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Brain network science modelling of sparse neural networks
enables Transformers and LLMs to perform as fully connected
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Abstract

The Cannistraci-Hebb training (CHT) is a brain-inspired method that is used in Dynamic
Sparse Training (DST) for growing synaptic connectivity in sparse neural networks. CHT
leverages a gradient-free, topology-driven link regrowth mechanism, which has been shown
to achieve ultra-sparse (1% connectivity or lower) advantage across various tasks compared
to fully connected networks (FCs). Yet, CHT suffers two main drawbacks: (i) its time
complexity is O(N · d3)- N node network size, d node degree - hence it can be efficiently
applied only to ultra-sparse networks. (ii) it rigidly selects top link prediction scores, which
is inappropriate for the early training epochs, when the network topology presents many
unreliable connections. Here, we design the first brain-inspired network model - termed
bipartite receptive field (BRF) - to initialize the connectivity of sparse artificial neural
networks. Then, we propose a matrix multiplication GPU-friendly approximation of the
CH link predictor, which reduces the computational complexity to O(N3), enabling a
fast implementation of link prediction in large-scale models. Moreover, we introduce the
Cannistraci-Hebb training soft rule (CHTs), which adopts a flexible strategy for sampling
connections in both link removal and regrowth, balancing the exploration and exploitation of
network topology. We also propose a sigmoid-based gradual density decay strategy, leading
to an advanced framework referred to as CHTss. Empirical results show that using 1% of
connections, CHTs outperform FCs in MLP architectures on visual classification tasks and
compress some networks to less than 30% of the nodes. Using only 5% of the connections,
CHTss outperforms FCs in two Transformer-based machine translation tasks. Finally, using
30% of the connections, CHTs and CHTss achieve superior performance compared to other
dynamic sparse training methods in language modeling across different sparsity levels on
LLaMA 60M, 130M, and 1B, and CHTs outperforms FC on the LLaMA1B model.
Keywords: Dynamic sparse training, Network science, Efficient training

1. Introduction
Fully connected layers in large models pose computational challenges during training and
deployment. In contrast, the brain’s neural networks exhibit sparse connectivity Drachman
(2005); Walsh (2013), suggesting more scalable architectures. Dynamic sparse training (DST)
Mocanu et al. (2018); Jayakumar et al. (2020); Evci et al. (2020); Yuan et al. (2021); Zhang
et al. (2024b) reduces computational and memory costs while maintaining performance.
Unlike pruning methods Han et al. (2016); Frantar and Alistarh (2023); Zhang et al. (2024a),
DST starts with sparse networks and evolves their topology during training. Key innovations
of DST focus on regrowth criteria, such as the gradient-free Cannistraci-Hebb training (CHT)
Zhang et al. (2024b), inspired by brain-inspired network science Cannistraci et al. (2013);
Daminelli et al. (2015); Durán et al. (2017); Cannistraci (2018); Narula (2017). CHT excels
in ultra-sparse ANNs but faces challenges such as stacking in epitopological local minima
and high time complexity of link prediction, making it impractical for large-scale models.

This article introduces the Cannistraci-Hebb Training soft rule (CHTs), which addresses
CHT’s limitations. CHTs 1) uses a multinomial distribution for both link removal and
regrowth that balances the exploration and exploitation of network topology, 2) reduces the
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Figure 1: Illustration of the CHTs process. One training iteration follows the steps
of (a1) → (b1) → (c1) → (c2) → (d1) → (e). (a1) Network initialization with each of
the sandwich layers being a bipartite receptive field (BRF) network. (a2) BRF network
representation with r = 0. (b1) Link removal process. (b2) Formula for link removal. (c1)
Inactive neurons removal. (c2) Adjust and remove incomplete links caused by inactive neuron
removal. (d1) Regrowth of links according to the CH2-L3 node-based soft rule. (d2) Detailed
illustration of the CH2-L3 node-based soft rule. (e) Finished state of the network after one
iteration. The next iteration repeats the steps (b1) - (e) from this finished state. Ã indicates
the removal set of the iteration and A∗ is the regrown set.

time complexity of the path-based link predictor to O(N3) with a node-based solution, and
3) initializes the sparse topologies for bipartite networks with the brain-like receptive field,
demonstrating superior performance compared to the traditional methods. Additionally, we
propose a sigmoid gradual density decay strategy, forming an enhanced framework termed
CHTss.

From the experimental results, CHTs and CHTss both outperform fully connected
Transformers with only 5% of the links on Machine Translation tasks of Multi30k and IWSLT
and achieves performance comparable to the fully connected LLaMA-60M, 130M, 1B in
language modeling tasks on OpenWebText. These findings underscore the potential of CHTs
and CHTss in enabling highly efficient and effective large-scale sparse neural network training.

2. Cannistraci-Hebb training soft rule

Definition 1. Epitopological local minima. In the context of dynamic sparse
training methods, we define an epitopological local minima (ELM) as a state where
the sets of removed links and regrown links exhibit a significant overlap. See Appendix
F for detailed descriptions.
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Cannistraci-Hebb soft removal and regrowth. In this article, we adopt a probabilistic
approach where the process of both regrowth and removal can be viewed as sampling from a
{0, 1} multinomial distribution, with the score assigned by either removal metrics or link
prediction scores, introducing a "soft sampling" mechanism. In this setup, each mask value is
not rigidly determined by the scores but allows for selecting (with lower probability) low-score
links as the target links to remove or regrow, facilitating the escape from the epitopological
local minima (ELM).

Link removal alternating from weight magnitude and relative importance. We
illustrate the link removal part of CHTs in Figure 1b1) and b2). We employ two methods,
Weight Magnitude (WM) and Relative Importance (RI) Zhang et al. (2024a), to remove the
connections during dynamic sparse training. Detailed information can be found in Appendix
G.

Node-based link regrowth. In the original CHT framework, the time complexity of
the path-based CH3-L3 (CH3-L3p, see Appendix C) metric is O(N · d3), where N is the
number of nodes and d is the network’s average degree. This complexity is prohibitive for
large models with numerous nodes and higher-density layers. To address this issue, we
introduce a more efficient, node-based paradigm that eliminates the reliance on length-three
paths between seed nodes, which also incorporates internal local community links (iLCL)
to enhance the expressiveness of the formula. This variant, referred to as CH2-L3n, is
formulated as:

CH2-L3n(u, v) =
∑
z∈L3

di∗z
de∗z

(1)

Here, u and v denote the seed nodes, while z1 and z2 are common neighbors on the L3
path Muscoloni et al. (2022). The term de∗z and di∗z represents the number of external local
community links (eLCL) and iLCL of node z, with a default increment of 1 to prevent
division by zero. We evaluate the runtime performance of CH3-L3p and CH2-L3n across
different network sizes and sparsity levels, as illustrated in Figure 12. The results reveal that
the node-based version achieves significantly faster runtime performance compared to the
path-based methods.

