
Agentic Plan Caching: Test-Time Memory for
Fast and Cost-Efficient LLM Agents

Qizheng Zhang Michael Wornow Kunle Olukotun

Stanford University

Abstract

LLM-based agent applications have shown increasingly remarkable capabilities
in complex workflows but incur substantial costs and latency due to extensive
planning and reasoning requirements. Existing LLM caching techniques (like
context caching and semantic caching), primarily designed for serving chatbots,
are insufficient for agent applications where outputs depend on external data and
environmental contexts. We propose Agentic Plan Caching (APC), a novel test-
time memory that extracts, stores, adapts, and reuses structured plan templates
from planning stages of agent applications across semantically similar tasks to
reduce the cost and latency of serving. Unlike traditional semantic caching, our
system extracts plan templates from completed agent executions at test-time, em-
ploys keyword extraction to match new requests against cached plans, and utilizes
lightweight models to adapt these templates to task-specific plans with contexts.
Evaluation across multiple real-world agent applications shows that our system
can reduce costs by 50.31% and latency by 27.28% on average while maintaining
performance, offering a more efficient solution for serving LLM-based agents that
complements existing LLM serving infrastructures.

1 Introduction

Agent applications based on Large Language Models (LLMs) have shown early promise in replicating
human performance on a broad range of workflows, from coding [26, 28, 61] to web navigation [23,
70] to open-ended research [3, 8] to social interactions [42, 57]. Many of these LLM-based agents
follow a two-stage pipeline, often referred to as the ReAct-agent loop [63, 45], that alternates
between: (1) Plan – reasoning about what to do next, and (2) Act – executing those plans. While
effective, these agents incur significant costs due to the complexity of executed workflows [67, 31]
and need to interact with external tools and environments [43]. Specifically, the Plan stage is often
implemented via test-time compute techniques [13, 47] like chain-of-thought reasoning [53], which
can require numerous LLM queries and access to expensive LLMs (e.g., reasoning models). This
results in substantial costs for executing agentic workflows via APIs [15, 39] or locally [35].

To reduce LLM costs, methods have been developed to optimize responses to individual queries [32,
69]. In particular, caching has emerged as a popular approach, with two primary implementations:
Context caching (e.g., KV cache reuse and prompt caching [20, 60, 62]) stores internal model states
to speed up subsequent generations, while semantic caching [10, 46, 2] stores and reuses (input,
output) pairs to accelerate the serving of queries that are similar to historical queries.

These caching techniques, however, have significant limitations when applied to Plan-Act agents.
These agents often require making data-dependent decisions, i.e., LLM outputs depend on external
data or contextual information that varies between runs. For example, in data analysis applications,
the same high-level query ("summarize key statistics of this dataset") will result in similar high-level
plans, but different specific details depending on the characteristics of the dataset provided. Similarly,

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

in web or GUI navigation tasks, the same high-level query ("delete the top comment") will require
similar sequences of actions (e.g., "click the menu button, scroll down"), but the specifics may differ
depending on screen size and window position (e.g., "click coordinates (130, 493), scroll down 38
pixels"). In such cases, conventional caching fails because it does not separate the core intent of
the query from the dynamic context. Agents may benefit from local (i.e., individual query-level)
optimizations, but miss opportunities for global improvements that leverage patterns across the entire
task execution.

To overcome these limitations, we propose Agentic Plan Caching (APC), a novel test-time memory
that reduces the serving costs of LLM-based agents that follow the Plan-Act paradigm by adapting and
reusing prior execution plans across semantically similar workflows. Our key insight is that the Plan
stage, which incurs the majority of LLM compute cost, is often repeated (within or across workflows)
despite yielding outputs that could be reused in future requests while maintaining performance. When
an agent completes an execution of a workflow, we extract structured plan templates from the agent
execution log. When a similar request arrives, we employ keyword extraction to identify the most
important semantic target of the query, then match it against the cache to retrieve the most relevant
plan template. Our approach differs from semantic caching by avoiding query-based cache lookups,
which we found sub-optimal for agent applications. Whenever additional planning is required, we
utilize a lightweight model to adapt the cached structured plan template into more detailed plans with
task-specific contexts (e.g., fiscal year and company name in financial data-intensive reasoning [39]),
rather than employing an expensive model.

Although several memory architectures have been proposed to help agents store and learn from past
experiences [49, 40, 51, 59, 65], these efforts primarily focus on using such memories to improve
the agent’s accuracy on completing workflows (e.g., with fewer hallucinations [9] or with higher
task success rate [51]) rather than to reduce the cost of serving the agent. To our knowledge, the
use of historical experiences to more efficiently serve LLM-based agents remains underexplored,
particularly for applications where outputs depend on input data or environmental conditions external
to the query itself.

We evaluate agentic plan caching on five diverse agent workloads and find that it reduces costs by
50.31% and latency by 27.28% (on average) while maintaining 96.61% of optimal accuracy.
The agentic plan caching we propose is compatible with existing LLM serving and agent frameworks,
and can be used jointly with existing caching techniques as well.

In summary, we make the following contributions:

1. Analysis of Caching Techniques for Serving LLMs: We conduct a comprehensive analysis of
existing caching techniques for LLM serving (context caching and semantic caching), and point
out why they are insufficient for the era of agentic AI applications.

2. Proposal of Agentic Plan Caching: We propose the idea of agentic plan caching, which shifts the
focus from query-level caching (suitable for chatbots) to task-level caching (targeting LLM-based
agents). We design and implement a novel caching system that extracts, stores, adapts and reuses
agent-generated plans at test-time.

3. Evaluation of Caching Techniques: We evaluate our agentic plan caching system on top of real-
world agent architecture and five datasets/benchmarks, and find that our approach can reduce cost
by 50.31% and latency by 27.28% (on average), while maintaining 96.61% of optimal application
performance.

2 Background and Motivation

2.1 Plan-Act Agents

The rise of large language models (LLMs) has driven the rapid expansion of agentic AI applications.
Unlike single-model tasks like chatbots [17], math [24], or coding [16], these applications coordinate
multiple models and queries to solve complex tasks, like data-intensive reasoning [39], software
engineering [64, 52], web navigation [70], etc.

Many such agentic AI applications, like multi-agent systems [50, 22] and cloud-edge LLM sys-
tems [66, 39] , follow a two-stage pipeline loop (similar to the ReAct-agent loop [63]), as shown in
Figure 1a: (1) Plan and (2) Act. In the Plan stage, a planner LLM generates a strategy (e.g., task

2

decomposition, information retrieval) that guides subsequent actions of acting LLMs. In the Act
stage, the actor LLM acts accordingly based on devised plans and external context or environment,
and passes down the response to the planner LLM for the next step.

However, due to the use of multiple LLMs and queries, especially with advanced models like
reasoning or multimodal LLMs, these agentic applications can incur significant costs [30, 41],
particularly in terms of token ingestion/generation. Optimizing these costs is crucial for scaling
agentic AI applications.

Context

Query

Planner LM

Actor LM

Plan

What is FY2019 working capital
ratio for Costco?

Costco Wholesale Corporation
consolidated balance sheets…

First, provide the total current
assets and total current liabilities

for Costco for FY2019.

ratio = 1.01

Costco's total current assets were
$23,485 million and …Response

Output

(a) Plan-Act LLM application

LLM Agent

Context Caching

Semantic Caching

Plan Caching

Input OutputLLM

Input OutputLLM

Plan
OutputActing

StageInput Planning
Stage Context

KV Cache

(b) Comparison of different LLM caching techniques

Figure 1: Plan-Act LLM Applications and Caching Techniques. (a) A typical Plan-Act agent
pipeline loop and (b) a comparison of LLM caching methods, with cached components highlighted
in yellow.

2.2 LLM Caching: Methods and Limitations

Caching is one of the most widely-adopted techniques for reducing the serving cost of LLM
applications. The goal of caching is to eliminate redundant computation. Context caching [20, 62, 60,
58], also known as KV cache reuse or prompt caching, involves storing and reusing the key-value
pairs generated during the prefill phase of LLM inference. Semantic caching [10, 46, 2], on the other
hand, stores input-output pairs of previous LLM invocations. This relies on the fact that many prompts
share similar underlying intents and thus expected outputs despite having different wording [46].

We find that existing caching techniques, primarily designed for serving chatbots (at query-level)
instead of agents (at task-level), have three major limitations as described below.

1) Model-Specific Constraints. Context caching relies on KV cache as the medium for storing and
reusing knowledge [34, 20, 60]. These KV caches are inherently model-dependent and not easily
transferable across different models [56, 33], since even identical text prompts produce model-specific
KV caches. While this limitation is negligible for chatbots that consistently use a single model with
the same system prompt, it becomes a problem for agentic AI applications that typically employ
multiple LLMs across various processing stages.

