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Abstract
Quantum neural networks are promising for
a wide range of applications in the Noisy
Intermediate-Scale Quantum era. As such, there
is an increasing demand for automatic quantum
neural architecture search. We tackle this chal-
lenge by designing a quantum circuits metric for
Bayesian optimization with Gaussian process. To
this goal, we propose a new quantum gates dis-
tance that characterizes the gates’ action over ev-
ery quantum state and provide a theoretical per-
spective on its geometrical properties. Our ap-
proach significantly outperforms the benchmark
on three empirical quantum machine learning
problems including training a quantum genera-
tive adversarial network, solving combinatorial
optimization in the MaxCut problem, and simulat-
ing quantum Fourier transform. Our method can
be extended to characterize behaviors of various
quantum machine learning models.

1. Introduction
There has been hope that complex problems will be solved
efficiently on universal fault-tolerant quantum computers.
However, a useful fault-tolerant quantum computer would
require a sustainably large number of high-fidelity logical
qubits and gate operations. Recent advances in the field
are making quantum devices with a few hundred physical
qubits and limited error correction into reality. Even though
it is still far from an ideal quantum computer, those near-
term devices might have some uses in certain optimization
problems. Generally one has to find the minimal value of
an objective function that usually involves a Hamiltonian,
which could be of quantum origin or be mapped onto from a
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classical objective value. For example, Maximum Cut (Max-
Cut) is an NP-complete combinatorial optimization problem
(Garey et al., 1976) involves finding a partition {A,B} of
a given graph such that it maximizes sum of edge weights
for edges connecting A and B. We assign a binary value
xi to every node corresponding to its class. The classical
objective function is C(x) =

∑n
i,j=1 wijxixj , where wij is

the edge weight. By mapping xi 7→ 1
2 (1− Zi), where Zi is

the Pauli Z operator with matrix representation diag(1,−1),
the objective can be translated into a Hamiltonian

H =
∑

x∈{0,1}n

C(x) |x⟩ ⟨x| (1)

in a quantum approximate optimization algorithm.
The problem becomes finding the extreme value
max|ψ⟩∈H ⟨ψ|H |ψ⟩, which is a general form of optimiza-
tion to be solved with variational quantum models. Since
going through every element of the Hilbert spaceH is im-
possible, we parametrize the search space by a Parametrized
Quantum Circuit (PQC) or a Quantum Neural Network
(QNN), expressed by unitary matrix U(θ) that rotates an
initial state |0⟩. Whether the codomain {U(θ) |0⟩} is a good
search space depends entirely on the QNN architecture.
Prior work estimates how well the search space induced by
a QNN approximates the Hilbert space (Sim et al., 2019)
and how good its learning capacity is from a statistical per-
spective (Berezniuk et al., 2020). The availability of Noisy
Intermediate-Scale Quantum (NISQ) devices allows exe-
cuting quantum circuits of low depth where QNN-based
algorithms constitute a huge class. The question regard-
ing how to specify a proper quantum neural architecture is
addressed by utilizing certain underlying structure and sym-
metry of specific problems such as Quantum Approximate
Optimization Algorithms (Farhi et al., 2014) or Variational
Quantum Eigensolver (Peruzzo et al., 2014). However, nec-
essary domain knowledge is not always available in practice.
This highlights the need for a method to automate the QNN
design process. Some approaches resort to quantum charac-
teristics to do cell-based search (Ostaszewski et al., 2021),
adaptive wavefunction ansatzs (Grimsley et al., 2019; Tang
et al., 2021), variable-structure circuit (Bilkis et al., 2021),
and hardware-efficient models (?Du et al., 2022). Another
line of work, on the other hand, borrows ideas from clas-
sical neural architecture search (NAS). Representatives for
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Figure 1: Orbits of single-qubit rotations (rotation direction in the subscript) and oscillatory rotations (oscillation direction
in the superscript) when acting on 6 anchor states |±x⟩ , |±y⟩ , |±z⟩ of the one-qubit system. The blue/red line and
dots indicate orbit of the first/second gate. (a) RZ and RX trace out analogous circles and two clusters at the poles,
dcore(RZ , RX) > 0, dshape(RZ , RX) = 0. (b) Both gates apply rotations around the z-axis, dcore(RZ , R

Y
Z ) ≈ 0. (c)

RYX only has a small deviation from a circle dcore(RZ , R
Y
X) ≈ dcore(RZ , RX), dshape(RZ , R

Y
X) ≈ 0. (d) Two oscillatory

rotations RXZ and RYX trace out similar curves, dcore(R
X
Z , R

Y
X) ≈ dcore(RZ , RX), dshape(R

X
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Y
X) = 0.

this class include genetic algorithms (Rattew et al., 2019),
meta neural predictor (Zhang et al., 2021), differentiable
search (Zhang et al., 2020), and reinforcement learning (Kuo
et al., 2021). Many approaches from this class deploy a good
final architecture that can even outperform expert’s designs.
However, those methods behave in a black-box manner and
often provide little insight for the quantum view.

In this work we aim to apply Bayesian Optimization (BO),
a well-known method for NAS (Kandasamy et al., 2018;
Ru et al., 2020), to Quantum NAS (QNAS). General infor-
mation and setting of QNN and BO will be introduced in
Section 2. Applying BO to QNAS requires an appropriate
covariance function in space of QNN. The covariance func-
tion, or kernel, is a key component to the success of the
BO problem. Our main contribution, which is presented in
Section 3, is an operationally meaningful distance measure
between two (possibly parametrized) quantum operators or
quantum gates, followed by a distance metric in the space of
QNN constructed using optimal transport. Experiments of
QNAS for three specific problems with the kernel based on
that metric are presented in Section 4. The paper finalizes
with Section 5 and 6 where we present the result along with
some discussions and future work.

2. Preliminaries
Quantum Neural Networks A QNN can be realized by
a quantum circuit that contains a sequence of fixed and
parametrized unitary operators, so-called quantum gates
acting on its qubits q0, q1, ..., qn, where n is the number of
processing qubit. Usually it is restricted to a sequence of
fixed gates Wi and one-parameter gates Ui(θi)

U(θ) = UL(θL)WL . . . U2(θi)W2U1(θ1)W1. (2)

A fixed gate can be the identity operator, hence two types
of gates are not necessarily alternating. For this work we

consider the most common logical gates in quantum com-
puting (Nielsen & Chuang, 2010; Gadi, 2019):

Wi ∈ {H,X, Y, Z;CX,CY,CZ}
Ui ∈ {Rσ(·);CRσ(·), Rσσ(·)}, σ ∈ {X,Y, Z}1 (3)

The semicolons separate single-qubit gates in the first
half and two-qubit gates in the second half. Natural ob-
jective functions for training QNN is usually the expecta-
tion value of a Hermitian measurement operatorM evalu-
ated at the final state U(θ) |ψ⟩ obtained by applying the
QNN on an initial state |ψ⟩, denoted by E(|ψ⟩ , θ) =
⟨ψ|U(θ)†MU(θ) |ψ⟩. Optimizing the objective value can
be done with a classical optimization algorithm.