Bipartite receptive field network modeling. We propose the Bipartite Receptive Field
(BRF) network, a novel sparse topological initialization method for generating brain-like
receptive field connectivity. During Bipartite Small World (BSW) initialization Zhang et al.
(2024b), each output node is connected to its spatially nearest input nodes. This spatially
local connectivity pattern aligns with the concept of receptive fields observed in biological
neural systems, where neurons respond selectively to localized regions of input space. However,
the rewiring process of BSW does not follow brain mechanisms: it simply deletes a set of
links from the closer input nodes to rewire them uniformly at random anywhere on the input
layer. In contrast, BRF directly generates connectivity with a tunable spatial-dependent
randomness parameter r ∈ [0, 1], controlling the clustering of links around the adjacency
matrix diagonal (r = 0 → fully local, r = 1 → ER). Furthermore, the BRF model has
the important property to conserve the degree distribution of the output neurons for each
layer. In this study we consider fixed or uniformly at random, as shown in Appendix D.
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The comparison of BSW, BSF, BRF-fixed, and BRF-uniform initializations are shown in
Appendix D.

3. Sigmoid Gradual Decrease Density

As demonstrated in GraNet Liu et al. (2021) and MESTEM&S Yuan et al. (2021), incor-
porating a density decrease strategy can significantly improve the performance of dynamic
sparse training. In this article, we propose a sigmoid-based gradual density decrease strategy,
defined as:

st = si + (si − sf )

 1

1 + e
−k

(
t−

tf+t0
2

)
 , (2)

where t ∈ {t0, t0 +∆t, . . . , t0 + n∆t}, si is the initial sparsity, sf is the target sparsity, t0
is the starting epoch of gradual pruning, tf is the end epoch of gradual pruning, and ∆t
is the pruning frequency. k controls the curvature of the decrease. We set k=6 for all the
experiments in this article. This strategy ensures a smoother initial pruning phase, allowing
the model to warm up and stabilize before undergoing significant pruning, thereby enhancing
training stability and performance. A detailed discussion of the decay strategy can be found
in Appendix I.

4. Experiments

Experimental details are provided in Appendix H. The baseline methods are detailed in
Appendix K. We also demonstrate superiority with CHTs and CHTss using MLP on image
classification datasets (See Appendix N).

4.1. Transformer on Machine Translation

We assess CHTs and CHTss using Transformer on classic machine translation tasks across
three datasets. We report the BLEU in Table 5, which demonstrates that 1) CHTs surpasses
other fixed density DST methods on all the sparsity scenrios. 2) Incorporating with the
sigmoid density decrease, CHTss outperforms even the fully connected ones with only 5%
density.

4.2. Natural Language Generation

Language modeling. We utilize LLaMA-60M, 130M, 1B (Touvron et al., 2023a) archi-
tecture as the baseline for our language generation experiments. We show the validation
perplexity results of each algorithm across the different sparsities in Table 6. As shown,
CHTs stably outperforms SET and RigL while CHTss is constantly better than GraNet and
GMP. At 70% sparsity, CHTs and CHTss achieve superior performance compared to other
dynamic sparse training methods in language modeling across different sparsity levels on
LLaMA 60M, 130M, and 1B, and CHTs outperforms FC on the LLaMA1B model.
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Table 1: Hyperparameters of MLP on Image Classification Tasks.

Hyper-parameter MLP

Hidden Dimension 1568 (3072 for CIFAR10)
# Hidden layers 3
Batch Size 32
Training Epochs 100
LR Decay Method Linear
Start Learning Rate 0.025
End Learning Rate 2.5e−4

ζ (fraction of removal) 0.3
Update Interval (for DST) 1 epoch
Momentum 0.9
Weight decay 5e−4

Table 2: Hyperparameters of Transformer on Machine Translation Tasks. inoam
refers to a learning rate scheduler that incorporates iterative warm-up phases, specifically
designed for dynamic sparse training (DST) methods. The purpose is to allow newly regrown
connections to accumulate momentum, preventing potential harm to the training process.
For the fully connected (FC) baseline, only the standard noam scheduler is used.

Hyper-parameter Multi30k IWSLT14 WMT17

Embedding Dimension 512 512 512
Feed-forward Dimension 1024 2048 2048
Batch Size 1024 tokens 10240 tokens 12000 tokens
Training Steps 5000 20000 80000
Dropout 0.1 0.1 0.1
Attention Dropout 0.1 0.1 0.1
Max Gradient Norm 0 0 0
Warmup Steps 1000 6000 8000
Learning rate Decay Method inoam inoam inoam
Iterative warmup steps 20 20 20
Label Smoothing 0.1 0.1 0.1
Layer Number 6 6 6
Head Number 8 8 8
Learning Rate 0.25 2 2
ζ (fraction of removal) 0.3 0.3 0.3
Update Interval (for DST) 100 steps 100 steps 100 steps

Appendix A. Conclusion

In this article, we propose the Cannistraci-Hebb Training soft rule with sigmoid gradual
density decay (CHTss). First, we introduce a matrix multiplication mathematical formula
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Table 3: Hyperparameters of LLaMA-60M, LLaMA-130M, and LLaMA-1B on
OpenWebText. inoam refers to a learning rate scheduler that incorporates iterative warm-
up phases, specifically designed for dynamic sparse training (DST) methods. The purpose is
to allow newly regrown connections to accumulate momentum, preventing potential harm to
the training process. For the fully connected (FC) baseline, only the standard noam scheduler
is used.

Hyper-parameter LLaMA-60M LLaMA-130M LLaMA-1B

Embedding Dimension 512 768 2048
Feed-forward Dimension 1376 2048 5461
Global Batch Size 512 512 512
Sequence Length 256 256 256
Training Steps 10000 30000 100000
Learning Rate 3e-3 (1e-3 for FC) 3e-3 (1e-3 for FC) 3e-3 (4e-4 for FC)
Warmup Steps 1000 10000 10000
Learning rate Decay Method inoam inoam inoam
Iterative warmup steps 20 20 20
Optimizer Adam Adam Adam
Layer Number 8 12 24
Head Number 8 12 32
ζ (fraction of removal) 0.1 0.1 0.1
Update Interval (for DST) 100 steps 100 steps 100 steps

Figure 2: Comparison of link regrowth strategies in CHTs using a LLaMA-60M model trained
on OpenWebText for 5000 steps. The left plot shows validation perplexity (lower is better),
while the right plot reports the in-time over-parameterization (ITOP) rate, which measures
the cumulative proportion of links activated during training. Results are presented for three
strategies: Soft, Random, and Deterministic regrowth.

for GPU-friendly approximation of the CH link predictor. This significantly reduces the
computational complexity of CHT and speeds up the running time, enabling the implemen-
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Table 4: Performance comparison of different dynamic sparse training methods on
MNIST, Fashion MNIST (FMNIST), and EMNIST datasets trained on MLP at 99%
sparsity. ACC represents accuracy, and ANP denotes the active neuron percolation
rate, indicating the final size of the network. Accuracies present a standard error
taken over three seeds. The best dynamic sparse training method for each dataset
is highlighted in bold, and the performances that surpass the fully connected model
are marked with “*".