2) Data-Dependent Outputs. Semantic caching stores input-output pairs from previous LLM calls,
assuming outputs depend solely on input prompts [10, 46]. While this holds for chatbots, many
agentic AI applications are data-dependent: Outputs depend not only on input queries but also
on external data (e.g., data-intensive reasoning [39]) or dynamic environments (e.g., web or GUI
agents [70, 55, 54]). This dependency complicates the reuse of cached responses even when input
prompts are semantically similar.

3) Limited Adaptability. Both context and semantic caching lack flexibility for handling slight
variations in input. Context caching requires exact text matches. Semantic caching, while more
accommodating, does not capture the transformation process from prompt to response. This could
hinder adaptation to similar queries with minor differences (e.g., numeric values or variable names in
mathematical reasoning [18], coding tasks [26]), a common challenge in agentic AI.

3

2.3 Related Work

Agent Memory Prior work has explored augmenting LLM agents with external memory to (1)
reduce hallucinations through context-aware responses [9] and (2) enable complex, long-horizon
tasks [51]. Some studies focus on defining memory formats [63] and managing memory efficiently [40,
59]. While our caching system can be adapted as a form of agent memory, it diverges by targeting
serving cost reduction rather than enhanced capability, a largely unexplored area.

LLM Serving Engines Existing LLM serving engines like vLLM [32] and SGLang [69] optimize
general query inference at scale through techniques such as KV cache management and request
scheduling. Our approach is compatible with these systems, extending their capabilities to incorporate
cost-effective caching for agentic AI scenarios.

Case-Based Planning Case-Based Planning (CBP) [11, 48, 12] is a problem-solving paradigm
where new plans are produced by adapting previously solved cases rather than constructing plans
from scratch. By exploiting similarities between past and current situations, CBP supports efficient
plan reuse, continual learning, and incremental refinement. While our work shares the high-level
intuition of "plan storage and reuse", it targets a fundamentally different setting from classic symbolic
CBP: LLM-based, neural agents performing open-ended natural-language actions. Specifically, our
system (1) automatically extracts reusable plan templates at test time from unconstrained LLM
generations, instead of relying on hand-crafted symbolic plans, and (2) leverages these stored plans
for cost-efficient inference in LLM agents.

3 The Agentic Plan Caching (APC) Framework

In this section, we provide an end-to-end overview of our agentic plan caching framework (§3.1) and
then discuss the motivations behind key design choices (§3.2).

3.1 Overview of System Design

Plans + Responses + Output
{

“plan_1”: “provide the total current
assets and total current liabilities for
Costco for FY2019”,

“response_1”: “Based on the provided
statement, total current assets is $23,485
million; total current liabilities is $23,237
million…”

“plan_2”: …
}

Query

Small LM

Actor LM

Response

Plan

Output

(Keyword, Template)

Cache

Plan Template

Keyword

Large LM

Actor LM

Response

Plan

Output

Cache MissCache Hit

Query
“What is FY2019 working capital

ratio for Costco?”

Keyword
“working capital ratio”

LLM-based Filter

Plan Template
{

plan_1”: “provide: (1) total current
assets, (2) total current liabilities”

“response_1”: “expected: (1) total
current assets, (2) total current liabilities”

“plan_2”: …
}

+

+

Cache
Update

Context

(a) (b) (c)

Figure 2: Agentic Plan Caching Framework. We show: (a) cache hit workflow, (b) cache miss
workflow, and (c) plan template generation for new cache entries.

4

We provide an end-to-end overview of the agentic plan caching framework in Figure 2. The process
begins with a cost-effective language model (e.g., GPT-4o-mini) extracting a keyword that captures
the higher-level intent of the input task query (e.g., "compute the average of all numbers listed in
an external document" →"mean calculation"). This keyword is then used to search the plan cache,
which stores (keyword, plan template) pairs, potentially resulting in a cache hit or miss.

For a cache hit – Figure 2(a) – , a small planner LM ("Small LM") adapts the retrieved plan template
for the current execution by incorporating context-specific information (e.g., user information,
environment variables). For a cache miss – Figure 2(b) – , a large planner LM ("Large LM") generates
a new plan from the input task query. The adapted or generated plan, along with the task context
(e.g., external data or web/GUI environment), is then passed to the "Actor LM", which produces a
response. The response is evaluated by the "Planner LM" to determine if further iterations are needed.
If the task is complete, the final output is generated, concluding the agent’s execution.

In the case of a cache miss, once the agent successfully completes execution with correct outputs, the
system generates a plan template that can be reused in future invocations of the agent through the
following two-step process: (1) A rule-based filter extracts critical information from the execution
log while discarding irrelevant details, such as verbose reasoning steps; (2) A lightweight LLM-based
filter removes context-specific elements (e.g., entity names, numeric values), producing a generalized
template ("Plan Template") and relevant keywords for caching (Figure 2(c)).

Additional algorithmic details are provided in the Appendix.

3.2 Design Choices

Why Keyword Extraction? A common method for identifying similar queries in a cache is
to assess semantic or textual similarity, as seen in frameworks like GPTCache [10] which use
embeddings for similarity searches. However, we find that query-based similarity matching, despite
its popularity, is insufficient for detecting cache hits/misses for agentic plan caching. This is because
it might overemphasize context-specific details (e.g., names of individuals or companies) rather than
the broader intent of queries, which makes it difficult to establish an effective similarity threshold [46].
This often results in a high number of false positives (irrelevant cache hits) or false negatives (missed
reuse opportunities). In contrast, extracting keywords that reflect the higher-level intent of queries
provides a more reliable indicator of whether two queries would result in similar agentic plans, as
illustrated in Figure 3.

False Positive Rate False Negative Rate
0.0

0.5

1.0

Query-Based (threshold=0.7)
Query-Based (threshold=0.8)
Query-Based (threshold=0.9)
Keyword-Based

Figure 3: Query-Based v. Keyword-Based Cache Search. Keyword-based cache search achieves
lower levels of false positive and false negative rates than query-based similarity cache search across
different thresholds. This suggests that semantic similarity of queries alone may not effectively
capture shared task intents and reusable plans.

Exact Matching v. Fuzzy Matching Our system uses exact matches (between keywords) to
minimize false positives. While fuzzy search [27] (identifying cache hits based on similar but not
identical keywords) could handle approximate key similarities and is feasible to integrate, we opted
against it and leave it for future exploration for two main reasons: (1) Determining fuzzy matches
based on semantic or textual similarity of keywords would reintroduce challenges faced by semantic
caching, such as setting effective similarity thresholds, and (2) although lightweight LMs could
potentially enable fuzzy matching, cache lookups must remain fast and cost-effective, particularly

5

in low-hit-rate scenarios. We present an in-depth analysis of the overhead and scalability of fuzzy
matching in §4.4.

Caching Plan Template v. Caching Full Execution History One naive approach to reuse historical
experience is to cache and reuse past agent execution logs (containing all inputs and outputs from
planner and actor LMs) as in-context learning examples for the small planner LM. However, in our
experiments (§4.2), we find that small planner LMs, usually based on small language models (e.g.,
we use LLaMa-3.1-8B), struggle to handle long-context and unfiltered agent execution logs even
when containing reusable plan information. This motivates us to filter agent execution logs into
high-quality plan templates, and re-adapt them so that small planner LMs can better take advantage
of their information.

4 Results and Evaluation

We evaluate our agentic plan caching (APC) framework on five agent workloads that span a diverse
range of data-intensive reasoning and agentic capabilities. These include long-context data reasoning
(FinanceBench [25], QASPER [19]), mathematical reasoning (Tabular Math Word Problems [36],
AIME 2024 and 2025 [37]), and multi-step agentic reasoning and tool use (GAIA [38]).

Our key findings are:

• Reduced Cost: APC reduces agent serving costs by an average of 50.31% (§4.2).
• Reduced Latency: APC reduces agent serving latency by an average of 27.28% (§4.3).
• High Accuracy: APC maintains 96.61% of application-level performance compared to the

accuracy-optimal baseline (§4.2).
• Low Overhead: On average, keyword extraction and cache generation account for only 1.04% of

the overall cost of running each benchmark (§4.3).

4.1 Experiment Setup

Our agentic plan caching system is built on the Minion architecture (Figure 1a) from the Minions
project [39], a sequential Plan-Act LLM framework that can be readily generalized. The Minion
architecture is composed of a large (cloud-hosted) planner LM for reasoning and task decomposition
and a smaller (locally hosted) actor LM with access to additional context for plan execution. Given a
task query, the planner LM and the actor LM collaborate iteratively (as in Figure 1a) to produce a
final output. We set the maximum number of iterations to be 10.

