
Contrastive MIM: A Contrastive Mutual Information
Framework for Unified Generative and Discriminative

Representation Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

We present Contrastive Mutual Information Machine (cMIM), a probabilistic1

framework that adds a contrastive objective to the Mutual Information Machine2

(MIM) Livne et al. [2019], yielding representations that are effective for both3

discriminative and generative tasks. Unlike conventional contrastive learning4

van den Oord et al. [2018], Chen et al. [2020], He et al. [2020], cMIM does not5

require positive data augmentations and exhibits reduced sensitivity to batch size.6

We further introduce informative embeddings, a generic training-free method to7

extract enriched features from decoder hidden states of encoder–decoder models.8

We evaluate cMIM on life-science tasks, including molecular property predic-9

tion on ZINC-15 Sterling and Irwin [2015], Weininger [1988] (ESOL, FreeSolv,10

Lipophilicity) and biomedical image classification (MedMNIST Yang et al. [2021]).11

cMIM consistently improves downstream accuracy over MIM and InfoNCE base-12

lines while maintaining comparable reconstruction quality. These results indicate13

cMIM is a promising foundation-style representation learner for biomolecular and14

biomedical applications and is readily extendable to multi-modal settings (e.g.,15

molecules + omics + imaging).16

1 Introduction17

Learning representations that support both unknown downstream prediction tasks and generative use18

cases is central to life-science machine learning, where data span molecules, sequences, imaging, and19

multi-omics. Contrastive losses such as InfoNCE van den Oord et al. [2018], Chen et al. [2020] are20

effective but often hinge on meaningful augmentations and large batches. Probabilistic auto-encoders21

maximize information about inputs, yet their latent geometry can be suboptimal for discriminative22

tasks Livne et al. [2019], Reidenbach et al. [2023].23

We propose cMIM, a simple contrastive extension of MIM that (i) introduces a discriminator over pair-24

similarity without requiring positive augmentations, (ii) aligns local clustering with global angular25

separation, and (iii) remains robust to batch-size via Monte Carlo expectations Hoeffding [1963].26

We also propose informative embeddings, obtained from decoder hidden states, that substantially27

improve downstream performance without extra training.28

We evaluate cMIM on molecular property prediction on ZINC-15 Sterling and Irwin [2015], Weininger29

[1988] (ESOL, FreeSolv, Lipophilicity) and biomedical imaging with MedMNIST Yang et al. [2021].30

Experiments show consistent gains over MIM and InfoNCE with reduced batch-size sensitivity.31
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Algorithm 1 Learning parameters θ of cMIM

Require: Samples from dataset P(x)
1: while not converged do
2: D ← {xj ,zj ∼ qθ(z | x)P(x)}Bj=1 {Sample a batch}
3: L̂A-MIM = − 1

B

∑B
i=1

(
log pθ(xi | zi) + log pk=1(xi,zi) +

1
2
(log qθ(zi | xi) + log p(zi))

)
4: θ ← θ − η∇θL̂A-MIM {Reparameterized gradients}
5: end while

Figure 1: Training algorithm for cMIM.
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Figure 2: Left: (a) Informative embeddings h are taken from decoder hidden states before mapping
to pθ(x | z). For autoregressive decoders we use teacher forcing. Right: (b) Distribution of slopes
from linear fits of accuracy vs. batch-size for different models. Each point corresponds to the average
z-score of a model trained on MNIST-like datasets. Both MIM and cMIM are not sensitive to
batch-size.

2 Formulation32

Preliminaries. Let x denote the observation and z the latent code. MIM is a probabilistic auto-33

encoder that maximizes mutual information between x and z while encouraging clustered latents via34

entropy minimization.35

Contrastive variable and objective. We introduce a binary variable k that indicates whether (x, z)36

is a matched pair (k=1) or a mismatched pair (k=0). A matched pair is defined as zi ∼ qθ(z|xi).37