Method MNIST FMNIST EMNIST

ACC (%) ANP ACC (%) ANP ACC (%) ANP

FC 98.78 ± 0.02 – 90.88 ± 0.02 – 87.13 ± 0.04 –

CHTsp 98.81 ± 0.04* 20% 90.93 ± 0.03* 89% 87.61 ± 0.07* 24%
CHTsn 98.76 ± 0.05 27% 90.67 ± 0.05 73% 87.82 ± 0.04* 28%
CHT 98.48 ± 0.04 29% 88.70 ± 0.07 30% 86.35 ± 0.08 21%
RigL 98.61 ± 0.01 29% 89.91 ± 0.07 55% 86.94 ± 0.08 28%
SET 98.14 ± 0.02 100% 89.00 ± 0.09 100% 86.31 ± 0.08 100%

CHTssn 98.83 ± 0.02* 32% 90.81 ± 0.11 40% 87.52 ± 0.04* 35 %
GraNet 98.81 ± 0.00* 35% 89.98 ± 0.06 53% 86.94 ± 0.03 45%
GMP 98.62 ± 0.03 58 % 90.29 ± 0.19 69% 86.93 ± 0.09 75 %
p Refers to the regrowth method CH3_L3p.
n Refers to the regrowth method CH2_L3n.

Table 5: Performance comparison on machine translation tasks of Multi30k, IWSLT, and
WMT with varying final sparsity levels. The scores indicate BLEU scores, which is the
higher the better. CHTs (GMP) represents CHTs with GMP’s density decay strategy. Bold
values denote the best performance among fixed sparsity DST methods or density decay DST
methods. The performances that surpass the fully connected model are marked with “*".
The density decay of GMP, GraNet, and CHTss starts with a sparsity of 50%. The scores
are averaged over three seeds ± their standard error.

Method Multi30k IWSLT WMT

95% 90% 95% 90% 95% 90%

FC 31.38 ± 0.38 24.48 ± 0.30 25.49 ± 0.15

SET 28.99 ± 0.28 29.73 ± 0.10 18.53 ± 0.05 20.13 ± 0.08 20.19 ± 0.12 21.52 ± 0.28
RigL 29.94 ± 0.27 30.26 ± 0.34 20.53 ± 0.21 21.52 ± 0.15 20.71 ± 0.21 22.22 ± 0.10
CHT 27.79 28.38 18.59 19.91 19.03 21.08
CHTs 28.94 ± 0.57 29.81 ± 0.37 21.15 ± 0.10 21.92 ± 0.17 20.94 ± 0.63 22.40 ± 0.06

MEST 28.89± 0.26 30.04 ± 0.52 19.56 ± 0.10 21.05 ± 0.21 20.70 ± 0.07 22.22 ± 0.10
GMP 30.51 ± 0.82 30.49 ± 0.40 22.76 ± 0.82 22.82 ± 0.53 22.47 ± 0.10 23.37 ± 0.08
GraNet 31.31 ± 0.31 31.62 ± 0.48* 22.53 ± 0.12 22.43 ± 0.09 22.51 ± 0.21 23.46 ± 0.09
CHTss 32.03 ± 0.29* 32.86 ± 0.16* 24.51 ± 0.02* 24.31 ± 0.04 23.73 ± 0.43 24.61 ± 0.14

tation of CHTs in large-scale models. Second, we propose a Cannistraci-Hebb training soft
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Table 6: Validation perplexity of different dynamic sparse training (DST) methods
on OpenWebText using LLaMA-60M, LLaMA-130M, and LLaMA-1B across
varying sparsity levels. Bold values denote the best performance among fixed sparsity
DST methods or density decay DST methods. Lower perplexity corresponds to better model
performance. GMP, GraNet, and CHTss are run with an initial sparsity of si = 0.5. The
test of CHT over LLaMA-1B is missing due to its excessive runtime. The performances that
surpass the fully connected model are marked with “*".

Method LLaMA-60M LLaMA-130M LLaMA-1B

70% 80% 90% 95% 70% 80% 90% 95% 70%

FC 26.56 19.27 14.62

SET 31.77 30.69 35.26 39.70 20.82 22.02 24.73 28.37 16.37
RigL 39.96 41.33 45.34 51.49 25.85 66.35 37.18 49.39 149.17
CHT 31.02 32.99 35.01 41.87 21.02 22.82 26.27 30.01 –
CHTs 28.12 29.84 33.03 36.47 20.10 21.33 23.71 26.45 14.53*

MEST 28.26 29.94 33.60 37.87 21.32 22.21 24.98 27.96 60.36
GMP 29.22 30.59 33.68 39.00 20.49 22.28 23.61 27.16 31.76
GraNet 30.55 31.51 33.76 39.98 22.84 29.03 26.81 61.31 79.44
CHTss 27.62 29.00 31.42 35.10 19.85 20.70 22.51 25.07 15.41

Table 7: Perplexity (PPL) results across different sparsities (0.7, 0.8, 0.9, 0.95) for CHTs and
CHTss under different regrowth strategies (Fixed and Uniform) and r settings on LLaMA60M.

Fixed Uniform

Sparsity r = 0.0 r = 0.1 r = 0.2 r = 0.3 r = 0.0 r = 0.1 r = 0.2 r = 0.3

CHTs

70% 28.16 28.39 28.25 28.32 30.11 28.12 28.43 28.56
80% 30.22 29.84 30.04 30.03 30.19 29.86 30.23 30.06
90% 33.32 33.37 33.03 33.77 33.45 33.36 33.88 33.72
95% 37.29 37.51 37.24 37.46 37.23 36.47 37.33 37.67

CHTss

70% 27.62 30.05 27.82 28.43 27.62 27.74 27.74 27.68
80% 29.00 29.00 29.66 32.91 29.49 29.69 29.09 29.24
90% 31.51 31.67 31.65 31.59 31.66 32.61 31.68 31.42
95% 38.66 35.31 36.24 37.50 42.20 37.40 35.36 35.10

rule (CHTs), which innovatively utilizes a soft sampling rule for both removal and regrowth
links, striking a balance for epitopological exploration and exploitation. Third, we integrate
CHTs with a sigmoid gradual density decay strategy. Empirically, CHTss surpasses the fully
connected Transformer using only 5% density and achieves comparable language modeling
performance. This represents a relevant result for dynamic sparse training.
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Table 8: Perplexity (PPL) results across different sparsities (0.7, 0.8, 0.9, 0.95) for CHTs and
CHTss under different regrowth strategies (Fixed and Uniform) and r settings on LLaMA-
130M.