While we adopt this architecture for clarity, APC is not restricted to Minion-like agent architecture;
we demonstrate its integration into other agent architectures and report end-to-end results in §4.2.
Additional implementation details and dataset specifications are provided in the Appendix.

Evaluation Metrics We assess application-level performance using GPT-4o as the evaluation
model, as LLM-based evaluation is more effective than exact matches or F1 scores for numeric
evaluation and long-form responses [14, 21, 68]. Cost is calculated based on input/output tokens and
the latest API pricing from commercial LLM providers (OpenAI API [7] and TogetherAI API [1]).
Additional details on evaluation models, prompts, and API pricing are included in the Appendix.

Language Models For the main results (§4.2), we use GPT-4o [5] as the planner LM and LLaMa-
3.1-8B [6] as both the small planner LM and actor LM. For keyword extraction and cache generation,
we use GPT-4o-mini [4]. To demonstrate broader applicability, we include a sensitivity analysis with
a wider range of models in the Appendix.

Baselines We evaluate our system against the following baselines:

• Accuracy-Optimal: No caching is applied. The large planner LM is always used to establish the
best achievable application performance.
• Cost-Optimal: No caching is applied. The small planner LM is consistently used to assess the

lowest possible cost.

6

• Semantic Caching: We implement a query-level semantic caching method based on previous
work [10, 46]. Following the approach of GPTCache [10]1, we cache and reuse responses to
individual queries, determining cache hits based on query-level similarity. We set similarity
thresholds to be 80%, 85%, and 90%; a lookup is considered a hit if the query-level similarity is
above this threshold.
• Full-History Caching (discussed in §3.2): Inspired by knowledge caching in retrieval-augmented

generation [62, 29], this baseline caches the complete agent execution log, including inputs and
outputs of all LLM agent components. Cache hits are determined by keyword-level similarity.
Upon a hit, the cached execution log is used as an in-context example for the small planner LM to
generate new plans.

4.2 Main Results

As shown in Figure 4 and Table 1, agentic plan caching reduces cost by 50.31% on average while
maintaining 96.61% of application-level performance compared to the accuracy-optimal baseline.
We note that:

• Semantic Caching: Despite cost savings at lower similarity thresholds, semantic caching suffers
from a high rate of false-positive cache hits, leading to substantial performance degradation.
Additional case studies of false-positive hits are provided in the Appendix.
• Full-History Caching: While full-history caching preserves past plans and actions that might

help plan generation for similar tasks, it underperforms agentic plan caching in accuracy (72.00%
vs. 85.50% in FinanceBench) and incurs higher costs ($1.99 vs. $1.86). This is due to the small
planner LM’s difficulty in processing lengthy and unfiltered histories, emphasizing the necessity of
our LLM-based filter to extract concise, reusable plan templates.

01234
Cost (USD)

0.1

0.3

0.5

0.7

0.9

Ac
cu

ra
cy

FinanceBench

01234
Cost (USD)

TabMWP

Accuracy/Cost Optimal
Semantic Caching

Full History Caching
Agentic Plan Caching (Ours)

Figure 4: Results across Four Baselines and Agentic Plan Caching.

Results on GAIA with Open Deep Research Agent Beyond Minion-based architectures, we
integrate APC into the Open Deep Research agent from the Hugging Face smolagents library [44]
using GPT-4o as the large planner LM and GPT-4o-mini as the small planner LM. As shown in Table
1, on the GAIA benchmark [38], APC achieves a 76.42% reduction in cost (from $69.02 to $16.27)
with only a 0.61% drop in accuracy (37.58% to 36.97%), demonstrating strong cost-efficiency even
in complex, open-domain agent settings.

A closer analysis reveals that GAIA’s heterogeneous task space, ranging from video dialog reason-
ing to sales computation, limits the effectiveness of keyword-based cache retrieval, as many task
descriptions are highly specific and rarely recur. Despite fewer cache hits during initial planning,

1We do not use the official GPTCache release as it (1) lacks support for post-GPT-4 OpenAI models and (2)
relies on a deprecated version of the OpenAI API.

7

Method
Minion Open Deep Research

QASPER AIME 2024 AIME 2025 GAIA

Cost↓ / Accuracy↑ Cost↓ / Accuracy↑ Cost↓ / Accuracy↑ Cost↓ / Accuracy↑

Accuracy-Optimal $2.14 / 58.00% $1.14 / 64.52% $1.34 / 61.29% $69.02 / 37.58%
Cost-Optimal $0.21 / 53.00% $0.65 / 48.39% $0.60 / 48.39% $3.16 / 19.39%
APC (Ours) $0.78 / 57.00% $0.85 / 61.29% $0.81 / 58.06% $16.27 / 36.97%

Table 1: More Results. We evaluate APC on a diverse set of benchmarks covering reasoning and
agentic capabilities, as well as agent architecture like Minion and Open Deep Research.

APC improves efficiency in re-planning phases by reusing prior plan structures, thereby reducing
redundant large-model invocations.

Cache-Miss v. Cache-Hit Accuracy To assess the impact of caching on application performance,
we compare cache-miss and cache-hit accuracy across semantic caching, full-history caching, and
agentic plan caching (Figure 5). For semantic and full-history caching, cache-hit accuracy is sig-
nificantly lower than cache-miss accuracy, indicating a performance trade-off despite potential cost
savings. In contrast, agentic plan caching maintains consistent accuracy regardless of cache-use
status, demonstrating its ability to preserve application performance without degradation.

�������
���� ������

�

	

�

�

���

�
�
�
�
�
�
�

��
�
�

���������� ���������

-56% -46%

(a) Semantic caching

�������
���� ������

�

	

�

�

���

�
�
�
�
�
�
�

��
�
�

���������� ���������

-32%
-21%

(b) Full-history caching

�������
���� ������

�

	

�

�

���

�
�
�
�
�
�
�

��
�
�

���������� ���������

(c) Agentic plan caching

Figure 5: Accuracy Comparison across Caching Methods. While semantic caching with thresh-
old=0.9 in (a) and full-history caching in (b) experience notable accuracy drops during cache hits,
agentic plan caching in (c) maintains stable performance across datasets.

4.3 Cost and Speed Analysis

Cost Breakdown We analyze the additional overhead introduced by the agentic plan caching
mechanism through a cost breakdown analysis (Table 2). On average, keyword extraction and cache
generation account for only 1.04% of the total cost. This minimal overhead is achieved because: (1)
extracting higher-level goals or intents from task queries can be effectively handled by lightweight
models at the scale of GPT-4o-mini or smaller, and (2) cache generation leverages rule-based methods
to extract templates and uses a lightweight language model only for filtering out query-specific or
context-specific details, which is a task well-suited to compact models.

Worst-Case Cache Overhead We assess the overhead incurred under the worst-case scenario,
where the cache hit rate is zero. As shown in Table 2, even in this scenario, the cost from keyword
extraction and cache generation is minimal (1.31% on average). In practical deployment, a potential
mitigation strategy is to dynamically disable caching when hit rates remain persistently low.

Latency Analysis We evaluated the wall-clock latency of our system and compared it to both
accuracy-optimal and cost-optimal baselines. Additionally, we provide a detailed breakdown of
latency incurred by each component in our plan caching pipeline. This microbenchmark is based
on 100 randomly sampled queries from the FinanceBench dataset, with a cache hit rate of 46%
(i.e., cached plans were used for 46 of the 100 queries). As shown in the Table 3, APC reduces
end-to-end latency by 27.28% on this workload. Most of the additional latency in our system comes
from LLM-powered cache generation, which takes an average of 3.99 seconds per entry. To further

8

Component
FinanceBench TabMWP

Main Results Worst Case Main Results Worst Case

Large Planner LM $1.7544 (94.17%) $3.9227 (97.36%) $1.9823 (97.76%) $3.3292 (98.33%)
Small Planner LM $0.0168 (0.90%) – $0.0095 (0.47%) –

Actor LM $0.0705 (3.78%) $0.0529 (1.31%) $0.0170 (0.84%) $0.0128 (0.38%)

Cache Overhead $0.0213 (1.15%) $0.0535 (1.33%) $0.0190 (0.93%) $0.0438 (1.29%)
- Keyword Extraction $0.0050 (0.27%) $0.0050 (0.13%) $0.0025 (0.12%) $0.0025 (0.07%)
- Cache Generation $0.0163 (0.88%) $0.0485 (1.20%) $0.0165 (0.81%) $0.0413 (1.22%)

Total $1.8630 (100%) $4.0291 (100%) $2.0278 (100%) $3.3858 (100%)

Table 2: Cost Analysis. We show the breakdown of agentic plan caching costs, including main
results and worst-case overhead (i.e., zero cache hit rate).

