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Abstract

This research presents a computer vision system for the detection of diseases in
maize leaves using convolutional neural networks. The Peruvian valley of Chi-
cama was the focus of our study, where images were collected and subsequently
added to the Plant Village dataset. Image preprocessing techniques, including
GrabCut and data augmentation, were employed to enhance the quality of the im-
ages. We compared a number of fine-tuned architectures, including DenseNet121,
DenseNet201, ResNet50, ResNet101, VGG16 and VGG19, to identify the most
accurate model for maize leaf diseases. The results demonstrated that VGG16
achieved the highest accuracy of 93.16%. DenseNet121 followed closely with
an accuracy of 93.03%, indicating its strong performance. In contrast, ResNet50
showed the lowest accuracy at 87.94%. The complete implementation can be
accessed at Github

1 Introduction

In recent years, developed countries have made notable advancements in the implementation of farm-
ing techniques. These innovations have emerged primarily in response to the necessity of detecting
and controlling plant pests and diseases, which represent a significant phytosanitary challenge in
agriculture. The term "pest" is used to describe any organism that interferes with the functioning or
structure of plants, thereby affecting their health and productivity[14]. These phytosanitary problems
result in considerable losses, amounting to 20-40% of global agricultural production on an annual
basis [8]. Despite its reputation as a resilient crop, maize is frequently afflicted by diseases and
pests. The resulting losses are reflected in both the quantity and quality of the harvested crops[14].
As agricultural products constitute a fundamental component of the human diet and represent a
significant source of income for many countries, the impact of pests has not only social repercussions
but also a considerable economic impact.

Maize is susceptible to a number of significant foliar diseases, including Common Rust (Puccinia
sorghi), which presents as brown pustules and is exacerbated in cool, humid climates; Grey Spot
(Cercospora zeae-maydis), identifiable by greyish leaf spots, which thrives in high humidity and warm
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temperatures; and Northern Leaf Blight (Exserohilum turcicum), which causes elongated lesions and
can severely affect susceptible hybrids [14]. The aforementioned diseases are illustrated in Figure 1,
which presents images captured by our research team in the Chicama Valley. In addition to affecting
yield, these diseases will be examined as cases in the neural network, with reference to a healthy leaf
to identify optimal conditions.

Figure 1: Pest on Corn Leaf “Commun Rust” (reddish-brown pustules), “Cercospora” (reddish-brown
borders), “Northern Leaf Blight” (elliptical grayish-green lesions) and “Healthy".

Maize plays an important role in Peru and globally that extends well beyond its function as a foodstuff.
Globally, maize is essential for a number of reasons, including its significant production volume
and its role in human and animal feed. Additionally, it serves as a raw material in the manufacture
of a range of industrial products, including oils, flours, sweeteners, ethanol, and even plastics and
fibers. This grain is fundamental in various industries, including the automotive, pharmaceutical
and cosmetic industries. It is also used in the manufacture of organic fertilizers and other industrial
compounds that drive the world economy [4].

In Peru, maize is cultivated across the entire country, from the coastal regions to the highlands and
jungle, reflecting its adaptability to diverse altitudes and geographical conditions. Hard yellow maize
is the predominant variety grown on the Peruvian coast and in the jungle, whereas starchy maize
is more common in the Andes [4]. Given the extensive geographical distribution and economic
importance of maize, the implementation of systems for the early detection of maize leaf disease is of
vital importance. Such systems will ensure the continued productivity and sustainability of this crop,
thus protecting the income of Peruvian farmers and ensuring the supply of this strategic resource.

This study employs computer vision techniques to identify the presence of diseases in maize leaves in
the Chicama Valley, Peru. A number of different Convolutional Neural Networks (CNN) architectures
are evaluated, including DenseNet121, DenseNet201, ResNet50, ResNet101, VGG16 and VGG19
[7, 5] . Given the limited size of the dataset, we employed fine-tuning transfer learning. The weights
of the pre-trained models were derived from the Imagenet dataset [1]. The objective of this research
is to identify the optimal model for the classification of plant diseases.

