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Abstract

Utilizing messages from teammates can improve coordination in cooperative Multi-
agent Reinforcement Learning (MARL). To obtain meaningful information for
decision-making, previous works typically combine raw messages generated by
teammates with local information as inputs for policy. However, neglecting the
aggregation of multiple messages poses great inefficiency for policy learning.
Motivated by recent advances in representation learning, we argue that efficient
message aggregation is essential for good coordination in MARL. In this paper, we
propose Multi-Agent communication via Self-supervised Information Aggregation
(MASIA), with which agents can aggregate the received messages into compact
representations with high relevance to augment the local policy. Specifically, we
design a permutation invariant message encoder to generate common information
aggregated representation from raw messages and optimize it via reconstructing
and shooting future information in a self-supervised manner. Each agent would
utilize the most relevant parts of the aggregated representation for decision-making
by a novel message extraction mechanism. Empirical results demonstrate that our
method significantly outperforms strong baselines on multiple cooperative MARL
tasks for various task settings.

1 Introduction

Multi-Agent Reinforcement Learning (MARL) [17] has attracted widespread attention [17, 8] recently,
achieving remarkable success in many complex domains [1], such as traffic signal control [9],
autonomous driving [59], and droplet control [24]. For better coordination on further applications,
some issues like non-stationarity [33], scalability [3] remain to be solved. To solve the non-stationarity
caused by the concurrent learning of multiple policies and scalability as the agent number increases,
most recent works on MARL adopt the Centralized Training and Decentralized Execution (CTDE)
[20, 27] paradigm, which includes both value-based methods [42, 36, 46, 53] and policy gradient
methods [14, 26, 49, 52]. Under the CTDE paradigm, however, the coordination ability of the learned
policies can be fragile due to the partial observability in the multi-agent environment, which is a
common challenge in many multi-agent tasks [29]. While recurrent neural networks could in principle
relieve this issue by conditioning the policy on action-observation history [16], the uncertainty of
other agents (e.g., states and actions) at execution time can result in catastrophic miscoordination and
even sub-optimality [48, 6].
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Communication shows great potential in solving these problems [55, 60], with which agents can share
information such as observations, intentions, or experiences to stabilize the learning process, leading
to a better understanding of the environment (or the other agents) and better coordination as a result.
Previous communication methods either focus on generating meaningful information [48, 19, 57] for
the message senders, or design techniques such as attention mechanism [4, 31], message gate [28, 6]
to filter the most relevant information on raw received messages. These approaches treat the received
information as a black box and tacitly assume that policy networks can automatically extract the most
critical information from multiple raw messages during policy learning. On this occasion, with the
only signal given by reinforcement learning, the extraction process may be reasonably inefficient,
especially in complex scenarios.

Motivated by recent advances in state representation learning [38, 22], which reveals that auxiliary
representation objectives could facilitate policy learning [12], we aim at efficiently aggregating
information as compact representations for policy by designing a novel communication framework
Multi-Agent communication via Self-supervised Information Aggregation (MASIA). Specifically,
representations are optimized through self-supervised objectives, which encourages the representa-
tions to be both abstract of the true states and predictive of the future information. Since agents are
guided towards higher cumulative rewards during policy learning, correlating representations with
true states and future information could intensify the learning signals in policy learning. In this way,
the efficiency of policy learning could be encouraged. Also, considering that permutation invariance
of representations can also promote efficiency, we design a self-attention mechanism to maintain
the invariance of obtained representations. We also design a network that weighs the aggregated
representation for individual agents to derive unique and highly relevant representation to augment
local policies. To evaluate our method, we conduct extensive experiments on various cooperative
multi-agent benchmarks, including Hallway [48], Level-Based Foraging [34], Traffic Junction [4],
and two maps from StarCraft Multi-Agent Challenge (SMAC) [48]. The experimental results show
that MASIA outperforms previous approaches, strong baselines, and ablations of our method.

Our main contributions are:

• We propose a novel framework that uses a message aggregation network to extract from
multiple messages generated by various teammates, with which we acquire a permutation
invariant information aggregation representation. Agents can then use a novel focusing
network to extract the most relevant information for decision-making.

• Two representation objectives are introduced to make the information representation compact
and sufficient, including the state reconstruction and multi-step future states prediction.

