STAT: Skill-Targeted Adaptive Training

Yinghui He* Abhishek Panigrahi* Yong Lin Sanjeev Arora
Princeton Language and Intelligence, Princeton University
{yh0068, ap34, yl7690, arora}@princeton.edu

Abstract

Language models often show little to no improvement (i.e., “saturation”) when
trained via vanilla supervised fine-tuning (SFT) on data similar to what they
saw in their training set (e.g., MATH). We introduce a new fine-tuning strategy,
STAT, to train such a student model by using the metacognition ability of a
stronger large language model (LLM) as the teacher. The teacher uses the task
dataset to create a list of skills needed for the task, and then labels each data
point with its required skills [Didolkar et al., 2024]. By monitoring the student’s
answers, the teacher creates a Missing-Skill-Profile for the student, tracking
how often they failed to apply each skill in their responses. We use this idea to
build a modified training set in one of two ways. In STAT-Sel, the teacher uses
an existing set of training examples but adaptively reweights them according to
the Missing-Skill-Profile. In STAT-Syn, the teacher synthesizes additional
examples involving missing skills. Across extensive experiments on Llama and
Qwen models, our methods yield improvements of up to 7.5% on MATH, whereas
SFT provides only limited gains. Furthermore, STAT enhances performance on
out-of-distribution benchmarks (e.g., AIME24/25, AMC23, etc.) by an average
of 4.6%. Crucially, we find that STAT is complementary to RL via GRPO [Shao
et al., 2024]: after the model is improved using STAT to address skill gaps, GRPO
continues to add further gains. We conclude that skill-targeted adaptive training
should broadly improve current training pipelines.

1 Introduction

Language models trained with next-token prediction and fine-tuning achieve strong results on various
tasks. However, this process is often inefficient and data hungry [Kaplan et al., 2020, Muennighoff
et al., 2023, Zhang et al., 2024, Villalobos et al., 2024], with models quickly reaching a saturation
point for a fixed dataset whereby further training does not help performance. Existing strategies
to tackle this saturation aim at adapting the training data distribution using gradient or embedding
features to target good validation loss [Xia et al., 2024, Yu et al., 2024b]. However, this strategy
can fail when validation loss is coarse enough to capture generation mistakes of already saturated
models. We propose to address the saturation problem by drawing inspiration from pedagogical
practices rooted in cognitive science, which customize training to specially target the student’s
skill-deficiencies [Bandura and Walters, 1977, Hattie and Timperley, 2007].

How can we effectively use today’s strong teacher models to design better training
strategies to help small models overcome their saturation?

We use growing line of research in LLM meta-cognition [Didolkar et al., 2024, Kaur et al., 2024],
which leverages the predictive abilities of frontier LLMs to reason about the high-level skills required
to solve a given task, as well as the skills actually being used in the student’s answer. Thus, in principle,

*Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Efficient Reasoning.

o) far = @), skillMap Skill-based :
- = * training question distribution :
Student Small . &4 :
model dataset Py : "
- Skill2 Skill3
1k MATH . M_Odel SPElelC . ! -
Reward testsamples Missing-SKill-Profile Map
filtering .
Frequency . Ql Q2 Ql Q4
Synthesize
- skill-targeted 8 L L &
3}3‘\ Missing skill questions Seterrerersssssserassaresseged
J identification STAT-sel
STAT-syn
Solving Complex Missing skill Solve & Filter '
equations number

answers

Figure 1: STAT is a three-stage skill-targeted data creation method for supervised fine-tuning (SFT). Stage 1:
Identify difficult questions for each model using reward filtering on model responses. Stage 2: Use frontier LLMs
to analyze the model responses and build a model-specific Missing-Skill-Profile. Stage 3: Use a pre-constructed
SkillMap to map the missing skill distribution to a training question distribution, which constitutes the STAT-Sel
data. STAT-Syn synthesizes new questions using frontier LLMs targeted to the missing skills.

frontier LLMs can act as the teacher who guides the training process of the student model, actively
monitoring the student’s competence on individual skills and adjusting their training examples.

Our three-stage pipeline profiles missing skills in difficult questions for an SLM using a frontier
LLM, and creates targeted training dataset for the missing skills. On Llama-Instruct and Qwen
models with MATH, both methods can achieve upto 7.5% gains over naive fine-tuning, with benefits
extending out-of-distribution. Our proposed methods can further supplement performance with
reinforcement-learning (RL). Extensive ablations show that models struggle with basic computational
skills and our proposed methods are effective at addressing them.

2 Designing STAT

Let Q be the set of test set questions, out of which we use a subset le as validation data and
Qmﬁ: Q\le as evaluation data. We also have access to a set of training questions P. We aim to
build a targeted training dataset P q;.geteq to train the model further. We use skill-aware strategies
from [Didolkar et al., 2024], which we describe in this section. The strategy develops a set of skills S
that are necessary to solve the questions in the task, enlisted from a large model like GPT-40. Then,
we define SkillMap : S — P to be a map between a skill and the set of questions from training
dataset that require the skill to be solved, which we will also get by prompting the same LLM.

Stage 1: Detection of difficult questions via reward filtering. From Q"“, we identify a
model-specific set of difficult questions Q;’;}éwh via a carefully designed reward-filtering method.
Accordingly, we create Q' from Q"*. We only utilize QL. in our data creation pipeline,
while leaving Qﬁff?itcuh exclusive for evaluation. More details are in Section B.

Stage 2: Constructing model-specific Missing-Skill-Profile. ~ For each difficult question ¢ in
Quel ., we use a frontier LLM (GPT-40-mini) to predict the set of skills in S that are missing in the
model’s response. We pool all the missing skills to get a Missing-Skill-Profile. Each skill is repeated
by the number of difficult questions that are linked with this skill as missing by the frontier LLM. We
give all details of the prompt in Section D.

Stage 3: Selecting or synthesizing skill-based training data. We create Py, geteq in this stage.
For STAT-Sel, we use the training dataset P itself to subsample questions that are annotated with
skills in the Missing-Skill-Profile. We loop through all skills from Missing-Skill-Profile and sample
multiple questions from P that are mapped to that particular skill by referring to our SkillMap.

For STAT-Syn, we generate new synthetic questions using a frontier LLM. We loop through all skills

from Missing-Skill-Profile. For each selected skill, we provide 3 in-context examples randomly
sampled from P that have been mapped to the sampled skill in SkillMap, and ask the frontier LLM

MATH-perturb AIME

Methods MATH MATHP MATH? GSMS8K AMC23 Avg.
simple hard 2024 2025
Llama-3.2-3B-Instruct + SFT
Base Model 44.0 18.2 21.9 73.0 21.7 33.7 12.2 333 167 305
MATH-Train 44.8 22.9 21.0 75.1 20.8 33.0 122 30.0 20.0 31.1
MATH-Augment 452 23.9 23.8 77.8 23.8 35.1 12.5 30.0 133 317
MATH-Hard 45.6 24.9 23.3 78.2 21.6 38.0 11.8 300 267 333
Embed-Sel 46.0 26.5 20.5 76.6 21.6 36.2 14.7 36.7 167 328
Embed-Syn 48.8 2713 19.5 78.4 22.7 36.9 133 267 233 330
STAT-Sel 515 266 257 802 247 398 133 433 233 | 365
STAT-Syn 502 3.7 262 792 239 390 147 400 300 372
+ GRPO
Base Model 454 24.4 233 77.4 25.8 38.4 11.8 333 33 318
MATH-Train 46.4 28.4 28.6 80.7 29.7 37.6 125 367 100 345
MATH-Augment 47.4 31.6 28.6 81.4 30.6 37.6 14.0 36.7 333 379
MATH-Hard 494 332 28.6 80.3 31.3 39.1 154 433 133 37.1
Embed-Sel 50.4 37.5 23.8 80.5 32.0 38.0 16.8 36.7 20.0 388
Embed-Syn 49.7 37.8 19.5 80.6 339 39.1 16.8 367 233 38.6
STAT-Sel 52.2 35.0 324 81.8 34.2 427 17.6 433 267 407
STAT-Syn 51.0 391 290 820 319 430 158 467 333 413

Table 1: Improvements on various math benchmarks from applying STAT. Results under ‘+SFT’ show the
performance of SFT models trained with each method, while ‘+GRPO’ shows the performance after applying
GRPO on top of the corresponding SFT models. Our methods, STAT-Sel and STAT-Syn, achieve an average gain
of up to 6.7% over the base model, with strong OOD performances (AMC23 results reported on average @64,
AIME on pass@64). Applying GRPO on top of fine-tuning with STAT further enhances these improvements by
~4%. Full results are provided for Qwen2.5-3B and Llama-3.2-1B-Instruct in Table 6, Section E.

to generate multiple questions along with 3 responses per question by referring to the provided
in-context examples. We keep only those questions where the frontier LLM is consistent across at
least 2 of its responses, and keep only those question-answer pairs in our training set. The algorithm
for both methods is given in Section C.1.

