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Abstract

We present Contrastive Mutual Information Machine (cMIM), a probabilistic
framework that adds a contrastive objective to the Mutual Information Machine
(MIM) [Livne et al.| [2019]], yielding representations that are effective for both
discriminative and generative tasks. Unlike conventional contrastive learning
van den Oord et al.| [2018]], |Chen et al.| [2020]], [He et al.| [2020]], cMIM does not
require positive data augmentations and exhibits reduced sensitivity to batch size.
We further introduce informative embeddings, a generic training-free method to
extract enriched features from decoder hidden states of encoder—decoder models.

We evaluate cMIM on life-science tasks, including molecular property predic-
tion on ZINC-15Sterling and Irwin/[2015]], Weininger| [1988]] (ESOL, FreeSolv,
Lipophilicity) and biomedical image classification (MedMNIST |Yang et al.|[2021]]).
cMIM consistently improves downstream accuracy over MIM and InfoNCE base-
lines while maintaining comparable reconstruction quality. These results indicate
cMIM is a promising foundation-style representation learner for biomolecular and
biomedical applications and is readily extendable to multi-modal settings (e.g.,
molecules + omics + imaging).

1 Introduction

Learning representations that support both unknown downstream prediction tasks and generative use
cases is central to life-science machine learning, where data span molecules, sequences, imaging, and
multi-omics. Contrastive losses such as InfoNCE |van den Oord et al.|[2018]], |Chen et al.| [2020] are
effective but often hinge on meaningful augmentations and large batches. Probabilistic auto-encoders
maximize information about inputs, yet their latent geometry can be suboptimal for discriminative
tasks|Livne et al.|[2019]], Reidenbach et al.|[2023]].

We propose ¢cMIM, a simple contrastive extension of MIM that (i) introduces a discriminator over pair-
similarity without requiring positive augmentations, (ii) aligns local clustering with global angular
separation, and (iii) remains robust to batch-size via Monte Carlo expectations [Hoeffding| [1963]].
We also propose informative embeddings, obtained from decoder hidden states, that substantially
improve downstream performance without extra training.

We evaluate cMIM on molecular property prediction on ZINC-15|Sterling and Irwin|[2015]],[Weininger
[1988]] (ESOL, FreeSolv, Lipophilicity) and biomedical imaging with MedMNIST |Yang et al.| [[2021]].
Experiments show consistent gains over MIM and InfoNCE with reduced batch-size sensitivity.
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Algorithm 1 Learning parameters 6 of cMIM

Require: Samples from dataset P ()

1: while not converged do

2: D+« {zj,z; ~qo(z | x)P(x)}L, {Sample a batch}

3 Lawiv = —5 X0, (logpe (@i | zi) +log pr=1(m:, z:) + 5 (log ge(z: | =) + log p(2:)))
4 0+ 60—n VgﬁA,MIM {Reparameterized gradients}

5: end while

Figure 1: Training algorithm for cMIM.
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Figure 2: Left: (a) Informative embeddings h are taken from decoder hidden states before mapping
to pe(x | z). For autoregressive decoders we use teacher forcing. Right: (b) Distribution of slopes
from linear fits of accuracy vs. batch-size for different models. Each point corresponds to the average
z-score of a model trained on MNIST-like datasets. Both MIM and cMIM are not sensitive to
batch-size.

2 Formulation

Preliminaries. Let x denote the observation and z the latent code. MIM is a probabilistic auto-
encoder that maximizes mutual information between x and z while encouraging clustered latents via
entropy minimization.

Contrastive variable and objective. We introduce a binary variable & that indicates whether (x, z)
is a matched pair (k=1) or a mismatched pair (k=0). A matched pair is defined as z; ~ go(z|x;).
We define encoder/decoder factorizations with a discriminator over k:

a0(x, 2, k) = qo(k|x, 2) go(2|x) g0(x), po(®,2,k) = po(k|x, z) po(x|2) po(2). (1)
Let z; ~ qo(z|;). Using a temperature-scaled cosine similarity s(z;, z;)/7 with g;; = g(z;, 2;) =
exp(s(zi,z;)/T), we set

Gii - Gii

g(zi7 zl) + Em/NP(m), z'~qe (z|w/) [g(zza Z/)] Gii + ﬁ ZJ#'L ng
Training samples always satisfy k=1 since z; is drawn conditionally on ;. Replacing the denomina-

tor expectation by an in-batch Monte Carlo estimate yields a simple, augmentation-free contrastive
term with concentration improving in B.