• Sufficient experimental results on various benchmarks and communication conditions
demonstrate that our proposed approach significantly improves the communication per-
formance, and visualization results further reveal why it works.

2 Problem Formulation

This paper considers a fully cooperative MARL communication problem, which can be modeled as
Decentralised Partially Observable Markov Decision Process under Communication (Dec-POMDP-
Com) [32] and formulated as a tuple ⟨N ,S,A, P,Ω, O,R, γ,M⟩, where N = {1, . . . , n} is the
set of agents, S is the set of global states, A is the set of actions, Ω is the set of observations, O
is the observation function, R represents the reward function, γ ∈ [0, 1) stands for the discounted
factor, and M indicates the set of message. At each time step, due to partial observability, each
agent i ∈ N can only acquire the observation oi ∈ Ω drawn from the observation function O(s, i)
with s ∈ S, each agent holds an individual policy π(ai | τi,mi), where τi represents the history
(o1i , a

1
i , . . . , o

t−1
i , at−1

i , oti) of agent i at current timestep t, and mi ∈ M is the message received
by the agent i. The joint action a = ⟨a1, . . . , an⟩ leads to next state s′ ∼ P (s′ | s,a) and the
global reward R(s,a). The formal objective is to find a joint policy π(τ ,a) to maximize the global
value function Qπ

tot(τ ,a) = Es,a [
∑∞
t=0 γ

tR(s,a) | s0 = s,a0 = a,π], with τ = ⟨τ1, . . . , τn⟩.
As each agent can behave as a message sender as well as a message receiver, this paper considers
learning useful message representation in the received end, and agents only use local information oi
as message to share within the team.

We optimize the policy by value-based MARL, where deep Q-learning [30] implements the action-
value functionQ(s,a) with a deep neural networkQ(τ ,a;θ) parameterized by θ. This paper follows
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Figure 1: Structure of MASIA. (a) The overall architecture. (b) Information aggregation and
extraction. (c) Information aggregation optimization. (d) Transition model learning.

the CTDE paradigm. In the centralized training phase, deep Q-learning uses a replay memory D
to store the transition tuple ⟨τ ,a, r, τ ′⟩. We use Q(τ ,a;θ) to approximate Q(s,a;θ) to relieve
the partial observability. Thus, the parameters θ are learnt by minimizing the expected Temporal
Difference (TD) error:

L(θ) = E(τ ,a,r,τ ′)∈D

[(
r + γV

(
τ ′;θ−)−Q(τ ,a;θ)

)2]
,

where V
(
τ ′;θ−) = maxa′ Q

(
τ ′,a′;θ−) is the expected future return of the TD target and θ− are

parameters of the target network, which will be periodically updated with θ.

3 Method

In this paper, we propose efficient Multi-Agent communication via Self-supervised Information
Aggregation (MASIA), a novel multi-agent communication mechanism for promoting cooperation
performance. Redundant communications could increase the burden of information processing
for each agent to make decisions and pose new challenges for information extraction since plenty
of irrelevant information is contained in raw messages. To design an efficient communication
mechanism, we believe two properties are of vital importance - sufficiency and compactness, where
sufficiency means a rich amount of information, and compactness calls for higher information density.

To meet the standard of sufficiency, a global encoder, which we call Information Aggregation Encoder
(IAE), is shared among agents to aggregate the information broadcasted by agents into a common
representation. With proper training, this representation could reflect the global observation so that
each agent could obtain sufficient information from it to make decisions. As for compactness, we first
design an auxiliary loss on the global representation to correlate it with the policy learning process,
and make each agent only focus on the part of the representation related to its performance and
coordination by the designed focusing network through excluding the unrelated parts. The entire
framework of our method is shown in Fig. 1. We introduce the aggregation and extraction process in
Sec. 3.1, and the objectives for compactness and sufficiency in Sec. 3.2. Also, a description of the
training and execution process flow can be found in Appendix A.6.