Method Plan Act Keyword Extraction Cache Lookup Cache Generation Total

Accuracy-Optimal 1813.41 94.39 – – – 1959.24
Cost-Optimal 856.75 93.31 – – – 1004.79
APC (Ours) 1011.82 131.44 42.29 <1 215.80 1424.82

Table 3: Latency Analysis. Breakdown of wall-clock latency across components of the agent pipeline.
All values are measured in seconds.

mitigate this overhead, we (1) automatically disable caching when the hit rate is consistently low, and
(2) are actively exploring optimizations such as parallel cache generation and speculative next-query
inference as part of future work. To summarize, our system offers a favorable performance trade-off:
We achieve significantly lower cost than the accuracy-optimal baseline while preserving high accuracy
at the cost of moderate latency, most of which is attributable to one-time cache generation.

4.4 Scalability and Cache Management

Effect of Cache Size Increasing cache size generally reduces both cost and latency, up to a point
of diminishing returns. On the FinanceBench dataset, larger caches yield higher hit rates and lower
end-to-end latency, as fewer entries need to be regenerated after eviction. Table 4 reports results using
a simple LRU eviction policy. Beyond a certain capacity, approximately exceeding the number of
unique task keywords, further enlarging the cache offers minimal benefit. In practice, users can tune
cache capacity based on the desired trade-off between speed and storage.

Cache Size Hit Rate Cost Accuracy Planning Latency (s) Cache Gen. Latency (s) Total Latency (s)

1 2% $3.97 92.00% 1638.85 383.87 2232.76
10 13% $3.51 88.00% 1381.89 334.61 1911.95
20 28% $2.95 85.00% 1248.06 289.36 1772.61
50 45% $1.88 86.00% 1015.12 204.99 1459.92
100 46% $1.86 85.50% 1011.81 215.80 1424.82

Table 4: Effect of Cache Size. Larger caches improve hit rate and reduce overall cost and latency
until reaching a point of diminishing returns.

Exact Matching v. Fuzzy Matching For exact match lookups, our cache uses Python’s built-in
dictionary, which provides highly optimized O(1) average-case lookup and insertion. To evaluate
empirical performance, we measured wall-clock latency for cache hits and misses across varying
cache sizes. Each measurement was averaged over 100 trials with CPU caches cleared before every
run. As shown in Table 5, exact matching maintains consistently low latency up to 106 entries.

In contrast, fuzzy matching introduces substantial cache lookup latency that scales poorly with cache
size. We implement fuzzy keyword matching in our prototype and use a semantic-similarity model
(SentenceTransformer(‘all-MiniLM-L6-v2’)). As shown in Table 5, this approach is orders
of magnitude slower than exact matching, confirming the computational overhead of semantic search.

9

Cache Size
Exact Matching Fuzzy Matching

Cache Hit Latency (µs) Cache Miss Latency (µs) Cache Hit Latency (µs) Cache Miss Latency (µs)

102 13 14 57 24
103 15 15 75 70
104 16 17 581 554
105 22 18 10388 10317
106 56 37 148449 148147

Table 5: Cache Lookup Scalability. Fuzzy matching incurs much higher latency and scales poorly
compared to exact matching. Averages over 100 trials; similarity threshold set to be 0.8.

Similarity Threshold Hit Rate Cost Accuracy Planning Latency (s) Total Latency (s)

= 100% 46% $1.86 85.50% 1011.82 1424.82
> 80% 54% $1.15 83.00% 875.31 1219.73
> 60% 64% $0.93 77.00% 720.29 1044.50

Table 6: Fuzzy Keyword Matching Results. Lower similarity thresholds increase hit rate and reduce
cost and latency, but degrade accuracy.

We also find that under fuzzy keyword matching, lowering the similarity threshold increases the
cache hit rate and reduces cost and latency, but at the expense of accuracy (Table 6). This highlights
the inherent trade-off in fuzzy matching: While more aggressive matching improves efficiency, it
risks introducing less relevant cached plans. Our cache interface remains flexible—users can enable
fuzzy matching and tune thresholds according to their application’s tolerance for semantic drift and
latency-accuracy trade-offs.

4.5 Cold Start

Cold start is an inherent limitation of test-time plan caching (as opposed to offline caching), since the
cache begins empty. In the early phase, APC experiences higher latency and cost due to frequent cache
misses and the need to generate new entries. To quantify this effect, we perform a time-series analysis
of cache warm-up, shown in Table 7. As the cache grows, hit rate steadily increases, leading to lower
marginal cost and latency over time. In practice, if the target workload is known in advance, users
can mitigate cold-start overhead by pre-populating the cache with offline samples before deployment.

Query Percentile # Cache Entries Hit Rate Cost Planning Latency (s) Cache Gen. Latency (s) Total Latency (s)

20th 15 14.29% $0.59 (32.07%) 260.19 (27.43%) 59.19 (27.64%) 358.71 (25.72%)
40th 27 24.39% $0.97 (52.72%) 484.88 (51.12%) 130.29 (60.86%) 689.49 (49.44%)
60th 36 36.07% $1.20 (65.22%) 638.12 (67.28%) 167.89 (78.41%) 926.82 (66.46%)
80th 42 40.75% $1.63 (88.59%) 820.94 (86.56%) 195.59 (91.35%) 1183.39 (84.86%)

100th 46 48.00% $1.84 (100.00%) 948.36 (100.00%) 214.11 (100.00%) 1394.56 (100.00%)

Table 7: Cold Start Behavior. As the cache warms up, hit rate increases and marginal cost and
latency decrease. Pre-warming the cache with offline samples can further mitigate cold-start overhead.

5 Conclusion

We introduce Agentic Plan Caching (APC), which shifts the focus from query-level caching (suitable
for chatbots) to task-level caching (targeting LLM-based agents). Unlike traditional semantic caching,
APC extracts plan templates from completed agent executions at test time, uses keyword-based
retrieval to match new queries to cached plans, and leverages lightweight models to adapt these
templates into context-specific task plans. By implementing agentic plan caching and evaluating it on
five diverse agent workloads and two Plan-Act agent architectures, we demonstrate that our approach
reduces agent serving costs by 50.31% and latency by 27.28% (on average) while maintaining 96.61%
of optimal application performance. Furthermore, the overhead introduced by plan caching remains
minimal, accounting for only 1.04% (on average) of the total serving cost.

10

6 Acknowledgment

We thank all the anonymous reviewers and the area chair for their insightful feedback and suggestions,
which significantly enhanced the quality of this work. Qizheng Zhang is supported in part by NSF
CNS-2211384. Michael Wornow is supported by the NSF Fellowship, a Stanford HAI Graduate
Fellowship, and Stanford Healthcare. We thank Gerry Wan for his contribution to the Open Deep
Research experiments in this paper after the initial submission. We thank Avanika Narayan for helpful
discussions on Minions, and thank Hanchen Li, Zhiqiang Xie, Jon Saad-Falcon, Azalia Mirhoseini,
and the LMCache team for helpful discussions on the project idea and its presentation.

References

[1] api.together.ai . https://api.together.xyz/.

[2] Build a read-through semantic cache with Amazon OpenSearch Serverless and Amazon Bedrock.
https://aws.amazon.com/blogs/machine-learning/build-a-read-through-semantic-cache-wit
h-amazon-opensearch-serverless-and-amazon-bedrock/.

[3] Gemini Deep Research . https://gemini.google/overview/deep-research/?hl=en/.

[4] GPT-4o mini: advancing cost-efficient intelligence . https://openai.com/index/gpt-4o-mini-adv
ancing-cost-efficient-intelligence/.

[5] GPT-4o System Card . https://openai.com/index/gpt-4o-system-card/.

[6] Llama 3.2: Revolutionizing edge AI and vision with open, customizable models . https:
//ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/.

[7] OpenAI API Platform . https://openai.com/api/.

[8] OpenAI deep research. https://openai.com/index/deep-research/.

[9] Reducing hallucinations in LLM agents with a verified semantic cache using Amazon Bedrock
Knowledge Bases. https://aws.amazon.com/blogs/machine-learning/reducing-hallucinations-i
n-llm-agents-with-a-verified-semantic-cache-using-amazon-bedrock-knowledge-bases/#:~:
text=The%20semantic%20cache%20significantly%20reduces,handle%20unique%20question
s%20when%20necessary.

[10] Fu Bang. Gptcache: An open-source semantic cache for llm applications enabling faster answers
and cost savings. In Proceedings of the 3rd Workshop for Natural Language Processing Open
Source Software (NLP-OSS 2023), pages 212–218, 2023.

