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ABSTRACT

Quantization serves as a fundamental operation in machine learning, widely used
for algorithm-hardware deployment and data representation simplification. Given
that classification plays a fundamental role in machine learning, it is crucial to in-
vestigate the impact of quantization on classification. Generally, the investigation
revolves around quantization errors, under the assumption that higher quantization
errors typically lead to poorer classification performance. However, this assump-
tion lacks a solid theoretical foundation, and often contradicts empirical findings.
For example, some extremely low bit-width quantization methods, such as the
{0, 1}-binary quantization and {0,±1}-ternary quantization, can achieve compa-
rable or even superior classification accuracy than the original non-quantized data,
despite exhibiting high quantization errors. To evaluate the classification perfor-
mance more accurately, we propose to directly investigate the feature discrimi-
nation of quantized data, rather than analyze quantization errors. It is found that
binary and ternary quantization can surprisingly improve, rather than degrade the
feature discrimination of original data. This remarkable performance is validated
through classification experiments on various types of data, including the image,
speech and text.

1 INTRODUCTION

Quantization has been widely utilized in machine learning to simplify data storage and computation
complexities, while also catering to the requirements of algorithm deployment on digital hardware.
In general, this operation will lead to a decrease in classification accuracy (Baras & Dey, 1999;
Hoefler et al., 2021), due to reducing the precision of data or model parameters. To achieve a
balance between complexity and accuracy, it is crucial to delve into the impact of quantization
on classification. Currently, the impact is mainly evaluated through quantization errors, with the
assumption that larger quantization errors typically lead to decreased classification accuracy (Lin
et al., 2016a). However, this assumption lacks a solid theoretical basis (Lin et al., 2016a), as it
merely adopts the quantization principle from signal processing (Gray & Neuhoff, 1998), which
primarily focuses on data reconstruction fidelity rather than classification accuracy. In practice, it
seems challenging to accurately assess the classification performance solely based on quantization
errors.

For instance, it has been observed that some extremely low bit-width quantization methods, such
as the {0, 1}-binary quantization and {0,±1}-ternary quantization, which have been successively
applied large-scale retrieval (Charikar, 2002) and deep network quantization (Qin et al., 2020; Gho-
lami et al., 2022), can achieve comparable or even superior classification performance than their
full-precision counterparts (Courbariaux et al., 2015; Lin et al., 2016b; Lu et al., 2023), despite
suffering from high quantization errors. Apparently, the remarkable classification improvement re-
sulting from quantization should not be attributed to the high quantization errors. This reveals the
inadequacy of quantization errors in assessing the actual classification performance. Due to the ab-
sence of a theoretical explanation, the classification improvement induced by quantization has often
been regarded as incidental and received little attention. Instead of quantization errors, in the paper
we demonstrate that this intriguing phenomenon can be reasonably explained by feature discrimi-
nation. Following the Fisher’s linear discriminant analysis (Fisher, 1936), we here refer to feature
discrimination as the ratio between inter-class and intra-class scatters, and evaluate the classification

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

performance based on the rule that the higher the feature discrimination, the easier the classification.
To the best of our knowledge, this is the first study that exploits feature discrimination to analyze the
impact of quantization on classification, although it is more direct and reasonable than quantization
errors in evaluating classification performance. The scarcity of relevant research can be attributed to
the nonlinearity of the quantization operation, which substantially increases the analytical complex-
ity of the feature discrimination function.

In the paper, it is demonstrated that the impact of the threshold-based binary and ternary quantization
on feature discrimination can be analyzed, when the data are appropriately modeled using a Gaussian
mixture model, with each Gaussian element representing one class of data. The Gaussian mixture
model is chosen here based on two considerations. Firstly, the model has been well-established
for approximating the distributions of real-world data (Torralba & Oliva, 2003; Weiss & Freeman,
2007) and their feature transformations (Wainwright & Simoncelli, 1999; Lam & Goodman, 2000).
Secondly, the closure property of Gaussian distributions under linear operations can simplify the
analysis of the feature discrimination function. By analyzing the discrimination across varying
quantization thresholds, it is found that there exist certain quantization thresholds that can enhance
the discrimination of the original data, thereby yielding improved classification performance. This
finding is extensively validated through classification experiments both on synthetic and real data.