1.1 Related Works

In their research, Saputra et al. [12] compared the performance of three convolutional neural network
models (DenseNet121, DenseNet169 and DenseNet201) for the classification of rice leaf diseases. In
their methodology, the researchers employ convolutional neural networks, specifically the DenseNet
family of models, to train an algorithm capable of accurately detecting diseases in rice leaves. The
results obtained, such as 91.67% accuracy with DenseNet121, illustrate the potential of these models
for agricultural applications. This approach is closely related to my current work, in which I am
implementing the DenseNet201 and DenseNet101 models for disease detection in plants, specifically
in maize leaves.

Ganatra and Patel [3], explores the potential of convolutional neural network (CNN) models, including
VGG16, Inception V4, ResNet50 and ResNet101, for the early detection of plant leaf diseases. A
dataset comprising 38 classes and 87,000 images was used to implement transfer learning for training
the models. The results demonstrate that ResNet50 and ResNet101 achieve accuracies of 99.70% and
99.73%, respectively, thereby highlighting their effectiveness in plant disease classification.

Hu et al. [6] this study addresses the detection of diseases in corn leaves using convolutional neural
networks, data augmentation techniques and transfer learning. The researchers put forth an optimized
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model for the classification of diseases, including Corn Gray Leaf Spot, Corn Common Rust and
Corn Northern Leaf Blight, as well as healthy leaves. The process included data expansion and
parameter fitting in pre-trained models, including GoogLeNet, ResNet18, VGG16 and VGG19,
resulting in an average accuracy of 97.6%. The two works are directly pertinent to the present
research, as the objective is also to detect the same diseases in maize leaves using models such as
DenseNet201, DenseNet101, ResNet50, ResNet101, VGG16 and VGG19. Furthermore, as in the
aforementioned studies, transfer learning and data augmentation techniques were employed for the
purpose of comparing the performance of different networks and optimizing disease classification
accuracy.

2 Materials and Methods

Figure 2 illustrates the methodology employed for the comparative analysis of the models, as
described in the following section.

Figure 2: Methodology block diagram, we used data augmentation and fine tuning models

2.1 Dataset Collection

This project employs two distinct image sources. The Plant Village Dataset and images captured in
the Chicama Valley.

Plant Village Dataset The dataset, sourced from Mohanty [10], comprises pre-processed RGB
images, with colour correction and without background, which proved advantageous for the purposes
of neural network training.

Images of Chicama Valley The images were collected by taking photographs of corn leaves in
the Chicama Valley. The presence of Cercospora Grey Spot and Northern Leaf Blight diseases was
identified, as well as healthy corn leaves. Following this, labelling was carried out. In order to
integrate the newly captured images into the existing Plant Village dataset, it was necessary to apply
some image pre-processing techniques. The images constituted part of the training set.

The dataset comprises a total of, , 256 x 256 images, including those that have been added with
the aforementioned pre-processing. Of these, 6,256 are included in the training set and 804 in the
validation set.
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2.2 Preprocessing Techniques

2.2.1 GrabCut

The GrabCut tool was utilised to remove the background from the images, as illustrated in Figure
3. This technique was employed on images of Cercospora Grey Spot and Northern Leaf Blight
diseases, utilising a rectangle for cropping [11]. Pixels situated outside the rectangle were designated
as known, and pixels were assigned to the most probable component of the GMM models (foreground
or background). Thereafter, a new GMM was trained and graph pruning was performed to update the
pixel classifications. This process was repeated until convergence [11].

Figure 3: Grabcut preprocessing of corn leaves in the Chicama Valley.

2.2.2 Zoom Center

The zoom technique was developed by our research team in the analysis of images of healthy maize
leaves obtained in the Chicama Valley (see Figure 4). This pre-processing technique enables the user
to focus attention on specific areas of the image by zooming in on the centre, which is particularly
useful for highlighting relevant features that may be crucial for the identification and classification of
plant diseases.

Figure 4: Zoom Center preprocessing of healthy corn leaves in the Chicama Valley.