We define encoder/decoder factorizations with a discriminator over k:38

qθ(x, z, k) = qθ(k|x, z) qθ(z|x) qθ(x), pθ(x, z, k) = pθ(k|x, z) pθ(x|z) pθ(z). (1)
Let zi∼ qθ(z|xi). Using a temperature-scaled cosine similarity s(zi, zj)/τ with gij ≡ g(zi, zj) =39

exp(s(zi, zj)/τ), we set40

pk=1(xi, zi) =
gii

g(zi, zi) + Ex′∼P (x), z′∼qθ(z|x′)[g(zi, z′)]
≈ gii

gii +
1

B−1

∑
j ̸=i gij

. (2)

Training samples always satisfy k=1 since zi is drawn conditionally on xi. Replacing the denomina-41

tor expectation by an in-batch Monte Carlo estimate yields a simple, augmentation-free contrastive42

term with concentration improving in B.43

Relation to InfoNCE. Defining sij=s(zi, zj)/τ makes Eq. (2) equivalent to an InfoNCE softmax44

where the positive logit is offset by log(B−1). This calibrates pk=1 to 1/2 when logits are equal45

(independent of B), reducing batch-size sensitivity. See Appendix for more details.46

Objective. We adopt the A-MIM upper bound [Livne et al., 2020] with the added contrastive term:47

L̂A-MIM(θ;D) = − 1
N

∑N
i=1

[
log pθ(xi|zi) + log pk=1(xi, zi) +

1
2

(
log qθ(zi|xi) + logP (zi)

)]
, (3)

where P (z) is a Normal anchor prior. The first term preserves generative fidelity; the second48

encourages global angular separation.49
2
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Figure 3: Classification accuracy across datasets and classifiers. Colors indicate model families:
cMIM (orange), MIM (green), InfoNCE (purple), VAE (blue), cVAE (red). Light shades denote
model averages. cMIM consistently outperforms all baselines across batch-sizes and metrics.

Model (Latent K × D) ESOL FreeSolv Lipophilicity Recon.
SVM MLP SVM MLP SVM MLP

MIM (1 × 512) [reproduction] 0.65 0.34 2.23 1.82 0.663 0.61 100%
cMIM (1 × 512) 0.47 0.19 2.32 1.67 0.546 0.38 100%
MIM (1 × 512) info emb 0.21 0.29 1.55 1.4 0.234 0.28 100%
cMIM (1 × 512) info emb 0.21 0.24 1.74 1.35 0.24 0.23 100%
CDDD (512) 0.33 0.94 0.4
†Seq2seq (N × 512) 0.37 0.43 1.24 1.4 0.46 0.61 100%
†Perceiver (4 × 512) 0.4 0.36 1.22 1.05 0.48 0.47 100%
†VAE (4 × 512) 0.55 0.49 1.65 3.3 0.63 0.55 46%
MIM (1 × 512) 0.58 0.54 1.95 1.9 0.66 0.62 100%
Morgan fingerprints (512) 1.52 1.26 5.09 3.94 0.63 0.61

Table 1: Comparison of models on ESOL, FreeSolv, and Lipophilicity using SVM and MLP regres-
sors, with reconstruction accuracy. Top: our results. Bottom: results from Reidenbach et al. [2023].
For †models, sequence representations were averaged to 512 dimensions. Bold: best non-MIM
results. Highlighted: best among MIM-based models. Note that CDDD training included these
classification tasks.

Informative embeddings. Instead of using z directly, we take the decoder hidden states h before50

mapping to pθ(x|z) parameters, and pool them (mean over sequence/space) to obtain hi. For51

autoregressive decoders we use teacher forcing, i.e., hi = Decoder(xi, zi). These informative52

embeddings enrich z with a context of the decoder distribution at no extra training cost. See Figure53

2a.54

3 Experiments55

Setup. We report biomolecular and biomedical classification results.56

Molecular property prediction. Following Reidenbach et al. [2023], we train on a large tranche57

of ZINC-15 Sterling and Irwin [2015] with SMILES tokenization Weininger [1988] and evaluate58

ESOL, FreeSolv, and Lipophilicity on held-out splits. We compare MIM Livne et al. [2019], cMIM,59

VAE Kingma and Ba [2015], and an InfoNCE encoder van den Oord et al. [2018]. Embeddings are60

