dataset includes 43741 pairs of in-contact frames
with tactile texture descriptions. Each data record contains
the process of approaching, touching, sliding, and with-
drawing from an object using the tactile sensor. Another

Method HCT SSVTP

CTTP ↑LPIPS ↓ SSIM ↑ PSNR ↑ CTTP ↑LPIPS ↓ SSIM ↑ PSNR ↑
GVST - 0.573 0.881 19.45 - 0.502 0.918 21.15

UniTouch 0.156 0.528 0.902 19.84 0.127 0.555 0.824 12.42
PixArt-α 0.198 0.504 0.876 20.26 0.125 0.497 0.916 22.35

TextToucher 0.261 0.427 0.904 22.70 0.152 0.465 0.930 22.43

Table 1: Quantitative results on the tactile generation task
are presented. Our method can achieve the best results on
each metric.

dataset, SSVTP (Kerr et al. 2022), utilizes a UR5 robotic
arm equipped with an RGB camera and a tactile sensor to
collect data from various deformable surface environments,
such as clothing seams, buttons, and zippers.

Metrics We adopt CTTP, LPIPS, SSIM and PSNR met-
rics to quantitatively evaluate the generated results. CTTP
is employed to assess how well the tactile images align
with the tactile descriptions, ensuring that the generated im-
ages accurately reflect the tactile sensations. LPIPS (Zhang
et al. 2018) evaluates feature-level similarity between gener-
ated and real samples. Following GVSR (Yang, Zhang, and
Owens 2023), we use SSIM and PSNR to evaluate the con-
sistency at the pixel level.

Main Results
We categorize the comparison methods into two groups: 1)
Vision-conditioned methods, where GVST (Yang, Zhang,
and Owens 2023) and UniTouch (Yang et al. 2024) utilize
diffusion models with a Unet architecture to generate tac-
tile images from visual scenes. 2) Text-conditioned methods,
where PixArt-α (Chen et al. 2023) translates text descrip-
tions into visual images. We employ PixArt-α to complete
the text-to-touch generation task, as both tasks involve pro-
cessing text-based conditions.

Quantitative Evaluation. The quantitative results are pre-
sented in Tab. 1. TextToucher consistently achieves superior
performance across all metrics on both HCT and SSVTP
datasets. It is observed that TextToucher significantly out-
performs GVST and UniTouch, confirming our hypothesis
that the text modality can more accurately describe tactile
sensations compared to the vision modality. Additionally,
our method distinctly surpasses PixArt-α, demonstrating a
+0.063 improvement in CTTP and a +0.077 enhancement in
LPIPS on the HCT dataset. It also performs comparably on
the SSVTP dataset, suggesting that traditional text-to-image
methods are inadequate for tactile generation tasks.

Qualitative Evaluation. Fig. 4 shows the qualitative com-
parisons with alternative methods. Provided with text de-
scriptions, our method can generate results that are more
consistent with the reference tactile images. In contrast
to vision-conditioned methods, TextToucher can effectively
captures the contours of the contact objects through the
tactile shape conditions. Furthermore, we observe that our
method produces fewer artifacts in the generated images
compared to PixArt-α. This improvement can be attributed
to the dual-grain text conditions, which accurately model the
intrinsic characteristics of tactile images, thereby enhancing
the overall fidelity of tactile image synthesis.
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Figure 4: We compare our approach with other representative methods. TextToucher can produce tactile images with fewer
artifacts and higher quality, closely aligning with the provided text descriptions.

Method Text Conditions CTTP ↑ LPIPS ↓ SSIM ↑ PSNR ↑
Texture Shape Gel

TC-T ✓ 0.198 0.504 0.876 20.26
TC-TS ✓ ✓ 0.236 0.445 0.887 22.55

TextToucher ✓ ✓ ✓ 0.261 0.427 0.904 22.70

Table 2: Comparison of different text condition types.

Conditioning Mechanism CTTP ↑ LPIPS ↓ SSIM ↑ PSNR ↑
Text Modulation 0.151 0.476 0.899 21.91
Joint Attention 0.213 0.453 0.898 22.67
Cross Attention 0.261 0.427 0.904 22.70

Table 3: Comparison of different conditioning mechanisms.

Ablation Studies
Text Condition Types. In Tab. 2, we explore various com-
binations of text condition types in the text-to-touch gener-
ation task. Compared to employing only the tactile texture
condition, generating tactile images with additional descrip-
tions of tactile shapes and gel statuses contributes to more
accurately forming the contours of contact objects and pre-
senting them on specific gels. This approach achieves sig-
nificant improvements across four metrics, underscoring the
effectiveness of fine-grained text conditions in enhancing the
quality of tactile image generation.

Conditioning mechanisms. In Tab. 3, we observe the
Cross Attention conditioning mechanism is more effective
for the text-to-touch generation task. In the Text Modulation
approach, compressing sequential text tokens into inputs for
modulation leads to a substantial loss of information. Be-
sides, the imbalance in the number of tactile (1024 tokens)
and text tokens (17.3 tokens on average) in the Joint Atten-
tion approach hampers the model’s ability to establish con-
nections between the two modalities.