[11] Ralph Bergmann and Wolfgang Wilke. On the role of abstraction in case-based reasoning. In
European Workshop on Advances in Case-Based Reasoning, pages 28–43. Springer, 1996.

[12] Daniel Borrajo, Anna Roubíčková, and Ivan Serina. Progress in case-based planning. ACM
Computing Surveys (CSUR), 47(2):1–39, 2015.

[13] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré,
and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated
sampling. arXiv preprint arXiv:2407.21787, 2024.

[14] Ding Chen, Qingchen Yu, Pengyuan Wang, Wentao Zhang, Bo Tang, Feiyu Xiong, Xinchi
Li, Minchuan Yang, and Zhiyu Li. xverify: Efficient answer verifier for reasoning model
evaluations. arXiv preprint arXiv:2504.10481, 2025.

[15] Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models
while reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

[16] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[17] Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot
arena: An open platform for evaluating llms by human preference. In Forty-first International
Conference on Machine Learning, 2024.

11

https://api.together.xyz/
https://aws.amazon.com/blogs/machine-learning/build-a-read-through-semantic-cache-with-amazon-opensearch-serverless-and-amazon-bedrock/
https://aws.amazon.com/blogs/machine-learning/build-a-read-through-semantic-cache-with-amazon-opensearch-serverless-and-amazon-bedrock/
https://gemini.google/overview/deep-research/?hl=en/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-system-card/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://openai.com/api/
https://openai.com/index/deep-research/
https://aws.amazon.com/blogs/machine-learning/reducing-hallucinations-in-llm-agents-with-a-verified-semantic-cache-using-amazon-bedrock-knowledge-bases/#:~:text=The%20semantic%20cache%20significantly%20reduces,handle%20unique%20questions%20when%20necessary.
https://aws.amazon.com/blogs/machine-learning/reducing-hallucinations-in-llm-agents-with-a-verified-semantic-cache-using-amazon-bedrock-knowledge-bases/#:~:text=The%20semantic%20cache%20significantly%20reduces,handle%20unique%20questions%20when%20necessary.
https://aws.amazon.com/blogs/machine-learning/reducing-hallucinations-in-llm-agents-with-a-verified-semantic-cache-using-amazon-bedrock-knowledge-bases/#:~:text=The%20semantic%20cache%20significantly%20reduces,handle%20unique%20questions%20when%20necessary.
https://aws.amazon.com/blogs/machine-learning/reducing-hallucinations-in-llm-agents-with-a-verified-semantic-cache-using-amazon-bedrock-knowledge-bases/#:~:text=The%20semantic%20cache%20significantly%20reduces,handle%20unique%20questions%20when%20necessary.

[18] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[19] Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A Smith, and Matt Gardner. A dataset
of information-seeking questions and answers anchored in research papers. arXiv preprint
arXiv:2105.03011, 2021.

[20] In Gim, Guojun Chen, Seung-seob Lee, Nikhil Sarda, Anurag Khandelwal, and Lin Zhong.
Prompt cache: Modular attention reuse for low-latency inference. Proceedings of Machine
Learning and Systems, 6:325–338, 2024.

[21] Anna Goldie, Azalia Mirhoseini, Hao Zhou, Irene Cai, and Christopher D Manning. Synthetic
data generation & multi-step rl for reasoning & tool use. arXiv preprint arXiv:2504.04736,
2025.

[22] Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf
Wiest, and Xiangliang Zhang. Large language model based multi-agents: A survey of progress
and challenges. arXiv preprint arXiv:2402.01680, 2024.

[23] Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong
Lan, and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal
models. arXiv preprint arXiv:2401.13919, 2024.

[24] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021.

[25] Pranab Islam, Anand Kannappan, Douwe Kiela, Rebecca Qian, Nino Scherrer, and Bertie
Vidgen. Financebench: A new benchmark for financial question answering. arXiv preprint
arXiv:2311.11944, 2023.

[26] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination
free evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

[27] Shengyue Ji, Guoliang Li, Chen Li, and Jianhua Feng. Efficient interactive fuzzy keyword
search. In Proceedings of the 18th international conference on World wide web, pages 371–380,
2009.

[28] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

[29] Chao Jin, Zili Zhang, Xuanlin Jiang, Fangyue Liu, Xin Liu, Xuanzhe Liu, and Xin Jin.
Ragcache: Efficient knowledge caching for retrieval-augmented generation. arXiv preprint
arXiv:2404.12457, 2024.

[30] Yizhang Jin, Jian Li, Yexin Liu, Tianjun Gu, Kai Wu, Zhengkai Jiang, Muyang He, Bo Zhao,
Xin Tan, Zhenye Gan, et al. Efficient multimodal large language models: A survey. arXiv
preprint arXiv:2405.10739, 2024.

[31] Thomas Kwa, Ben West, Joel Becker, Amy Deng, Katharyn Garcia, Max Hasin, Sami Jawhar,
Megan Kinniment, Nate Rush, Sydney Von Arx, et al. Measuring ai ability to complete long
tasks. arXiv preprint arXiv:2503.14499, 2025.

[32] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pages 611–626, 2023.

[33] Yuhan Liu, Yuyang Huang, Jiayi Yao, Zhuohan Gu, Kuntai Du, Hanchen Li, Yihua Cheng,
Junchen Jiang, Shan Lu, Madan Musuvathi, et al. Droidspeak: Kv cache sharing for cross-llm
communication and multi-llm serving. arXiv preprint arXiv:2411.02820, 2024.

[34] Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang, Qizheng Zhang, Kuntai
Du, Jiayi Yao, Shan Lu, Ganesh Ananthanarayanan, et al. Cachegen: Kv cache compression
and streaming for fast large language model serving. In Proceedings of the ACM SIGCOMM
2024 Conference, pages 38–56, 2024.

12

[35] Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov,
Yunyang Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, et al. Mobilellm:
Optimizing sub-billion parameter language models for on-device use cases. In Forty-first
International Conference on Machine Learning, 2024.

[36] Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit, Peter
Clark, and Ashwin Kalyan. Dynamic prompt learning via policy gradient for semi-structured
mathematical reasoning. arXiv preprint arXiv:2209.14610, 2022.

[37] Mathematical Association of America (MAA). American Invitational Mathematics Examination
(AIME). https://maa.org/.

[38] Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

[39] Avanika Narayan, Dan Biderman, Sabri Eyuboglu, Avner May, Scott Linderman, James Zou, and
Christopher Re. Minions: Cost-efficient collaboration between on-device and cloud language
models. arXiv preprint arXiv:2502.15964, 2025.

[40] Charles Packer, Vivian Fang, Shishir_G Patil, Kevin Lin, Sarah Wooders, and Joseph_E Gonza-
lez. Memgpt: Towards llms as operating systems. 2023.

[41] Rui Pan, Yinwei Dai, Zhihao Zhang, Gabriele Oliaro, Zhihao Jia, and Ravi Netravali. Specrea-
son: Fast and accurate inference-time compute via speculative reasoning. arXiv preprint
arXiv:2504.07891, 2025.

[42] Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceed-
ings of the 36th annual acm symposium on user interface software and technology, pages 1–22,
2023.

[43] Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language
model connected with massive apis. Advances in Neural Information Processing Systems,
37:126544–126565, 2024.

[44] Alexandre Roucher, Adrià Villanova del Moral, Merve, Thomas Wolf, and Clément Fourrier.
Open Deep Research: Freeing Our Search Agents. https://huggingface.co/blog/open-deep-res
earch, February 2025. Hugging Face Blog.

[45] Vishnu Sarukkai, Zhiqiang Xie, and Kayvon Fatahalian. Self-generated in-context examples
improve llm agents for sequential decision-making tasks. arXiv preprint arXiv:2505.00234,
2025.

[46] Luis Gaspar Schroeder, Shu Liu, Alejandro Cuadron, Mark Zhao, Stephan Krusche, Alfons
Kemper, Matei Zaharia, and Joseph E Gonzalez. Adaptive semantic prompt caching with
vectorq. arXiv preprint arXiv:2502.03771, 2025.

[47] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute opti-
mally can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314,
2024.

[48] Luca Spalzzi. A survey on case-based planning. Artificial Intelligence Review, 16(1):3–36,
2001.

[49] Theodore Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas Griffiths. Cognitive architec-
tures for language agents. Transactions on Machine Learning Research, 2023.

[50] Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents
enhances large language model capabilities. arXiv preprint arXiv:2406.04692, 2024.

[51] Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory.
arXiv preprint arXiv:2409.07429, 2024.