Bayesian Optimization The goal of Bayesian Optimization
(BO) is to find the global optimum of a fixed but unknown
function f : X → R, which is potentially expensive and
noisy to evaluate. We assume that f is drawn from a prior
distribution p(f). Starting with an arbitrary dataset D0, BO
sequentially queries the function to update our belief about it
with guidance from an acquisition function, which measures
the increase in utility of having an additional data point
(x, y = f(x) + ϵ) (Brochu et al., 2010). A common choice
to model p(f) is through Gaussian Process (GP). A GP de-
scribes a collection of random variables with a joint normal
distribution identified by a mean function m : X → R and
a positive definite kernel k : X × X → R (Rasmussen,
2003). The GP can be used as a surrogate model for a
black-box function f(x) ∼ GP(m(x), k(x,X)), where
X = [x1, · · · , x|D|]

T , Y = [y1, · · · , y|D|]
T are the obser-

vations we have made so far. With Gaussian prior, the poste-

1Fixed gates include Pauli operators X,Y, Z, Hadamard gate
H ∼= XZX , and controlled gates Cσ = |0⟩ ⟨0|⊗ I+ |1⟩ ⟨1|⊗σ.
Parametrized gates include rotations Rσ(θ) = exp

(
−i θ

2
σ
)
, con-

trolled rotations CRσ(θ) = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ Rσ(θ), and
double rotations Rσ,σ(θ) = exp

(
−i θ

2
σ ⊗ σ

)
.
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rior predictive p(y|x,D) is a Gaussian with mean function
m(x,X) and covariance function k(x,X):

m(x,X) = K(x,X)K−1
X (Y −m(X))

k(x,X) = K(x, x)−K(x,X)K−1
X K(X,x)

y ∼ N (m(x,X), k(x,X)) (4)

where K(A,B) is a matrix whose the (i, j)-th element
is computed as k(xi, xj) with xi ∈ A and xj ∈ B, and
KX = K(X,X) + σ2I is the covariance between all noisy
observations. The hyperparameters of the model are pa-
rameters of the mean and covariance functions and can be
learned by maximizing the marginal likelihood of the in-
put data. In this paper we use the Expected Improvement
(EI) acquisition function, which measures the expectation
of improvement over the current maximum value

EIt(x) = E[(f(x)− f∗t−1)
+|(xi, yi)t−1

i=1], (5)

where f∗t−1 = maxi≤t−1 f(xi) is the best value up to time
t, and g(x)+ = max(0, g(x)).

3. Methods
Three representations of a QNN we use are gate-based cir-
cuit, directed acyclic network (DAG), and vector represen-
tation as shown in Figure 2. The circuit representation is
used for optimizing the objective function maxθ E(|ψ⟩ , θ).
The DAG representation reveals the topological structure
of the QNN. The vector representation only serves as the
placeholder of the QNN and will not be used for anything
except for sampling steps in BO. So, it should not raise a
concern for being numerically arbitrarily chosen.

3.1. Distance Between Two Quantum Gates
We propose a similarity measure between two (possibly
parametrized) quantum gates. Although the two unitary
operations induced by the gates can be different, their effect
might follow similar patterns throughout the Hilbert space.
The difference between the exact effects will be captured
by core distance dcore, while the difference between their
patterns by shape distance dshape. For example, one-qubit
rotation gates are the most common gates in use; applying
any rotation gate on a state with many angles always gen-
erates a circular orbit, so the shape distance between two
rotations is always zero. Yet they revolve around different
axes, which results in a positive core distance. Intuition
about those two types of distance is illustrated in Fig. 1. We
define the distance between two quantum gates to be the
average between those two types of distance:

dgate(U
1, U2) =

dcore(U
1, U2) + dshape(U

1, U2)

2
(6)

q0 : Y
RXX (θ2)

0

q1 : X • 1

q2 : RX (θ1)

q3 : RZ (θ0) •

(a) Gate-based representation
0.00 0.00 0.00 0.25 0.75
1.00 0.00 0.75 0.00 0.25
0.00 0.00 0.25 0.00 0.00
0.00 1.00 0.00 0.75 0.00
0.02 0.35 0.45 0.08 0.75


(b) Numerical representation

q0 q3 q1 q2

RZ X

CY CRX

q3 RXX q2

q0 q1

q0

q3 q1

q2

q3 q1

q3 q0 q1 q2

q0 q1

(c) Directed acyclic graph representation

Figure 2: Three representations of a QNN. In general, the
numerical representation has size of (n+ 1)×N , where n
is the number of qubits and N the number of gates. The last
row encodes the gate type, where every gate is given a rep-
resentative number, an evenly spaced value in the interval
(0, 0.1) for each fixed gate and the interval (0.1, 1) for each
parametrized gate. For every gate in the circuit, the row(s)
of highest value/two highest values among the first n rows
in the corresponding column specifies the qubit the gate
acts on. In the mapping from the matrix to the circuit, at
each column, we choose the gate such that its representative
number is closest to the value in the last row. Depending on
its type, the row(s) with highest value(s) specifies qubit argu-
ment(s) of the gate. The mapping is not invertible; however
it does not matter since the vector representations only stand
as continuous placeholders for QNNs during sampling steps.
The DAG G = (L, E) with a set of gates L and directed
connections between them E . Note that each DAG node is
sensitive to the order of incoming edges, which make the
DAG and the gate-based circuit representations invertible.

3.1.1. CORE DISTANCE

Since every unitary operator is generated by some fixed
Hermitian operator H such that U = eiHt, we can com-
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pare two unitary operators by their generating, assumably
fixed, Hermitians. Since it is the solution to dU

dt = iHU
and U decides the evolution of quantum states, H governs
the evolution over time. For example, RX(·) and RY (·)
are rotations about the x- and y-axis. Their corresponding
Hermitian operators are Pauli X and Y . Hence it is natural
to define a distance of RX and RY using those Hermitian
operators. Generally, we propose the difference between
two generating Hermitian operators to be the core distance
between two quantum gates. For a quantum gate U , fixed or
parametrized, there exists a unique scalar t > 0 and a unique
Hermitian operator H such that ∥H∥∗= 1 and U = eiHt.
(∥·∥∗ denote the nuclear norm; for Hermitian operators, the
norm equals to the sum of absolute value of eigenvalues.)
The core distance between the two unitary operators is given
by

dcore(U
1, U2) =

∥H1 −H2∥∗
2

(7)

Since we only consider one-qubit and two-qubit gates, the
unitary operator of the entire system of higher dimension is
the tensor product of the gate’s unitary operator with identity,
e.g. U = Ugate ⊗ I . The core distance is then affected by
the qubits two gates apply on, i.e. in general, dcore(U

1
gate ⊗

I, U2
gate ⊗ I) is distinct to dcore(U

1
gate ⊗ I, I ⊗U2

gate).