3



either (i) the mean encoder code z, or (ii) informative embeddings h from the decoder. Downstream61

regressors are SVM/MLP (Scikit-learn defaults Pedregosa et al. [2011]). See Table 1.62

Biomedical imaging. We evaluate on MedMNIST Yang et al. [2021] as a light-weight benchmark63

for learning transferable biomedical image representations. All models share the same Perceiver-style64

encoder/decoder Jaegle et al. [2021]; InfoNCE uses the encoder only. We report accuracy across65

datasets and summarize with average ranks/z-scores. See Figure 3.66

Key Results. (i) Biomolecules. cMIM consistently improves ESOL/FreeSolv/Lipophilicity errors67

relative to MIM and VAE when using informative embeddings, and is competitive with chemical68

baselines (e.g., CDDD Winter et al. [2019]) while retaining perfect reconstruction.69

(ii) Biomedical imaging. Across MedMNIST tasks, cMIM dominates average rankings over70

MIM/InfoNCE/VAE across batch-sizes.71

(iii) Robustness. Slopes from accuracy vs. batch-size fits cluster near zero for cMIM and MIM, while72

InfoNCE increases with batch-size, confirming reduced sensitivity. cMIM, like MIM, remains stable73

even with very small batch-sizes, unlike InfoNCE which degrades as batch-size decreases.74

(iv) Generative fidelity. cMIM matches MIM reconstruction on molecules and shows slight improve-75

ments on biomedical images (Appendix Figure 6), suggesting a benign regularization effect.76

4 Related Work77

Contrastive learning. CPC/InfoNCE van den Oord et al. [2018], SimCLR Chen et al. [2020], and78

MoCo He et al. [2020] demonstrated strong representation learning but rely on augmentations and79

many negatives. Augmentation-free variants such as BYOL Grill et al. [2020] or SimSiam Chen and80

He [2021] introduce architectural asymmetries/predictors.81

Mutual-information auto-encoding. MIM Livne et al. [2019] maximizes mutual information82

while clustering latents; related MI-regularized VAEs/auto-encoders optimize information-theoretic83

surrogates but often require intricate weighting. Our contribution integrates a calibrated contrastive84

term into a probabilistic MIM, improving global discriminative geometry with minimal complexity.85

Life-science foundation modeling. Sequence-to-sequence and continuous descriptor models (e.g.,86

CDDD Winter et al. [2019]) support molecular property prediction; MedMNIST Yang et al. [2021]87

popularizes light-weight biomedical imaging benchmarks. Our results show cMIM’s unified gener-88

ative+discriminative modeling is competitive across both, and the method is directly extensible to89

multi-modal use cases.90

5 Limitations91

While cMIM improves discriminative performance and batch-size robustness, limitations remain.92

Generative evaluation is restricted to reconstruction, leaving open questions on sample quality93

and controllability. Scalability to larger models and modalities (e.g., video, long-context text) is94

untested. Performance may still depend on the similarity function, temperature τ , and the number of95

negatives, which adds computational cost. Future work should address scaling, broader modalities,96

and generative analysis.97

6 Conclusions98

We introduced cMIM, a simple augmentation-free contrastive extension to probabilistic represen-99

tation learning that improves discriminative performance while maintaining generative fidelity. On100

molecular properties Sterling and Irwin [2015], Weininger [1988], Winter et al. [2019] and biomed-101

ical imaging Yang et al. [2021], cMIM (especially with informative embeddings) outperforms102

MIM/InfoNCE/VAEs and is robust to batch-size.103

Specifically, cMIM offers a practical backbone for life-science foundation models: its factoriza-104

tion and decoder-based embeddings extend naturally to multi-modal molecular+omics or molecu-105

lar+imaging setups. Future work: (i) multi-modal joint training, (ii) scaling to larger architectures106

Jaegle et al. [2021] and datasets, and (iii) systematic studies of geometry and calibration Wang and107

Isola [2020].108
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Figure 4: (Left) A MIM model learns two factorizations of a joint distribution (encoding/decoding)
and an undirected joint. (Right) cMIM extends MIM with a binary variable k to encourage global
discriminative structure while preserving local clustering.