3.1 Information Aggregation and Extraction

Information Aggregation. Believing that the true state should be reflected from combined messages,
we design the aggregation encoder to be capable of subsuming all the messages sent from agents.
Also, the communication system in multi-agent systems is flexible and permutation invariant in nature,
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which calls for a permutation invariant structure for the aggregation encoder. Based on these beliefs,
we apply a self-attention mechanism to aggregate multiple messages from different teammates:

Q,K,V = MLPQ,K,V ([o
t
1, . . . , o

t
i, . . . , o

t
n]), (1)

H = softmax(
QKT

√
dk

)V , (2)

where the learnable matrices Q, K, and V transform the perception from all agents into the
corresponding query Q , key K, and value V , which are the concepts defined in the atten-
tion mechanism [44]. Specifically, each row vector of H can be seen as a querying result
of one agent for all available information, and the hidden state H will be fed into the sub-
sequent integration network to finally obtain the output aggregated representation zt. A de-
tailed discussion about the design of the integration network can be found in Appendix A.3.

: ego car : distant car: nearby car : visible area

Figure 2: A toy experiment for informa-
tion redundancy on the task of Traffic
Junction.

In the centralized training phase, we use the aggregated
representation zt as extra inputs in addition to the indi-
vidual observation to feed the value function. Since zt
contains the information required to determine the true
state, taking zt as extra inputs could reduce the uncer-
tainty about the environment states and produce better
estimations on the Q-value for value functions under any
value-based policy learning algorithm.

Information Extraction. Similar to the decision process
of human beings, global messages are usually redundant
for an individual agent to make good coordination in com-
munication systems. For example, on the task of Traffic
Junction [4], one natural idea is that the information of
neighboring cars are more important for agents to perceive
than those distant ones, and the unrelated information in
global message may sometimes even confuse the agents
and impede the learning when the map is large. A toy ex-
periment shown in Fig. 2 supports this idea. We apply the
QMIX algorithm in Traffic Junction tasks with different
sight settings. The results show that the agents learn better policies when in a small-sight setting
(sight-1) than both in a super-limited-sight setting (sight-0) and full-sight setting (sight-full).

To make each agent capable of deciding its own perceptive area, we employ the focusing network
to weigh the aggregated representations for each agent. The focusing network is designed as a
Multi-Layer Perception (MLP) with the Sigmoid output activation function to ensure that each
dimension of wti is bounded between 0 and 1. By taking element-wise multiplication with zt, a
unique representation could be distilled for individual agents. In this way, if the focusing network
produces higher weights on specific dimensions, changes in aggregated representations on these
dimensions would be more significant and thus, the agent would be more sensitive to aggregated
representation on these parts. On the contrary, if some near-zero weights are outputted on some
dimensions, information on those dimensions would be filtered out. In particular, although the
information extraction process can, to some extent, reflect the specificity of each agent, we stress the
local information by feeding it into the subsequent network together with the extracted representation.

3.2 Information Aggregation Representation Optimization

As for the learning process of aggregated representation, we consider two typical objectives in
global encoder training: reconstruction and multi-step prediction, which constrain the representations
produced by the global encoder to be sufficient and compact, respectively. For the reconstruction
objective, we employ an additional decoder, which aims to reconstruct the global state by the
aggregated representation to allow self-supervision on the global encoder. Specifically, the decoder is
optimized together with the aggregation encoder by reconstructing global states st from messages ot:

Lae(θ, η) = Eot,st∥gη(zt)− st∥22, zt = fθ(o
t), (3)

where fθ, gη denote the encoder network parameterized by θ and the decoder network parameterized
by η, respectively. This loss term resembles a classical auto-encoder loss, while the decoder here is
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not to reconstruct the input, but to recover the global state from representations instead. By utilizing
this loss, we guide the encoder to extract observational features that can help infer the global state
and let zt = fθ(o

t) be a sufficient representation.

As for the multi-step prediction objective, we constrain the produced representation to be predictive of
future information. Specifically, we design a transition model hψ : Z ×An → Z parameterized by ψ
as auxiliary model, which predicts the aggregated representation zt+1 on next step t+ 1 through the
aggregated representation zt and joint action at on current step t. We regress the predicted aggregated
representation after k-step rollout on the actual aggregated representation of future messages ot+k,
updating both the aggregation encoder and the auxiliary model via the multi-step prediction loss:

Lm(θ, ψ) = Eot,st,at,...,at+K−1,ot+K ,st+K

[
K∑
k=1

∥ẑt+k − z̃t+k∥22

]
, (4)

ẑt+1 = hψ(z̃
t,at), (5)

ẑt+k = hψ(ẑ
t+k−1, at+k−1), k = 2, . . . ,K, (6)

z̃t+k = fθ(o
t+k), k = 0, . . . ,K. (7)