3.1.2. SHAPE DISTANCE

The shape distance represents the difference between orbital
traces of two gates. For example, consider a one-qubit
system which is represented by a Bloch sphere, the gate
RX(θ) traces out a circle around the x-axis. The orbit also
has a circular shape for the gateRY (θ), except that the circle
is around the y-axis. The shape distance should recognize
their congruent shapes, i.e. dshape(RX , RY ) = 0. This
shape comparison approach only makes sense when both
gates in the pair are parametrized; in fact, every gate in the
set of parametrized gates we choose for our work is a type of
rotation parametrized by a single angle θ. At the beginning,
ignore the possible parameters, then two unitary operators
U1 and U2 are the same if |⟨ψ|U2†U1 |ψ⟩ |2= 1 for every
quantum state |ψ⟩ in the Hilbert spaceH, i.e.∫

H

(
1− |⟨ψ|U2†U1 |ψ⟩ |2

)
dµ(ψ) = 0, (8)

where the integral is taken with the Haar measure (Meckes,
2019). Simply speaking, it is the uniform distribution over
unitary operators U , hence also the uniform distribution
over quantum states |ψ⟩ ≡ U |0⟩. To generalize the no-
tion to parametrized quantum gates, think of U1(·) |ψ⟩ and
U2(·) |ψ⟩ as two functions mapping θ to quantum states.
The two gates are said to have the same shape when their
codomains obtained as θ varies have the same shape up to a
unitary transformation. This allows us to define the shape
distance to be the minimal disparity induced by any unitary
mapping. That is, two quantum gates are said to trace out

the same orbit when for every quantum state |ψ⟩ ∈ H, there
exists a quantum state |ϕ⟩ and a unitary operator V such
that ∣∣⟨ϕ|U2†(θ)V U1(θ) |ψ⟩

∣∣2 = 1 ∀θ (9)

The shape distance should consider the described fidelity
over the Hilbert space, e.g.∫

H

∫
Θ

∣∣⟨ϕ|U2†(θ)V U1(θ) |ψ⟩
∣∣2 dθdµ(ψ) (10)

We use a collection of quantum states {|ψk⟩}Kk=1 to ap-
proximate the integral. Members of the collection must
represent the Hilbert space in some sense. We decide to
use a collection called Mutually Unbiased Bases (MUB)
that contains K = d(d + 1) members for a qubit system
of dimension d = 2n. A key property of MUB is that its
members spread out evenly in the Hilbert space, where two
distinct members are either orthonormal or have a fidelity of
|⟨ψk|ψk′⟩|2 = 1/d (Durt et al., 2010). Moreover, the MUB
also forms a complex projective 2-design that reduces an in-
tegral involving any unitary operator U over every quantum
state with the Haar measure to a finite sum (Klappenecker
& Rotteler, 2005)∫

H
|⟨ψ|U |ψ⟩|2 dµ(ψ) = 1

K

K∑
k=1

|⟨ψk|U |ψk⟩|2 (11)

See Appendix A.2 for further details about how to find
that projective 2-design and its use in reduction of integral.
We believe the symmetry of a MUB suffices to capture
most of the information about the orbit traced out by act-
ing a usual parametrized quantum gate on quantum states
across the Hilbert space. Therefore we attempt to define
the shape distance motivated by the following optimization
problem

min
V,ϕk

1

KT

∑
k,t

(
1−

∣∣⟨ϕk|U2†(θt)V U
1(θt) |ψk⟩

∣∣2)
=min
V,M

1

KT

∑
k,t

(
1−

∣∣⟨ek|M†U2†(θt)V U
1(θt) |ψk⟩

∣∣2) ,
(12)

where M ∈ Cd×K contains the (normalized) vector rep-
resentation of every |ϕk⟩ in its columns, and {|ek⟩} forms
the standard basis of CK . However, we could not find a
good way to optimize the ∥·∥2 in (12). Instead we define
the shape distance with the root of fidelity

dshape(U
1, U2)

≡ min
V,M

1

KT

∑
k,t

(
1−

∣∣⟨ϕk|U2†(θt)V U
1(θt) |ψk⟩

∣∣)
= min

V,M

1

KT

∑
k,t

(
1−

∣∣⟨ek|M†U2†(θt)V U
1(θt) |ψk⟩

∣∣)
(13)
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Using the fact that minα∥eiα |ψ⟩ − |ϕ⟩ ∥2= 2− 2|⟨ϕ|ψ⟩ |,
where the minimum is achieved at α = −∡ ⟨ψ|ϕ⟩ and
∡ denotes the angle θ in the Euler’s representation of a
complex number reiθ, we can rewrite the problem with
Euclidean distance. The distance, which is called MINT-
OREO (Maximum Integral of Orbital Embedding Overlaps),
is implemented in the following form

1

2KT
min
V,M,α

∑
k,t

∥eiαk,tV U1(θt) |ψk⟩ − U2(θt)M |ek⟩ ∥2

(14)

It is easy to see that dshape(U
1, U2) = 0 when both gates

are fixed. We assign dshape(U
1, U2) = ∞ when a gate

is fixed and the other is parametrized. If both gates are
of parametrized type, we solve the optimization (14) by
coordinate descent for α, V, α,M, . . . until convergence,
where each update is optimal with respect to one variable.
Finding the optimal unitary V is known as Orthogonal Pro-
crustes with a closed-form solution (Gower & Dijksterhuis,
2004). The optimal solution to M can also be evaluated
in closed form. We present details of the optimization and
a discussion about the difficulty of optimizing the original
sum-of-fidelity form in (12) in Appendix B.

The MINT-OREO distance has some notable proper-
ties. First, it is invariant to the qubits U1 and U2 ap-
ply on, i.e. each of the two gates can apply on any
qubit(s) of the system and the distance is unchanged.
This is because M can absorb the relative difference
in the qubits being acted on by the two gates. Sec-
ond, the distance is invariant to the class of parametrized
gates. Let A = {RX , RY , RZ , RXX , RY Y , RZZ}, B =
{CRX , CRY , CRZ} are the sets of rotations and con-
trolled rotations. The intra-class distance is always 0 and
the inter-class distance is the same for every pair, that is
d(a, a′) = 0, d(b, b′) = 0, and d(a, b) = dAB for every
a, a′ ∈ A, b, b′ ∈ B. We found out by experiments that the
property holds for rotation in arbitrary directions. Third, the
optimization converges in a few iterations and gives highly
consistent results regardless of the initialization of V andM .
Also, it does not need to use many parameter samples; the
result for T = 12 only differs to that of T = 240 by∼ 10−3.
Although we cannot prove it but the numerical result demon-
strates that MINT-OREO distance forms a pseudo metric
at least among quantum gates of rotation type (rotations
and controlled rotations around arbitrary directions). This
property still holds when we consider all of the fixed and
parametrized gates.

In addition, the shape distance given by the finite sum is
0 when U1(θ) and U2(θ) generate exactly the same shape.
The result is stated formally in the following theorem, whose
proof is also presented in Appendix B.

Theorem 1. The shape distance given by the integral van-

ishes if and only if the shape distance given by a finite sum
over anchor states vanishes. That is, for T ≥ 2 distinct
parameters θ1, . . . , θT , if there exist a unitary operator V
and quantum states |ϕ⟩ such that

T∑
t=1

∫
H

(
1−

∣∣⟨ϕ|U2†(θt)V U
1(θt) |ψ⟩

∣∣) dµ(ψ) = 0

(15)
if and only if for the same V ,

1

KT

∑
k,t

(
1−

∣∣⟨ϕk|U2†(θt)V U
1(θt) |ψk⟩

∣∣) = 0, (16)

where |ϕk⟩ is counterpart to |ψk⟩ in the same way as |ϕ⟩ is
counterpart to |ψ⟩.