Gel status prompts in different layers. We investigate
the effects of applying gel status prompts to different layers

Layer CTTP ↑ LPIPS ↓ SSIM ↑ PSNR ↑
1-14 0.258 0.431 0.900 22.14
1-28 0.261 0.427 0.904 22.70

14-28 0.241 0.460 0.893 21.74
7-28 0.249 0.458 0.902 21.84

Table 4: Comparison of gel status prompts inserted in differ-
ent layers.

ngs CTTP ↑ LPIPS ↓ SSIM ↑ PSNR ↑
1 0.248 0.452 0.900 21.74
2 0.255 0.452 0.895 21.93
4 0.261 0.427 0.904 22.70
6 0.250 0.458 0.899 21.56
8 0.252 0.453 0.899 21.60

Table 5: Comparisons of token counts representing the gel
status prompts.

of the model via two designs: gradually adding them from
shallow to deep and from deep to shallow. The results in
Tab. 4 show that employing gel status prompts within the
first 14 layers enhances the quality of generated tactile im-
ages, and the best results are achieved when it is applied
up to 28 layers. Adding gel status prompts from deeper to
shallower layers can degrade the model’s performance. This
indicates that gel state encoding is crucial for shallow layer
image representation and the optimal setting is adopted as
the final setting for our approach.

Token number ngs. We study the impact of varying the
number of tokens ngs in gel status embeddings. As shown in
Tab. 5, we find that using ngs = 4 tokens effectively repre-
sents different gel status and surpasses other settings across
various metrics by a margin. We hypothesize that fewer to-
kens (ngs = 1, 2) are insufficient to capture the gel infor-
mation, while a larger number of tokens (ngs = 6, 8, 10) in-
troduces redundant information, preventing the model from
allocating weights in the cross attention layers.



θt CTTP ↑ LPIPS ↓ SSIM ↑ PSNR ↑
800 0.258 0.427 0.903 22.69
600 0.261 0.427 0.904 22.70
400 0.247 0.434 0.897 22.54
200 0.235 0.435 0.892 22.26
0 0.234 0.434 0.899 22.12

Table 6: The Effect of timestep threshold θt employing dif-
ferent tactile text conditions.

the touch of 

woven table is 

fabric-like, matte, 

textured.
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resilient, 
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Three Types 

of Gel Status

Text Description Vision Image Gel 1 Gel 2 Gel 3

the touch of white 

cable is firm, 

grainy, hard.

Figure 5: The first row displays the gel statuses contained in
HCT dataset. We generate the same object under different
gel statuses in the remaining rows.

Timestep threshold θt. We study the effect of varying tac-
tile text conditions at different sampling timesteps for tactile
generation. We set c̃ = {csen, cobj} (three types of tactile
information) for early timesteps before θt, and use tactile
texture and shape description c afterwards. The results in
Tab. 6 show that this approach with time-varying tactile text
conditions improves model performance, achieving the best
results at θt of 600 or 800 timesteps. This improvement oc-
curs because using c̃ in the early sampling steps helps form
an initial tactile image with gel information. Subsequently,
the diffusion model with the conditional encoding c is able
to refine the generation of tactile texture and shape.

Variation in Gel Statuses
In this section, we utilize different gel states to control the
tactile generation conditioned on the same text sentences,
enhancing the diversity of tactile images. We use three sets
of prompts to represent the three gel statuses in the HCT
dataset. Specifically, we use the gel state prompts to con-
trol the generation of tactile images in inference stage. The
results in Fig. 5 indicate that the gel status conditions effec-
tively control the presentation of tactile shape and texture.
However, we also observe that the quality of images gener-
ated for gel state 1 is poor. We analyze the dataset and find
that only 2.4% of the tactile images are collected using gel
state 1. This limited sample size likely makes it difficult for
the model to understand the relationship between gel state
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Figure 6: With the pre-trained tactile encoder, we extract fea-
tures from tactile images and calculate the CTTP with all
texture descriptions, predicting the top five most likely tac-
tile texture descriptions and the most irrelevant ones.

1 and the corresponding texture and shape. We also conduct
more tasks related to various gels in the Appendix.

Tactile Prediction
Similar to how CLIP is used for image classification, we em-
ploy the trained tactile image encoder for tactile predictions
to verify the validity of CTTP metric. We extract all adjec-
tives describing tactile texture from the HCT datasets. Using
the tactile image encoder alongside the CLIP text encoder,
we can compute the CTTP metric between the tactile im-
ages and all tactile descriptions Pi = (ps, pti). In Fig. 6,
we present the prediction results, including the top five
highest-scoring tactile texture descriptions and the most ir-
relevant descriptions. For example, in the second row, terms
like “clothlike”, “dense”, and “knitted” accurately describe
woolen clothes, whereas “metallic” does not relate to clothes
at all. The experimental results demonstrate that the tactile
image encoder trained with contrastive learning effectively
aligns with the text encoder.

Conclusion
In this paper, we are the first to propose the text-to-touch
generation task and specifically analyze tactile images at
two levels: object-level (tactile texture, tactile shape), and
sensor-level (gel status). Our proposed TextToucher lever-
ages tactile text descriptions to generate high-quality tactile
images. We extend the tactile datasets with texture descrip-
tions and employ LLaVA to label shape information. For gel
status, we define learnable prompts to present different gel
statuses, which can be selectively added to the text condi-
tions based on sampling timestep. Three text conditioning
mechanisms are explored to guide image generation. Addi-
tionally, we introduce the CTTP metric to assess the align-
ment between tactile images and their corresponding text
conditions. Experimental results and the extensive visualiza-
tions demonstrate that our method outperforms other meth-
ods and effectively generates high-quality tactile images.
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