To further stabilize the learning process, we apply the double network technique, which employs two
networks with the same architecture but different update frequencies, for the aggeration encoder. The
target network is updated via Exponential Moving Average (EMA) like in SPR [38]. By forcing the
aggregated representation to be predictive of its future states, the aggregated representation could be
more correlated with the information required for its decision-making, which meets the compactness
standard. Combining these two objectives allows the aggregation encoder to extract more helpful
information for agents to coordinate better. To improve the capability of information extraction on
individual agents, we also enhance the learning process of these components with an RL objective.
Specifically, we consider minimizing the TD loss:

Lrl(θ, ϕ) = E(τ ,a,r,τ ′)∈D

[(
r + γmax

a′
Qtot

(
τ ′,a′; θ−, ϕ−

)
−Qtot(τ ,a; θ, ϕ)

)2
]
, (8)

whereQtot is computed with individualQ-values. The computation of Q-values is actually dependent
on the specific value-based learning algorithm. We apply it to prevalent methods, including VDN [42],
QMIX [36], and QPLEX [46]. Moreover, the updating of the focusing network is coupled to the RL
objective, making the weights produced by the focusing network could be task-sensitive, which could
also facilitate policy learning.

4 Experiment

We conduct experiments on various benchmarks with different communication request levels3.
Specifically, we aim to answer the following questions in this section: 1) How does our method
perform when compared with multiple baselines in various scenarios (Sec. 4.1)? 2) What kind of
knowledge has been learned by the information aggregation encoder (Sec. 4.2)? 3) How can the
information extraction module extract the most relevant information for the individual from the learned
embedding space (Sec. 4.3)? 4) Can MASIA be applied to different value decomposition baselines to
improve their coordination ability and robustness in various communication conditions (Sec. 4.4)?
We compare MASIA against a variety of baselines, including communication-free methods and some
state-of-the-art communication approaches. QMIX [36] is a strong communication-free baseline, and
we use the implementation by PyMARL4 for comparison, which has shown excellent performance
on diverse multi-agent benchmarks [37]. TarMAC utilizes an attention mechanism to select messages
according to their relative importance. The implementation we used is provided by [48], denoted
as TarMAC + QMIX. NDQ [48] aims at learning nearly decomposable Q functions via generating
meaningful messages and communication minimization. TMC [57] applies a temporal smoothing
technique at the message sender end to drastically reduce the amount of information exchanged
between agents. For the ablation study, we design a baseline only different in the communication
protocol, which adopts a full communication paradigm, where each agent gets message from all other
teammates at each timestep, denoted as FullComm.

3The codes are available at https://github.com/chenf-ai/MASIA
4Our experiments are all based on the PyMARL framework, which uses SC2.4.6.2.6923.
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Figure 3: Multiple benchmarks used in our experiments.
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Figure 4: Performance comparison with baselines on multiple benchmarks.

We evaluate our proposed method on multiple benchmarks shown in Fig. 3. Hallway [48] is a
cooperative environment under partial observability, where m agents are randomly initialized at
different positions and required to arrive at the goal g simultaneously. We consider two scenarios
with various agents and different groups, and different groups have to arrive at different times. Level
Based Foraging (LBF) [34] is another cooperative partially observable grid world game, where agents
coordinate to collect food concurrently. Traffic Junction (TJ) [4] is a popular benchmark used to test
communication ability, where many cars move along two-way roads with one or more road junctions
following the predefined routes, and we test on the medium and hard maps. Two maps named
1o2r_vs_4r and 1o10b_vs_1r from SMAC [48] require the agents to cooperate and communicate to
get the position of the enemies. For evaluation, all results are reported with median performance with
95% confidence interval on 5 random seeds. Details about benchmarks, network architecture and
hyper-parameter choices of our method are all presented in Appendices A.1, and A.3, respectively.

4.1 Communication Performance

We first compare MASIA against multiple baselines to investigate the communication efficiency
on various benchmarks. As illustrated in Fig. 4, MASIA achieves the best performance with low
variance on all benchmarks, indicating MASIA’s strong applicability in scenarios with various
difficulties. In Hallway (Fig. 4a & Fig. 4e), where frequent communications are required for good
performance (method without communication such as QMIX fails), other communication methods
such as TarMAC, NDQ, and TMC achieve low performance or even fail in this environment. This
indicates that inappropriate message generation or message selection would injure the learning
process. We believe the reason why FullComm succeeds is that there is hardly any redundancy in
agents’ observations in Hallway. Our MASIA also succeeds in this environment, showing superiority
over others. The dominating performance of MASIA is even more significant in extended Hallway
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timesteps by darker shades of the dots. (b) Visualization of variations of selected agents’ focus weight
wti in a single episode. We use the horizontal axes for timesteps in one single episode and vertical
axes for dimensions of the aggregated representation. The weight is reflected through luminance, and
the darker the cell, the larger the weight.