3.2. Distance Between Two Quantum Neural
Networks

The similarity measure between any pair of gates can be
generalized into a distance metric between two QNN ar-
chitectures using optimal transport, whose application in
classical NN architecture called OTMANN (Optimal Trans-
port Metrics for Architectures of Neural Networks) was
introduced by (Kandasamy et al., 2018). A simple interpre-
tation of optimal transport program is to find a best way to
move earth (dirt) piles from sources to destinations (Rubner
et al., 2000). With the same analogy, the metric is defined as
the minimum of a matching scheme that attempts to match
the computation at the gates of one network to the gates
of another, where penalties are given when there is any
mismatch in the type of gates and topological difference
between architectures. The minimum of those penalties is
the OTMANN distance. Throughout this section, we view
two QNNs as two DAGs G1 = (L1, E1) and G2 = (L2, E2)
with |L1|= n1 and |L2|= n2 gates.

Gate Mass Gate mass is a number representing the
amount of computation a gate can perform. Motivated from
the fact that a unitary matrix of size p × p has p2 − 1 real
degrees of freedom, we define the mass parametrized gates
as lm(u) = param-dim(u)×(unitary-dim(u)2−1). For ex-
ample, single-qubit rotation gates have the mass of 3, while
controlled rotations and double rotations have the mass of
15. The mass is even shared among gates of the same type
if they are consecutive on the wire(s), e.g. two consecutive
RZ gates acting on q2 and q3 in Figure ?? each has the mass
of 15/2 = 7.5.

Fixed gates, i.e. gates without parameters, on the other
hand, have no value without the presence of parametrized
gates. For instance, many quantum algorithms use fixed
gates to initialize the quantum system into some favorable
state such as a uniform superposition. The power of fixed
gates in the circuit depends on the power of parametrized
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q0 : RX (θ0) • RY (θ6)

q1 : H RZ (θ3)
RXX (θ5)

0

q2 : RX (θ1) • 1

q3 : RY (θ2) RZ (θ4)

(a)

q0 : RX (θ0) • RY (θ8)

q1 : H RZ (θ3) RX (θ6)
RXX (θ7)

0

q2 : RX (θ1) • • 1

q3 : RY (θ2) RZ (θ4) RZ (θ5)

(b)

q0 : RX (θ0) • RY (θ6)

q1 : H RZ (θ3)
RXX (θ5)

0

q2 : RX (θ1) • 1

q3 : RY (θ2) RY (θ4)

(c)

Figure 3: An illustration of some similar QNN architectures. The following are unnormalized distance d and normalized
distance d̄ when ν = 0: d(a, b) = 3.300, d̄(a, b) = 0.026; d(a, c) = 5.303, d̄(a, c) = 0.042; d(b, c) = 8.603, d̄(b, c) =
0.066. Circuit (b) has a nonzero distance to (a) because of the extra RX gate on the q1 wire. As every other gate in (b) has a
perfect match in (a), that completely unmatched RX gate induces a distance of 3 (its mass) + 0.1× 3 (extra mass gate H
gets due to the extra RX ). Two CRZ gates in q2 and q3 has the same effect and match to a single CRZ gate. The circuits (a)
and (c) differ by a replacement of a CRZ gate by CRY and has the distance equal to the gate distance of 0.3535 multiplied
by the common gate mass of 15. In this case d(b, c) = d(a, b) + d(a, c) because the differing components are independent.

gates in the same circuit. Therefore, we assign them a fixed
fraction of the layer mass of parametrized gates, i.e. for
each fixed gate u, lm(u) = η

|DL|
∑
s∈VL lm(s), where DL

and VL are the sets of fixed layers and parametrized layers,
respectively, and η is a fixed ratio. We choose η = 0.1 in
our implementation. The total mass of an QNN is tm(Gi) =∑
u∈Li

lm(u).

Gate-type Mismatch Cost This is the cost incurred when
one attempts to match a gate ui ∈ L1 to another gate
vj ∈ L2 of different type. It is natural to choose the gate
distance defined in 3.1 for the mismatch cost. Hence the
gate-type mismatch cost matrix Cgtm ∈ Rn1×n2 is given
by (Cgtm)ij = dgate(ui, vj). This matrix can be immedi-
ately obtained from a list of precomputed gate-pair dis-
tances.

Structural Dissimilarity Cost This term determines how
different the relative position of two matched gates in their
respective QNNs are. A small (Cstr)i,j value means the gate
ui ∈ L1 and the gate vj ∈ L2 are at structurally similar
position. The cost matrix is computed by

(Cstr)i,j =
1

6n

∑
s∈{sp,lp,avg}

∑
t∈{ip,op}

n∑
q=1

|δs,qt (i)− δs,qt (j)|,

(17)
where “sp”, “lp”, “avg”, “ip”, “op” abbreviate for shortest
path, longest path, random walk, input, and output. The
value δs,qt (·) measures the shortest/longest/average path
length from/to the input/output node of the q-th qubit in
the respective DAG circuit. When there is no path between
two nodes, we assign to it the longest path length in the
entire DAG.

For instance, in Figure 2(c), δip,4
sp/lp/avg(CY ) = 2 because

there is only one path from the input node of q3 to the CY
node and it hops through two nodes including CY . On

the other hand δop,3
sp/lp/avg(CY ) = 4 because there is no path

from the CY node to q2, so the longest path length of 4 is
assigned.

Optimal Transport Distance Let ⟨·|·⟩ denote the
component-wise dot product and 1n an all-one vector. The
optimal solution of the Kantorovich’s formulation of Opti-
mal Transport defines the distance between two QNNs. Let
n̄i = ni + 1;Z,C ∈ Rn̄1×n̄2 ; y1 ∈ Rn̄1 , y2 ∈ Rn̄2 such
that 1Tn̄1

y1 = 1Tn̄2
y2

d(G1,G2) = minimize
Z

⟨R,C⟩

s.t. Z ≥ 0, Z1n̄2 = y1, Z
T1n̄1 = y2

(18)

In the formulation, C is the matrix containing pairwise
dissimilarity between component gates of the two cir-
cuits, or the “ground distance” in the optimal trans-
port literature, and Z = [zij ] is the amount of mass
of ui ∈ L1 matched to vj ∈ L2. We set C =[
Cgtm + νCstr 1n1

1Tn2
0

]
, y1 =

[
{lm(u)}u∈L1

, tm(G2)
]T

,

and y2 =
[
{lm(u)}u∈L2 , tm(G1)

]T
. The last row and col-

umn in the cost matrix C are dedicated to a made-up null
gate in each QNN. The weight of structural cost ν is a hyper-
parameter for the distance, usually set to 0.1. Matching two
gates is subject to gate-type mismatch and structural dissim-
ilarity cost while matching a gate to the null gate induces
to a cost of 1, an upper bound for a finite dgate value. The
null gate of a circuit is where a leftover mass of any gates
in the other is collected when there is no possible match for
it.

The linear program can be solved efficiently by many
solvers, and the resulting distance is a metric for quantum
circuit architectures. The proof of the following theorem can
be found in Appendix C. Also, Figure 3 illustrates the dis-
tance concept through some similar-looking QNNs.
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Theorem 2. The optimal solution d(G1,G2) of (18) forms
a metric in the space of quantum circuit architectures when
the weight of structural cost ν is positive. That is, for
any quantum circuits G1,G2,G3 with described component
gates, it holds that d(G1,G2) ≥ 0, d(G1,G2) = d(G2,G1),
d(G1,G3) ≤ d(G1,G2) + d(G2,G3), and d(G1,G2) =
0 ⇐⇒ G1 = G2.