2.2.3 Data Augmentation

The purpose of this stage is to enhance the robustness of the dataset, as this improves the efficacy of
the learning model. Augmentation is conducted on the existing images, employing data augmentation
techniques such as rotation, scaling, image cropping, modifying the width and height of the image,
zooming, and so forth. To enable CNN training, it is essential to provide the model with the requisite
data to facilitate learning and information extraction. The techniques applied are detailed in Table 1.

4



Table 1: Data Augmentation Techniques

Technique Range/Description
Scaling 1/255.0
Random Rotation 0° to 45°
Random Zoom 0.3
Random Shift Width and height shift (0.2)
Shear 0.4
Horizontal Flip True

2.3 Convolutional Neural Networks Models for Image Classification

This research employs deep learning models as a methodology for the classification of corn leaf
diseases. The investigation encompasses three architectural models and their respective variations.
Convolutional neural networks have been developed and refined over time. The following architec-
tures will be evaluated using fine-tuning.

2.3.1 VGG

Simonyan and Zisserman [13] focused on investigating how increasing network depth affects perfor-
mance in large-scale image recognition tasks. Specifically, they explored using small convolutional
filters (3x3) in deeper networks, with configurations that ranged from 16 to 19 layers. The results
showed a significant improvement in image classification accuracy compared to previous models,
particularly in tasks like localization and classification within the ImageNet dataset [1]. One of the
most significant contributions of VGG was to illustrate that augmenting the depth of the network
while preserving the simplicity of the convolution filters can result in more precise models for image
recognition. This proved an effective solution to the problem of improving performance in this area
without significantly increasing model complexity. As a result, VGG has become a benchmark in
computer vision and has influenced the development of subsequent deep network architectures.

2.3.2 ResNet

He et al. [5] propose ResNet architecture to address the challenges of training deep neural networks,
particularly the degradation problem, where adding more layers to a network results in worse
performance. To address this issue, the researchers introduced ’shortcut’ connections that enable
layers to learn residual functions in place of the original functions, thereby facilitating the training
of networks comprising hundreds of layers. This approach has been shown to achieve superior
performance in image recognition tasks, as evidenced by the results of the ImageNet challenge.
Models such as ResNet-50, ResNet-101, and ResNet-152, which have 50, 101, and 152 layers,
respectively, have demonstrated this effectiveness despite their depth. Their design allows for efficient
training with far more layers than previous architectures like VGG.

2.3.3 DenseNet

In their research, Huang et al. [7] propose DenseNet, a convolutional network architecture that seeks
to increase the depth of the network. This is achieved through the use of dense blocks, where each
layer receives input from previous layers to preserve the accuracy of the classifier (feedback). In
contrast to traditional convolutional neural networks (CNNs), which have L layers and L connections,
DenseNet has L(L+1)/2 direct connections. The author put forth this neural network as it has fewer
parameters than other architectures, resulting in a shorter computation time. Additionally, it addresses
the leakage gradient issue and necessitates less memory for optimal performance.

2.4 Hyperparameters

The Adam optimizer was selected for its capacity to adapt the learning rate, which facilitates
convergence in neural network training. The Adam optimizer combines optimization techniques such
as gradient descent with moments and RMSProp[9]. Additionally, as illustrated in Table 2, we have
implemented the ReduceLROnPlateau parameter to adjust the learning rate by the validation metric,
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Table 2: Hyperparameters used by each model.

Model Learning Rate Factor Patience Min LR
DenseNet121 0.0001 0.8 10 1e-5
DenseNet201 0.0001 0.7 10 1e-5
ResNet50 0.0001 0.3 10 1e-6
ResNet101 0.0001 0.3 10 1e-6
VGG16 0.0001 0.3 10 1e-6
VGG19 0.0001 0.5 10 1e-6

thereby preventing overfitting and enhancing generalization. These parameters have been adjusted
for each model.

3 Results

3.1 Architecture models Fine-Tuning

Fine-tuning with transfer learning will be employed due to the limited size of the dataset. This
method exploits pre-trained models that have acquired pertinent features from extensive data sets,
thereby enhancing the precision of specific tasks with limited data availability [16, 2]. The final
(CNN) architectures that were implemented are illustrated in Figure 5.