(Fig. 4e), where agents are separated into different groups. In this environment, MASIA can help
agents extract information about their teammates and learn a coordination pattern more efficiently.
In LBF (Fig. 4b & Fig. 4f), existing communication-based MARL methods like NDQ, Fullcomm,
and TarMAC struggle due to the sparsity of rewards, especially when the foods are more sparsely
distributed (Fig. 4f). In contrast to the performance of QMIX in Hallway, QMIX performs well
in LBF, which is attributed to the fact that agents can observe the grids near them, and the mixing
network of QMIX can help improve the coordination ability of the fixed group of agents in the
training phase. Our method achieves comparable performance with QMIX and TarMAC, showing its
strong coordination ability even in sparse reward scenarios. In Traffic Junction (Fig. 4c & Fig. 4g),
TarMAC and NDQ have high variance due to the instability of their messages, while MASIA gains
high sample efficiency and can generate steady messages since it aims to reconstruct the state. On the
SMAC benchmarks (Fig. 4d & Fig. 4h), we test on two complex scenarios requiring communication
to succeed, where one overseer is in active service to get the information of the enemies. Messages
are demanded since the agents have limited sight, so other teammates need the overseer’s messages
to identify the enemies’ positions. Our method MASIA can maintain the high efficiency of learning
and always have competitive performance when converged, which is superior to other baselines.

4.2 Insights into Information Aggregation Encoder

To determine what kind of knowledge the encoder has learned through training, we conduct a
visualization analysis on the map 1o2r_vs_4r from SMAC to demonstrate the information contained
in the aggregation representation zt. We project the aggregation representation vectors into two-
dimensional plane by t-SNE [43] in Fig 5a. We take trajectories from 3 scenarios of different types of
initialization under a task where agents have to seek the enemy at the start, discover the enemy, and
finally battle with it for better performance. It can be observed that (1) the aggregated representations
could be well distinguished by phases. Projected representations in the seeking phase are far from
those in the battle phase and closing phase. This implies that our learned representations could well
reflect the true states. (2) the aggregated representations are first divergent in the seeking phase
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when enemies have been initialized, but become increasingly interlaced later until the closing phase,
when enemies have been wiped out after a fierce battle. Since enemies are highly related to decision
making, such a result verifies that the aggregated representations exploit also reward information.
To sum up, the visualization results show that MASIA can extract valuable global information with
these representations.

4.3 Study about Individual Information Extraction
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Figure 6: Performance com-
parison with varying sights,
where sn means the sight
range is n.

To demonstrate the effectiveness of our information extraction mod-
ule, we analyze the weights computed by the focusing network.
Specifically, we select the TJ (medium) task for evaluation and
compare the weights produced by two different agents. In this envi-
ronment, agents could dynamically enter or leave the plane, making
the agents staying in the environment flexible through time. It can
be observed that agent 3 and agent 6 put focus on similar areas of
the aggregated representation. Especially after timestep 15, when
agents 3 and 6 are in similar situations and distant from the inter-
section, their focuses are nearly the same. This verifies that the
global state information has been successfully extracted to indi-
vidual agents. Also, on the top of the figure, we draw a figure to
measure the relationship between the cosine similarity of weight
vectors of different agents against timesteps. It reveals that the sim-
ilarity of their focus rises after these two agents begin to proceed
in the same line (indicated by the render images posted on the lower parts of Fig. 5 (b)). This
also conforms to the intuition that similar messages should be extracted for similar observations.

4.4 Generality of Our Method
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Figure 7: The increase of win-
ning rates brought about by
MASIA on map 1o10b_vs_1r.