3 Experiments

3.1 Experimental Setup

Datasets. All training data for STAT and the baselines are either selected or synthesized from the
MATH dataset (7.5k train / 5k test) [Hendrycks et al., 2021], with the 5k test set randomly split into
1k validation and 4k test subsets (see Section 2). We also evaluate our method on extensive OOD
benchmarks including GSM8K [Cobbe et al., 2021], MATH? [Shah et al., 2024], MATH-perturb
[Huang et al., 2025], AMC23 [AI-MO, 2025], and AIME2024/2025 [HuggingFaceH4, n.d.,
HuggingFaceH5, n.d.]. We provide full details in Section D.1.

Model & Training Configuration. We focus on smaller models as a testbed, as their performance
remains noticeably weaker on MATH. We employ GPT-40-mini as the teacher model, and
apply STAT on student models Llama-3.2-3B-Instruct, Llama-3.2-1B-Instruct [Meta Al, 2024],
and Qwen2.5-3B [Qwen et al., 2025], and evaluate under 0-shot settings. We provide detailed
hyperparameters in Section D.2, ablations on threshold sensitivity in Section F.1, and a discussion
of teacher model variants in Section F.3.

Baselines. We compare skill-aware training against several baselines: MATH-Train [Hendrycks
et al., 2021], MATH-Augment [TIGER-Lab, 2024], MATH-Hard [Sun et al., 2024], Embed-Sel [Li
et al., 2025], and Embed-Syn [Jung et al., 2025]. Please find the detailed data creation procedure in
Section D.3 and data synthesis prompts in Section D.4.

3.2 Evaluation Results
We present results for Llama-3.2-3B-Instruct in Table 1 and for Qwen2.5-3B and Llama-3.2-1B-
Instruct in Table 6, Section E. Our findings can be summarized as follows.

Naive SFT provides little to no benefit. Both MATH-Train and MATH-Augment yield at most a
1-2% gain over the base model, and Qwen2.5-3B can even degrade under MATH-Train. Restricting

Base model Embed-Syn
Solving Equations- +2.2 +7.2 +4.5 +1.3 +4.7 +3.5 0.5 | -4.0

MATH-train GRPO i : . : 20
MATH-augmented STAT-Sel Basic Arithmetic 13061 03 47.5 4122 402 +56 +1.0
MATH-hard STAT-Syn Operations
Embed-Sel Algebraic_ 454 412 451 427 27 +4.4 [E4SNEAZ 15
Manipulation
Calculation Algebraic .
and Conversion Manipulation (""1‘;'{[3“““"?“‘1 +12.7 +29 +8.8 +6.1 +100 +93 -09
Conversion
10
. Basic Algebraic | =
Algetrsc At e (Y 453 28 454 423 w4a s01 (28

Expressio Qperations .)
Combinatorics {4135 F10.7 +7.2 (9.7 +44 [491 +4.7

Operations s

» Combinatorics_ 155 474 422 438 | -48 438 26 -45
Solving Concepts

(%) [opouwr aseq 1040 UTeS KorINOdY

Equations N
Modular Arithmetic- +6.8 +5.9 +49 +50 -18 +32 -03
Linear Equation- +12.1° +0.8 ~ +8.5 '+11.3 +2.0 +6.5 +3.9 +5.5
Combinatort -5
C . NXumber Theory
oncepts Number Theory- +7.0 +83 -1.1 -09 -0.6 +57 +33 +2.0
-
Modular Linear STAT STAT GRPO Embed Embed MATH MATH MATH
Arithmetic Equation Syn Sel Syn Sel hard augmented train

Figure 2: Left: Fine-tuned model performances on Top 10 frequent missing skills, across different
training methods. For better visualization, accuracies are normalized per skill axis, with the base
model drawn as a uniform circle and the highest-performing method on each skill placed at the outer
edge. Bottom right: Model performances averaged across the Top 10 frequent missing skills, with
different training methods. Our approaches STAT-Syn and STAT-Sel are most effective in enhancing
model performance across nearly all the skills.

supervision to only the most difficult MATH questions (Levels 4-5), or selecting training questions
semantically close to difficult validation examples, also fails to produce meaningful gains.

Skill-targeted adaptive training shows substantial improvements. STAT achieves average gains
of up to 6.7% on Llama-3.2-3B-Instruct, 5.2% on Qwen2.5-3B, and 3.4% on Llama-3.2-1B-Instruct,
over the performance of base model. On out-of-distribution benchmarks, we observe consistent
improvements across 7 datasets. Specifically, on Llama-3.2-3B-Instruct, STAT-Sel and STAT-Syn
improve averaged OOD performances by 5.3% and 5.8% respectively.

Compatibility with GRPO. For both Llama and Qwen, improvements from SFT on STAT carry over
to subsequent GRPO, yielding average gains of up to 9.5% over GRPO on base model. Surprisingly,
on Llama-3.2-1B-Instruct and Llama-3.2-3B-Instruct, where GRPO alone does not work well
(improving <2.4%), STAT-Sel alone on STAT already produced better results than GRPO, and
adding GRPO on top further boosts performance by ~4%.

Continual learning on challenging benchmarks. We test whether models can adapt further to harder
benchmarks while still using MATH-style data. Two variants, STAT-ConSel and STAT-ConSyn,
trained on MATH data targeting missing MATH-perturb-hard skills, achieve 3—4% gains on MATH-
perturb-hard, compared to only 1-2% from STAT-Sel and STAT-Syn. Full details are in Section E.2.

4 Discussion

We conduct ablation studies into the missing skills and how STAT improves the overall model’s
performance by targeting these skills. Additional ablations are in sections E.3, E.4 and E.7.

Missing-Skill-Profile: Figure 5 (appendix E) show the Top-10 missing skills of Llama-3.2-
3B-Instruct and Llama-3.2-1B-Instruct at the end of Stage 2. All models struggle mainly with
algebra-related skills (e.g., equation solving, manipulation, calculation) and also with conceptual
areas like combinatorics, functions, and number theory. Llama-3.2-1B-Instruct makes mistakes on
basic algebraic operations (e.g., solving equations), indicating more limited fundamental abilities.

STAT effectively addresses models’ frequent missing skills. We take Llama-3.2-1B-Instruct as a
case study to examine how different training strategies impact performance across skills. From its
Missing-Skill-Profile, we select the 10 most frequently missing skills and build corresponding
evaluation sets, each containing questions annotated via the Skill-Map. As shown in Figure 2 (Left),
STAT consistently outperform all baselines across all 10 skills, whereas baseline models can even fall
behind the base model on skills such as Algebraic Manipulation and Modular Arithmetic. Figure 2

(Right) provides a quantitative breakdown, showing that STAT can deliver over 10% accuracy gains
on 5 skills, with the largest improvements on basic skills like Calculation Conversion, Algebraic
Expression, and Combinatoric Expressions.

References

AI-MO. AIMO Validation AMC [dataset]. Hugging Face Datasets, May 2025. URL https:
//huggingface.co/datasets/AI-M0/aimo-validation-amc. Accessed: 2025-08-26.

Sanjeev Arora and Anirudh Goyal. A theory for emergence of complex skills in language models.
arXiv preprint arXiv:2307.15936, 2023.

Albert Bandura and Richard H Walters. Social learning theory, volume 1. Prentice hall Englewood
Cliffs, NJ, 1977.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Aniket Didolkar, Anirudh Goyal, Nan Rosemary Ke, Siyuan Guo, Michal Valko, Timothy Lillicrap,
Danilo Jimenez Rezende, Yoshua Bengio, Michael C Mozer, and Sanjeev Arora. Metacognitive
capabilities of 1llms: An exploration in mathematical problem solving. Advances in Neural
Information Processing Systems, 37:19783-19812, 2024.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cognitive
behaviors that enable self-improving reasoners, or, four habits of highly effective stars. arXiv
preprint arXiv:2503.01307, 2025.

John Hattie and Helen Timperley. The power of feedback. Review of educational research, 77(1):
81-112, 2007.

Yinghui He, Abhishek Panigrahi, Yong Lin, and Sanjeev Arora. Adaptmi: Adaptive skill-based
in-context math instruction for small language models. arXiv preprint arXiv:2505.00147, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Kaixuan Huang, Jiacheng Guo, Zihao Li, Xiang Ji, Jiawei Ge, Wenzhe Li, Yingqing Guo, Tianle
Cai, Hui Yuan, Runzhe Wang, et al. Math-perturb: Benchmarking 1lms’ math reasoning abilities
against hard perturbations. arXiv preprint arXiv:2502.06453, 2025.

HuggingFaceH4. aime_2024 [dataset]. Hugging Face Datasets, n.d. URL https://huggingface.
co/datasets/HuggingFaceH4/aime_2024. Accessed: 2025-08-26.

HuggingFaceH5. aime_2025 [dataset]. Hugging Face Datasets, n.d. URL https://huggingface.
co/datasets/math-ai/aime25. Accessed: 2025-08-26.