The related works are discussed as follows. As mentioned earlier, our work should be the first to
take advantage of feature discrimination to investigate the impact of quantization on classification.
In the filed of signal processing, there have been a few works proposed to reduce the negative impact
of quantization on signal detection or classification (Poor & Thomas, 1977; Oehler & Gray, 1995).
However, these studies did not employ feature discrimination analysis, distinguishing them from
our research in both methodology and outcomes. Specifically, in these studies the model design
accounts for both reconstruction loss and classification loss. The classification loss is primarily
modeled in several ways, such as directly minimizing the classification error on quantized data
(Srinivasamurthy & Ortega, 2002), enlarging the inter-class distance between quantized data (Jana
& Moulin, 2000; 2003), reducing the difference between the distributions of quantized data and
original data (Baras & Dey, 1999), as well as minimizing the discrepancy in classification before
and after quantization (Dogahe & Murthi, 2011). Through analyses of these losses, the classification
performance of quantized data can only approach, rather than surpass the performance of original
data (Baras & Dey, 1999).

2 PROBLEM FORMULATION

In this section, we specify the feature discrimination functions for the original (non-quantized) and
quantized data. Prior to this, we introduce the binary and ternary quantization functions, as well as
the data modeling.

2.1 QUANTIZATION FUNCTIONS

The binary and ternary quantization functions are formulated as

fb(x; τ) =

{
1, if x > τ

0, otherwise
(1)

and

ft(x; τ) =


1, if x > τ

0, if − τ ≤ x ≤ τ

−1, if x < −τ

(2)

where the threshold parameter τ ∈ (−∞,+∞) for fb(x; τ), and τ ∈ [0,+∞) for ft(x; τ). The
two functions operate element-wise on a vector x = [x1, x2, · · · , xn]

⊤ ∈ Rn, namely fb(x; τ) =
(fb(x1; τ), fb(x2; τ), · · · , fb(xn; τ))

⊤ and the same applies to ft(x; τ).

2.2 DATA DISTRIBUTIONS

Throughout the work, we denote each data sample using a vector. For the sake of generality, as
discussed before, we assume that the data vector randomly drawn from a class is a random vector
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X = {X1, X2, · · · , Xn}⊤, with its each element Xi following a Gaussian distribution N(µ1,i, σ
2);

and similarly, for the random vector Y = {Y1, Y2, · · · , Yn}⊤ drawn from another class, we suppose
its each element Yi ∼ N(µ2,i, σ

2), where µ2,i ̸= µ1,i. Considering that the discrimination between
the two random vectors X and Y positively correlates with the discrimination between their each
pair of corresponding elements Xi and Yi, we propose to analyze the discrimination at the element
level, specifically between Xi and Yi, rather than between the entire vectors, X and Y. For nota-
tional convenience, without causing confusion, in the sequel we will omit the subscript "i" of Xi

and Yi, and write their distributions as X ∼ N(µ1, σ
2) and Y ∼ N(µ2, σ

2), where µ1 ̸= µ2. Note
that we assume here that the two variables X and Y share the same variance σ2. This assumption is
common in statistical research, as the data we intend to investigate are often drawn from the same
or similar scenarios and thus exhibit similar noise levels.

The distributions of the two variables X and Y will exhibit certain relations when we apply stan-
dardization on them, as is commonly done in machine learning. More precisely, in a binary classifi-
cation problem, the dataset we handle is a mixture, denoted as Z, comprising two classes of samples
drawn respectively from X and Y . Usually, the mixture Z is assumed to possess a balanced class
distribution, meaning that samples are drawn from X and Y with equal probabilities. Under this
assumption, when we perform standardization by subtracting the mean and dividing by the standard
deviation for each sample in Z, the distributions of X and Y (in Z) will become to be