Fixed Uniform

Sparsity r = 0.0 r = 0.1 r = 0.2 r = 0.3 r = 0.0 r = 0.1 r = 0.2 r = 0.3

CHTs

70% 20.24 20.16 20.10 20.25 20.62 20.18 20.15 20.20
80% 21.33 21.37 21.36 21.48 21.34 21.40 21.40 22.49
90% 23.72 23.76 23.76 23.94 23.74 23.73 23.71 24.99
95% 28.05 26.45 26.90 26.91 26.78 27.97 29.05 27.10

CHTss

70% 20.63 19.88 19.93 19.85 21.43 19.90 20.93 19.94
80% 20.71 22.60 20.86 20.70 20.73 20.74 20.72 20.82
90% 22.58 22.72 22.61 22.51 22.53 22.59 22.60 23.12
95% 25.28 25.12 25.20 25.12 25.07 25.15 25.23 25.12

Appendix B. Related Work

B.1. Dynamic sparse training

Dynamic sparse training is a subset of sparse training methodologies. Unlike static sparse
training methods (also known as pruning at initialization) Prabhu et al. (2018); Lee et al.
(2019); Dao et al. (2022); Stewart et al. (2023), dynamic sparse training allows for the
evolution of network topology during the training process. The pioneering method in this
field is Sparse Evolutionary Training (SET) Mocanu et al. (2018), which removes links based
on the magnitude of their weights and regrows new links randomly. Subsequent developments
have sought to refine and expand upon this concept of dynamic topological evolution. One
such advancement was proposed by DeepR Bellec et al. (2017), a method that adjusts
network connections based on stochastic gradient updates combined with a Bayesian-inspired
update rule. Another significant contribution is RigL Evci et al. (2020), which leverages the
gradient information of non-existing links to guide the regrowth of new connections during
training. MEST Yuan et al. (2021) utilizes both gradient and weight magnitude information
to selectively remove and randomly regrow new links, analogously to SET. In addition,
it introduces an EM&S strategy that allows the model to train at a higher density and
gradually converge to the target sparsity. The Top-KAST Jayakumar et al. (2020) method
maintains constant sparsity throughout training by selecting the top K parameters based on
parameter magnitude at each training step and applying gradients to a broader subset B,
where B ⊃ A. To avoid settling on a suboptimal sparse subset, Top-KAST also introduces
an auxiliary exploration loss that encourages ongoing adaptation of the mask. Additionally,
sRigL Lasby et al. (2023) adapts the principles of RigL to semi-structured sparsity, facilitating
the training of vision models from scratch with actual speed-ups during training phases.
Despite these advancements, the state-of-the-art method remains RigL-based, yet it is not
fully sparse in backpropagation, necessitating the computation of gradients for non-existing
links. Addressing this limitation, Zhang et al. Zhang et al. (2024b) propose CHT, a dynamic
sparse training methodology that adopts a gradient-free regrowth strategy that relies solely on
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topological information (network shape intelligence), achieving an ultra-sparse configuration
that surpasses fully connected networks in some tasks.

B.2. Cannistraci-Hebb Theory and Network Shape Intelligence

As the SOTA gradient-free link regrown method, CHT Zhang et al. (2024b) originates from
a brain-inspired network science theory. Drawn from neurobiology, Hebbian learning was
introduced in 1949 (Hebb, 1949) and can be summarized in the axiom: “neurons that fire
together wire together.” This could be interpreted in two ways: changing the synaptic weights
(weight plasticity) and changing the shape of synaptic connectivity (Cannistraci et al., 2013;
Daminelli et al., 2015; Durán et al., 2017; Cannistraci, 2018; Narula, 2017). The latter
is also called epitopological plasticity (Cannistraci et al., 2013) because plasticity means
“to change shape,” and epitopological means “via a new topology.” Epitopological Learning
(EL) (Daminelli et al., 2015; Durán et al., 2017; Cannistraci, 2018) is derived from this second
interpretation of Hebbian learning and studies how to implement learning on networks by
changing the shape of their connectivity structure. One way to implement EL is via link
prediction, which predicts the existence and likelihood of each nonobserved link in a network.
CH3-L3 is one of the best-performing and most robust network automata, belonging to the
Cannistraci-Hebb (CH) theory (Muscoloni et al., 2022), which can automatically evolve the
network topology starting from a given structure. The rationale is that, in any complex
network with local-community organization, the cohort of nodes tends to be co-activated (fire
together) and to learn by forming new connections between them (wire together) because
they are topologically isolated in the same local community (Muscoloni et al., 2022). This
minimization of the external links induces a topological isolation of the local community,
which is equivalent to forming a barrier around it. The external barrier is fundamental to
maintaining and reinforcing the signaling in the local community, inducing the formation of
new links that participate in epitopological learning and plasticity.

Appendix C. Cannistraci-Hebb epitopological rationale

The original CHT framework leverages the Cannistraci-Hebb link predictor on Length 3
paths (CH3-L3p) metric for link regrowth. Given two seed nodes u and v in a network, this
metric assigns a score

CH3-L3p(u, v) =
∑

z1,z2∈L3

1√
de∗z1 · de∗z2

(3)

Here, u and v denote the seed nodes, while z1 and z2 are common neighbors on the L3 path
Muscoloni et al. (2022), a walk of three consecutive links that connects u to v via those two
intermediate nodes. The term de∗i represents the number of external local community links
(eLCL) of node i, with a default increment of 1 to prevent division by zero. Path-based
link prediction has demonstrated its effectiveness on both real-world networks Muscoloni
et al. (2022) and artificial neural networks Zhang et al. (2024b). However, this method
incurs a high computational cost due to the need to compute and store all length-three
paths, resulting in a time complexity of O(N · d3), where N is the number of nodes and
d is the network’s average degree. This complexity is prohibitive for large models with
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numerous nodes and higher-density layers. To address this issue, we introduce a more
efficient, node-based paradigm that eliminates the reliance on length-three paths between
seed nodes. Instead, this approach focuses on the common neighbors of seed nodes. The
node-based version of CH3-L3p, denoted as CH2-L3n, is defined as follows:

CH2-L3n(u, v) =
∑
z∈L3

di∗z
de∗z

(4)

Here, u and v denote the seed nodes, while z is the common neighbor on the L3 path
Muscoloni et al. (2022), a walk of three consecutive links that connects u to v via two of those
intermediate nodes. The terms di∗z de∗z represent the number of internal local community
links (iLCLs) and external local community links (eLCLs) of node i, with a default increment
of 1 to prevent division by zero. Internal local community links (iLCLs) are those that
connect nodes belonging to the same local community. Contrarily, external local community
links (eLCLs) connect nodes belonging to different communities. Figure 3 gives a visual
representation of L2 and L3 paths between two seed nodes u and v, defining their local
community.

Appendix D. Sparse topological initialization

Correlated sparse topological initialization. Correlated Sparse Topological Initializa-
tion (CSTI) is a physics-informed topological initialization. CSTI generates the adjacency
matrix by computing the Pearson correlation between each input feature across the calibration
dataset and then selects the predetermined number of links, calculated based on the desired
sparsity level, as the existing connections. CSTI performs remarkably better when the layer
can directly receive input information. However, for layers that cannot receive inputs directly,
it cannot capture the correlations from the start since the model is initialized randomly, as
in the case of the Transformer. Therefore, in this article, we aim to address this issue by
investigating different network models to initialize the topology, to improve the performance
for cases where CSTI cannot be directly applied.

Bipartite scale-free model. In artificial neural networks (ANNs), fully connected net-
works are inherently bipartite. This article explores initializing bipartite networks using
models from network science. The Bipartite Scale-Free (BSF) Zhang et al. (2024b) network
model extends the concept of scale-freeness to bipartite structures, making them suitable for
dynamic sparse training. Initially, the BSF model generates a monopartite Barabási-Albert
(BA) model Barabási and Albert (1999), a well-established method for creating scale-free
networks in which the degree distribution follows a power law (γ=2.76 in Figure 4). Following
the creation of the BA model, the BSF approach removes any connections between nodes
of the same type (neuron in the same layer) and rewires these connections to nodes of the
opposite type (neuron in the opposite layer). This rewiring is done while maintaining the
degree of each node constant to preserve the power-law exponent γ.