Jaehun Jung, Seungju Han, Ximing Lu, Skyler Hallinan, David Acuna, Shrimai Prabhumoye, Mostafa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, and Yejin Choi. Prismatic synthesis: Gradient-
based data diversification boosts generalization in 1lm reasoning. arXiv preprint arXiv:2505.20161,
2025.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Simran Kaur, Simon Park, Anirudh Goyal, and Sanjeev Arora. Instruct-skillmix: A powerful pipeline
for 1lm instruction tuning. arXiv preprint arXiv:2408.14774, 2024.

Jiazheng Li, Lu Yu, Qing Cui, Zhiqgiang Zhang, Jun Zhou, Yanfang Ye, and Chuxu Zhang. Mass:
Mathematical data selection via skill graphs for pretraining large language models, 2025. URL
https://arxiv.org/abs/2503.14917.

https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://huggingface.co/datasets/math-ai/aime25
https://huggingface.co/datasets/math-ai/aime25
https://arxiv.org/abs/2503.14917

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
general text embeddings with multi-stage contrastive learning, 2023. URL https://arxiv.org/
abs/2308.03281.

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Junyang Lin, Chuanqi Tan, Chang Zhou, and
Jingren Zhou. # instag: Instruction tagging for analyzing supervised fine-tuning of large language
models. arXiv preprint arXiv:2308.07074, 2023.

Meta AL Llama 3.2 Revolutionizing Edge Al and Vision with
Open, Customizable Models, 2024. URL https://ai.meta.com/blog/
1llama-3-2-connect-2024-vision-edge-mobile-devices/.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
models. Advances in Neural Information Processing Systems, 36:50358-50376, 2023.

Xinzhe Ni, Yeyun Gong, Zhibin Gou, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen. Explor-
ing the mystery of influential data for mathematical reasoning. arXiv preprint arXiv:2404.01067,
2024.

OpenAl. Gpt-40 mini: advancing cost-efficient intelligence. https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence/, 2024.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yugiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Vedant Shah, Dingli Yu, Kaifeng Lyu, Simon Park, Jiatong Yu, Yinghui He, Nan Rosemary Ke,
Michael Mozer, Yoshua Bengio, Sanjeev Arora, et al. Ai-assisted generation of difficult math
questions. arXiv preprint arXiv:2407.21009, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang
Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision, 2024. URL
https://arxiv.org/abs/2403.09472.

TIGER-Lab. Math-plus. https://huggingface.co/datasets/TIGER-Lab/MATH-plus, 2024.
Dataset available on Hugging Face.

Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius Hobbhahn.
Position: Will we run out of data? limits of llm scaling based on human-generated data. In
Forty-first International Conference on Machine Learning, 2024.

Peiqi Wang, Yikang Shen, Zhen Guo, Matthew Stallone, Yoon Kim, Polina Golland, and Rameswar
Panda. Diversity measurement and subset selection for instruction tuning datasets. arXiv preprint
arXiv:2402.02318, 2024.

Xindi Wu, Dingli Yu, Yangsibo Huang, Olga Russakovsky, and Sanjeev Arora. Conceptmix: A
compositional image generation benchmark with controllable difficulty. Advances in Neural
Information Processing Systems, 37:86004—-86047, 2024.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
Selecting influential data for targeted instruction tuning. arXiv preprint arXiv:2402.04333, 2024.

Wei Xiong, Hanning Zhang, Nan Jiang, and Tong Zhang. An implementation of generative prm.
https://github.com/RLHFlow/RLHF-Reward-Modeling, 2024.

https://arxiv.org/abs/2308.03281
https://arxiv.org/abs/2308.03281
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2403.09472
https://huggingface.co/datasets/TIGER-Lab/MATH-plus
https://github.com/RLHFlow/RLHF-Reward-Modeling

Dingli Yu, Simran Kaur, Arushi Gupta, Jonah Brown-Cohen, Anirudh Goyal, and Sanjeev Arora.

Skill-mix: A flexible and expandable family of evaluations for ai models. arXiv preprint
arXiv:2310.17567, 2023a.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023b.

Simon Yu, Liangyu Chen, Sara Ahmadian, and Marzieh Fadaee. Diversify and conquer: Diversity-
centric data selection with iterative refinement. arXiv preprint arXiv:2409.11378, 2024a.

Zichun Yu, Spandan Das, and Chenyan Xiong. Mates: Model-aware data selection for efficient
pretraining with data influence models. Advances in Neural Information Processing Systems, 37:
108735-108759, 2024b.

Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. When scaling meets 1lm finetuning: The
effect of data, model and finetuning method. arXiv preprint arXiv:2402.17193, 2024.

Haoyu Zhao, Simran Kaur, Dingli Yu, Anirudh Goyal, and Sanjeev Arora. Can models learn

skill composition from examples? Advances in Neural Information Processing Systems, 37:
102393-102427, 2024.

A Related Works

Recent line of works have shown that cognitive theories relevant for human learning can also be
utilized to improve performance of language models. Arora and Goyal [2023] argue that language
models learn to generalize beyond training data, by learning generalizable skills that connect the
text tokens. This argument was later used by Wu et al. [2024], Yu et al. [2023a], Zhao et al. [2024]
to create evaluation benchmarks to compare how different LLMs can generalize beyond training.
Furthermore, Didolkar et al. [2024], He et al. [2025] utilize this framework to create effective instance
specific in-context learning examples for language models. More related to our work is the work by
Kaur et al. [2024] who create synthetic instruction following datasets using arbitrary combination of
skills and show that small language models learn more efficiently from such synthetic tasks. Similarly,
Gandhi et al. [2025] show that certain cognitive skills are necessary for models to explore during
reinforcement learning, and one can similarly enforce such skills by targeted continual pretraining. In
contrast, we show that we can use the skill-based framework to create targeted training datasets by
analyzing the missing skills in model’s responses after training and even unlock further gains.

Related to our work is a line of research that leverages model gradients to construct targeted training
datasets [Xia et al., 2024, Yu et al., 2024b]. These approaches utilize gradients on both training and
test sets to identify effective subsets of training data. However, a key limitation is their reliance on
ground-truth solutions for the test data. In contrast, our work offers a complementary strategy: we
employ a frontier LLM to analyze the model’s responses and generate targeted training data based on
its feedback.

We also compare our proposed method to embedding based data selection. Embedding based methods
Wang et al. [2024], Yu et al. [2024a], Ni et al. [2024] have primarily been used to improve diversity
of training dataset. As shown by our results, embedding similarity could also be utilized (albeit with
a drop in performance) to get questions from training dataset that are similar to difficult questions.

Finally, we introduce STAT-Syn, an approach analogous to STAT-Sel, which synthesizes additional
training data specifically targeted to the identified missing skills. Synthetic data generation has
recently attracted significant attention as a practical alternative for augmenting real-world datasets, and
has been shown to improve language model performance both in-distribution and out-of-distribution
[Jung et al., 2025, Yu et al., 2023b, Lu et al., 2023, Li et al., 2023, Kaur et al., 2024]. A comprehensive
comparison of STAT-Syn with prior work on synthetic data generation is left to future study.

B Detection of difficult questions via reward filtering.

In this stage, we will label a question ¢ € Q as difficult or not for the student model. We could
simply define difficult questions as the set of questions that the model gets wrong after evaluation.
However, this requires access to the ground truth labels. Instead, to make our technique more broadly
applicable, we use a reward model to classify the responses of the student model. The reward model
need not be a perfect reward model; we give more ablations in Section F.1. Given a question g, we
use a reward model to score the response of the student model.

Reward filtering. As we primarily focus on math datasets, we assume that the model’s response is
composed of ¢ steps for a question ¢ and contains the answer in its final step. We will use the reward
model to output reward scores for each step. For simplicity, we will refer to the scores of the reward
model as {rq’l, e rq’t}. Then, we use thresholds 7, 75 to filter out difficult questions for the student

model. We will refer to the threshold filtering function as R : Q — {0, 1}.

0, (Drge=m (final step has low reward)
t
R(q) = (or) 7 ; Tgi = T1 (average low reward across all steps) 1)
(or) di <tst.rg; =T (low reward at any step)

1, otherwise,

Identifying difficult questions. We define Qg;gscu @S @ model-specific subset of the MATH dataset,
consisting of questions with low-reward model responses R.

To avoid training directly on the test data, we use two splits of Qgicare @S validation and test sets:

o Qz?éicult: Difficult questions in the validation set, given by Qg;fficurt N Qva], are used to label

missing skills in Stage 2.

o Ot i: Difficult questions in the test set, given by Qgigseue N Q. are used for MATH”

evaluation in Table 1.

B.1 Stage 2: Constructing model-specific Missing-Skill-Profile.

For each difficult question ¢ in Qgi(fiécuh, we use a frontier LLM (GPT-40-mini) to predict the set of
skills in S that are missing in the model’s responses. We call this map Missing-Skill-Profile:
Qf{f;écuh — &. This map will be used to build STAT-Sel and STAT-Syn. See Section 4 for examples
and an extensive analysis of Missing-Skill-Profile across models, and Section D.4 for prompts.