X̃ =
X − E[Z]√

D[Z]
∼ N

 (µ1 − µ2)/2√
σ2 + 1

4 (µ1 − µ2)2
,

σ2

σ2 + 1
4 (µ1 − µ2)2

 (3)

and

Ỹ =
Y − E[Z]√

D[Z]
∼ N

 −(µ1 − µ2)/2√
σ2 + 1

4 (µ1 − µ2)2
,

σ2

σ2 + 1
4 (µ1 − µ2)2

 (4)

where E[Z] and D[Z] denote the expectation and variance of Z, which have expressions E[Z] =
1
2 (µ1 + µ2) and D[Z] = σ2 + 1

4 (µ1 − µ2)
2.

From Equations (3) and (4), it can be seen that after standardization, the two classes of variables X̃
and Ỹ still exhibit Gaussian distributions, but showcase two interesting properties: 1) their means
are symmetric about zero; and 2) they have the sum of the square of the mean and the variance
equal to one. In the paper, we will typically focus our study on the standardized data. By the two
properties described above, the distributions of two classes of standardized data are characterized as
below.

Property 1 (The distributions of two classes of standardized data). The two classes of standardized
data we aim to study have their samples i.i.d drawn from X ∼ N(µ, σ2) and Y ∼ N(−µ, σ2),
where µ2 + σ2 = 1, µ ∈ (0, 1).

2.3 FEATURE DISCRIMINATION

Following the Fisher’s linear discriminant rule, we define the discrimination between two classes of
data as the ratio of the expected inter-class distance to the expected intra-class distance, as specified
below.

Definition 1 (Discrimination between two classes of data). For two classes of data with samples
respectively drawn from the variables X and Y , the discrimination between them is defined as

D =
E[(X1 − Y1)

2]

E[(X1 −X2)2] + E[(Y1 − Y2)2]
(5)

where X1 and X2 are i.i.d. samples of X , and Y1 and Y2 are i.i.d samples of Y .

In the sequel, we will utilize the above definition D to denote the discrimination between original
(non-quantized) data; and for the binary and ternary quantized data, as detailed below, we adopt Db

and Dt to represent their discrimination.
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Definition 2 (Discrimination between two classes of quantized data). Following the discrimination
specified in Definition 1, the discrimination between two binary quantized data Xb = fb(X; τ) and
Yb = fb(Y ; τ), is formulated as

Db =
E[(X1,b − Y1,b)

2]

E[(X1,b −X2,b)2] + E[(Y1,b − Y2,b)2]
(6)

where X1,b and X2,b are i.i.d. samples of Xb, and Y1,b and Y2,b are i.i.d. samples of Yb. Similarly, the
discrimination between two ternary quantized data Xt = ft(X; τ) and Yt = ft(Y ; τ) is expressed
as

Dt =
E[(X1,t − Y1,t)

2]

E[(X1,t −X2,t)2] + E[(Y1,t − Y2,t)2]
(7)

where X1,t and X2,t are i.i.d. samples of Xt, and Y1,t and Y2,t are i.i.d. samples of Yt.

2.4 GOAL

The major goal of the paper is to investigate whether there exist threshold values τ in the binary
quantization fb(x; τ) and the ternary quantization ft(x; τ), such that the quantization can improve
the feature discrimination of original data, namely having Db > D and Dt > D.

3 DISCRIMINATION ANALYSIS

3.1 THEORETICAL RESULTS

Theorem 1 (Binary Quantization). Consider the discrimination D between two classes of data X ∼
N(µ, σ2) and Y ∼ N(−µ, σ2) as specified in Property 1, as well as the discrimination Db between
their binary quantization Xb = fb(X; τ) and Yb = fb(Y ; τ). We have Db > D, if there exists a
quantization threshold τ ∈ (−∞,+∞) such that

β − α+
µ2(1− 2β)− µ

√
µ2 + 4β(1− β)