Bipartite small-world model. The Bipartite Small-World (BSW) network model Zhang
et al. (2024b) is designed to incorporate small-world properties and a high clustering coefficient
into bipartite networks. Initially, the model constructs a regular ring lattice and assigns
two distinct types of nodes to it. Each node is connected by an equal number of links to
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Figure 3: Cannistraci-Hebb epitopological rationale. Muscoloni et al. (2022) The figure
illustrates an explanatory example of topological link prediction using the Cannistraci-Hebb
epitopological rationale based on either L2 or L3 paths. The two black nodes represent
the seed nodes whose unobserved interaction is to be assigned a likelihood score. White
nodes denote the common neighbours (CNs) of the seed nodes at either L2 or L3 distance.
Together, the set of CNs and the internal local community links (iLCL) constitute the local
community. Different link types are color-coded: green for nLCLs, red for external local
community links (eLCLs), and white for iLCLs. The L2 (path length 2) and L3 (path length
3) paths associated with the illustrated communities are highlighted. Notably, in artificial
neural networks (ANNs), linear layers correspond to bipartite networks, which inherently
support only L3 path predictions, as shown in Figure 1.

the nearest nodes of the opposite type, fostering high clustering but lacking the small-world
property. Similar to the Watts-Strogatz model (WS) Watts and Strogatz (1998), the BSW
model introduces a rewiring parameter, β, which represents the percentage of links randomly
removed and then rewired within the network. At β = 1, the model transitions into an
Erdős-Rényi model ERDdS and R&wi (1959), exhibiting small-world properties but
without a high clustering coefficient, which is popular as the topological initialization of the
other dynamic sparse training methods Mocanu et al. (2018); Evci et al. (2020); Yuan et al.
(2021).
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Bipartite Scale-Free 

network model

Bipartite Small-World network model

Existing links

Non-existing links

Regular network (𝛽 = 0) 𝛽 = 0.25 𝛽 = 0.5 𝛽 = 0.75 Erdős−Rényi network (𝛽 = 1)

Powerlaw (𝛾 = 2.76)

Bipartite Receptive Field - Fixed Sampling

Regular network (r = 0) r = 0.25 r = 0.5 r = 0.75 r = 1

Bipartite Receptive Field - Uniform Sampling

r = 0.25 r = 0.5 r = 0.75 r = 1Regular network (r = 0)

Figure 4: The adjacency matrix of the Bipartite Scale-Free (BSF) network model compared
to those of the Bipartite Small-World (BSW) network, the Bipartite Receptive Field with
fixed sampling (BRFf ), and the Bipartite Receptive field with uniform sampling (BRFu) as
parameters β and r vary between 0 and 1. a) The BSF model inherently forms a scale-free
network characterized by a power-law distribution with γ = 2.76. b) As β changes from 0
to 1, the network exhibits reduced clustering. It is important to note that when β = 0, the
BSW model does not qualify as a small-world network. c) As r increases towards 1, the
adjacency matrix becomes more random, while sampling the output neurons’ degrees from a
fixed or uniform distribution.

Bipartite receptive field model. The Bipartite Receptive Field (BRF) model is a random
network generation technique designed to mimic the receptive field phenomenon in the brain
networks. The process involves adding links to the adjacency matrix of the bipartite network,
with the connectivity structured around the main diagonal according to a parameter r ∈ [0, 1].
A low value of r results in links that are primarily clustered around the diagonal, while
a higher value of r leads to a more random connectivity pattern. Specifically, a bipartite
adjacency matrix with links near the diagonal indicates that adjacent nodes from the two
layers are linked, whereas links far from the diagonal correspond to more distant node pairs.
Mathematically, consider an N ×M bipartite adjacency matrix Mi,j i=1,...,M,j=1,...,N , where
M represents the input size and N represents the output size. Each entry of the matrix mi,j

is set to 1 if input node i is connected to output node j, and 0 otherwise. A scoring function
Si,j is assigned to each connection in the adjacency matrix based on its distance to the main
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a) b) 

Figure 5: The ablation test of the β of the bipartite small world (BSW) model and the
removal methods in CHTs. a) evaluates the influence of the rewiring rate β on the model
performance when initialized with the BSW model. b) assesses the influence of link removal
selecting from the weight magnitude (WM), weight magnitude soft (WM-soft), relative
importance (RI), and relative importance soft (RI-soft). We utilize the win rate of the
compared factors under the same setting across each realization of 3 seeds for all experiment
combinations on MLP. The factor with the highest win rate is highlighted in orange.

diagonal. This score is given by:

Si,j = d
1−r
r

ij , (5)

where
dij = min{|i− j|, |(i−M)− j|, |i− (j −N)|} (6)

is the distance between the input and output neurons. Therefore, Si,j represents the distance
from the diagonal, raised to the power of 1−r

r . The parameter r controls how structured or
random the adjacency matrix is. As r → 0, the scoring function becomes more deterministic,
with high scores assigned to entries near the diagonal and low scores to entries farther away.
Conversely, as r → 1, all scores Si,j become more uniform, leading to a more random, less
structured adjacency matrix. The next step is to determine the degree distribution for the
output nodes. This can either be fixed, assigning the same degree to all output nodes, or
uniform, where the degrees are randomly sampled from a uniform distribution. Hence, we
propose two variations of the BRF model: the Bipartite Receptive Field with fixed sampling
(BRFf), in which the degrees of output nodes are fixed, and the Bipartite Receptive Field
with uniform sampling (BRFu), where the degrees of the output nodes follow a uniform
distribution. This represents an additional enhancement to the WS scheme, which offers no
way to control how connections are allocated among the output nodes. In conclusion, to run
the BRF model, the user should input an output degree distribution and a spatial dependent
distance randomness.

Appendix E. Equal Partition and Neuron Resorting to enhance bipartite
scale-free network initialization

As indicated in SET and CHT Mocanu et al. (2018); Zhang et al. (2024b), trained sparse
models typically converge to a scale-free network. This suggests that initiating the network
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b)a)

Figure 6: The ablation test of the parameter r in the bipartite receptive field (BRF) model
and the removal methods in CHTs using the BRF initialization technique. a) evaluates the
influence of the parameter r on the model performance when initialized with the BRF model.
b) assesses the influence of link removal in the CHTs model with BRF initialization. We
utilize the win rate of the compared factors under the same setting across each realization
of 3 seeds for all experiment combinations on MLP. The factor with the highest win rate is
highlighted in orange.

with a scale-free structure might initially enhance performance. However, starting directly
with a Bipartite Scale-Free model (BSF, power-law exponent γ = 2.76) does not yield effective
results. Upon deeper examination, two potential reasons emerge:

• The BSF model generates hub nodes randomly. However, this random assignment
of hub nodes to less significant inputs leads to a less effective initialization, which is
particularly detrimental in CHT, which merely utilizes the topology information to
regrow new links.