B.2 Stage 3: Selecting or synthesizing skill-based training data.

In this stage, we construct our skill-targeted training dataset, Pyqrgeted-

STAT-Sel. We create this set by directly sampling questions from the training dataset P according

to the skills listed in the Missing-Skill-Profile. Specifically, for each question ¢ € Qfteun, We
examine Missing-Skill-Profile(q) and, for every skill it contains, sample multiple questions
from P that are linked to the same skill via the Skill-Map. Consequently, the frequency with which
a skill contributes to the selection process is proportional to the number of questions associated with
that skill in the Missing-Skill-Profile.

STAT-Syn. We generate new synthetic questions using the teacher model. For each question
q € Q4. we examine Missing-Skill-Profile(q). For each skill it contains, we randomly
sample 3 questions from P that are linked to the same skill via the Skill-Map, and ask the teacher
model to create new questions and responses by referring to the sampled questions. We keep only
those questions where the teacher model is consistent across at least 2 of its responses, and keep only
those question-answer pairs in our training set. Detailed procedures are given in Section C.

C Details of STAT data creation

C.1 Algorithm for constructing STAT-Sel and STAT-Syn data

Algorithm 1 outlines the procedure to construct Pyqygeteq in Stage 3 (Section 2). For each question
in the test set O, the algorithm first identifies the associated missing skills using the Missing-Skill
Profile. For each missing skill, a small set of examples is retrieved from the Skill-Map, which
links each skill to corresponding training data. In STAT-Sel, these retrieved examples are directly
added to the target training set. Otherwise, the examples are used as seeds to prompt GPT-40 to
generate new, skill-specific questions, which are then included instead. This process ensures that the
resulting training set Pyqygeteq i adaptively enriched with examples that directly address the model’s
weaknesses.

C.2 Training Data Creation Procedure of STAT

We now provide a detailed interpretation of our training data creation approach outlined Algorithm 1.

STAT-Sel. 4k unique questions, 9.5k QA pairs. We begin by filtering 500 difficult questions from

the validation set using our process reward model. For each such question, the teacher model identifies
2-3 missing skills in the student’s response. As described in Section B.2, we then create the training
set by selecting 5 questions for each missing skill in the question’s Missing-Skill-Profile. We
use 3 answers for each question and randomly sample a subset of 9.5k question-answer pairs as our
training set.

STAT-Syn. 4k unique questions, 9.5k QA pairs. We begin by filtering 500 difficult questions from
the validation set using our process reward model. For each such question, the teacher model

Algorithm 1 Skill-based data selection/generation

Input: Test set Q, Skill-Map: S—P, MissingSkillProfile: Q—S&, STAT-Sel: bool
Olltpllt: Ptargeted

: Ptargeted « []

1

2: for ¢ in Q do

3: skill_list « MissingSkillProfile[q]

4: if skill_1ist is not empty then

5: for skill in skill_list do

6: Pk < Skill-Map[skill]

7 Pselected - random_sample (Pskill s 3)

8: if STAT-Sel then

9: Ptm'geted - Ptargeted + Pselected
10: else
11: Prew «— GPT-40(P 4eiected, skill, prompt="Propose a new question based on
12: the given questions and the given skill.")
13: Ptargeted “ Ptargeted + Pnew
14: end if
15: end for
16: end if
17: end for

18: return Pyypgeted

identifies 2—3 missing skills in the student’s response. For each pair of (difficult_question,
missing_skill), we retrieve 3 questions from MATH training set. We input these 3 questions,
along with the missing_skill, to the teacher model, prompting it to synthesize 2 new questions.
The teacher further generates 3 solutions for each new question. We then filter the newly synthesized
data by:

1. Compute consistency scores for each set of (new_question, solution) pairs, according to
the number of solutions agreeing on the final answer. For example, a new question with 2 solutions
agreeing on the final answer has a consistency score of 2.

2. Keep only the new_question with a consistency score of = 2.

3. For each filtered question, keep only the solution that agrees on the final answer. 2

This process enables our approach to generate diverse data, as we input 3 questions to the teacher
model as references each time. The consistency-filtering step filters out both invalid questions and
solutions, ensuring the quality of STAT-Syn.

*For STAT-Syn, after filtering teacher-generated answers using consistency, we obtained 9.5k valid ques-
tion—answer pairs. To ensure comparability, we standardize the training data size to 9.5k pairs for all experiments.

10

D Experimental details

D.1 Datasets

Datasets. All training data for STAT and the baselines are either selected or synthesized from the
MATH dataset (7.5k train / 5k test) [Hendrycks et al., 2021]. In addition to the original solutions
provided in the dataset, we also collect three alternative versions of each answer by prompting
the teacher model to re-write them three times. We further report performance of STAT and each
baseline after continuing training with GRPO [Shao et al., 2024] on the same MATH training set.
We randomly split the MATH test set into 1k validation and 4k test subsets, with both MATH and

MATH? evaluations drawn from the 4k test split. See Section 2 for design details.

We also evaluate our method on extensive OOD benchmarks including GSM8K [Cobbe et al., 2021],

MATH? [Shah et al., 2024], MATH-perturb [Huang et al., 2025], AMC23 [AI-MO, 2025], and
AIME2024/2025 [HuggingFaceH4, n.d., HuggingFaceHS, n.d.].

D.2 Model & Training Configurations

Model Settings. All inferences are under 0-shot settings, with temperature 0.1 for pass@1 sampling,
and temperature 1.0 for average @64 or pass @64 sampling. For the process reward model in Stage 1
(Section 2), we use RLHFlow/Llama3.1-8B-PRM-Mistral-Data (Xiong et al. [2024]), an 8B process
reward model fine-tuned from Llama-3.1-8B, with filtering thresholds 7, = 0.85, 75 = 0.7. We use
seed=0 for all evaluations.

SFT configurations. For SFT, we adopt QLoRA with rank 16, scaling factor o = 32, and dropout 0.05,
applied to the attention and MLP projection modules. Models are trained in 4-bit NF4 quantization
with bfloat16 compute, using the paged AdamW (8-bit) optimizer. We train for 3 epochs with a
cosine learning rate schedule and a 3% warmup ratio. Peak learning rate is chosen separately for each
method among 5e-6, le-5, and 5e-6, depending on the downstream performance. The effective batch
size is 8 (per-device batch size of 2 with gradient accumulation of 4). We apply gradient clipping at
0.3, weight decay of 0.1, and enable group-by-length packing for efficiency. Other configurations

follow the official code base from Llama® and Qwen4.

GRPO configuration. We train for 6 epochs using a constant learning rate of Se-7. The objective
includes only the policy update loss, without any KL-divergence term, and the entropy coefficient is
fixed at 0.0. Each batch contains 256 questions, with 4 rollouts generated per question. Responses
are truncated at a maximum length of 2048 tokens. We set the PPO mini-batch size to 64, which
implies that each batch of 256 questions is split into four mini-batches. The model performs four
gradient updates before refreshing the reference model.

D.3 Training Data Creation Procedure of Baselines
We compare STAT-Sel and STAT-Syn with the following baseline models fine-tuned with various
data selection/generation methods, to measure the effectiveness of skill-aware training:

e MATH-Train: 7.5k unique questions, 7.5k QA pairs. We naively train the model on all question
from the training dataset, with a single answer from the original dataset for each question.

e MATH-Augment: 7.5k unique questions, 9.5k QA pairs. In order to make a fair comparison to

our proposed methods, we pick 3 answers per question to create 22.5k question-answer pairs and
then randomly sample a subset of 9.5k question answer pairs as our training set.

e MATH-Hard: 3k unique questions, 9.5k QA pairs. We include all questions from the levels 4

and 5 of the MATH dataset. We use 3 responses per question to create a pool of 12k question-answer
pairs and then keep a random subset of 9.5k question answer pairs.

3https ://github.com/meta-llama/llama-cookbook
4https ://github.com/QwenLM/Qwen

11

Unique # QA Synthetic

Method Questions Pairs Data

Training Data Description

[Hendrycks et al., 2021]
MATH-Augment

MATH original training set.

Augmented MATH training set with multiple teacher-rewritten

[TIGER-Lab, 2024] 7.5k 9.5k solutions per question.

MATH-Hard . .

[Sun et al., 2024] 3k 9.5k Subset of MATH-Augment with Level 4-5 MATH questions.

Embed-Sel Reweighted set of MATH-Augment via upweighting training
4k 9.5k

questions similar to the difficult questions in embedding space.

Synthetic MATH-level QAs generated by the teacher, using
training examples from Embed-Sel as references.

[Li et al., 2025]

Embed-Syn
[Jung et al., 2025]

4 95k

Reweighted set of MATH-Augment via upweighting training

STAT-Sel 4k 9.5k questions related to model’s missing skills in solving the difficult
(Ours) questions.

Synthetic MATH-level QAs generated by the teacher, with train-
STAT-Syn 4k 9.5k v ing examples from STAT-Sel and their associated skills as refer-
(Ours) ences.