1 + µ2
> 0, (8)

where α = Φ
(
τ−µ
σ

)
and β = Φ

(
τ+µ
σ

)
, with Φ(·) denoting the cumulative distribution function of

the standard normal distribution.
Theorem 2 (Ternary Quantization). Consider the discrimination D between two classes of data
X ∼ N(µ, σ2) and Y ∼ N(−µ, σ2) as specified in Property 1, as well as the discrimination Dt

between their ternary quantization Xt = ft(X; τ) and Yt = ft(Y ; τ). We have Dt > D, if there
exists a quantization threshold τ ∈ [0,+∞) such that

β − α+
µ2 −

√
µ4 + 8µ2β

2
> 0, (9)

where α = Φ
(−τ−µ

σ

)
and β = Φ

(−τ+µ
σ

)
, with Φ(·) denoting the cumulative distribution function

of the standard normal distribution.

Remarks: Regarding the aforementioned two theorems, there are three issues worth discussing. 1)
The two theorems suggest that the binary and ternary quantization can indeed improve the classi-
fication performance of original data, if there exist quantization thresholds τ that can satisfy the
constraints shown in Equations (8) and (9). The following numerical analysis demonstrates that the
desired threshold τ does exist, when the two classes of data X ∼ N(µ, σ2) and Y ∼ N(−µ, σ2) are
assigned appropriate values for µ and σ. This τ can be approximately estimated using the bisection
method. 2) Our theoretical analysis is based on the premise that the data vectors belonging to the
same class have Gaussian distributions at the vectors’ each coordinate. This condition should hold
true when two classes of data are readily separable, as in this case the data points within each class
should cluster tightly, allowing for Gaussian approximation. This explains the recent research find-
ings, that the binary or ternary quantization tends to achieve comparable or superior classification
performance, when handling relatively simple datasets (Courbariaux et al., 2015; Lin et al., 2016b),
or distinguishable features (Lu et al., 2023). 3) The conclusion we derive in Theorem 1 for {0, 1}-
binary quantization also applies to another popular {−1, 1}-binary quantization (Qin et al., 2020),
since the Euclidean distance of the former is equivalent to the cosine distance of the latter.
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3.2 NUMERICAL ANALYSIS
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(a) Theoretical results for binary
quantization
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(b) Numerical results for binary
quantization
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(c) Theoretical results for ternary
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(d) Numerical results for ternary
quantization

Figure 1: Consider two classes of data X ∼ N(µ, σ2) and Y ∼ N(−µ, σ2), with µ = 0.8 and
σ2 = 0.36, as specified in Property 1. The values for the left and right sides of Equations (8) and (9)
are provided in (a) and (c) for binary and ternary quantization, respectively; and the discrimination
D, Db and Dt statistically estimated with Equations (5), (6) and (7) are illustrated in (b) and (d) for
binary and ternary quantization, respectively.

In this part, we conduct numerical analyses for two primary objectives. Firstly, we aim to prove the
existence of the desired quantization threshold τ that holds Equations (8) and (9), namely making
the left sides of the two inequalities larger than their right sides (with values equal to zero). For this
purpose, we compute the values of the left sides of Equations (8) and (9), through assigning specific
values to τ , as well as to the two variables X and Y ’s distribution parameters µ and σ2. Note that we
here set σ2 = 1 − µ2, µ ∈ (0, 1), in accordance with Property 1. In Figure 1, we examine the case
that fixes µ = 0.8 and σ2 = 0.36, while varying the value of τ with a step width 0.01. The results
for binary quantization and ternary quantization are provided in Figures 1 (a) and (c), respectively.
It can be seen that for the two quantization, their conditions shown in Equations (8) and (9) will
hold when respectively having τ ∈ [−0.2, 0.2] and τ ∈ [0, 0.5]. This proves the existence of the
desired quantization threshold τ that is able to enhance feature discrimination. For limited space,
we here only discuss the case of µ = 0.8 (and σ2 = 1 − µ2) in Figure 1. By examining different
µ ∈ (0, 1) in the same way, we can find that the quantization threshold τ that holds Equations (8)
and (9), is present when µ ∈ (0.76, 1) and µ ∈ (0.66, 1), respectively; see Figures 8 and 9 for more
evidences. This result implies two consequences. First, ternary quantization has more chances to
enhance feature discrimination compared to binary quantization, as the former has a broader range
of µ. Second, the enhanced discrimination tends to be achieved when µ is sufficiently large (with a
correspondingly small σ), or say the discrimination between two classes of data is sufficiently high.