3.3. Bayesian Optimization
The kernel we use for two QNNs x and x′ in the Gaussian
process is given by

k(x, x′) = αe−
∑

i βidi(x,x
′) + ᾱe−

∑
i β̄id̄i(x,x

′), (19)

where di and d̄i are unnormalized and normalized distances
with some fixed νi. It is important to remark that the two
terms are not Gaussian and Laplace kernels although they
have the same looking. A counterexample was given in
(Peyré et al., 2019) to show the exponential of a negative
squared optimal-transport distance does not necessarily in-
duce a positive definite kernel. In our experiments, we,
however, never encounter a situation where the covariance
matrix has a negative eigenvalue whose absolute value ex-
ceeds a small jitter. We specify νi ∈ {0.1, 0.2, 0.4, 0.8} as
default hyperparameters. Parameters of the model, includ-
ing α, ᾱ, βi, β̄i and the noise variance, are estimated via
maximum likelihood.

Since a function on the space of architectures is not dif-
ferentiable, it is common to use Evolutionary Algorithm
(EA) is used to optimize acquisition functions (Kandasamy
et al., 2018; White et al., 2021; Ma et al., 2019; Ru et al.,
2020). We create a set of Nmut samples at each generation
by randomly mutating either the type or the acting wire(s)
of a random gate in a circuit. Those with high acquisition
function values will survive to the next generation with high
probability. Although EA is not an efficient optimization
algorithm for expensive functions, it works quite well for
cheap evaluations of common acquisition functions. Further
details are discussed in Appendix E.

4. Experiments
We demonstrate the QNN search for three problems: (i)
simulate a Quantum Fourier Transform (QFT) (ii) solve
MaxCut for graphs with random edge weights (iii) design a
Quantum Generative Adversarial Net (QGAN), i.e. finding
QNN architectures that optimize the corresponding black-
box objective functions.

First, QFT is a common subroutine in many quantum algo-
rithms. Its unitary operator isUQFT = 1√

d

∑d−1
s,t=0 ω

st
d |t⟩ ⟨s|

with system dimension d = 2n and phases ωstd = 2πi
st
d .

The QNN U(θ) learns to simulate the 2-qubit QFT by op-
timizing maxθ

1
K |⟨ψk|U

†
QFTU(θ) |ψk⟩ |2 given the anchor

states |ψk⟩ as inputs to the network.

Second, in the MaxCut problem, the QNN learns
to separately maximize M = 10 Hamiltonians cor-
responding to M graphs with every edge having
weight chosen uniformly random from {0, 1, . . . , 9},
i.e. 1

M

∑M
m=1 maxθ

⟨0|U†(θ)HmU(θ)|0⟩
Cm

, where Hm is the
Hamiltonian as described in (1) and Cm the maximum cut
value corresponding to them-th graph. All the graphs in this
experiment have 9 nodes, which also needs 9 qubits. Find-
ing the shape distance in the space of dimension d = 29

is expensive, so we decide to use the shape distance for
d = 24 for this case because the shape distance of two
gate types does not change much as the number of qubits
increases.

Quantum Generative Adversarial Network (QGAN) is
an adapted version of Generative Adversarial Network
(GAN) (Goodfellow et al., 2014) in which either or
both the generator and the discriminator is realized by a
QNN (Dallaire-Demers & Killoran, 2018; Lloyd & Weed-
brook, 2018). While the discriminator is trained to distin-
guish between true and synthesized data samples, the gener-
ator attempts to mimic the true data distribution by fooling
the discriminator. In this experiment we train a QGAN that
involves a quantum generator against a classical discrimi-
nator for learning and loading a probability distribution. In
particular we use a 3-qubit QNN generator to generate sam-
ples following an even mixture of two normal distributions
N (0.5, 12) and N (3.5, 0.52) truncated and discretized into
bins 0, . . . , 7. The classical discriminator is a simple neu-
ral network with three layers as described in (Zoufal et al.,
2019). For the QGAN problem, we want to minimize the
relative entropy, which is the KL divergence between the
generated distribution P and the true distribution Q given
by DKL(P ||Q) =

∑
x P (x) log

P (x)
Q(x) .

The initialization of all experiments starts by randomly sam-
pling and training 5 architectures. The implementation are
made using Qiskit (Gadi, 2019) for quantum circuit design
and BoTorch (Balandat et al., 2020) for Bayesian Optimiza-
tion framework. The setting for training those objectives is
presented in Appendix E.

5. Results and Discussion
Figure 4 plots the best objective results for three optimiza-
tion problems over time that compare the performance of
our QNAS algorithm using Expected Improvement (“EI”)
against random architecture sampling (“random”). We find
that the QNAS algorithm performs consistently and signifi-
cantly better than random sampling, common ansatzs, and
problem-specific ansatzs, as presented in Table 1. In the
QFT experiment, the algorithm found some circuits with
5 gates that simulate the QFT operator perfectly. They
outperform common ansatzs with many more gates and pa-
rameters, and requires less gates (6 gates) than the most
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Figure 4: Performance results. QFT: 2 qubits, 6 gates, 6 trials. MaxCut: 9 qubits, 5 gates, 6 trials. QGAN: 3 qubits, 12
gates, 3 trials. The y axes show the optimal objective values for learning problems. Confident band represents ±1σ.

Methods QFT MaxCut QGAN

Bayes. Opt.
EI 1 0.94 0.002

random 0.88 0.90 0.065

19 az. (Sim et al., 2019)
depth 1 0.98 0.007
depth 2 1

MaxCut az. (Farhi et al., 2014)
depth 1 0.746
depth 2 0.751
depth 3 0.762

QGAN az. (Zoufal et al., 2019)
depth 1 0.7 0.476
depth 2 0.7 0.277
depth 3 0.7 0.092

Table 1: Performance of QNN obtained by four ways on
three experiments. Regarding methods, we report the best
objective value over all searched architectures for BO and
over 19 ansatz (az.) templates. As MaxCut and QGAN
ansatzs are fixed, we report the average value after a number
of training trials. A field is omitted when it is inconvenient
or highly time-consuming to use the combination.

optimized QFT circuit (7 gates) in Qiskit using the same
pool of component gates. In the MaxCut experiment, ar-
chitectures found by BO perform better than the MaxCut
ansatz and random architectures by a large margin. It might
be because the ansatz is a trotterization of the Hamiltonian
which, for a high-dimension system, might require a large
depth to converge; otherwise it lacks the flexibility for learn-
ing (Zhou et al., 2020). This suggests we could use simpler
circuits to find approximate solution to hard optimization
problems. Finally, we found circuits with 12 gates that has
DKL ≈ 10−3 in the QGAN experiment. The original paper

use a circuit template with 24 gates and longer training time
to achieve the same precision (Zoufal et al., 2019).

6. Conclusion and Future Work
We presented a BO algorithm for quantum neural architec-
ture search, which could find good architectures when the
the desired output states are not very restrictive. The main
contribution is a geometrically meaningful distance between
quantum gates and the extension to distance between quan-
tum circuit architectures using optimal transport. The gate
distance and circuit distance could have independent usages
beyond BO algorithms. A possible direction is to examine
the relation between the gate/circuit distance and learning
behaviors of QNNs. Another direction is to design the gen-
eralization of the core distance when the Hamiltonian is
not fixed and the shape distance when the parameter spaces
for U1 and U2 are distinct , which could provide a way to
analyze data generated by quantum processes.
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K. On mutually unbiased bases. International jour-
nal of quantum information, 8(04), 2010. doi: 10.1142/
S0219749910006502.