Table 2: Comparison of training data construction methods. We attach details of data construction
procedure in Section C.2 and Section D.3.

¢ Embed-Sel: 4k unique questions, 9.5k QA pairs. Here, we compare the effectiveness of skill-

based training data selection to embedding-based training data selection >, We use our difficult
question set from stage 1 and for each question, we pick 5 similar questions from the training set
using an embedding model based similarity score. We pick 3 answers per selected questions and keep
a random subset of 9.5k question answer pairs.

e Embed-Syn: 4k unique questions, 9.5k QA pairs. For each question in the difficult set identified

during stage 1, we retrieve 5 question—answer pairs from the training set P using an embedding-
based similarity measure. The teacher model is then prompted to generate 5 new questions, each
accompanied by 3 candidate responses, conditioned on different groups of 3 retrieved pairs as in-
context examples. We retain only those generated questions for which the LLM produces at least 2
consistent responses, and add the corresponding consistent question—answer pairs to our training set.
Finally, we keep a random subset of 9.5k question answer pairs to create our training set.

We give a summary and comparison of STAT and baseline data construction methods in Table 2.

We use Alibaba-NLP/gte-Qwen2-7B-instruct as our embedding model [Li et al., 2023]

12

D.4 Prompts
D.4.1 Constructing Skill-Map on MATH

Statistics of skill lists. We adopt the list of mathematical skills obtained in Didolkar et al. [2024]
using an LLM labeling—clustering pipeline. The skill list contains 128 skills in total, divided into 7
subsets across 7 subjects. Each subject includes ~18 skills.

Skill-Map construction procedure. To construct the Skill-Map (see Section 2), we follow Di-
dolkar et al. [2024] to label skills on both the training and test sets of MATH using GPT-40-mini
[OpenAl, 2024]. We enlist all skills that we used to annotate the questions in MATH and dataset
in Tables 4 and 5, which have been taken from Didolkar et al. [2024]. We ask the LLM to read the
question and provide up to five skills required to solve this question, from the given existing skill list.
We show an example prompt for annotating MATH Number Theory questions as follows.

Example skill annotation prompt for MATH Number Theory questions

[TASK]
You’ll be given a math question. Your task is to output:

(1) < skill> list here up to five skill(s) that are required to solve this problem, seperated by
commas </skill>.

(2) <reason> reason here why these skills are needed </reason>.

[SKILL LIST]

You should only choose the skills from this list:
[

"arithmetic_sequences",
"base_conversion",

"basic_arithmetic",
"division_and_remainders",
"exponentiation”,

"factorization",
"greatest_common_divisor_calculations",
"modular_arithmetic",
"number_manipulation",
"number_theory",
"polynomial_operations",
"prime_number_theory",
"sequence_analysis",
"solving_equations",
"understanding_of_fractions"

]

[QUESTION]
{question}

[REASON AND SKILL(S)]

Table 3 shows some example MATH questions and their corresponding annotated skills. From the

skill annotation, we construct a Skill-Map (see Section 2) that stores the required skills for each
question.

13

Question Annotated skills

What is the units digit of exponentiation, modular arithmetic,
31433 +3°+37 +... +3%00% sequence analysis

In the addition problem each letter represents a basic arithmetic, number manipulation,
distinct digit. What is the numerical value of E? solving equations

[Figure]

In triangle ABC, tan(2CAB) = %, and the geometry and space calculation,
altitude from A divides BC into segments of trigonometric calculations, arithmetic

length 3 and 17. What is the area of triangle operations

ABC?

Table 3: Example MATH questions, and the annotated skills generated by GPT-40-mini.

Subject List of Skills

Per subject split in MATH

Algebra algebraic_expression_skills,
algebraic_manipulation_skills, arithmetic_skills,
calculation_and_conversion_skills,
combinatorial_operations_and_basic_arithmetic
complex_number_skills, distance_and_midpoint_skills,
exponent_and_root_skills, factoring_skills,
function_composition_skills, function_skills,
geometric_sequence_skills, graph_and_geometry_skills,
inequality_skills, logarithmic_and_exponential_skills,
number_theory_skills, polynomial_concepts
quadratic_equation_skills, ratio_and_proportion_skills,
sequence_and_series_skills, solving_equations

Counting and Probability | calculating_and_understanding_combinations,
combinatorial_mathematics, combinatorics_concepts,
counting_principals, factorials_and_prime_factorization,
number_theory_and_arithmetic_operations,
permutation_and_combinations,
probability_calculation_with_replacement,
probability_concepts_and_calculations,
probability_theory_and_distribution,
combinatorics_operations

Geometry 3d_geometry_and_volume_calculation_skills,
algebraic_skills, area_calculation_skills,
circle_geometry_skills,
combinatorics_and_probability_skills,
coordinate_geometry_and_transformation_skills,
other_geometric_skills, pythagorean_skills,
quadrilateral_and_polygon_skills,
ratio_and_proportion_skills, triangle_geometry_skills,
trigonometry_skills,
understanding_circle_properties_and_algebraic_manipulation

Table 4: List of skills used for annotating questions in each subject in MATH dataset

14

Subject

List of Skills

Per subject split in MATH

Intermediate Algebra

absolute_value_skills
algebraic_manipulation_and_equations,
calculus_optimization_skills,
complex_number_manipulation_and_operations,
function_composition_and_transformation,
graph_understanding_and_interpretation,
inequality_solving_and_understanding,
polynomial_concepts,
properties_and_application_of_exponents,
quadratic_equations_and_solutions,
recursive_functions_and_sequences,
sequence_and_series_analysis_skills
simplification_and_basic_operations,
solving_inequalities, solving_system_of_equations,
summation_and_analysis_of_series,
understanding_and_application_of_functions,
understanding_and_applying_floor_and_ceiling_functions,
understanding_and_manipulation_of_rational_functions,
understanding_and_utilizing_infininte_series,
understanding_ellipse_properties,
understanding_logarithmic_properties_and_solving_equations

Number Theory

arithmetic_sequences, base_conversion, basic_arithmetic,
division_and_remainders, exponentiation, factorization,
greatest_common_divisor_calculations,
modular_arithmetic, number_manipulation, number_theory,
polynomial_operations, prime_number_theory,
sequence_analysis, solving_equations,
understanding_of_fractions

Pre-algebra

average_calculations, basic_arithmetic_operations,
circles, counting_and_number_theory,
exponentiation_rules, fractions_and_decimals, geometry,
multiples_and_zero_properties,
multiplication_and_division, perimeter_and_area,
prime_number_theory, probability_and_combinatorics
ratio_and_proportion, linear_equation

Pre-calculus

algebra_and_equations, basic_trigonometry, calculus,
complex_number_operations, complex_numbers,
coordinate_systems, determinant_calculation,
geometric_relations, geometry_and_space_calculation,
geometry_triangle_properties, matrix_operations,
parametric_equations, sequences_series_and_summation,
three_dimensional_geometry, trigonometric_calculations,
vector_operations

Table 5: List of skills used for annotating questions in each subject of MATH dataset (continued from

Table 4)

15

D.4.2 Missing skill Identification from Model Responses

In Stage 2 of STAT, we use GPT-40-mini to label the skills that are missing from a model response.
We ask the LLM to read the question along with the SLM response and provide the skills that the
model fails to leverage in the response, from the given existing skill list. Below we show an example
prompt for labeling missing skills for MATH Number Theory questions, as well as an example LLM
output.

Example missing skill identification prompt for a MATH Number Theory question

[TASK]

You’ll be given a math question and a step-by-step solution written by a Small Language
Model. Your task is to output:

(1) <judge> judge here whether the solution is correct or incorrect </judge>

(2) <reason> if it’s incorrect, reason here why the solution is incorrect </reason>,

(3) <skill> list here what skill(s) should the SLM enhance in order to answer correctly,
seperated by commas </skill>.

[SKILL LIST]
{list of 15 number theory skills}

[QUESTION]
{question}

[MODEL_SOLUTION]
{model_response}

[YOUR REASON AND SKILL(S)]

Example GPT-40-mini output for missing skill identification

(1) <judge> incorrect </judge>

(2) <reason> The solution incorrectly simplifies the expression and misapplies properties
of modular arithmetic. The solution claims that the sum of the inverses from 1 to (p-1) is
(-1 pmodp), which is incorrect. The correct approach involves recognizing that each term
(a_1 “(a+1)_1) should be evaluated individually, and the sum should be calculated directly
without assuming incorrect simplifications. The solution also fails to correctly apply the
properties of modular inverses and does not properly evaluate the sum. </reason>

(3) <skill> modular_arithmetic, number_theory, understanding_of_fractions </skill>

16

D.4.3 Proposing new questions from skill-based training question distribution

In Stage 3 of STAT-Syn, we use GPT-40 to propose new questions based on existing questions in the
skill-based training question distribution. Below we show an example prompt.