@

pk:1(33ia Zi) =

Relation to InfoNCE. Defining s;;=s(z;, z;)/7 makes Eq. (2)) equivalent to an InfoNCE softmax
where the positive logit is offset by log(B—1). This calibrates py—; to 1/2 when logits are equal
(independent of B), reducing batch-size sensitivity. See Appendix for more details.

Objective. We adopt the A-MIM upper bound [Livne et al.,2020] with the added contrastive term:
ZA-MIM(0§ D) = —% é\/':l [1ng9($L|ZZ) +logpk:1(wi,zi) + %<IOgQQ(ZL|.’Dz) +1OgP(Z1)):|, (3)

where P(z) is a Normal anchor prior. The first term preserves generative fidelity; the second
encourages global angular separation. 5
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Figure 3: Classification accuracy across datasets and classifiers. Colors indicate model families:
cMIM (orange), MIM (green), InfoNCE (purple), VAE (blue), cVAE (red). Light shades denote
model averages. cMIM consistently outperforms all baselines across batch-sizes and metrics.

ESOL FreeSolv Lipophilicity || Recon.
Model (Latent K x D) SVM | MLP || SVM | MLP || SVM | MLP
MIM (1 x 512) [reproduction] || 0.65 | 0.34 223 | 1.82 || 0.663 | 0.61 100%
cMIM (1 x 512) 0.47 | 0.19 2.32 | 1.67 || 0.546 | 0.38 100%
MIM (1 x 512) info emb 0.21 | 0.29 1.55 1.4 0.234 | 0.28 100%
cMIM (1 x 512) info emb 0.21 | 0.24 1.74 | 1.35 0.24 | 0.23 100%
CDDD (512) 0.33 0.94 0.4
TSeq2seq (N x 512) 0.37 | 0.43 1.24 1.4 0.46 | 0.61 100%
fPerceiver (4 x 512) 0.4 0.36 1.22 | 1.05 0.48 | 0.47 100%
TVAE (4 x 512) 0.55 | 0.49 1.65 3.3 0.63 | 0.55 46%
MIM (1 x 512) 0.58 | 0.54 1.95 1.9 0.66 | 0.62 100%
Morgan fingerprints (512) | 152 ] 1.26 || 5.09 | 3.94 ]| 0.63 | 0.61 ||

Table 1: Comparison of models on ESOL, FreeSolv, and Lipophilicity using SVM and MLP regres-
sors, with reconstruction accuracy. Top: our results. Bottom: results from [Reidenbach et al.|[2023].
For tmodels, sequence representations were averaged to 512 dimensions. Bold: best non-MIM
results. Highlighted: best among MIM-based models. Note that CDDD training included these
classification tasks.

Informative embeddings. Instead of using z directly, we take the decoder hidden states h before
mapping to pg(x|z) parameters, and pool them (mean over sequence/space) to obtain h;. For
autoregressive decoders we use teacher forcing, i.e., h; = Decoder(x;, z;). These informative
embeddings enrich z with a context of the decoder distribution at no extra training cost. See Figure

Ral

3 Experiments

Setup. We report biomolecular and biomedical classification results.

Molecular property prediction. Following Reidenbach et al.| [2023]], we train on a large tranche
of ZINC-15 [Sterling and Trwin| [2015]] with SMILES tokenization [1988] and evaluate
ESOL, FreeSolv, and Lipophilicity on held-out splits. We compare MIM [Livne et al.[[2019]], cMIM,

VAE Kingma and Ba|[2015]], and an InfoNCE encoder [van den Oord et al.|[2018]]. Embeddings are
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either (i) the mean encoder code z, or (ii) informative embeddings h from the decoder. Downstream
regressors are SVM/MLP (Scikit-learn defaults |Pedregosa et al.|[2011]). See Table

Biomedical imaging. We evaluate on MedMNIST |Yang et al.| [2021]] as a light-weight benchmark
for learning transferable biomedical image representations. All models share the same Perceiver-style
encoder/decoder Jaegle et al.[[2021]]; InfoNCE uses the encoder only. We report accuracy across
datasets and summarize with average ranks/z-scores. See Figure[3]

Key Results. (i) Biomolecules. cMIM consistently improves ESOL/FreeSolv/Lipophilicity errors
relative to MIM and VAE when using informative embeddings, and is competitive with chemical
baselines (e.g., CDDD Winter et al.|[2019]]) while retaining perfect reconstruction.