• As demonstrated in CHT, in the final network, the hub nodes of one layer’s output
should correspond to the input layer of the subsequent layer, which means the hub
nodes should have a high degree on both sides of the layer. However, the BSF model’s
random selection disrupts this correspondence, significantly reducing the number of
Credit Assignment Paths (CAP) Zhang et al. (2024b) in the model. CAP is defined as
the chain of transformation from input to output, which counts the number of links
that go through the hub nodes in the middle layers.

To address these issues, we propose two solutions:

• Equal Partitioning of the First Layer: We begin by generating a BSF model, then
rewire the connections from the input layer to the first hidden layer. While keeping
the out-degrees of the output neurons fixed, we randomly sample new connections
to the input neurons until each of the input neurons’ in-degrees reaches the input
layer’s average in-degree. This approach ensures all input neurons are assigned equal
importance while maintaining the power-law degree distribution of output neurons.

19



Extended Abstract Track
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Figure 7: The Performance of the bipartite scale-free model and two enhanced techniques.
a) shows the win rate of the Bipartite Scale-Free network model (BSF) with the different
techniques. EP stands for equal partition of the first layer, and Resort refers to reordering
the neurons based on their degree. b) assesses the comparison between Correlated Sparse
Topological Initialization (CSTI), the Bipartite Scale-Free (BSF) model with the best solution
from a), and the Bipartite Small-World (BSW) model with β = 0.25.

• Resorting Middle Layer Neurons: Given the mismatch in hub nodes between consecutive
layers, we suggest permuting the neurons between the output of one layer and the input
of the next, based on their degree. A higher degree in an output neuron increases the
likelihood of connecting to a high-degree input neuron in the subsequent layer, thus
enhancing the number of CAPs.

As illustrated in Figure 7, while the two techniques enhance the performance of the
BSF initialization, they remain inferior to the BSW initialization. As noted in the main
text, achieving scale-freeness is more effective when the model is allowed to learn and adapt
dynamically rather than being directly initialized as a predefined structure.

Appendix F. Epitopological Local Minima

Let At be the set of existing links in the network at the training step t. Let Ãt be the set
of removal links and A∗

t be the set of regrown links. The overlap set between removed and
regrown links at step t can be quantified as Ot = Ãt ∩A∗

t . An ELM occurs if the size of Ot

at step t is significantly large compared to the size of A∗
t , indicating a high probability of

the same links being removed and regrown repeatedly throughout the subsequent training
steps. This can be formally represented as |Ot|

|A∗
t |
≥ θ, where θ is a predefined threshold close

to 1, indicating strong overlap. This definition is essential for the understanding of CHT,
as evidenced by the article Zhang et al. (2024b) indicating that the overlap rate between
removed and regrown links becomes significantly high within just a few epochs, leading to
rapid topological convergence towards the ELM. Previously, CHT implements a topological
early stop strategy to avoid predicting the same links iteratively. However, it will stop the
topological exploration very fast and potentially trap the model within the ELM.
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Appendix G. Soft link removal alternating from RI and Weight magnitude

We illustrate the link removal part of CHTs in Figure 1b1) and b2). We employ two methods,
Weight Magnitude (WM) |W| and Relative Importance (RI) Zhang et al. (2024a), to remove
the connections during dynamic sparse training.

RIij =
|Wij |∑
|W∗j |

+
|Wij |∑
|Wi∗|

(7)

As illustrated in Equation 7, RI assesses connections by normalizing the absolute weight
of links that share the same input or output neurons. This method does not require
calibration data and can perform comparably to the baseline post-training pruning methods
like sparsegpt Frantar and Alistarh (2023) and wanda Sun et al. (2023). Generally, WM
and RI are straightforward, effective, and quick to implement in DST for link removal
but give different directions for network percolation. WM prioritizes links with higher
weight magnitudes, leading to rapid network percolation, whereas RI inherently values links
connected to lower-degree nodes, thus maintaining a higher active neuron post-percolation
(ANP) rate. The ANP rate is the ratio of the number of active neurons after training
compared to the original number of neurons before training. These methods are equally valid
but cater to different scenarios. For instance, using RI significantly improves results on the
Fashion MNIST dataset compared to WM, whereas WM performs better on the MNIST and
EMNIST datasets.

Soft link removal. In the early stages of training, both WM and RI are not reliable due
to the model’s underdevelopment. Therefore, rather than strictly selecting top values based
on WM and RI, we also sample links from a multinomial distribution using an importance
score calculated by the removal metrics. The final formula for link removal is defined in
Equation 8.

Sij =

(
|Wij |/2

α+ (1− α)
∑

|Wi∗|
+

|Wij |/2
α+ (1− α)

∑
|W∗j |

) δ
1−δ

(8)

Here, α determines the removal strategy, shifting from weight magnitude (α = 1) to relative
importance (α = 0). In all experiments, we only evaluate these two α values. δ adjusts the
softness of the sampling process. As training progresses and weights become more reliable,
we adaptively increase δ from 0.5 to 0.75 to refine the sampling strategy and improve model
performance. These settings are constant for all the experiments in this article.

Appendix H. Experimental Setup

We evaluate the performance of CHTs using MLPs for image classification tasks on the
MNIST LeCun et al. (1998), Fashion MNIST Xiao et al. (2017), and EMNIST Cohen et al.
(2017) datasets. To further validate our approach, we apply the sigmoid gradual density
decay strategy to Transformers for machine translation tasks on the Multi30k en-de Elliott
et al. (2016), IWSLT14 en-de Cettolo et al. (2014), and WMT17 en-de Bojar et al. (2017)
datasets. Additionally, we conduct language modeling experiments using the OpenWebText
dataset Gokaslan and Cohen (2019). For MLP training, we sparsify all layers except the
final layer, as ultra-sparsity in the output layer may lead to disconnected neurons, and the

21



Extended Abstract Track
connections in the final layer are relatively minor compared to the previous layers. For
Transformers and LLaMA-130M, we apply dynamic sparse training (DST) to all linear layers,
excluding the embedding and final generator layer. Detailed hyperparameter settings for
each experiment are provided in Tables 1, 2, and 3.

Appendix I. Density Decay Strategies

In GraNet, the network evolution process consists of three steps: pruning, link removal,
and link regrowth. The method first prunes the network to reduce the density, followed
by removing and regrowing an equivalent number of links under the updated density. The
density decrease in GraNet follows the same approach as Gradual Magnitude Pruning (GMP)
Zhu and Gupta (2017), which adheres to a cubic function:

st = sf + (si − sf )

(
1− t− t0

n∆t

)3

, (9)

where t ∈ {t0, t0 +∆t, . . . , t0 + n∆t}, si is the initial sparsity, sf is the target sparsity, t0 is
the starting epoch of gradual pruning, tf is the end epoch of gradual pruning, and ∆t is the
pruning frequency.

However, this density decay scheduler exhibits a sharp decline in the initial stages of
training, which risks pruning a substantial fraction of weights before the model has sufficiently
learned. To mitigate this issue, we propose a sigmoid-based gradual density decrease strategy,
defined as Equation 2 in the main text. We set k=6 for all the experiments in this article.
This strategy ensures a smoother initial pruning phase, allowing the model to warm up
and stabilize before undergoing significant pruning, thereby enhancing training stability and
performance.