Farhi, E., Goldstone, J., and Gutmann, S. A quantum ap-
proximate optimization algorithm, 2014.

Gadi, A. e. a. Qiskit: An open-source framework for quan-
tum computing, January 2019.

Garey, M., Johnson, D., and Stockmeyer, L. Some simplified
np-complete problems. Theoretical Computer Science, 1
(3), 1976. doi: 10.1016/0304-3975(76)90059-1.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. Generative adversarial nets. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N., and Weinberger,
K. (eds.), Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc., 2014. doi:
10.1145/3422622.

Gower, J. C. and Dijksterhuis, G. B. Procrustes problems,
volume 30. OUP Oxford, 2004. doi: 10.1093/acprof:
oso/9780198510581.001.0001.

Grimsley, H. R., Economou, S. E., Barnes, E., and Mayhall,
N. J. An adaptive variational algorithm for exact molecu-
lar simulations on a quantum computer. Nature communi-
cations, 10(1), 2019. doi: 10.1038/s41467-019-10988-2.

Kandasamy, K., Neiswanger, W., Schneider, J., Póczos, B.,
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A. Mutually Unbiased Bases
A.1. Complex Projective 2-design
Reducing the integral over the Haar measure to a simple sum of terms of the same form, as in (11) is possible given the
right representatives of the space. The collection of such representatives of the unitary space is called a quantum unitary
design.

Definition 1. Let Pt,t : U(H)→ R be a polynomial with homogeneous degree at most t in the entries of W ∈ U(H) and
their complex conjugate. A finite set of unitary operators {Wk}K1 forms a unitary t-design when

1

K

K∑
k=1

Pt,t(Wk) =

∫
U(H)

Pt,t(W )dµ(W ), (20)

where µ is the Haar measure, holds for all such polynomials Pt,t.

For any unitary t-design {Wk} and any fixed pure state |ψ⟩, the set {Wk |ψ⟩} is a complex projective t-design.

Since the expression is exact, and the integrand |⟨ψ|U |ψ⟩ |2≡ |⟨0|W †UW |0⟩ |2 for some W in (11) is a polynomial of
degree 2 in entries of W and W †, it can be computed given a unitary 2-design or a complex projective design. It is known
from quantum information that the Clifford group forms a unitary 3-design that also makes it a 2-design by definition.
However, the size of the group grows exponentially with the dimension of the Hilbert space. Another option is Mutually
Unbiased Bases (MUB), which is a complex projective 2-design and only has d(d + 1) element vectors when H ⊂ Cd.
An efficient construction of the MUB when the dimension is a power of a prime based on Galois field and Galois ring
introduced by (Klappenecker & Rötteler, 2004) is briefly introduced.

A.2. Construction of Mutually Unbiased Bases for Prime Power Dimension Space
Mutually unbiased bases in the Hilbert space Cd are orthonormal bases in which every two bases {|e1⟩ , . . . , |ed⟩} and
{|f1⟩ , . . . , |fd⟩} satisfy

|⟨ej |fk⟩ |2=
1

d
, ∀j, k (21)

When d is a power of a prime number, a set of MUB contain exactly d+1 bases, and d(d+1) basis vectors form a complex
projective 2-design (Klappenecker & Rotteler, 2005).

A.2.1. ODD PRIME POWER d = pn

Denote Fd a finite field with d elements of odd characteristic p. The field trace map tr : Fd → Fp is defined by
tr(x) = x+ xp + xp

2 · · ·+ xp
n−1

.

For every a ∈ Fd, the set
Ba = {|va,b⟩ : b ∈ Fd},
|va,b⟩ = d−1/2(ωtr(ax2+bx)

p )x∈Fd
∈ Cd,

(22)

where ωp = exp(2πi/p), is an orthonomal basis. Then the bases Ba, a ∈ Fq together with the standard basis form a set of
d+ 1 mutually unbiased bases in Cd.

A.2.2. EVEN PRIME POWER d = 2n

The method for odd prime power does not work in the case p = 2, which is our interest for qubit systems. For a monic basic
primitive polynomial h(x) of degree n, the quotient ring GR(4, n) = Z4[x]/⟨h(x)⟩ is the Galois ring of degree n over Z4

(since all Galois ring constructed by different h(x) are indeed isomorphic). There exists a nonzero element ξ in GR(4, n) with
order 2n − 1. Any element r ∈ GR(4, n) has a unique expression r = a+ 2b, where a, b ∈ Tn = {0, 1, ξ, . . . , ξ2n−2}. The
Teichmüller set Tn allows us to characterize elements of the ring in terms of a, b. The trace map tr : GR(4, n)→ Z4

is defined by tr(x) =
∑n−1
k=0 σ

k(x), where σ : GR(4, n) → GR(4, n) defined by σ(a + 2b) = a2 + 2b2 is called the
Frobenius automorphism. Then the orthonormal bases Ba, a ∈ Tn together with the standard basis form a collection of
MUB, where

Ba = {|va,b⟩ : b ∈ Tn},

|va,b⟩ = d−1/2

(
exp

(
2πi

4
tr((a+ 2b)x)

))
x∈Tn

(23)
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B. Maximum Integral of Orbital Embedding Overlaps (MINT-OREO) Distance
B.1. Optimizing the shape distance
The optimization problem (14) can be written in two forms

min
V,M

∑
k,t

1−
∣∣⟨ek|M†U2†(θt)V U

1(θt) |ψk⟩
∣∣ (24)

=
1

2
min
V,M,α

∑
k,t

∥eiαk,tV U1(θt) |ψk⟩ − U2(θt)M |ek⟩ ∥2 (25)

=
1

2
min
V,M,α

∑
k,t

∥eiαk,tU2†(θt)V U
1(θt) |ψk⟩ −M |ek⟩ ∥2 (26)

It can be solved by optimizing α, V, α,M, . . . iteratively, where each iteration constitutes those four updates. We use the
expression (25) to optimize for α, V . Denote

L1 = [eiα1,1U1(θ1) |ψ1⟩ . . . eiαK,TU1(θT ) |ψK⟩],
L2 = [U2(θ1)M |e1⟩ . . . U2(θT )M |eK⟩]

(27)

the matrices in Cd×KT that contains all outputs resulted from applying U1, U2. Note that L1, L2 contains K groups of
consecutive columns with t = 1, · · · , T for each k. Let L1L

†
2 = RΣT † be a singular value decomposition (after update α).

The variables α and V are updated by

αk,t ←−− ∡ ⟨ek|M†U2,†(θt)V U
1(θt) |ψk⟩

V ←−R†T
(28)

The first rule results from the fact minα∥eiα |ϕ⟩ − |ψ⟩ ∥2= 2− |⟨ϕ|ψ⟩ | at α = −∡ ⟨ψ|ϕ⟩, where ∡ denotes the angle in the
Euler’s representation of a complex number. We can rewrite (25) as 1

2∥V L1 − L2∥2F , whose minimization is equivalent to

maximizing ReTr
[
L†
2V L1

]
= ReTr

[
Σ(T †V R)

]
. It reaches the maximum of Tr(Σ) if T †V R = I or V = R†T , which is

the second rule.