(ii) Biomedical imaging. Across MedMNIST tasks, cMIM dominates average rankings over
MIM/InfoNCE/VAE across batch-sizes.

(iii) Robustness. Slopes from accuracy vs. batch-size fits cluster near zero for cMIM and MIM, while
InfoNCE increases with batch-size, confirming reduced sensitivity. cMIM, like MIM, remains stable
even with very small batch-sizes, unlike InfoNCE which degrades as batch-size decreases.

(iv) Generative fidelity. cMIM matches MIM reconstruction on molecules and shows slight improve-
ments on biomedical images (Appendix Figure[6), suggesting a benign regularization effect.

4 Related Work

Contrastive learning. CPC/InfoNCE van den Oord et al.| [2018]], SimCLR |Chen et al.| [2020], and
MoCo He et al.|[2020] demonstrated strong representation learning but rely on augmentations and
many negatives. Augmentation-free variants such as BYOL |Grill et al.|[2020] or SimSiam |Chen and
He| [2021] introduce architectural asymmetries/predictors.

Mutual-information auto-encoding. MIM |Livne et al.|[2019] maximizes mutual information
while clustering latents; related MI-regularized VAEs/auto-encoders optimize information-theoretic
surrogates but often require intricate weighting. Our contribution integrates a calibrated contrastive
term into a probabilistic MIM, improving global discriminative geometry with minimal complexity.

Life-science foundation modeling. Sequence-to-sequence and continuous descriptor models (e.g.,
CDDD [Winter et al.|[2019]) support molecular property prediction; MedMNIST [Yang et al.| [2021]]
popularizes light-weight biomedical imaging benchmarks. Our results show cMIM’s unified gener-
ative+discriminative modeling is competitive across both, and the method is directly extensible to
multi-modal use cases.

5 Limitations

While cMIM improves discriminative performance and batch-size robustness, limitations remain.
Generative evaluation is restricted to reconstruction, leaving open questions on sample quality
and controllability. Scalability to larger models and modalities (e.g., video, long-context text) is
untested. Performance may still depend on the similarity function, temperature 7, and the number of
negatives, which adds computational cost. Future work should address scaling, broader modalities,
and generative analysis.

6 Conclusions

We introduced cMIM, a simple augmentation-free contrastive extension to probabilistic represen-
tation learning that improves discriminative performance while maintaining generative fidelity. On
molecular properties |Sterling and Irwin| [2015]], Weininger| [[1988]], Winter et al.|[2019] and biomed-
ical imaging Yang et al| [2021], cMIM (especially with informative embeddings) outperforms
MIM/InfoNCE/VAE:s and is robust to batch-size.

Specifically, cMIM offers a practical backbone for life-science foundation models: its factoriza-
tion and decoder-based embeddings extend naturally to multi-modal molecular+omics or molecu-
lar+imaging setups. Future work: (i) multi-modal joint training, (ii) scaling to larger architectures
Jaegle et al|[2021] and datasets, and (iii) systematic studies of geometry and calibration|[Wang and
Isolal [2020].
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Figure 4: (Left) A MIM model learns two factorizations of a joint distribution (encoding/decoding)
and an undirected joint. (Right) cMIM extends MIM with a binary variable k to encourage global
discriminative structure while preserving local clustering.

e A Extended Formulation

190 Background: Contrastive Learning

191 Intuition. Contrastive learning pulls positives together and pushes negatives apart using a similarity
192 score. With cosine similarity sim(z;,z;) = Tz, and temperature 7, define 9(zi,25) =
i J