Since our work focuses on MLP, Transformer, and LLMs, where FLOPs are linearly
related to the density of the linear layers, the FLOPs of the whole training process are
linearly related to the integral of the density function across the training time. the The
integral of the GraNet decrease function from t0 to tf is:∫ tf

t0

(si − sf )

(
1− t− t0

n∆t

)3

dt

=
1

4
(si − sf )(tf − t0).

(10)

For the sigmoid decrease, the integral is:

∫ t′f

t0

(s′i − sf )

 1

1 + e
−k

(
t−

t′
f
+t0

2

)
 dt

=
(s′i − sf )(t

′
f − t0)

2
.

(11)

To maintain consistency in the computational cost (FLOPs) during training compared to the
cubic decay strategy, we reduce the number of steps in the sigmoid-based gradual density
decrease by half.
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In addition to refining the decay function, we replace the weight magnitude criterion used

in the original GMP and GraNet processes with relative importance (RI). This adjustment is
motivated by prior work Zhang et al. (2024a), which has shown that RI provides a significant
performance advantage over weight magnitude, particularly when pruning models initialized
with high density.

Appendix J. Network percolation and extension to Transformer.

We have adapted network percolation Li et al. (2021); Zhang et al. (2024b) to suit the
architecture of the Transformer after link removal. The core idea is to identify inactive
neurons, which are characterized by having no connections on either one or both sides within
a layer of neurons. Such neurons disrupt the flow of information during forward propagation
or backpropagation. In addition, Layer-wise computation of the CH link prediction score
further implies that neurons without connections on one side are unlikely to form connections
in the future. Therefore, network percolation becomes essential to optimize the use of
remaining links.

As shown in Figure 1, network percolation encompasses two primary processes: c1)
inactive neuron removal to remove the neurons that lack connections on one or both sides;
c2) incomplete path adjustment to remove the incomplete paths where links connect to the
inactive neurons after c1). Typically applied in simpler continuous layers like those in an
MLP, network percolation requires modification for more complex structures. For example,
within the Transformer’s self-attention module, the outputs of the query and key layers
undergo a dot product operation. It necessitates percolation in these layers to examine the
activity of the neurons in both output layers at the same position. Similar interventions are
necessary in the up_proj and gate_proj layers of the MLP module in the LLaMA model
family Touvron et al. (2023a,b).

Appendix K. Baseline Methods

K.1. Fixed Density Dynamic Sparse Training Methods

SET Mocanu et al. (2018): Removes connections based on weight magnitude and randomly
regrows new links.

RigL Evci et al. (2020): Removes connections based on weight magnitude and regrows
links using gradient information, gradually reducing the proportion of updated connections
over time.

CHT Zhang et al. (2024b): A state-of-the-art (SOTA) gradient-free method that removes
links with weight magnitude and regrows links based on CH3-L3 scores. CHT is often
applied with early stopping to mitigate its computational complexity when working with
large models.

K.2. Gradual Density Decrease Dynamic Sparse Training Methods

GMP Han et al. (2015); Zhu and Gupta (2017): Prunes the network with weight magnitude
and gradually decreases the density based on Equation 10. Although originally a pruning
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method, GMP is treated as a dynamic sparse training method in their implementation Zhu
and Gupta (2017), as it stores historical weights and allows pruned weights to reappear
during training, since, during training, the pruning threshold might change.

MESTEM&S Yuan et al. (2021): Implements a two-stage density decrease strategy as
described in the original work. It removes links based on the combination of weight magnitude
and 0.01*gradient and regrows new links randomly.

GraNet Liu et al. (2021): Gradually decreases density using Equation 10. Similar to
RigL, GraNet removes links based on the weight magnitude and regrows new links with the
gradient of the existing links.

Table 9: Float32 Precision Comparison on LLaMA-130M. Bold values denote the best
performance among DST methods. Lower perplexity corresponds to better model performance.
si represents the initial sparsity for DST methods employing a density decay strategy.

Method Sparsity

70% 80%

FC 17.07

RigL 18.34 19.64
CHTs 17.99 19.25
GraNet (si = 0.5) 17.92 18.79
CHTss (si = 0.5) 17.76 18.69

Appendix L. Ablation and Sensitivity Tests

An overall ablation test To fully assess each component’s effectiveness, we conduct
several ablation and sensitivity tests that help us understand how to select a sparse topological
initialization and identify the best link removal and regrowth methods. We first made a
global test for all the components in Table 10, which shows the effectiveness of each element
introduced by this article. The node-based and path-based link regrowth methods have
comparable performance, but the node-based versions are much faster.

Sparse topological initialization. For sparse topological initialization, we compare BRF,
BSW, BSF, and CSTI Zhang et al. (2024b) across three image classification datasets, as shown
in Figure 7b. The results indicate that when the inputs can directly access task-relevant
information, CSTI consistently achieves the best performance. In general, BRF and BSW
perform similarly under these conditions, but outperform the BSF initialization.

To further validate our findings, we evaluate BRF and BSW network initializations on
machine translation tasks using Transformer models. Figure 8 and Figure 9 present the
performance comparisons between BSW and BRF on the Multi30k and IWSLT datasets,
while Figure 10 shows the win-rate analysis. These comparisons demonstrate that BRF
consistently outperforms BSW across most cases. Additionally, Figure 6a analyzes the impact
of the receptive field range r on BRF initialization for MNIST, Fashion MNIST, and EMNIST
tasks using MLPs, with results indicating that r = 0.25 yields the best performance.
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Table 10: Ablation results of Transformer on Multi30K and IWSLT datasets at 90% sparsity.
The scores indicate BLEU scores, the higher the better. Bold values denote the best
performance among DST methods.

Variant Multi30K
(90% sparsity)

IWSLT
(90% sparsity)

a. CHT 28.38 19.91
b. CHTss

without node-based implementation 32.68 (2.42 hours) 24.82 (18 hours)

c. CHTss
without soft sampling 28.92 21.88

d. CHTss
without sigmoid decay (= CHTs) 30.35 21.60

e. CHTss
(full model) 32.79 (0.25 hours) 24.57 (1.5 hours)

Building on this prior knowledge, we further evaluate BRF on LLaMA-60M and LLaMA-
130M models, testing r values in the range [0, 0.3] and comparing two different degree
distributions. The results, shown in Table 7 and Table 8, indicate that on LLaMA models,
the choice of r and distribution has limited impact. While r = 0.1 wins slightly more
often, the improvements remain marginal. Finally, Table 6 reports the best performance
combinations of r and degree distributions derived from these evaluations.

Table 11: Performance comparison of CHTs and CHTss at 90% sparsity across different
removal methods. The tested dataset is Multi30K, and the reported metric is BLEU, which
is the higher the better.