[52] Anjiang Wei, Allen Nie, Thiago SFX Teixeira, Rohan Yadav, Wonchan Lee, Ke Wang, and Alex
Aiken. Improving parallel program performance through dsl-driven code generation with llm
optimizers. arXiv preprint arXiv:2410.15625, 2024.

[53] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

13

https://maa.org/
https://huggingface.co/blog/open-deep-research
https://huggingface.co/blog/open-deep-research

[54] Michael Wornow, Avanika Narayan, Krista Opsahl-Ong, Quinn McIntyre, Nigam H Shah,
and Christopher Re. Automating the enterprise with foundation models. arXiv preprint
arXiv:2405.03710, 2024.

[55] Michael Wornow, Avanika Narayan, Ben Viggiano, Ishan Khare, Tathagat Verma, Tibor Thomp-
son, Miguel Hernandez, Sudharsan Sundar, Chloe Trujillo, Krrish Chawla, et al. Wonderbread:
A benchmark for evaluating multimodal foundation models on business process management
tasks. Advances in Neural Information Processing Systems, 37:115963–116021, 2024.

[56] Guanlong Wu, Zheng Zhang, Yao Zhang, Weili Wang, Jianyu Niu, Ye Wu, and Yinqian Zhang.
I know what you asked: Prompt leakage via kv-cache sharing in multi-tenant llm serving. In
Proceedings of the 2025 Network and Distributed System Security (NDSS) Symposium. San
Diego, CA, USA, 2025.

[57] Zhiqiang Xie, Hao Kang, Ying Sheng, Tushar Krishna, Kayvon Fatahalian, and Christos
Kozyrakis. Ai metropolis: Scaling large language model-based multi-agent simulation with
out-of-order execution. arXiv preprint arXiv:2411.03519, 2024.

[58] Zhiqiang Xie, Ziyi Xu, Mark Zhao, Yuwei An, Vikram Sharma Mailthody, Scott Mahlke,
Michael Garland, and Christos Kozyrakis. Strata: Hierarchical context caching for long context
language model serving. arXiv preprint arXiv:2508.18572, 2025.

[59] Wujiang Xu, Zujie Liang, Kai Mei, Hang Gao, Juntao Tan, and Yongfeng Zhang. A-mem:
Agentic memory for llm agents. arXiv preprint arXiv:2502.12110, 2025.

[60] Jingbo Yang, Bairu Hou, Wei Wei, Yujia Bao, and Shiyu Chang. Kvlink: Accelerating large
language models via efficient kv cache reuse. arXiv preprint arXiv:2502.16002, 2025.

[61] John Yang, Carlos Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024.

[62] Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua Cheng, Qizheng Zhang, Kuntai Du,
Shan Lu, and Junchen Jiang. Cacheblend: Fast large language model serving for rag with
cached knowledge fusion. In Proceedings of the Twentieth European Conference on Computer
Systems, pages 94–109, 2025.

[63] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In International Conference
on Learning Representations (ICLR), 2023.

[64] Genghan Zhang, Weixin Liang, Olivia Hsu, and Kunle Olukotun. Adaptive self-improvement
llm agentic system for ml library development. arXiv preprint arXiv:2502.02534, 2025.

[65] Qizheng Zhang, Changran Hu, Shubhangi Upasani, Boyuan Ma, Fenglu Hong, Vamsidhar Ka-
manuru, Jay Rainton, Chen Wu, Mengmeng Ji, Hanchen Li, et al. Agentic context engineering:
Evolving contexts for self-improving language models. arXiv preprint arXiv:2510.04618, 2025.

[66] Qizheng Zhang, Ali Imran, Enkeleda Bardhi, Tushar Swamy, Nathan Zhang, Muhammad
Shahbaz, and Kunle Olukotun. Caravan: Practical Online Learning of In-Network ML Mod-
els with Labeling Agents. In 18th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24), pages 325–345, 2024.

[67] Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, and Sercan Arik. Chain
of agents: Large language models collaborating on long-context tasks. Advances in Neural
Information Processing Systems, 37:132208–132237, 2024.

[68] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

[69] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu,
Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution
of structured language model programs. Advances in Neural Information Processing Systems,
37:62557–62583, 2024.

[70] Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for
building autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims we make in the abstract and in the introduction session (§1) accu-
rately reflect the research problem we target, the solution we propose, and the contribution
of our work.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We present a discussion of the limitations of this work in Appendix E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

15

Answer: [NA]

Justification: This paper does not contain theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We present our experiment setup in §4.1, which contains all necessary infor-
mation to reproduce the main results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data and code of this work will be open-sourced upon publication of the
paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/gui

des/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experiment settings, along with why they are set up in the current way, are
disclosed in §4.1 and in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We properly discuss the statistical significance of our results in §4 and in the
Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the resources we use for running the experiments (e.g. compute
resources, AI API resources) in §4.1 and in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that the research conducted in the paper conform with the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We present a discussion of the broader impact and societal implications of this
work in Appendix E.

Guidelines:

18

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not involve the release of data or models that have risks for
misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We credit the models and the datasets we use directly via citations/URLs in
§4.1 and in the Appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

19

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not introduce new assets (except for data and code, which will
be open-sourced upon publication of the paper).

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing experiments or research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing experiments or research with
human subjects.

Guidelines:

20

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: In §3, we describe how LLMs are used in our system as a novel method for
certain tasks (e.g. data filtering).
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Extended Discussion of Methods

A.1 Algorithms for Framework Design

In this section, we provide more algorithmic details of the agentic plan caching framework. To start
with, the end-to-end workflow is provided in Algorithm 1.

Algorithm 1 Agentic Plan Caching: End-to-End Framework

Require: Query q, Context ctx, Cache C
Ensure: Output o, Updated Cache C ′

1: keyword← ExtractKeyword(q) ▷ Extract keyword using a small LM
2: if keyword ∈ C then ▷ Cache hit (Figure 2(a))
3: o, C ← HandleCacheHit(q, ctx, C[keyword], C) ▷ Algorithm 2
4: else ▷ Cache miss (Figure 2(b))
5: o, C ′ ← HandleCacheMiss(q, ctx, keyword, C) ▷ Algorithm 3
6: end if
7: return o, C ′ ▷ Return response and possibly updated cache

The case of cache hit is demonstrated in Algorithm 2.

Algorithm 2 Cache Hit

Require: Query q, Context ctx, Plan Template template, Plan Cache C
Ensure: Output o, Cache C

1: responses← ∅ ▷ Initialize actor LM response to be empty
2: plan, o← LightLM(q, template, responses) ▷ Adapt the retrieved template to be a

task-specific plan using a lightweight model
3: Assert: o is None
4: while o is None do
5: response← ActorLM(q, ctx, plan) ▷ Execute the plan based on context
6: responses← responses ∪ response
7: plan, o← LightLM(q, template, responses) ▷ Generate the final output or a new adapted

plan
8: end while
9: return o, C

The case of cache miss is demonstrated in Algorithm 3.

Algorithm 3 Cache Miss

Require: Query q, Context ctx, Plan Template template, Plan Cache C
Ensure: Output o, Updated Cache C ′

1: log ← ∅ ▷ Initialize the execution log to be empty
2: responses← ∅ ▷ Initialize actor LM response to be empty
3: plan, o← PlannerLM(q, responses) ▷ Generate initial plan with full model
4: Assert: o is None
5: while o is None do
6: response← ActorLM(q, ctx, plan) ▷ Execute the plan based on context
7: responses← responses ∪ response
8: log ← log ∪ {(plan, ctx, response)} ▷ Update the log
9: plan, o← PlannerLM(q, responses) ▷ Generate the final output or a new plan

10: end while
11: log ← log ∪ {o} ▷ Update the log
12: template← GenerateTemplate(log, keyword) ▷ Create reusable plan template based on

execution log
13: C ′ ← C
14: C ′[keyword]← template ▷ Store template in cache
15: return o, C ′

22

B Extended Description of Experiment Setup

B.1 Platform

The prototype of our agentic plan caching framework, which we use to run our experiments, is
implemented on a Runpod server with dual-socket Intel Xeon Gold 6342 CPUs (96 vCPUs, 2.80GHz
base clock, 3.5GHz max turbo) and 512MB total L1, 60MB L2, and 72MB L3 cache. The server
supports AVX-512 and runs in a 2×48-core NUMA configuration. For memory, the server is equipped
with 503GB of system RAM and no swap space.

B.2 LLM API Usage and Pricing

All language model inferences in our prototype are performed via third-party APIs. While it is
feasible to run inference locally when model weights are available, we use API access to quantify
cost in dollar terms for this study. If metrics such as latency or throughput were preferred, running all
inferences locally would help eliminate variability introduced by external services, especially when
they are hosted remotely. We use the Python APIs for OpenAI (v1.74.0), Together AI (v1.5.8), and
Anthropic (v0.49.0). For all experiments, we set temperature to 0 (if supported) and max_tokens
to 4096. Table 8 lists the per-token pricing of all models used in our experiments at the time of
evaluation.