We aim to verify that the proposed approach is agnostic to various
sight ranges and applied value-based MARL methods. We first con-
duct experiments on the map 1o10b_vs_1r to show that MASIA
could also generalize well on agents with limited observations. The
results in Sec. 4.1 show the performance of MASIA when the agents
have a sight range of 9. When we narrow the agents’ sight ranges, as
shown in Fig. 6, by receiving and aggregating messages from team-
mates, the performance of MASIA does not suffer from a significant
drop. Our information aggregation and extraction modules prevent
the agent from forfeiting knowledge about the state when the sight
range is further limited.

To show the generality of the MASIA framework, we also carry out
experiments to integrate MASIA with current baselines, including
VDN, QMIX, and QPLEX. As illustrated in Fig. 7, when integrated
with MASIA, the performance of these baselines can be vastly im-
proved on the map 1o10b_vs_1r from SMAC. In this scenario, one overseer is in service to monitor
the enemies. Without communication, the other agents have to search the map for the enemies
exhaustively. While with reliable communication, they could communicate with each other and the
overseer for better coordination. The results demonstrate that MASIA can efficiently aggregate the
messages and improve the agents’ coordination ability for these value-based MARL methods.

5 Related Work

Multi-agent reinforcement learning (MARL) has made prominent progress these years. Having
emerged under the CTDE paradigm, many methods are designed to relieve the non-stationarity issue,
and have made noticeable progress these years. Most of them can be roughly divided into policy-
based and value-based methods. Typical policy gradient-methods involves MADDPG [26], COMA
[14], MAAC [18], SQDDPG [47], FOP [58], and HAPPO [21] which explore the optimization of
multi-agent policy gradient methods, while value-based methods mainly focus on the factorization of
the global value function [45, 7]. VDN [42] applies a simple additive factorization to decompose the
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joint value function into agent-wise value functions. QMIX [36] structurally enforces the learned
joint value function to be monotonic to the agent’s utilities, which can represent a more affluent class
of value functions. QPLEX [46] further takes a duplex dueling network architecture to factorize the
joint value function, achieving a full expressiveness power of IGM [39].

Multi-agent Communication Communication plays a promising role in multi-agent coordination
under partial observability [11, 60]. Extensive researches have been made on learning communication
protocols to improve performance on cooperative tasks [15, 13, 23, 51, 10, 25, 54, 50]. Previous
works can be divided into two categories. One focuses on generating a meaningful message for the
message senders. The simplest way is to treat the raw local observation, or the local information
history as message [13, 40]. VBC [56] and TMC [57] apply techniques, such as variance-based
control and temporal smoothing, in the sender end to make the generated messages meaningful
and valuable for policy learning. NDQ [48] generates minimized messages for different teammates
to learn nearly decomposable value functions, and optimize the message generator based on two
different information-theory-based regularizers to achieve expressive communication. On the contrary,
other works try to learn efficiently to extract the most useful message on the receiver end, and they
design mechanisms to differentiate the importance of messages. I2C [6] and ACML [28] employ
gate mechanism to be selective on received messages. There are also works inspired by the broad
application of the attention mechanism [2, 5]. TarMAC [4] achieves targeted communication via
a simple signature-based soft-attention mechanism, where the sender broadcasts a key encoding
the properties of the agents, then the receiver attends to all received messages for a weighted sum
of messages for decision marking. SARNet [35] and MAGIC [31] further remove the signature in
TarMAC and leverage attention-based networks to learn efficient and interpretable relations between
entities, decide when and with whom to communicate.

To the best of our knowledge, none of the existing MARL communication methods explicitly consider
how the multiple received messages can be optimized for efficient policy learning. Agents may be
confused by redundant information from teammates, and simply augmenting the local policy with the
raw message may burden the learning. Our proposed method applies a message aggregation module to
learn a compact information representation and extracts the most relevant part for decision-making.

6 Conclusion and Future Work

In this paper, we investigate the information representation for multi-agent communication. Previous
works either focus on generating meaningful message or designing a mechanism to select the most
relevant message in a raw way, ignoring the aggregation of the message, resulting in low sample
efficiency in complex scenarios. Our approach improves communication efficiency by learning a
compact information representation to ground the true state and optimizing it in a self-supervised way.
Also, we apply a focusing network to extract the most relevant part for decision-making. We conduct
sufficient experiments in various benchmarks to verify the efficiency of the proposed methods, and
more visualization results further reveal why our approach works. For future work, more results on
image input and solving the scalability issue when facing environments with hundreds or thousands
of agents by techniques like agent grouping would be of great interest.
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