We use the expression (26) to optimize for α,M

αk,t ←−− ∡ ⟨ek|M†U2,†(θt)V U
1(θt) |ψk⟩

M ←−
[
M̂1 . . . M̂k . . . M̂K

] (29)

Denote S = [. . . eiαk,tU2†(θt)V U
1(θt) |ψk⟩ . . . ] and E = [|e1⟩ (T times), . . . , |eK⟩ (T times)] with standard basis vectors

{|ek⟩} of CK . After α is updated, the problem in (26) is equivalent to minimizing ∥S −ME∥2F . We can optimize every
column of M independently. Let Mk be its k-th column and Sk,1, · · ·Sk,T be consecutive columns of S. The optimization
for a column of M can be formulated as

min
Mk

T∑
t=1

∥Mk − Sk,t∥2 s.t. ∥Mk∥2= 1 (30)

It is straightforward that the problem is equivalent to maxMk
Re (M†

kSk) for Sk =
∑T
t=1 Sk,t. The optimal value for the

column is M̂k = Sk

∥Sk∥ obtained from the fact that

Re
(
x†y

)
=

[
Re xT Im xT

] [Re y
Im y

]
, (31)

which is maximized when x = λy, λ ∈ R.
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B.2. Finite sum characterizes integral over the Hilbert space
Now we prove Theorem. 1, which could be simplified to

1

T

T∑
t=1

∫
H

∣∣⟨ϕ|U2†(θt)V U
1(θt) |ψ⟩

∣∣ dµ(ψ) = 1 (32)

if and only if ∣∣⟨ϕk|U2†(θt)V U
1(θt) |ψk⟩

∣∣ = 1 ∀k, t (33)

The forward direction is straightforward due to the continuity of |ϕ⟩. For the reverse statement, choose t = 1 as real phase
references, i.e. |ϕk⟩ = U2†(θ1)V U

1(θ1) |ψk⟩ for every k. For every t > 1, |ϕk⟩ = e−iαktU2†(θt)V U
1(θt) |ψk⟩ for some

real αkt. The identity ⟨ϕk|ϕk⟩ = 1 implies that

⟨ψk|
(
U2†(θ1)V U

1(θ1)
)† (

U2†(θt)V U
1(θt)

)
|ψk⟩ = eiαkt (34)

From the construction of MUB, the set of anchor states contains the standard basis {|em⟩}di=m. Without loss of generality,
assume |ψm⟩ = |em⟩ ,m = 1, . . . , d. Since the action of a linear operator is completely defined with a basis, we can
rewrite (

U2†(θ1)V U
1(θ1)

)† (
U2†(θt)V U

1(θt)
)
|em⟩ = eiαmt |em⟩ (35)

For ease of writing, denote Wt = U2†(θt)V U
1(θt). Let |ϕ⟩ = W (θ1) |ψ⟩. The goal is to show |⟨ϕ|W (θ) |ψ⟩ |= 1 for

every t = 1, . . . , T and |ψ⟩ ∈ H.

Let |ψ⟩ = ∑d
m=1 cm |em⟩ , |ψk⟩ =

∑d
m=1 ck,m |em⟩ be normalized expressions in the standard basis. Then

⟨ϕ|Wt |ψ⟩ = ⟨ψ|W †
1Wt |ψ⟩ =

∣∣∣∣∣
d∑

m=1

|cm|2eiαmt

∣∣∣∣∣ (36)

For a fixed t, the phases {eiαmt} are not independent. From the first d anchors we can already determine eiαmt for all m.
However, the other d2 anchors constrain eiαmt as

⟨ϕk|Wt |ψk⟩ |= 1 −→
∣∣∣∣∣
d∑

m=1

|ck,m|2eiαmt

∣∣∣∣∣ = 1 (37)

The above constraints are equivalent to d2 linear equations in d2 variables e−iαmteiαnt ,m, n = 1, . . . , d. It has at most
one solution, which occur when eiαmt = eiα1t . This completes the proof as

∣∣∣∑d
m=1|cm|2eiαmt

∣∣∣ = ∣∣∣∑d
m=1|cm|2eiα1t

∣∣∣ =
1.

B.3. Remark on L2 formulation of shape distance
Back to the formulation for the shape distance, although we have not found an efficient way to optimize the sum-of-fidelity
formulation

max
V,M

K∑
k=1

T∑
t=1

|⟨ek|M†U2†(θt)V U
1(θt) |ψk⟩ |2, (38)

it could have a meaning in quantum information beyond our initial motivation. To optimize V, we extend |ψk⟩ → |ψk⟩⊗|k⟩⊗
1,M |ek⟩ → (M |ek⟩)⊗|k⟩⊗1, U i(θt)→ U i(θt)⊗1⊗|t⟩ and V → V ⊗I⊗I . DefineL1 = [U1(θ1) |ψ1⟩ . . . U1(θT ) |ψK⟩]
and L2 = [U2(θ1)M |e1⟩ . . . U2(θT )M |eK⟩]. We can rewrite (38) using Frobenius norm

K∑
k=1

T∑
t=1

|⟨ek|M†U2†(θt)V U
1(θt) |ψk⟩ |2

=∥L†
2(V ⊗ I ⊗ I)L1∥2F

=Tr
(
W †

2Σ
†
2R

†
2(V ⊗ I ⊗ I)R1Σ1Σ

†
1R

†
1(V

† ⊗ I ⊗ I)R2Σ2W2

)
=Tr

(
ρ2(V ⊗ I ⊗ I)ρ1(V † ⊗ I ⊗ I)

)
(39)
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One can view ρi = RiDiR
†
i as a density matrix consisting of a probe system and the environment, where diagonal matrices

Di that contain nonnegative eigenvalues of LiL
†
i . The optimization problem maxV Tr

(
ρ2(V ⊗ I ⊗ I)ρ1(V † ⊗ I ⊗ I)

)
could be interpreted as finding the best unitary mapping V of the system to map ρ1 to ρ2, both of which are quantum states
of the system and the environment.

To optimize M, we follow the same idea as above by extending our system as followed |ek⟩ → |ek⟩ ⊗
|k⟩ , U2(θt)V U

1(θt) |ψk⟩ →
(
U2(θt)V U

1(θt) |ψk⟩
)
⊗ |k⟩ and M → M ⊗ I . We define L′

2 = [|e1⟩ . . . |eK⟩] and

L′
1 = [U2(θ1)V U

1(θ1) |ψ1⟩ . . . U2(θT )V U
1(θT ) |ψK⟩]. Using Frobenius norm, the maximization problem over M can be

casted as

max
M

K∑
k=1

T∑
t=1

|⟨ek|M†U2†(θt)V U
1(θt) |ψk⟩ |= max

M
Tr

(
ρ′2(M

† ⊗ I)ρ′1(M ⊗ I)
)
, (40)

This problem has a similar form as optimizing V except M is only constrained to have normalized columns.

C. Optimal-Transport Distance as a Metric
The optimal-transport distance is non-negative and symmetric straightforward from its definition and constraints. Now we
alter the settings to prove the triangle inequality. Let tm(Gi), i = 1, 2, 3 be the total mass of Gi, i = 1, 2, 3. Because transport-
ing masses between two null gates takes no cost, the solution to (18) is the same with yi =

[{lm(u)}u∈Li
,
∑
j ̸=i tm(Gj)

]T
.