A Extended Formulation189

Background: Contrastive Learning190

Intuition. Contrastive learning pulls positives together and pushes negatives apart using a similarity191

score. With cosine similarity sim(zi, zj) =
zi·zj

∥zi∥ ∥zj∥ and temperature τ , define g(zi, zj) =192

exp(sim(zi, zj)/τ). The InfoNCE loss per sample is193

InfoNCE(xi,x
+
i ) = − log

(
g(zi, z

+
i )∑B

j=1 g(zi, zj)

)
. (4)

cMIM without Data Augmentation194

Intuition. We add a latent Bernoulli k that judges whether (x, z) is a matched pair. Its calibrated195

probability yields an augmentation-free contrastive term. We extend the MIM graphical model with k196

and define the joint factorizations197

qθ(x, z, k) = qθ(k | x, z) qθ(z | x) qθ(x), pθ(x, z, k) = pθ(k | x, z) pθ(x | z) pθ(z). (5)
With zi ∼ qθ(z | xi), the discriminator over k shares parameters in both paths and is Bernoulli with198

success probability199

pk=1(xi, zi) =
g(zi, zi)

g(zi, zi) + Ex′∼P(x), z′∼qθ(z|x′)[g(zi, z′)]
≈ g(zi, zi)

g(zi, zi) +
1

B−1

∑B
j=1
j ̸=i

g(zi, zj)
.

(6)
During training, k=1 because zi is sampled given xi; the expectation is approximated in-batch.200

Concentration. Intuition. The in-batch estimate of the negative mean is well-behaved for moderate201

B. Since cosine similarity lies in [−1, 1], g ∈ [e−1/τ , e1/τ ]. Hoeffding’s inequality implies the202

in-batch Monte Carlo estimate of the negative mean concentrates around its expectation:203

Pr

∣∣∣∣∣∣ 1
B−1

∑
j ̸=i

g(zi, zj)− µ

∣∣∣∣∣∣ ≥ ϵ

 ≤ 2 exp
(
− 2(B−1)ϵ2

(e1/τ−e−1/τ )2

)
. (7)

Relation to InfoNCE204

Intuition. − log pk=1 is an InfoNCE-like cross-entropy with a calibrated positive logit that removes205

batch-size dependence at logit parity. Let sij = sim(zi, zj)/τ so g(zi, zj) = exp(sij). Then from206

Eq. (6),207

pk=1 =
exp(sii)

exp(sii) +
1

B−1

∑
j ̸=i exp(sij)

=
exp

(
sii + log(B−1)

)
exp

(
sii + log(B−1)

)
+
∑

j ̸=i exp(sij)
. (8)

Thus − log pk=1 equals an InfoNCE cross-entropy where the positive logit is shifted by log(B−1).208

Calibration. If all logits are equal, pk=1 = 1/2 (independent of B) versus 1/B in standard InfoNCE.209

With cosine similarity sii = 1/τ is constant; attraction comes from the MIM term.210
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cMIM Training Objective211

Intuition. We optimize an A-MIM upper bound with an added contrastive term, preserving recon-212

struction while shaping global angular geometry. Define the mixture model213

Mθ(x, z, k) =
1
2

(
pθ(k | z,x) pθ(x | z) pθ(z) + qθ(k | z,x) qθ(z | x) qθ(x)

)
, (9)

with sampling distribution MS(x, z, k) as in MIM . The learning objective upper-bounds the negative214

mixture entropy:215

LMIM(θ) = 1
2

(
CE(MS , qθ) + CE(MS , pθ)

)
≥ HMS

(x, k) +HMS
(z)− IMS

(x, k; z). (10)

For A-MIM (sampling along the encoding path),216

LA-MIM(θ) = − 1
2 Ex∼P(x), z∼qθ(z|x), k=1

[
log pθ(k | z,x) + log pθ(x | z) + log pθ(z)

+ log qθ(k | z,x) + log qθ(z | x) + log qθ(x)
]
.

(11)

The empirical loss with anchor prior p(z) = N (0, I) is217

L̂A-MIM(θ;D) = − 1
N

N∑
i=1

(
log pθ(xi | zi) + log pk=1(xi, zi) +

1
2 (log qθ(zi | xi) + log p(zi))

)
.