Model Name API Provider $ / Million Input Tokens $ / Million Output Tokens

GPT-4o (gpt-4o) OpenAI 2.50 10.00
GPT-4o-mini (gpt-4o-mini) OpenAI 0.15 0.60

Claude 3.5 Sonnet (claude-3-5-sonnet-20240620) Anthropic 3.00 15.00
Llama-3.1-8B (Meta-Llama-3.1-8B-Instruct-Turbo) Together AI 0.18 0.18

Llama-3.2-3B (Llama-3.2-3B-Instruct-Turbo) Together AI 0.06 0.06
Qwen-2.5-7B (Qwen2.5-7B-Instruct-Turbo) Together AI 0.30 0.30

Table 8: LLM API pricing used in our experiments.

B.3 Datasets

FinanceBench. We use an augmented version of the FinanceBench test split from HuggingFace2.
Following the Minions project, we filter for numerical reasoning questions and randomly sample 200
questions for evaluation. Each question requires long-context financial reasoning and is paired with a
company-specific document essential for answering. The planner LM does not have access to the
financial document, while the actor LM does.

TabMVP. We sample 200 questions from the test split of the TabMVP dataset provided by the
authors3. Each question involves numeric reasoning and is paired with a required table; the question
cannot be answered without the associated tabular data. The planner LM does not have access to the
tabular data, while the actor LM does.

B.4 Prompts

B.4.1 Agent Prompts

We use the same prompts from the Minion protocol in the Minions project [39].

B.4.2 LLM-as-a-Judge Prompt

As discussed in the results section (§4), standard metrics like exact match or F1 score are often
inadequate for evaluating numeric or long-form responses. For LLM-as-a-judge evaluation, we
provide the prompt used to assess answer correctness. We closely follow the FinanceBench dataset’s
original evaluation criteria and define rules for acceptable numeric deviations according to what the

2https://huggingface.co/datasets/virattt/financebench
3https://github.com/lupantech/PromptPG/blob/main/data/tabmwp/problems_test1k.json

23

FinanceBench dataset paper proposes, specifying what qualifies as a correct answer. These rules are
applied consistently across both FinanceBench and TabMWP evaluations.

Correctness Evaluation Prompt: You are a judge that grades numeric answers to data-
intensive reasoning problems.
This is the question: {task}.
This is the reference answer: {gt_answer}.
This is the answer given by a language model: {response}.
Please grade it. Requirements:
(1) Please allow minor deviations, such as
(i) giving the answer in billions when the unit was given in the question as millions.
(ii) giving the answer in percentage when the ground truth answer is floating point.
Please also allow small rounding errors or small numerical errors.
(2) Incorrect answers vary, from calculations that are off by small margins to several orders of
magnitude, and from making up legal information to giving the wrong direction for an effect
(e.g. reporting negative growth when it is actually positive).
(3) Just answer ’1’ for correct answers, or ’0’ for incorrect answers.

B.4.3 Keyword Extraction Prompt

Keyword Extraction Prompt: Can you help me summarize what is the ’task’ or ’keyword’
describing the higher-level goal or intent of this query? Please answer only with the task /
keyword, which must be independent from problem-specific details.
{query}

B.4.4 Cache Generation Prompt

Cache Generation Prompt: You will see a filtered JSON trace that shows the complete
workflow of how a planner language model solves a complex task by collaborating with an
actor language model. Clean up the element of each item in the workflow, so that we can reuse
this trace as a reference template (independent from problem-specific variables like company
name or fiscal year) when we meet similar tasks later.
Requirements:
(1) the first element in each "workflow" item can only be "message", "output", or "answer",
(2) the task and the workflow should not contain problem-specific details or numbers, and
(3) return the result in JSON format that can be parsed by Python’s json.loads().
IMPORTANT: The workflow must maintain the sequence of message->loop(output-
>message/answer) to ensure proper functioning. Always start with a "message" and end
with an "answer".
JSON trace: {trace}

B.4.5 Cache Adaptation Prompt

Cache Adaptation Prompt: You are an intelligent language model that works with another
model to solve complex tasks, like data-intensive reasoning questions.
Please construct a follow-up action plan (in the form of a message) based on the task and the
reference template.
Reference task: {cached_task}
Reference follow-up action plan (as a message): {next_item_in_cached_template}
Your task is to adapt the reference follow-up message to the current context, maintaining the
same inquiry structure but customizing it for the specific details of the current question and
model output. Make sure the message asks for information not contained in past messages.
Format your response as a JSON object with a "reasoning" field set to "N/A" and a "message"
field containing your action plan message.
Current task: {task}
Past action plans (as messages): {past_messages}
Past actor responses: {past_actor_responses}
Current message:

24

C Extended Results

We evaluate the robustness of agentic plan caching under different choices of large planner LMs,
small planner LMs, and actor LMs. Our key findings are:

• Consistent Gains Across Models: Agentic plan caching consistently reduces cost and maintains
high accuracy across a variety of model choices, beyond those presented in §4.
• Model Selection Matters: Despite consistent gains of our method, choosing the right model

remains crucial. For example, in most cases, Claude 3.5 Sonnet outperforms GPT-4o in accuracy
as the large planner LM but incurs significantly higher cost (Table 9). Similarly, smaller or cheaper
models do not always yield better accuracy-cost tradeoffs. For example, using Llama-3.2-3B as the
actor LM often leads to both higher cost and lower accuracy compared to Llama-3.1-8B due to
insufficient response quality that triggers more Plan-Act iterations (Table 11).

Method Large Planner LM Small Planner LM Actor LM
FinanceBench TabMWP

Cost↓ / Accuracy↑ Cost↓ / Accuracy↑

Accuracy-Optimal GPT-4o - Llama-3.1-8B $4.03 / 91.00% $3.35 / 83.00%
Accuracy-Optimal Claude 3.5 Sonnet - Llama-3.1-8B $5.77 / 94.50% $5.09 / 85.50%

Cost-Optimal Llama-3.1-8B - Llama-3.1-8B $0.21 / 54.00% $0.19 / 55.50%
Cost-Optimal Llama-3.2-3B - Llama-3.1-8B $0.09 / 63.00% $0.08 / 57.00%

Full-History Caching GPT-4o Llama-3.1-8B Llama-3.1-8B $1.99 / 72.00% $2.24 / 62.50%
Full-History Caching Claude 3.5 Sonnet Llama-3.1-8B Llama-3.1-8B $3.13 / 68.00% $2.80 / 65.00%

Agentic Plan Caching (Ours) GPT-4o Llama-3.1-8B Llama-3.1-8B $1.86 / 85.50% $2.03 / 82.00%
Agentic Plan Caching (Ours) Claude 3.5 Sonnet Llama-3.1-8B Llama-3.1-8B $2.56 / 88.00% $2.73 / 81.50%

Table 9: Sensitivity Analysis of Large Planner LM: Results.

Method Large Planner LM Small Planner LM Actor LM
FinanceBench TabMWP

Cost↓ / Accuracy↑ Cost↓ / Accuracy↑

Full-History Caching GPT-4o Llama-3.1-8B Llama-3.1-8B $1.99 / 72.00% $2.24 / 62.50%
Full-History Caching GPT-4o Qwen-2.5-7B Llama-3.1-8B $2.34 / 72.50% $2.15 / 67.50%
Full-History Caching GPT-4o Llama-3.2-3B Llama-3.1-8B $1.93 / 67.00% $1.67 / 56.00%

Agentic Plan Caching (Ours) GPT-4o Llama-3.1-8B Llama-3.1-8B $1.86 / 85.50% $2.03 / 82.00%
Agentic Plan Caching (Ours) GPT-4o Qwen-2.5-7B Llama-3.1-8B $1.66 / 90.00% $1.75 / 80.50%
Agentic Plan Caching (Ours) GPT-4o Llama-3.2-3B Llama-3.1-8B $1.62 / 84.00% $1.88 / 80.00%

Table 10: Sensitivity Analysis of Small Planner LM: Results.