This is to make the total mass
∑3
i=1 tm(Gi) for all three pairs, hence without generality we prove the triangle inequality

assuming the total mass is 1. We follow the classic proof in (Rubner et al., 2000). Let {z(12)ij } be the optimal flow from G1
to G2 and {z(23)jk } the optimal flow from G2 to G3, i.e. the solutions to the corresponding optimal transport problems. Let
sijk be the mass that moves from gate ui ∈ L1 to gate vj ∈ L2 and from vj ∈ L2 to wk ∈ L3. Define a flow z(13)ik from
G1 to G3 by

z
(13)
ik =

∑
j

sijk (41)

This flow is feasible since ∑
i

z
(13)
ik =

∑
i,j

sijk =
∑
j

z
(23)
jk = lm(wk),∑

k

z
(13)
ik =

∑
j,k

sijk =
∑
j

z
(12)
ij = lm(ui) (42)

where lm(ui) (lm(wk)) is the gate mass if ui (wk) is a quantum gate or tm(G2) + tm(G3) (tm(G1) + tm(G3)) if it is a
null gate. Then

d(G1,G3) ≤
∑
i,k

z
(13)
ik cui,wk

≤
∑
i,j,k

sijkcui,wk

≤
∑
i,j,k

sijk(cui,vj + cvj ,wk
) (43)

=
∑
i,j

z
(12)
ij cui,vj +

∑
j,k

z
(23)
jk cvj ,wk

= d(G1,G2) + d(G2,G3)

The inequality in the third line comes from the fact that the cost between gates, including null ones, is metric. Because the
cost is a weighted sum of core distance, shape distance, structural dissimilarity cost, and non-assignment cost, it suffices
to show each component bears similar properties. The core distance with nuclear norm is a metric. Numerical results of
the shape distance show it is a pseudo-metric for our set of gates as remarked in Section 3. Regarding the non-assignment
cost, if there is at least a null gate among ui, vj , wk, the costs that involve the null gate are either 0 or 1 which leads to the
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Figure 5: The two dimensional embedding from pairwise (normalized) distance with ν = 0.5 of 19 circuit templates. The
circuits are labeled with the same ID shown in Figure 2 in (Sim et al., 2019). Circuits with notable similarity are close
to each other such as (3,4), (5,6), (7,8), (11,12), (13,14), (16,17), (18,19). Remaining circuits (1,2,9,10,15) have fewer
parametrized gates, hence small total mass and are placed within a neighborhood.

triangle inequality; otherwise the term for non-assignment cost disappears. The structural dissimilarity cost satisfies the
triangle inequality because the following holds trivially for real numbers δs,qt (·):

|δs,qt (i)− δs,qt (k)|≤ |δs,qt (i)− δs,qt (j)|+|δs,qt (j)− δs,qt (k)| (44)

The optimal-transport distance is therefore a metric in the strict sense. Two quantum circuits must be the same when they
have zero distance. Every gate in one circuit then must have an exact counterpart gate in the other, where they have the same
relative position to all of the qubit wires and are of the same gate type. This could only happen when the two circuits are
identical.

D. Illustration of Quantum Circuits Metric
First, we show the circuit metric as in (18) agree with our intuition through a visualization of pairwise distances of
some common circuit architectures using Multidimensional Scaling (MDS). The MDS assigns each architecture a point
(x1, . . . , xd) ∈ Rd so that two points are close to each other if the distance between the two corresponding is small (Mead,
1992). Figure 5 shows a two-dimensional embedding of 19 circuit templates with 4 qubits surveyed in literature (Sim et al.,
2019).

Second, we demonstrate that the circuit metric aligns with the performance of QNNs in a simple training task. We examine
300 pairs of random QNNs with 3 qubits and a maximum of 20 gates. The QNNs are trained to mimic the action of a
Quantum Fourier Transform (QFT) by maximizing the fidelity between the output states with ideal outcome states with the
anchor states |ψk⟩ as the input states, max

θ

1
K ∥⟨ψk|QFT†U(θ) |ψk⟩ ∥2. Figure 6 shows 45000 pairwise distance and the

difference in the circuits’ performance. It can be seen that circuits with a small distance are likely to have the same learning
capacity in terms of the optimal fidelity. However, it is inconclusive when the distance is large, since two good circuits, even
with substantial architectural difference, could result in the same optimal fidelity.

E. Implementation Details
E.1. Optimizing the acquisition function
We optimize the acquisition function (5) with an evolution approach. Beginning with a pool of k(t) circuits, we generate
Nmut(t) samples by letting each initial circuit to reproduce Noff(t) offsprings through mutation. We evaluate the acquisition
function on Nmut(t) samples. Those with high values are kept to the next generation. To be exact, half of the next generation
are ones with highest values; the other half contains some of the remaining circuits such that those with higher values are
more likely to be selected. Repeat the process through τ generations. We set τ = Θ(

√
t) and k(t), Noff(t) = Θ(

√
τ) by
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Figure 6: Each point in the scatter plot represents the distance and the performance after training of a pair of circuits.

default. For each mutation, a circuit can change at most 4 components. The number of changes from 1 to 4 is chosen from
the distribution [0.4, 0.3, 0.2, 0.1]. A change can be either replacing the gate at a random position or switching the qubit
wires connected to a random gate.

E.2. Training Quantum Neural Networks
In all of our experiments, the black-box function involves optimizing quantum neural networks. The optimization problem
is straightforward for QFT and MaxCut problems since the optimal value obtained from the training problem is also the
black-box function. In particular, as discussed in 4, the objective function is maxθ

1
K |⟨ψk|U

†
QFTU(θ) |ψk⟩ |2 for the QFT

experiment and 1
M

∑M
m=1 maxθ

⟨0|U†(θ)HmU(θ)|0⟩
Cm

for the MaxCut experiment. Training quantum circuits for these tasks
with the L-BFGS-B optimizer is fairly robust.

On the other hand, although we use the relative entropy DKL as the black-box function for BO, optimizing QGAN requires
a different approach. Given m training data xl and m generated data gl, the quantum generator Gθ and the classical
discriminator Dϕ are updated by minLG and maxLD (Zoufal et al., 2019), where

LG(ϕ, θ) =
1

m

m∑
l=1

logDϕ(g
l),

LD(ϕ, θ) =
1

m

m∑
l=1

[logDϕ(x
l) + log

(
1−Dϕ(g

l)
)
]. (45)

We train the QGAN objective using ADAM optimizer through 200 epochs with batch size 100 and learning rate 10−3.
Parameters are initialized uniformly at random in the interval (−0.1, 0.1).



Quantum Neural Architecture Search with Quantum Circuits Metric and Bayesian Optimization

q0 : RY (θ2) •
ZZ (θ3)

RY (θ4) RX (θ5)

q1 : RX (θ0) RY (θ1) • • •

(a) QFT

q0 : Y

q1 : RX (θ3)

q2 :

RXX (θ2)

0

q3 :

q4 :

RXX (θ1)

1

q5 :

q6 : 0 1

q7 :

q8 : RX (θ0)

(b) MaxCut

q0 :

RYY (θ3)

0
RY (θ4) • H

RYY (θ7)

0
RY (θ8)

RXX (θ10)

1

q1 :
RYY (θ0)

0
RY (θ6)

0

q2 : 1
RY (θ1) RY (θ2)

1 • RX (θ5)
1

RZ (θ9)

(c) QGAN

Figure 7: Optimal circuits by BO for three learning tasks
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