The second goal is to verify that the quantization thresholds τ we estimate with Equations (8) and
(9) in Theorems 1 and 2, can indeed enhance feature discrimination. To this end, it needs to prove
that the ranges of τ derived by Equations (8) and (9), such as the ones depicted in Figures 1 (a) and
(c), are consistent with the ranges we can statistically estimate by the discrimination definitions D,
Db and Dt, as specified in Definitions 1 and 2. To estimate the discrimination D, Db and Dt, we
randomly generate 10,000 samples from X ∼ N(0.8, 0.36) and Y ∼ N(−0.8, 0.36), respectively,
and then statistically estimate them with Equations (5), (6) and (7), across varying τ (with a step
width 0.01). The results are provided in Figures 1 (b) and (d), respectively for binary quantization
and ternary quantization. It can be seen that we have τ ∈ [−0.2, 0.2] for Db > D, and have
τ ∈ [0, 0.5] for Dt > D. The results coincide with the theoretical results shown in Figures 1 (a) and
(c), validating the correctness of Theorems 1 and 2.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

Through previous theoretical and numerical analyses, we have demonstrated that binary and ternary
quantization can enhance feature discrimination between two classes of data, when the data vectors
within each class exhibit Gaussian distributions across each coordinate point of their feature vec-
tors. Given that improved feature discrimination should yield better classification performance, this
section aims to validate this enhancement by assessing classification outcomes. To verify the uni-
versality of our theoretical results, we conduct binary classification experiments on both synthetic
and real data. The synthetic data aligns with the distribution conditions stipulated in our theoretical
analysis, whereas real data typically does not.

To accurately assess the impact of feature discrimination on classification performance, we test two
representative linear classifiers: the k-nearest neighbors (KNN) algorithm (with k = 5) (Peterson,
2009) using both Euclidean distance and cosine distance as similarity metrics, and the support vector
machine (SVM) (Cortes & Vapnik, 1995) with a linear kernel. Due to space constraints, some
experimental results will be presented in the appendix.

4.1 SYNTHETIC DATA

4.1.1 SETTING

In the simulation, we suppose that two classes of data have their samples i.i.d. drawn from two
different random vectors X = {X1, X2, · · · , Xn}⊤ and Y = {Y1, Y2, · · · , Yn}⊤, for which we
set Xi ∼ N(µi, σ

2
i ) and Yi ∼ N(−µi, σ

2
i ), with µi ∈ (−1, 0) ∪ (0, 1) and σ2

i = 1 − µ2
i , in

accordance with the data distributions specified in Property 1. Considering the fact that the features
of real-world data usually exhibit sparse structures (Weiss & Freeman, 2007; Kotz et al., 2012),
we further suppose that the means µi decay exponentially in magnitude, i.e. |µi+1|/|µi| = e−λ,
λ ≥ 0, and set µ1 = 0.8 in the following simulation. It can be seen that with the increasing of
λ, the mean’s magnitude |µi| (with i > 1) will become smaller, indicating a smaller data element
Xi (in magnitude) and a sparser data structure. However, the data element Xi with smaller µi, is
not favorable for quantization to enhance feature discrimination, as indicated by previous numerical
analyses. The impact of data sparsity on quantization can be investigated by increasing the value of
the parameter λ.

With the data model described above, we randomly generate two classes of data, each class contain-
ing 1000 samples. The dataset is split into two parts for training and testing, in a ratio of 4:1. Then
we evaluate the KNN and SVM classification on them. The classification accuracy is determined by
averaging the accuracy results obtained from repeating the data generation and classification process
100 times. The results for KNN with Euclidean distance are provided in Figures 2 and 3, and the
other results for KNN with cosine distance and SVM with linear kernel are given in the appendix,
Figures 10–13. It can be seen that the three classifiers exhibit similar performance trends. For con-
ciseness, we will focus more on the outcomes of KNN with Euclidean distance in the following
discussion.