Example prompt for proposing new questions using GPT-40

[TASK]

You’ll be given three math questions (e.g., [QUESTION 1]), with their solutions for reference.
Your task is to output a new, novel math question that emphasizes the use of [SKILL].
Important Note: the new question should not be very similar to any of the given questions
(e.g., naive adaptions like altering variable names or values from a given question is strictly
prohibitted). Meanwhile, the new question should have similar difficulty with the given
questions.

Output format:

(1) <reason> reason here how the given questions relates to the [SKILL] </reason>

(2) <draft> reason here how to design a new, novel question while emphasizing the [SKILL]
</draft>

(3) <question> your newly constructed math question </question>

[QUESTION 1]
{train_set_question] }

[QUESTION 2]
{train_set_question2}

[QUESTION 3]
{train_set_question3}

[SKILL]
{missing_skill}

17

E Additional Results

E.1 Evaluation results on Llama-3.2-1B-Instruct

Table 6 shows the evaluation results on Llama-3.2-1B-Instruct. Similar to Table 1, STAT consistently
outperforms both heuristic-based and embedding-based data augmentation baselines on in-distribution
dataset and most OOD benchmarks. We presented more discussion in Section 3.2 and Section 4.

Models MATH MATHP MATH? GSMSK AM(23 VATH-perturb = AIME
simple hard 2024 2025
QOwen2.5-3B + SFT
Base model 55.8 453 348 809 264 437 240 233 200 394
MATH-Train 50.0 442 329 801 336 423 233 267 267 400
MATH-Augment 56.6 456 371 804 330 409 219 167 267 399
MATH-Hard 56.7 456 314 798 336 437 237 300 167 40.1
Embed-Sel 575 464 343 804 336 437 219 300 267 416
Embed-Syn 56.4 474 343 804 352 437 240 267 267 416
STAT-Sel 58.4 476 395 823 355 459 240 333 300 441
STAT-Syn 59.4 492 405 813 344 448 251 367 300 44.6
+ GRPO
Base model 61.6 498 410 851 377 498 258 333 300 460
MATH-Train 61.6 511 348 848 369 5L6 265 333 300 456
MATH-Augment ~ 61.0 482 405 840 363 487 262 367 267 454
MATH-Hard 59.0 SI.1 357 842 377 498 265 333 233 445
Embed-Sel 59.7 489 410 843 384 466 258 267 367 453
Embed-Syn 61.4 523 400 837 388 477 280 267 300 454
STAT-Sel 62.8 521 448 848 388 487 300 367 333 48.0
STAT-Syn 61.8 524 419 856 392 509 269 400 367 484
Llama-3.2-1B-Instruct + SFT
Base Model 26.0 151 91 407 1L1 172 65 200 100 173
MATH-Train 27.0 145 100 428 88 190 68 267 100 184
MATH-Augment ~ 27.8 142 81 434 111 179 68 267 33 177
MATH-Hard 28.4 154 86 446 108 186 72 233 33 178
Embed-Sel 274 156 86 446 88 186 68 267 33 178
Embed-Syn 28.4 172 110 443 100 201 79 233 67 188
STAT-Sel 324 156 110 450 120 194 79 267 167 207
STAT-Syn 345 183 124 456 110 208 7.5 233 100 204
+ GRPO
Base Model 31.8 144 95 497 133 233 82 200 67 197
MATH-Train 32.0 160 119 508 100 237 79 167 67 195
MATH-Augment ~ 31.2 150 90 491 136 247 79 233 133 208
MATH-Hard 322 148 110 506 1.6 229 65 267 100 207
Embed-Sel 32.8 162 114 499 120 219 65 233 133 208
Embed-Syn 32.6 150 105 510 139 211 68 267 33 201
STAT-Sel 34.8 166 138 501 148 237 9.0 300 167 233
STAT-Syn 352 211 138 510 148 247 79 333 167 243

Table 6: Improvements on various math benchmarks from applying STAT. Results under ‘+SFT’ show
the performance of SFT models trained with each method, while ‘+GRPO’ shows the performance af-
ter applying GRPO on top of the corresponding SFT models. Our methods, STAT-Sel and STAT-Syn,
achieve an average gain of up to 3.4% over the base model, with strong OOD performances (AMC23
results reported on average @64, AIME on pass@64). Applying GRPO on top of fine-tuning with
STAT further enhances these improvements. See Table 1 for results on Llama-3.2-3B-Instruct.

E.2 Continual learning on challenging benchmarks

As our earlier results show, STAT already generalizes strongly to a wide range of OOD tasks while
using only MATH data for training. But in practice, models often face evaluation settings that grow

18

harder over time. A natural question then is: can we continue adapting the model to these tougher
benchmarks while still using similar questions as MATH?

-
©

For our case study, we consider MATH-perturb-hard. We report 170 176
performance for two model variants of Llama-3.2-3B-Instruct.
STAT-ConSel takes a model trained with STAT-Sel, and trains
further with a data creation pipeline identical to STAT-Sel, but
with Missing-Skill-Profile built on validation questions
from MATH-perturb-hard. STAT-ConSyn builds on STAT-Syn 12.2

model with the same idea. In both cases, the evaluation bench-

mark only gives the skill profile, and the training examples still Modd 34 Syn Conbel Consyn

come from MATH. Figure 3: Continual learning results

As shown in Section E.2, STAT-Sel and STAT-Syn trained ©n MATH-perturb-hard. Further fine-
models show only 1-2% improvement on MATH-perturb-hard ~tuning STAT models based on their
over the base model performance, which reflects the difficulty gnjf;ng sk lllggz;lgeegdﬁté‘ ylglds a
of this benchmark. However, continually trained models show 0 gain (~ConSel/ConSyn).
a larger gain of 3-4%. This shows that our framework can be

readily adapted to unseen test-time datasets by constructing Missing-Skill-Profile directly on
them, while still using MATH training data. Thus, skill-aware training provides a flexible solution to
adapt the models with more challenging evaluations while still relying on existing training datasets.

-
~

-
@

14.7

Accuracy (%)
S oo

w

13.3

-
N}

Figure 4 shows the snippets of model-specific Missing-Skill-Profile of Llama-3.2-3B-Instruct, Llama-
3.2-1B-Instruct, and Qwen2.5-3B, obtained at the end of Stage 2 (see Section B.1). These profile
snippets include the Top 10 frequent missing skills of the models. As discussed in Section 4, most of
the frequent missing skills in both models are algebra-related, such as solving equations, manipulation,
and calculation. In addition, both models also demonstrate noticeable weaknesses in conceptual and
reasoning-oriented mathematical skills, including combinatorics, understanding and application of
functions, and number theory. Compared to Llama-3.2-3B-Instruct, the missing skill profile of Llama-
3.2-1B-Instruct concentrated more towards basic operations (e.g., solving equations), suggesting that
smaller models have more pronounced limitations in fundamental computational abilities.

Llama-3.2-3B-Instruct Llama-3.2-1B-Instruct Qwen2.5-3B

N

2nd Basic Arithmetic Operations 1000
3rd Basic Arithmetic Operations Algebraic Manipulation Combinatorics Concepts

4th Calculation and Conversion Calculation and Conversion Solving Equations 800
5th Algebraic Manipulation Algebraic Expression Simplification and Basic Operations 5
6th Combinatorics Concepts Combinatorics Operations Multiplication and Division 600 ©
7th Understanding and Application of Functions Combinatorics Concepts Calculation and Conversion

8th Algebraic Expression Modular Arithmetic Probability Concepts and Calculations 400
9th Simplification and Basic Operations Polynomial

10th Counting and Number Theory Algebraic Manipulation o

Figure 4: Top 10 missing skills of Llama-3.2-3B-Instruct, Llama-3.2-1B-Instruct, and Qwen2.5-3B.
The models struggle most with fundamental mathematical skills such as solving equations and basic
arithmetic operations.

E.3 Misalignment between baseline training data and missing skills

To investigate the reason behind the ineffectiveness of our baseline strategies, we adopt a skill-based
evaluation by comparing the skill distribution of their training data with the model’s missing skills
in the Missing-Skill-Profile. Figure 5 highlights a clear misalignment between the model’s
actual missing skills (STAT-Sel) and the baselines: Neither MATH-Train nor Embed-Sel targeted
the basic algebraic skills the model struggles with, even though Embed-Sel selects data directly via
embedding similarity to difficult questions. They prioritize more advanced and conceptual areas such
as polynomials, prime number theory, and trigonometric or matrix operations. We provide concrete
question examples in Section E.5 to illustrate the distinct emphasis of each skill.