(12)

B Experiment and Training Details218

To evaluate cMIM, we conduct experiments on a 2D toy example, MNIST-like images, and molecular219

property prediction (MolMIM by Reidenbach et al. [2023]). The toy example isolates the geometric220

effect of the contrastive term. For images, we examine classification, batch-size sensitivity, and221

reconstruction. For molecules, we assess reconstruction and downstream regression.222

B.1 Experiment Details and Datasets223

# Dataset Train Samples Test Samples Categories Description
1 MNIST 60,000 10,000 10 Handwritten digits
2 Fashion MNIST 60,000 10,000 10 Clothing images
3 EMNIST Letters 88,800 14,800 27 Handwritten letters
4 EMNIST Digits 240,000 40,000 10 Handwritten digits
5 PathMNIST 89,996 7,180 9 Colon tissue histology
6 DermaMNIST 7,007 2,003 7 Skin lesion images
7 OCTMNIST 97,477 8,646 4 Retinal OCT images
8 PneumoniaMNIST 9,728 2,433 2 Pneumonia chest X-rays
9 RetinaMNIST 1,600 400 5 Retinal fundus images
10 BreastMNIST 7,000 2,000 2 Breast tumor ultrasound
11 BloodMNIST 11,959 3,432 8 Blood cell microscopy
12 TissueMNIST 165,466 47,711 8 Kidney tissue cells
13 OrganAMNIST 34,581 8,336 11 Abdominal organ CT scans
14 OrganCMNIST 13,000 3,239 11 Organ CT, central slices
15 OrganSMNIST 23,000 5,749 11 Organ CT, sagittal slices

Table 2: Image classification datasets. MNIST/EMNIST (rows 1–4) are handwriting; rows 5–15 are
MedMNIST biomedical imaging tasks spanning pathology, retina, chest X-ray, ultrasound, and CT.

All models are trained unsupervised. We select the checkpoint with lowest validation loss (no224

peeking at test accuracy). For downstream tasks, we freeze the encoder–decoder and train lightweight225

classifiers on learned representations. Accuracy is not monitored during pretraining to avoid selection226

bias; training runs to convergence for fairness across models.227
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2D Toy Example. A synthetic dataset of 1000 points in 2D is initialized in the first quadrant. We228

visualize how the contrastive term in Eq. (6) shapes latent geometry.229

Image Classification on MNIST-like Datasets. We train MIM, cMIM, VAE, cVAE (VAE +230

contrastive term), and InfoNCE to convergence on MNIST Deng [2012], EMNIST (letters, digits)231

Cohen et al. [2017], and MedMNIST Yang et al. [2021]. Images are resized to 28× 28 and binarized232

when needed. We use τ = 0.1 (as in InfoNCE) after a small sweep τ ∈ {0.1, 1}. Encoder:233

Perceiver Jaegle et al. [2021] with 1 cross-attention, 4 self-attention layers, hidden size 16; 784234

pixels → 400 steps → 64-dim latent. Decoder mirrors the encoder. Training: 500k steps; batch-sizes235

{2, 5, 10, 100, 200}; Adam lr 10−3; WSD scheduler Hu et al. [2024]. Classifiers: KNN (k=5; cosine236

& Euclidean) and one-hidden-layer MLP (width 400, Adam 10−3, 1000 steps).237

Molecular Property Prediction. We use ZINC-15 Sterling and Irwin [2015] with SMILES238

Weininger [1988], following Reidenbach et al. [2023]. Targets: ESOL, FreeSolv, Lipophilicity. Here239

τ = 1; both MIM and cMIM train for 250k steps. We evaluate SVM/MLP regressors with/without240

informative embeddings and compare to CDDD Winter et al. [2019]. Additional architectural details241

are below.242

B.2 Image Classification243

Architecture.244

• Encoder: flatten → linear to (784, 16)→ Perceiver to (400, 16)→ linear to 1 → layer norm245