193 exp(sim(z;, z;)/7). The InfoNCE loss per sample is

ot
InfoNCE(z;, ) = —log<g(z“z’)> . &)
Zj:l 9(zi, 2;)

194 c¢MIM without Data Augmentation

195 Intuition. We add a latent Bernoulli k that judges whether (i, z) is a matched pair. Its calibrated
196 probability yields an augmentation-free contrastive term. We extend the MIM graphical model with k
197 and define the joint factorizations

go(x,z,k) = qo(k [z, 2) qo(z | x)qo(x),  po(x,2,k) =po(k|x,2)po(z | 2)po(2). (5)
198 With z; ~ gg(2z | @;), the discriminator over k shares parameters in both paths and is Bernoulli with
199 success probability

Dot (T4, 2i) = 9(zi, i) ~ 9(zi, i)
o= iy 2i) = ~ .
g(zi7 zi) + Em’NP(z), z’wqg(z\m’)[g(ziv Z/)] g(Zi7 Zi) + ﬁ ZJBZl g(Zi, Zj)
J#i

(6)

200 During training, k=1 because z; is sampled given x;; the expectation is approximated in-batch.

201 Concentration. Intuition. The in-batch estimate of the negative mean is well-behaved for moderate
202 B. Since cosine similarity lies in [~1,1], g € [e~'/7,e'/7]. Hoeffding’s inequality implies the
203 in-batch Monte Carlo estimate of the negative mean concentrates around its expectation:

—1)e2
Pr( |55 D 0(zi2) — | = €| < 2exp(— 22 ) - )
J#

204 Relation to InfoNCE

205 [Intuition. —log pr—1 is an InfoNCE-like cross-entropy with a calibrated positive logit that removes
206 batch-size dependence at logit parity. Let s;; = sim(z;, 2;)/7 s0 g(z;, z;) = exp(s;;). Then from

207 Eq. (6),
exp(si;) exp (84 + log(B—1)) ®)
Pk=1 = = .
exp(si;) + ﬁ Zj;éi exp(si;)  exp (Su + log(B—l)) + Zj;ﬁi exp(si;)
208 Thus — log pr—1 equals an InfoNCE cross-entropy where the positive logit is shifted by log(B—1).
200 Calibration. If all logits are equal, py—; = 1/2 (independent of B) versus 1/B in standard InfoNCE.
210 With cosine similarity s;; = 1/7 is constant; attraction comes from the MIM term.




211 ¢cMIM Training Objective

212 Intuition. We optimize an A-MIM upper bound with an added contrastive term, preserving recon-
213 struction while shaping global angular geometry. Define the mixture model

Mo(z,2,k) = 2 (po(k | z,2) po(x | 2) po(2) + qo(k | 2,) qo(z | ) go()), 9

214 with sampling distribution Mg (@, z, k) as in MIM . The learning objective upper-bounds the negative
215 mixture entropy:

LMIM(G) - %(CE(M57 q&) + CE(MS7p9)) Z HMs(ma k) + HMS (Z) - IMS (.’I}, k7 Z). (10)
216 For A-MIM (sampling along the encoding path),

[/A-MIM(H) = _% EwNP(m), zrge(z|x), k=1 |:10gp9(k | z,ac) + lngg(JI | Z) + logpe(z)

(11)
+loggs(k | z,@) +logqo(z | ) + 10gqe(w)]-
217 The empirical loss with anchor prior p(z) = N(0,1) is
N
Lavm(0;D) = —% (10gp9(fb‘i | 2;) + log pr—1(®i, z;) + 3(log qo (2 | ;) + Ing(zi)))-
i=1
(12)

215 B Experiment and Training Details

219 To evaluate cMIM, we conduct experiments on a 2D toy example, MNIST-like images, and molecular
220 property prediction (MolMIM by |[Reidenbach et al.|[2023])). The toy example isolates the geometric
221 effect of the contrastive term. For images, we examine classification, batch-size sensitivity, and
222 reconstruction. For molecules, we assess reconstruction and downstream regression.