19

STAT-Sel (Actual missing skills) Embed-Sel MATH-train

Ist Prime Number Theory Polynomial Concepts
2nd Logarithmic and Exponential Prime Number Theory 1000
3rd Algebraic Manipulation Combinatorial Operations Combinatorial Operations
4th Calculation and Conversion Factoring Triangle Geometry 800
Sth Algebraic Expression Number Theory Understanding and Application of Functions ‘é
6th Combinatorics Operations Triangle Geometry Logarithmic and Exponential 600 S
7th Combinatorics Concepts Inequality _ 400
8th Modular Arithmetic Solving Equations _
9th Linear Equation Polynomial Concepts _ 200
10th Number Theory Base Conversion _

Figure 5: Comparison among the Top 10 frequent skills present in STAT-Sel, Embed-Sel, and MATH-Train
questions selected on Llama-3.2-1B-Instruct. The skills emphasized in both baselines, MATH-Train and Embed-
Sel, align poorly with the actual Top 10 missing skills of the model (i.e., skills in STAT-Sel).

E4 Comparing STAT to GRPO

One of our interesting findings in Section 3.2 was that STAT could outperform GRPO training on
Llama instruct models. Here, we compare these two approaches from a skill-based perspective. As
shown in Figure 2 (Right), although GRPO on Llama-3.2-1B-Instruct also yields positive gains across
nearly all the top skills, the overall effect remains less pronounced compared to STAT. A possible
reason is that GRPO provides only coarse feedback to the model by contrasting correct and incorrect
responses, whereas skill-targeted training pinpoints model weaknesses in a fine-grained way. In light
of this, one future direction is to develop a GRPO variant that incorporates skill-based feedback into
the reward.

20

E.5 Case study: example questions with different skills

We observe in Section 4 that the baseline training data distribution largely misaligns with model’s
actual missing skills, with baseline data emphasizing more advanced and conceptual skills (e.g.,
Prime Number Theory, Polynomial Concepts) while the model lacking more basic operational skills
(e.g., Solving Equations). To better visualize this misalignment in data distribution, here we showcase
three example QA pairs from the MATH training set, respectively associated with the three skills

above.

Question with skill “Solving Equations"

Question: The inverse of f(z) = % may be written in the form f~'(z) =

b, ¢, and d are real numbers. Find a / c.

az+b
cx+d’

where a,

Solution:
If we substitute £~ () into our expression for f, we get
-1 _ 2f_1(55) -1
f(f (il?)) - f_l(LE) +5 .
Since f~'(f(x)) = z, we obtain
2/ (@) =1 _
fi@)+s ~°

= 2f (z) - 1=2(f"(«) +5)
= Zf_l(x) -1= xf_l(x) + 5.

Moving the terms involving f _1(33) to the left-hand side and the remaining terms to the
right-hand side, we get

2f N(z) —azf () =5z + 1

= f2)(2-2z)=5x+1

-1 Sr+1
= [(2)= 55

Now we can see that (a, b, ¢,d) = (5,1, —1,2) for this representation of £~ (z), so

21

Question with skill “Prime Number Theory"

Question: The positive integers A, B, A — B, and A + B are all prime numbers. The sum
of these four primes is

e A.even

e B. divisible by 3

e C. divisible by 5

e D. divisible by 7

e E. prime

Express your answer using a letter, as A, B, C, D, or E.

Solution: The numbers A — B and A + B are both odd or both even. However, they are
also both prime, so they must both be odd. Therefore, one of A and B is odd and the other
even. Because A is a prime between A — B and A + B, A must be the odd prime. Therefore,
B = 2, the only even prime. So A — 2, A, and A + 2 are consecutive odd primes and thus
must be 3, 5, and 7. The sum of the four primes 2, 3, 5, and 7 is the prime number 17, so the

correct answer is prime.

Question with skill “Polynomial Concepts"

Question: The polynomial P(x) = 22 + az® + bz + c has the property that the mean of its
zeros, the product of its zeros, and the sum of the coefficients are all equal. The y-intercept
of the graph of y = P(z) is 8. What is b?

Solution: The y-intercept of the graph is the point at which = = 0. At that point, P(x) = c,
which we are told is equal to 8. Thus, ¢ = 8. The product of the roots of the given polynomial
is —£ = —4. The problem states that the mean of the zeros must also equal —4, so the sum of
the tﬁree zeros (this is a cubic equation) is equal to 3+ —4 = —12. The sum of the zeros is also
equal to —%, so a = 24. Finally, we are given that the sum of the coefficients, or 2 + a + b + c,
is also equal to —4. Plugging in our known values of a and ¢, we have 2 + 24 + b + 8 = —4.

Solving for b, we get b = .

22

E.6 Effectiveness of STAT on each subject

To evaluate whether STAT enhances general subject-level competence, we measure model accuracy
across the 7 subject categories in MATH. These subjects are: prealgebra, algebra, intermediate algebra,
geometry, precalculus, number theory, and counting & probability. As shown in Figure 6, both
STAT-Sel and STAT-Syn consistently outperform the base model and data augmentation baselines
across nearly all subjects. Notably, STAT-Sel achieves the strongest improvements in precalculus
and number theory, while STAT-Syn excels in intermediate algebra, prealgebra, algebra, geometry
and counting & probability. It is worth noting that STAT brought most improvements on the 3
algebra-related subjects. This aligns with our observation in Section 4 that Llama-3.2-1B-Instruct
shows its most pronounced weaknesses in algebra, and confirms that our approaches effectively target
the skills the model fundamentally lacks.

precalculus

intermediate
algebra

—— Base Model
MATH-Train
MATH-Augment
MATH-Hard
Embed-Sel
Embed-Syn
STAT-Sel
STAT-Syn

number theoxy

algebra

prealgebra

Figure 6: Fine-tuned model performances on MATH subjects, across different training methods.
For better visualization, accuracies are normalized per skill axis, with the base model drawn as a
uniform circle and the highest-performing method on each skill placed at the outer edge. STAT-Syn
and STAT-Sel are most effective in enhancing model performance across nearly all the subjects.

E.7 Case study on synthetic data

Original Question (on Ellipse Properties)

To understand why our training samples are
skill-targeted, we conduct a case study of the
training data.

Here we compare STAT-Syn with Embed-Syn,
as their data are both created with a spe-
cific focus (e.g., embedding-based similarity or
missing-skill targeting).

In this example (see Figure 7), the original ques-
tion centers on ellipse geometry; the model han-
dles this part well, but showed a gap in the fi-
nal equation-solving step. The new question in
Embed-Syn, though highly relevant, captures
only the main topic (Ellipse Properties) through
embedding similarity. By contrast, STAT-Syn
leverages the missing-skill information (Solving
Equations) and generates a targeted question to
practice it.

This case study demonstrates that semantic simi-
larity, as captured by embedding-based methods,
is not always the right approach. Skill-targeted

Let F'; and F be the foci of the ellipse kx® + y2 =1,wherek > 1
is a constant. Suppose that there is a circle which passes through F;
and F5 and which lies tangent to the ellipse at two points on the z-axis.
\Compute k.

J

Model Response & Missing Skill (on Solving Equations)

2
We can rewrite this equation in the standard form of an ellipse: %Z +

2
(1/y_fk)7 = 1. We can see that the length of the semi-horizontal axis is

1 and the semi-vertical axis is ‘/% (Correct v')

k=1 _ 1
Therefore, we have w - T

Simplifying this equation, we

get:\/% -1= \/% — 1. This equation is true for all values of k.

Therefore, the value of k is not uniquely determined by the given
‘conditions. (Incorrect X , Missing skill: Solving Equations)

Embed-Syn Question STAT-Syn Question

(on Ellipse Properties) (on Solving Equations)

2 2 Solve f > 0:
The ellipse %~ + %~ = 1 has foci olvelore

located along one of the coordi- 1 PN
nate axes. What is the distance Vz+4 ’
between the foci?

Figure 7: Comparison between synthesized questions
from Embed-Syn and STAT-Syn.

adaptive training provides a direct way to constantly improve the model.

23

F Ablation & Analysis

F.1 Ablations on the reward filtering method in Stage 1

Recall that in Stage 1 of the STAT pipeline, we use an off-the-shelf process reward model
(RLHFlow/Llama3.1-8B-PRM-Mistral-Data) to score small language models’ responses, in or-
der to filter out a set of difficult questions for each model. Here, we conduct various ablation studies
on the reward filtering process.

Effect of threshold values on the reward model prediction. We investigated the effect of 7; and
To (defined in Section 2) on the classification performance of difficult questions. Specifically, we
measure whether our classification of questions as difficult also corresponds to the correctness of
responses assessed using ground-truth labels. In Table 7, we report four metrics (accuracy / precision
/ recall / F1) evaluating the prediction accuracy resulting from different filtering thresholds. Note
that 71 = 0 or 75 = 0 means completely removing the constraints of 7 or 75. Across all evaluated
combinations of threshold values, our choice of the threshold values (7; = 0.85, 5 = 0.7) gives a
good combination of prediction scores. To further visualize this effect, we conduct STAT on top of all
combinations of thresholds, and report the final accuracy in Table 8. Our choice of threshold values
yields the highest final accuracy among all the combinations.

m1\72 T3 =0 T2 = 0.6 75 =0.7 75 =0.8

71 =0 53/0/0/0 80/78/79/79 80/74/88/79 75/66/95/78

71 =0.8 80/79/78/79 80/76/85/80 79/72/90/80 75/66/96/78

7, =085 79/74/88/80 79/72/90/80 78/70/92/80 74/65/96/78

71 =0.9 73/64/95/77 73/64/95/77 72/64/96/77 T70/62/97/75
Table 7: Reward model performance (accuracy / precision / recall / F1) on classifying correct/incorrect
responses from Qwen2.5-1.5B-Instruct on MATH, accross different thresholds. 71 = 0 or 75 = 0
means completely removing 74 or 75. Our choice of threshold values (77 = 0.85, 75 = 0.7) gives a
good combination of prediction scores.