→ linear to 64.246

• qθ(z | x): Gaussian with mean/variance from linear heads on encoder output.247

• Decoder: linear 64→(64, 16)→ Perceiver (400, 16)→ linear to 1 → layer norm → linear248

to 784 → reshape to 28× 28.249

• pθ(x | z): Bernoulli with logits predicted from decoder output.250

• Prior: standard Normal.251

All models use Adam lr 1e−3 with WSD (10% warmup/decay) for 500k steps, independent of252

batch-size.253

B.3 Molecular Property Prediction254

Dataset. We train on a tranche of ZINC-15 [Sterling and Irwin, 2015], reactive & annotated, with255

molecular weight ≤ 500Da and logP ≤ 5. We select 730M molecules and split into train/val/test256

(723M train). To isolate framework effects, we hold architecture and hyperparameters fixed across257

models. For context, Chemformer used 100M molecules [Sterling and Irwin, 2015] (about 20×258

CDDD’s 72M from ZINC-15+PubChem [Kim et al., 2018]); MoLFormer-XL used ∼1.1B molecules.259

Data augmentation. Following Irwin et al. [2022], we use masking and SMILES enu-260

meration [Weininger, 1988]. Masking (10%) is used only for MegaMolBART. MegaMol-261

BART/PerBART/MolVAE apply SMILES enumeration with different encoder/decoder permutations;262

MolMIM improves when encoder and decoder see the same permutation, simplifying training.263

Model details. Implemented with NeMo Megatron [Kuchaiev et al., 2019]. RegEx tokenizer with264

523 tokens [Bird et al., 2009]. Encoders/decoders: 6 layers, hidden size 512, 8 heads, FFN 2048.265

Perceiver-based models define K (hidden length) with H=K ×D total hidden size (cf. Fig. 2a).266

Params: MegaMolBART 58.9M; PerBART 64.6M; MolVAE/MolMIM 65.2M. MolVAE uses β-VAE267

[Higgins et al., 2017] with β = 1/D.268

Optimization. Adam [Kingma and Ba, 2015] with learning rate 1.0, betas (0.9, 0.999), ϵ=10−8,269

weight decay 0. Noam scheduler [Vaswani et al., 2017] (warm-up ratio 0.008; min lr 1e−5). Max270

sequence length 512; dropout 0.1; local batch 256; global batch 16384. Training: 1,000,000 steps,271

fp16, 4× nodes, 16× V100 32GB/node. MolVAE also reported with β = 1/H; we found this272

balances rate/distortion [Alemi et al., 2018]. MolMIM does not require β tuning.273
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(a) Step 0 (b) Step 200 (c) Step 400 (d) Step 4200

Figure 5: Contrastive term induces angular uniformity. Effect of Eq. (6) on a 2D toy example.
Each panel shows latent space (left), angle histogram (middle), and radius histogram (right). From
(a) initialization to (d) 4200 steps, cMIM distributes points uniformly in angle while allowing radii to
vary, complementing MIM ’s clustering and improving separability.
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Figure 6: Generative fidelity is preserved or improved. (a) Molecular data: cMIM (yellow)
and MIM (pink) exhibit comparable validation reconstruction loss. (b) Images: cMIM achieves
better average per-example Bernoulli log-likelihood (-96.25) than MIM (-109.64), a 12.2% relative
improvement, suggesting a benign regularization effect. (All likelihoods are averaged per example;
for images we report mean Bernoulli log-likelihood over pixels.)

C Additional Results274

C.1 Effects of cMIM Loss on 2D Toy Example275

We minimize the negative log-likelihood associated with Eq. (6) using τ=1. As expected Wang and276

Isola [2020], angular uniformity emerges without collapsing radii, indicating that the contrastive term277

integrates smoothly with the MIM objective.278

C.2 Reconstruction279

C.3 MNIST-like Image Classification280
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Figure 7: Z-scores across evaluators and batch-sizes. cMIM attains higher average z-scores than
MIM/InfoNCE/VAE across KNN and MLP evaluators, with reduced variance across batch-sizes.
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Figure 8: Average rankings (lower is better). Across evaluators and batch-sizes, cMIM consistently
attains top rankings with narrow error bars, while InfoNCE varies markedly with batch-size.
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