223 B.1 Experiment Details and Datasets

# Dataset Train Samples Test Samples Categories Description

1 MNIST 60,000 10,000 10 Handwritten digits

2 Fashion MNIST 60,000 10,000 10 Clothing images

3 EMNIST Letters 88,800 14,800 27 Handwritten letters

4  EMNIST Digits 240,000 40,000 10 Handwritten digits

5  PathMNIST 89,996 7,180 9 Colon tissue histology

6 DermaMNIST 7,007 2,003 7 Skin lesion images

7  OCTMNIST 97,477 8,646 4 Retinal OCT images

8  PneumoniaMNIST 9,728 2,433 2 Pneumonia chest X-rays
9 RetinaMNIST 1,600 400 5 Retinal fundus images
10  BreastMNIST 7,000 2,000 2 Breast tumor ultrasound
11 BloodMNIST 11,959 3,432 8 Blood cell microscopy
12 TissueMNIST 165,466 47711 8 Kidney tissue cells

13 OrganAMNIST 34,581 8,336 11 Abdominal organ CT scans
14 OrganCMNIST 13,000 3,239 11 Organ CT, central slices
15 OrganSMNIST 23,000 5,749 11 Organ CT, sagittal slices

Table 2: Image classification datasets. MNIST/EMNIST (rows 1-4) are handwriting; rows 5-15 are
MedMNIST biomedical imaging tasks spanning pathology, retina, chest X-ray, ultrasound, and CT.

224 All models are trained unsupervised. We select the checkpoint with lowest validation loss (no
225 peeking at test accuracy). For downstream tasks, we freeze the encoder—decoder and train lightweight
226 classifiers on learned representations. Accuracy is not monitored during pretraining to avoid selection
227 bias; training runs to convergence for fairness across models.
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2D Toy Example. A synthetic dataset of 1000 points in 2D is initialized in the first quadrant. We
visualize how the contrastive term in Eq. (6) shapes latent geometry.

Image Classification on MNIST-like Datasets. We train MIM, cMIM, VAE, cVAE (VAE +
contrastive term), and InfoNCE to convergence on MNIST Deng| [2012]], EMNIST (letters, digits)
Cohen et al.|[2017], and MedMNIST |Yang et al.| [2021]. Images are resized to 28 x 28 and binarized
when needed. We use 7 = 0.1 (as in InfoNCE) after a small sweep 7 € {0.1,1}. Encoder:
Perceiver Jaegle et al.|[2021] with 1 cross-attention, 4 self-attention layers, hidden size 16; 784
pixels — 400 steps — 64-dim latent. Decoder mirrors the encoder. Training: 500k steps; batch-sizes
{2,5,10,100,200}; Adam Ir 10~3; WSD schedulerHu et al.|[2024]. Classifiers: KNN (k=>5; cosine
& Euclidean) and one-hidden-layer MLP (width 400, Adam 102, 1000 steps).

Molecular Property Prediction. We use ZINC-15 [Sterling and Irwin| [2015] with SMILES
Weininger [1988]], following Reidenbach et al.|[2023]]. Targets: ESOL, FreeSolv, Lipophilicity. Here
7 = 1; both MIM and cMIM train for 250k steps. We evaluate SVM/MLP regressors with/without
informative embeddings and compare to CDDD [Winter et al|[2019]]. Additional architectural details
are below.

B.2 Image Classification
Architecture.

* Encoder: flatten — linear to (784, 16) — Perceiver to (400, 16) — linear to 1 — layer norm
— linear to 64.

* go(z | ©): Gaussian with mean/variance from linear heads on encoder output.

* Decoder: linear 64 — (64, 16) — Perceiver (400, 16) — linear to 1 — layer norm — linear
to 784 — reshape to 28 x 28.

* pg(x | z): Bernoulli with logits predicted from decoder output.

¢ Prior: standard Normal.

All models use Adam Ir 1le—3 with WSD (10% warmup/decay) for 500k steps, independent of
batch-size.

B.3 Molecular Property Prediction

Dataset. We train on a tranche of ZINC-15 [Sterling and Irwin, |2015]], reactive & annotated, with
molecular weight < 500Da and logP < 5. We select 730M molecules and split into train/val/test
(723M train). To isolate framework effects, we hold architecture and hyperparameters fixed across
models. For context, Chemformer used 100M molecules [Sterling and Irwinl [2015]] (about 20 x
CDDD’s 72M from ZINC-15+PubChem [Kim et al., 2018|]); MoLFormer-XL used ~1.1B molecules.