Tl\TQ Ty = 0 Ty = 0.6 Ty = 0.7 Ty = 0.8
7 =0 52.8 55.7 55.9 55.7
71 =0.8 55.1 56.3 56.2 55.6
7 =0.85 55.3 56.4 56.4 55.6
7 =0.9 55.7 55.7 55.6 55.2

Table 8: Final STAT performance of Qwen2.5-1.5B-Instruct on MATH, with different thresholds.
Our choice of threshold values (7; = 0.85, 75 = 0.7) leads to the highest accuracy.

Out-of-distribution (OOD) prediction performance of reward model. Although we primarily
evaluated STAT on MATH and GSMS8K, our method can potentially be extended to other math
datasets. While the reward model we used in Stage 1 was only trained on the MATH and GSM8K
distribution, we show that it is capable of scoring responses for various OOD math datasets. Table 9
reports the reward model’s performance on classifying correct/incorrect responses from Qwen2.5-3B
on four popular math benchmarks: AMC23, AIME24, AIME25, and MATH?. The reward model
achieves comparably high performance on scoring model responses on these OOD, significantly more
difficult benchmarks, indicating that the model is highly generalizable. This implies the potential to
extend our method to new datasets without the need to train a specialized reward model for each one.

Reward Filtering vs. Simple Heuristics for classifying difficult questions. Considering the
computational overhead of calling a separate PRM, we explored alternative approaches to classifying
questions that rely on computation-free simple heuristics. Specifically, we experimented with two
heuristic strategies:

* Consistency heuristic: We measure the consistency of the model across five sampled gen-
erations per question and classify questions with lower consistency as difficult. Specifically,

24

Metric AMC23 AIME24 AIME25 MATH?

Accuracy 92.5 86.7 86.7 84.8
Precision 90.9 92.6 86.7 95.2
Recall 95.2 92.6 100.0 88.5
F1 93.0 92.6 92.9 91.0

Table 9: Reward model prediction metrics across four OOD math benchmarks. Despite not being
trained on these benchmarks, the reward model’s prediction capability is largely generalizable to
them.

a question is difficult if, among 5 sampled generations, the most common response appears
< 2 times.

* Length heuristic: We use the length of the model’s responses as a proxy and classify
questions with longer responses as difficult. Specifically, a question is difficult if the average
model response length on this question is = 800 words.

Table 10 shows that both heuristics yield reasonably accurate predictions. Moreover, applying STAT
on top of these heuristic-classified difficult questions can improve the final accuracy by 2%. However,
we leave a more thorough investigation into the robustness and generalizability of these strategies in
relation to PRM-based classification for future work.

Classification method Classification accuracy

Consistency Heuristic 79.8%
Length Heuristic 74.2%
Reward Filtering 78.0%

Table 10: Performance of consistency heuristic and length heuristic on classifying difficult questions.
The classification accuracy of simple heuristics are on par with the reward filtering method.

Process Reward vs. Outcome Reward. We also compare the prediction accuracy of our process
reward model (PRM) with threshold filtering (see Section 2) against directly loading the reward
model as an outcome reward model (ORM). Our preliminary experiments indicated 0.9 as the optimal
threshold for the outcome rewards. With 7 = 0.9, the prediction metrics of the ORM are: Precision
= 0.54 / Recall = 0.90 / F1 = 0.68, whereas the prediction metrics of the PRM with optimal
thresholds are Precision = 0.70 / Recall = 0.92 / F1 = 0.80. Therefore, our method using PRM with
threshold filtering is superior to directly using ORM.

F.2 Statistics of difficult questions

In Stage 1 of STAT (see Section 2), we identify a set of difficult questions for each individual model
using a process reward model along with a filtering heuristic. Table 11 reports the proportions of
difficult questions classified for different models in each math domain. Compared to Table 1, the
proportions of difficult questions closely correspond to the accuracy numbers of each model, even
though we did not access the ground truth in the whole pipeline. Notably, our classification method
captures not only questions that the model gets wrong, but also questions that the model passes with
a flawed solution process.

F.3 Analysis of the teacher model

Teacher model need not be overwhelmingly stronger than student. One feature of STAT is the
demand of a substantially stronger teacher model to supervise the student. In this section, we evaluate
this demand by directly comparing teacher and student performances on math reasoning benchmarks.
Due to resource constraints, our evaluation is limited to a representative set of benchmarks, but the
results are sufficient to illustrate the key trend: the teacher is not strictly dominant, and the student
can approach or even match the teacher’s performance within a manageable gap.

As shown in Table 12, although teacher models obtain higher absolute scores, they are not over-
whelmingly stronger than the students. In particular, the gap between GPT-40-mini and Qwen2.5-3B

25

Model Geometry Precalculus Algebra Prealgebra Intermediate Algebra

Qwen2.5-3B 61.8 70.1 29.7 332 75.9
Llama-3.2-1B-Instruct 93.5 92.0 914 89.7 99.0
Llama-3.2-3B-Instruct 68.2 82.7 45.5 48.9 85.7
Model Count.&Prob. Number Theory = MATH Avg.

Qwen2.5-3B 62.2 56.1 52.1

Llama-3.2-1B-Instruct 97.9 95.2 94.0

Llama-3.2-3B-Instruct 65.2 62.3 62.3

Table 11: Proportions of difficult questions (%) classified by STAT for each model. Although our
method did not access the ground truth, the proportion of classified difficult questions still closely
mirrors each model’s accuracy (see Table 1) in each domain.

is only around 10 points across GSM8K and MATH, a margin that is significant but manageable. This
suggests that STAT does not strictly rely on a much stronger teacher to succeed. Instead, even when
teacher and student are relatively close in ability, the student can still benefit and recover most of the
teacher’s performance. This opens up the possibility of self-improvement, where a model iteratively
teaches and refines itself without requiring access to an external teacher that is substantially stronger.

Teacher Student
Benchmark
GPT-40 GPT-40-mini Qwen2.5-3B Llama-3.2-3B-Instruct ~ Llama-3.2-1B-Instruct
GSM8K 97.0 94.0 80.9 73.0 40.7
MATH 73.0 69.1 55.8 44.0 26.0
MATH-perturb-simple 62.0 N/A 43.7 33.7 17.2
MATH-perturb-hard 394 N/A 24.0 12.2 6.5

Table 12: Math reasoning accuracy (%). Comparison between teacher models (GPT-40, GPT-40-
mini) and student models (Qwen2.5-3B, Llama-3.2-3B-Instruct, Llama-3.2-1B-Instruct) on GSM8K,
MATH, MATH-perturb-simple, and MATH-perturb-hard.

Agreement across different teacher models. Since our approach relies on a frontier LLM as
teacher, a natural concern is potential bias in the missing-skill labeling process. In light of this, we
present a preliminary investigation into the level of agreement among different LLMs in missing skill
labeling, using an LL.M-as-a-judge approach. We first evaluate GPT-40-mini’s ability to self-verify
the correctness of its own predicted missing skills and find that it judges its predictions to be correct
70% of the time. To further assess the reliability of these predictions, we compute the agreement
between GPT-40-mini and Claude-3.5-Sonnet. The models agree on 43% of the predicted skills,
where agreement is defined as the average fraction of overlapping skills relative to the total number
of skills predicted by GPT-40-mini. Given the fine-grained nature of our skill list, we consider this
level of agreement significant.

26

	Introduction
	Designing STAT
	Experiments
	Experimental Setup
	Evaluation Results

	Discussion
	Related Works
	Detection of difficult questions via reward filtering.
	Stage 2: Constructing model-specific Missing-Skill-Profile.
	Stage 3: Selecting or synthesizing skill-based training data.

	Details of STAT data creation
	Algorithm for constructing STAT-Sel and STAT-Syn data
	Training Data Creation Procedure of STAT

	Experimental details
	Datasets
	Model & Training Configurations
	Training Data Creation Procedure of Baselines
	Prompts
	Constructing Skill-Map on MATH
	Missing skill Identification from Model Responses
	Proposing new questions from skill-based training question distribution

	Additional Results
	Evaluation results on Llama-3.2-1B-Instruct
	Continual learning on challenging benchmarks
	Misalignment between baseline training data and missing skills
	Comparing STAT to GRPO
	Case study: example questions with different skills
	Effectiveness of STAT on each subject
	Case study on synthetic data

	Ablation & Analysis
	Ablations on the reward filtering method in Stage 1
	Statistics of difficult questions
	Analysis of the teacher model