Figure 5: Architecture models Fine-Tuning of DenseNet121, DenseNet201, ResNet50, ResNet101,
VGG16 and VGG19

3.2 Training and Validation Losses

The models were trained for 10 epochs with ImageNet dataset weights [1]. In the DenseNet and
VGG architectures, the final 50 training layers were unfrozen, whereas in ResNet only the final 30
layers were unfrozen.

Figure 6: Accuracy and Loss DenseNet121.
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Figure 7: Accuracy and Loss DenseNet201.

Figure 8: Accuracy and Loss ResNet50.

Figure 9: Accuracy and Loss ResNet101.

Figure 10: Accuracy and Loss VGG16.

Figure 11: Accuracy and Loss VGG19.
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4 Discussion

We evaluated the models using accuracy, precision, recall, and F1-score metrics. Integrated Gradi-
ents Sundararajan et al. [15] were used to highlight key features in the images. Figure 11 shows
that DenseNet201 provides the clearest focus on leaf details. Models with better performance
(DenseNet121 and DenseNet201) tend to highlight the affected areas more accurately.

Figure 12: Visualization of important features identified using Integrated Gradients in DenseNet121,
DenseNet201, ResNet50, and ResNet101. Adapted from Sundararajan et al. [15].

The results are summarised in Table 3. Among the models evaluated, VGG16 stood out with
the highest accuracy of 93.16%, accompanied by a precision of 93.68%. This demonstrates its
effectiveness in classifying maize leaf diseases.

DenseNet121 also showed a solid performance with an accuracy of 93.03%, highlighting that a
smaller number of parameters (7,729,092) can still deliver competitive results compared to more
complex models such as ResNet101 (42,954,500).

In contrast, ResNet50 achieved an accuracy of 87.94%, reflecting difficulties in identifying certain
classes, lower than the 99.70% and 99.73% reported by Ganatra and Patel [3] for ResNet50 and
ResNet101, respectively, in the early detection of plant leaf diseases. DenseNet201 and VGG19
showed accuracies of 91.17% and 91.04%, respectively, but did not outperform DenseNet121. These
results are comparable to those reported by Saputra et al. [12], who achieved an accuracy of 91.67%
with DenseNet121 in classifying rice leaf diseases. This indicates that models belonging to the
DenseNet family are effective in agricultural applications.

Table 3: Result Evaluation metrics

Model Metrics Total Params
Accuracy Precision Recall F1-Score

DenseNet121 0.9303 0.9305 0.9303 0.9294 7,729,092
DenseNet201 0.9117 0.9184 0.9117 0.9112 19,470,276
ResNet50 0.8794 0.9002 0.8794 0.8794 23,884,036
ResNet101 0.9005 0.9119 0.9005 0.9002 42,954,500
VGG16 0.9316 0.9368 0.9316 0.9311 14,879,428
VGG19 0.9104 0.9155 0.9104 0.9096 20,090,564

5 Conclusion

The results of this study demonstrate the efficacy of convolutional neural network (CNN) models
in the detection of diseases in maize leaves. VGG16 demonstrates an accuracy of 93.16%, while
DenseNet121 exhibits an accuracy of 93.03%. Conversely, DenseNet201 and ResNet101 demonstrate
comparatively diminished performance, with accuracy levels of 91.17% and 90.05%, respectively.
ResNet50 exhibits the least favorable performance, with an accuracy level of 87.94%. These findings
are consistent with those of previous studies highlighting the effectiveness of CNN architectures in
agricultural applications. The selection of an appropriate model is paramount, and the application
of transfer learning and data augmentation techniques is essential to enhance the accuracy of plant
disease classification. In conclusion, the findings indicate that VGG16 and DenseNet121 are the
optimal choices for disease classification on corn leaves in the Chicama Valley. This indicates a
promising direction for future research in this field, including the classification of plant diseases using
video data.
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