Data augmentation. Following |[Irwin et al,| [2022]], we use masking and SMILES enu-
meration [Weininger, |1988[]. Masking (10%) is used only for MegaMolBART. MegaMol-
BART/PerBART/MolVAE apply SMILES enumeration with different encoder/decoder permutations;
MoIMIM improves when encoder and decoder see the same permutation, simplifying training.

Model details. Implemented with NeMo Megatron [Kuchaiev et al.,[2019]]. RegEx tokenizer with
523 tokens [Bird et al.|2009]]. Encoders/decoders: 6 layers, hidden size 512, 8 heads, FFN 2048.
Perceiver-based models define K (hidden length) with H = K x D total hidden size (cf. Fig. .
Params: MegaMolBART 58.9M; PerBART 64.6M; Mol VAE/MoIMIM 65.2M. MolVAE uses [3-VAE
[Higgins et al.,|2017] with 8 = 1/D.

Optimization. Adam [Kingma and Ba, 2015] with learning rate 1.0, betas (0.9,0.999), e=10"%,
weight decay 0. Noam scheduler [[Vaswani et al., [2017] (warm-up ratio 0.008; min Ir 1le—5). Max
sequence length 512; dropout 0.1; local batch 256; global batch 16384. Training: 1,000,000 steps,
fp16, 4x nodes, 16x V100 32GB/node. MolVAE also reported with 8 = 1/H; we found this
balances rate/distortion [Alemi et al.,|2018|]. MoIMIM does not require /3 tuning.
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(c) Step 400 (d) Step 4200

(a) Step O (b) Step 200
Figure 5: Contrastive term induces angular uniformity. Effect of Eq. (6) on a 2D toy example.
Each panel shows latent space (left), angle histogram (middle), and radius histogram (right). From
(a) initialization to (d) 4200 steps, cMIM distributes points uniformly in angle while allowing radii to
vary, complementing MIM ’s clustering and improving separability.

Per-Dataset Comparison: MIM vs cMIM
log p(x | z) Reconstruction Loss

0.002

O
0.0015 x 10
s
o
0.001 2 _500{ mEE MIM
0.0005 R A I A Y
RS &q‘\&e‘ FEEE IS Q@a R
global_step & & & &S FF S E &S &
3 AR PP & (&Q@«o
100k 120k 140k 160k 180k 200k 220 Dataset <
(a) ZINC15 validation loss (b) MNIST-like test log-likelihood

Figure 6: Generative fidelity is preserved or improved. (a) Molecular data: cMIM (yellow)
and MIM (pink) exhibit comparable validation reconstruction loss. (b) Images: cMIM achieves
better average per-example Bernoulli log-likelihood (-96.25) than MIM (-109.64), a 12.2% relative
improvement, suggesting a benign regularization effect. (All likelihoods are averaged per example;
for images we report mean Bernoulli log-likelihood over pixels.)

C Additional Results

C.1 Effects of cMIM Loss on 2D Toy Example
We minimize the negative log-likelihood associated with Eq. (@) using 7=1. As expected[Wang and|

[2020]], angular uniformity emerges without collapsing radii, indicating that the contrastive term
integrates smoothly with the MIM objective.

C.2 Reconstruction

C.3 MNIST-like Image Classification
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Figure 7: Z-scores across evaluators and batch-sizes. cMIM attains higher average z-scores than
MIM/InfoNCE/VAE across KNN and MLP evaluators, with reduced variance across batch-sizes.
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Figure 8: Average rankings (lower is better). Across evaluators and batch-sizes, cMIM consistently
attains top rankings with narrow error bars, while InfoNCE varies markedly with batch-size.

12



	Introduction
	Formulation
	Experiments
	Related Work
	Limitations
	Conclusions
	Extended Formulation
	Experiment and Training Details
	Experiment Details and Datasets
	Image Classification
	Molecular Property Prediction

	Additional Results
	Effects of cMIM Loss on 2D Toy Example
	Reconstruction
	MNIST-like Image Classification