Method Large Planner LM Small Planner LM Actor LM
FinanceBench TabMWP

Cost↓ / Accuracy↑ Cost↓ / Accuracy↑

Accuracy-Optimal GPT-4o - Llama-3.1-8B $4.03 / 91.00% $3.35 / 83.00%
Accuracy-Optimal GPT-4o - Qwen-2.5-7B $3.97 / 91.00% $3.06 / 87.50%
Accuracy-Optimal GPT-4o - Llama-3.2-3B $4.16 / 81.50% $4.43 / 74.00%

Cost-Optimal Llama-3.1-8B - Llama-3.1-8B $0.21 / 54.00% $0.19 / 55.50%
Cost-Optimal Llama-3.1-8B - Qwen-2.5-7B $0.23 / 58.50% $0.17 / 65.50%
Cost-Optimal Llama-3.1-8B - Llama-3.2-3B $0.17 / 53.00% $0.24 / 57.00%

Full-History Caching GPT-4o Llama-3.1-8B Llama-3.1-8B $1.99 / 72.00% $2.24 / 62.50%
Full-History Caching GPT-4o Llama-3.1-8B Qwen-2.5-7B $2.31 / 70.50% $1.77 / 60.50%
Full-History Caching GPT-4o Llama-3.1-8B Llama-3.2-3B $2.20 / 60.00% $2.22 / 58.00%

Agentic Plan Caching (Ours) GPT-4o Llama-3.1-8B Llama-3.1-8B $1.86 / 85.50% $2.03 / 82.00%
Agentic Plan Caching (Ours) GPT-4o Llama-3.1-8B Qwen-2.5-7B $1.77 / 90.50% $1.76 / 84.00%
Agentic Plan Caching (Ours) GPT-4o Llama-3.1-8B Llama-3.2-3B $1.85 / 80.00% $2.18 / 73.00%

Table 11: Sensitivity Analysis of Actor LM: Results.

25

D Example Agent Workflows and Cached Plan Templates

This section illustrates example agent workflows and their corresponding cached plan templates for
data-intensive reasoning tasks. We begin with a simple single-turn task (more complex multi-turn
examples are presented in our experiments):

Task: What is FY2019 working capital ratio for Costco? Define working capital ratio as total
current assets divided by total current liabilities. Round your answer to two decimal places.
Give a response to the question by relying on the details shown in the statement of financial
position.
Context: {costco_financial_documents}

Below is the full agent workflow between a large planner LM and an actor LM, executed without
caching (prompts omitted for brevity):

Planner: 1. Decompose the Task: The task requires calculating the working capital ratio for
Costco for FY2019. This involves two main components: identifying the total current assets
and the total current liabilities for FY2019 from the statement of financial position.
2. Explain Each Component:
- Identify Total Current Assets: This is important because it represents the resources that
Costco can convert into cash within a year. Knowing this figure is essential for calculating the
working capital ratio.
- Identify Total Current Liabilities: This represents the obligations that Costco needs to settle
within a year. This figure is crucial for determining the working capital ratio as it provides the
denominator in the calculation.
- Calculate Working Capital Ratio: This step involves dividing the total current assets by the
total current liabilities. The result will give us the working capital ratio, which is a measure of
Costco’s short-term financial health.
3. Formulate a Focused Message: The next step is to ask the small language model for the
specific figures of total current assets and total current liabilities for Costco in FY2019. This will
allow us to perform the calculation.
4. Conclude with a Final Answer: Once we have the figures, we can calculate the working
capital ratio and provide the final answer rounded to two decimal places.
Generated plan (as a message to the actor LM): Please provide the total current assets and
total current liabilities for Costco for FY2019 from the statement of financial position.
Actor: Based on the provided statement of financial position for Costco Wholesale Corporation
as of September 1, 2019, the total current assets and total current liabilities are:
- Total current assets: $23,485 million
- Total current liabilities: $23,237 million
Planner: 1. What information we have gathered: We have obtained the total current assets
and total current liabilities for Costco as of September 1, 2019. The total current assets are
$23,485 million, and the total current liabilities are $23,237 million.
2. Whether it is sufficient to answer the question: Yes, this information is sufficient to calculate
the working capital ratio for Costco for FY2019.
3. If not sufficient, what specific information is missing: Since we have both the total current
assets and total current liabilities, no additional information is needed.
4. If sufficient, how we would calculate or derive the answer: To calculate the working capital
ratio, we divide the total current assets by the total current liabilities. The formula is:
Working Capital Ratio = Total Current Assets / Total Current Liabilities
Substituting the given values: Working Capital Ratio = $23,485 million / $23,237 million
Calculating this gives us approximately 1.01 when rounded to two decimal places.
Conclusion: The working capital ratio for Costco for FY2019 is 1.01.

The following plan template is extracted from this successful workflow and stored in the cache:

Keyword: working capital ratio
Plan Template: 1. Plan (round 1): Retrieve total current assets and total current liabilities from
the statement of financial position.
2. Expected response from actor LM (round 1): Total current assets and total current liabilities.
3. Plan (round 2): The working capital ratio can be determined by:
Working Capital Ratio = Total Current Assets / Total Current Liabilities.

26

Later, for tasks with the same extracted keyword, such as the example below:

Task: What is FY2021 working capital ratio for Best Buy? Define working capital ratio as total
current assets divided by total current liabilities. Round your answer to two decimal places.
Please base your judgments on the information provided primarily in the statement of financial
position.
Context: {bestbuy_financial_documents}

We reuse the cached plan template and adapt it using a small planner LM:

Planner: (Using cached plan template) Please provide the total current assets and total current
liabilities for Best Buy in FY2021 from the statement of financial position, so I can calculate the
working capital ratio.
Actor: According to the Consolidated Balance Sheets, the total current assets for Best Buy in
FY2021 are $12,540 million, and the total current liabilities are $10,521 million.
Planner: (Using cached plan template) The FY2021 working capital ratio for Best Buy is
calculated by dividing the total current assets by total current liabilities. With total current assets
of $12,540 million and total current liabilities of $10,521 million, the working capital ratio is
$12,540 million / $10,521 million = 1.19. Therefore, the working capital ratio is 1.19, rounded
to two decimal places.

Using the cached template significantly shortens the agent execution log, reducing token usage for
expensive planner LMs. This efficiency gain comes from:

• Avoiding redundant planning for repeated tasks.
• Knowing when sufficient information has been gathered to terminate the workflow, thus avoiding

unnecessary Plan-Act iterations.

E Extended Discussion of Limitations, Societal Impact, and Future Directions

Limitations and Challenges First, we focus on two-stage Plan-Act agent architecture in this work.
More complex multi-agent systems could present new challenges for maintaining cache consistency
across multiple components. Second, for highly dynamic workloads with frequent task variations, the
benefits of caching may diminish as historical plans may be less applicable. Finally, our evaluation
primarily emphasizes cost reduction. Future work could consider additional system metrics such as
latency, throughput, and computational overhead.

Broader Impact and Societal Implications We believe that the proposed agentic plan caching
framework has broader implications for AI accessibility and democratization. By reducing LLM
serving costs, this framework could enable smaller enterprises, academic institutions, and individual
developers to deploy agentic AI systems without incurring prohibitive API costs. Additionally, plan
caches generated by advanced, commercial LLMs could potentially be shared or adapted for use
with open-source models (as shown in our experiments), facilitating greater access to state-of-the-art
agentic capabilities without direct reliance on expensive, closed-source APIs (e.g., from OpenAI).
This approach also raises questions about the long-term impact on data privacy, especially in cases
where plan caches contain sensitive or proprietary information. Ensuring cache privacy and data
security in LLM agents requires further research.

Future Directions Several future directions could extend the utility of agentic plan caching. First,
more advanced cache look-up and plan adaptation methods (like retrieval-augmented generation)
might further enhance the relevance of cached plans in complex workflows. Second, enabling
user-configurable cache parameters (e.g., cache size, eviction strategies, fuzzy matching policies)
could provide more control over caching strategies and allow for tailored cost-performance trade-offs.
Finally, integrating the idea of agentic plan caching into existing LLM and agent serving frameworks
at production scale would further enhance its applicability and impact. Overall, we hope this work
inspires further research on optimizing the efficiency and cost-effectiveness of agentic AI systems.

27

	Introduction
	Background and Motivation
	Plan-Act Agents
	LLM Caching: Methods and Limitations
	Related Work

	The Agentic Plan Caching (APC) Framework
	Overview of System Design
	Design Choices

	Results and Evaluation
	Experiment Setup
	Main Results
	Cost and Speed Analysis
	Scalability and Cache Management
	Cold Start

	Conclusion
	Acknowledgment
	Extended Discussion of Methods
	Algorithms for Framework Design

	Extended Description of Experiment Setup
	Platform
	LLM API Usage and Pricing
	Datasets
	Prompts
	Agent Prompts
	LLM-as-a-Judge Prompt
	Keyword Extraction Prompt
	Cache Generation Prompt
	Cache Adaptation Prompt

	Extended Results
	Example Agent Workflows and Cached Plan Templates
	Extended Discussion of Limitations, Societal Impact, and Future Directions