Remove Method CHTs CHTss

set 28.82 25.76
wm 28.17 31.15
wm_soft 30.35 32.79
ri 28.91 32.20
ri_soft 27.86 31.86
MEST 28.70 32.07
snip 28.23 31.66
sensitivity 29.02 29.73
Rsensitivity 28.18 30.67

Link removal. We first conduct a simple evaluation of the link removal methods introduced
in this article when changing the α and δ inside Figure 1b2) on Figure 5b) and Figure 6b).
The removal methods are selected from Weight Magnitude (WM), Weight Magnitude soft
(WMs), Relative Importance (RI), and Relative Importance soft (RIs). For WM we fix the
hyperparameters α = 1 and δ = 1; for RI we fix the hyperparameters α = 0 and δ = 0.5; for
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Figure 8: Top average BLEU for WS (grey) and BRF initialization methods on the Multi30k
translation dataset of CHTs (left) and CHTss (right, with sigmoid decay) at different sparsity
levels. Error bars denote the standard error across three seeds.

WMs we fix α = 1 and we let δ increase linearly from 0.5 to 0.9; for RIs we fix α = 0 and let
δ increase linearly from 0.5 to 0.9. From the results, it can be observed that WMs performs
the best in most cases. We compare these methods with those in Nowak et al. (2023) in
Table 11 on two machine translation tasks. The results indicate that using WMs as a link
removal method generally outperforms the alternatives.

We also evaluate how to define the softness in WMs. During sampling, we have a
hyperparameter to decide the temperature of the scores that convert to the probability of
being removed. We perform a test using a linear decay solution, since, generally, the weights
in the model become more reliable as training progresses. Figure 11 shows the variation
in BLEU scores as we change the starting and ending values of the δ parameter in the soft
weight magnitude removal method on transformer models. Recalling that we define the
temperature by T = 1

1−δ , we observe that for a simple benchmark like Multi30k, a high
starting temperature produces better performance. This is motivated by the fact that loss
decreases very fast through epochs, meaning that weights are learned quickly, and we can
deterministically remove weights with high reliability. In more complex datasets, like IWSLT,
low starting temperatures are preferred. This is because during the early stages of training,
weights are learned slowly, meaning that a deterministic removal can be less reliable. To
be more consistent, we select a start δ = 0.5 and end δ = 0.9 for all the tasks in the main
article.

Appendix M. Historical weights

Inspired by GMP Han et al. (2015); Zhu and Gupta (2017), we incorporate historical weights
into our CHTs and CHTss implementation. During training, we maintain a historical weight
matrix that records previously learned weights throughout the training process. When CHTs
and CHTss predict new links, we initialize them using their corresponding historical weights
- specifically, the values they held before being pruned. In this way, CHTs and CHTss
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Figure 9: Top average BLEU for WS (grey) and BRF initialization methods on the IWSLT
translation dataset of CHTs (left) and CHTss (right, with sigmoid decay) at different sparsity
levels. Error bars denote the standard error across two seeds.

Figure 10: Win rates of BRF against WS over CHTs and CHTss models on different datasets
(Multi30k and IWSLT) and different sparsities (0.9 and 0.95 for IWSLT and 0.7, 0.8, 0.9,
0.95 for Multi30k).
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Figure 11: Investigating the level of randomness in link removal strategies. Top
BLEU scores of the transformer model using CHTs with weight magnitude soft removal
strategy, as the initial and final values of δ take values in {0.1, 0.25, 0.5, 0.75, 0.8}.

enable weight recovery with preserved memory, allowing the model to retain valuable prior
information.

Appendix N. MLP for image classification

Ablation Test. Using MLP, we conduct an ablation study on each component proposed
within the CHTs framework to determine the most effective implementation to apply next
for the Transformer model. Figure 5a) compares the topologies initialized with the Bipartite
Small-World (BSW) model at different values of β, clearly indicating that β = 0.25 yields
the best results. Figures 5b) assess the link removal methods, concluding that the weight
magnitude soft (WM-soft) method outperforms all others. We consider the best settings
showcased in these results to decide the CHTs strategy for training Transformers and
LLaMA-130M.

Main Results. In the MLP evaluation, we aim to assess the fundamental capacity of DST
methods to train the fully connected module, which is common across many ANNs. The
sparse topological initialization of CHT and CHTs is CSTI Zhang et al. (2024b) since the
input bipartite layer can directly receive information from the input pixels. Table 4 displays
the performance of DST methods compared to their fully connected counterparts across three
basic datasets of MNIST, Fashion MNIST, and EMNIST. The DST methods are tested at
99% sparsity. As shown in Table 4, both of the two regrowth methods of CHTs outperform
the other fixed sparsity DST methods. Notably, the path-based CH3-L3p outperforms the
fully connected one in all the datasets. The node-based CH2-L3n also achieves comparable
performance on these basic datasets. However, considering the running time of CH3-L3p is
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unacceptable, especially in large scale models, in the rest of the experiments of this article,
we only use CH2-L3n as the representative method to regrow new links. Table 12 presents
a comparison of fixed-sparsity dynamic sparse training (DST) methods against the fully
connected (FC) baseline. Notably, CHTs outperforms all other DST methods and achieve
an 11% improvement in accuracy over the fully connected model. In addition, we present
the active neuron post-percolation rate (ANP) for each method in Table 4 and Table 12.
It is evident that CHTs adaptively percolates the network more effectively while retaining
performance.

Table 12: Performance comparison of different sparsity dynamic sparse training methods
on the CIFAR10 dataset trained on an MLP at 99% sparsity. The density decay of GMP,
GraNet, and CHTss starts with a sparsity of 50%. ACC represents accuracy, and ANP
denotes the active neuron percolation rate, indicating the final size of the network. The
lowest anp rate and the best dynamic sparse training method are highlighted in bold, and
performances surpassing the fully connected model are marked with “*". The results present
a standard error taken over three seeds of the experiments.

Method ACC (%) Comparison to FC ANP

FC 62.85 ± 0.16 – –

CHTs 69.97 ± 0.06* +11.33% 54%
CHT 59.10 ± 0.06 -5.97% 96%
RigL 63.90 ± 0.19* +1.67% 59%
SET 62.70 ± 0.11 -0.24% 100%

CHTss 71.29 ± 0.14* +13.43% 63%
GraNet 69.31 ± 0.17* +10.28% 61%
GMP 65.11 ± 0.11* +3.60% 75%

Appendix O. Extra results of LLaMA1b

Table 13: Validation perplexity of different dynamic sparse training (DST) methods
on OpenWebText using LLaMA-1B across varying sparsity levels.. Lower perplexity
corresponds to better model performance. The performances that surpass the fully connected
model are marked with “*".

Sparsity 0.7 0.9 0.95

FC 14.62

CHTs 14.53* 17.14 18.93
CHTss 15.15 15.62 16.51

Language modeling. We present a comparison of CHTs, CHTss, and fully connected
network on language modeling tasks using the LLaMA-1B model on Table 13. The results
clearly demonstrate that CHTs consistently outperform the fully connected (FC) baseline
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Figure 12: One-time Link Prediction Runtime Performance Evaluation of node-based
and path-based methods across varying densities and network sizes. In (a), the network size
is fixed at 1024 × 1024, while in (b), the density is fixed at 5%.

at 70%, even at a high sparsity of 95%, CHTss achieves a perplexity of 16.51, which is
remarkably close to the FC baseline.

Appendix P. Experiments compute resources

All experiments were conducted on NVIDIA A100 80GB GPUs. MLP and Transformer
models were trained using a single GPU, while LLaMA models were trained using eight
GPUs in parallel.
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