4.1.2 RESULTS

Comparison between the data with different sparsity. In Figure 2, we investigate the classifica-
tion performance for the data generated with different parameters λ ∈ {0, 0.01, 0.1, 1}, namely with
different sparsity levels. Recall that the larger the λ, the smaller the |µi|, or say the smaller the data
element Xi (in magnitude). By the previous analysis, the data element Xi with smaller |µi| is not
conducive to enhancing feature discrimination through quantization. Nevertheless, empirically, the
negative effect does not appear to be significant. From Figure 2, it can be seen that when increas-
ing λ from 0.1 to 1, there have been quantization thresholds τ that can yield better classification
performance than the original data. In addition, it noteworthy that as λ increases, the overall classi-
fication accuracy of the original data will decrease. This decreasing trend also impacts the absolute
performance of the quantized data, even though it may outperform the original data.

Comparison between the data with different dimensions. The impact of data dimensions
n ∈ {1, 100, 10000} on classification is investigated in Figure 3, where the data are generated with
the exponentially decaying parameter λ = 1. It can be seen that with the increasing of data dimen-
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(e) Ternary data with λ = 0
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(f) Ternary data with λ = 0.01
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(h) Ternary data with λ = 1

Figure 2: KNN (Euclidean distance) classification accuracy for the 10,000-dimensional binary,
ternary, and original data that are generated with the varying parameter λ ∈ {0, 0.01, 0.1, 1}, which
controls the data sparsity.
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(b) 100-dim binary data
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(c) 10,000-dim binary data
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(d) 1-dim ternary data
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(e) 100-dim ternary data
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(f) 10,000-dim ternary data

Figure 3: KNN (Euclidean distance) classification accuracy for the binary, ternary, and original data
generated with the parameter λ = 1, and with varying dimensions n ∈ {1, 100, 10000}.

sion, the range of the quantization thresholds τ that outperform the original data tends to expand,
but the performance advantage declines. As previously discussed, the decline should be attributed
to the data element Xi with small means |µi|, whose quantity will rise with the data dimension n,
particularly when the decay parameter λ of |µi| is large. To alleviate this adverse effect, it is rec-
ommended to choose a relatively smaller λ for high-dimensional data, indicating a structure that is
not overly sparse. Conversely, when the high-dimensional data is highly sparse, we should reduce
its dimension to enhance the classification performance under quantization.

Comparison between binary quantization and ternary quantization. From Figures 2 and 3, it
can be seen that ternary quantization surpasses binary quantization by offering a broader range of
quantization thresholds τ that can yield superior classification performance than the original data.
This observation is consistent with our previous theoretical and numerical analyses.

Comparison between three classifiers. Combining the results presented in Figures 2, 3, and 10–
13, we can conclude that the three classifiers, including KNN with Euclidean distance, KNN with
cosine distance, and SVM with a linear kernel, all endorse quantization for achieving improved
classification performance over the original data, within certain ranges of quantization thresholds τ .
If closely examining the range of the desired τ , it can be observed that KNN often performs better
when using Euclidean distance than using cosine distance. This can be attributed to the advantage
of Euclidean distance over cosine distance in measuring the distance between 0 and ±1. Also, KNN
often outperforms SVM, such as the case of λ = 0.1 as shown in Figures 2 and 11. This is because
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Figure 4: Classification accuracy for the binary, ternary, and original data by KNN (Euclidean dis-
tance) and SVM on YaleB. The parameter γ corresponds to a threshold τ = γ · η, where η denotes
the average magnitude of the feature elements in all feature vectors.

SVM relies on a few data points located on the boundary between two classes, which may deteriorate
during quantization. In contrast, KNN depends on the high-quality data points within each class,
making it more resilient to quantization noise.

4.2 REAL DATA

4.2.1 SETTING

The classification is conducted on three different types of datasets, including the image datasets
YaleB (Lee et al., 2005) and CIFAR10 Krizhevsky & Hinton (2009), the speech dataset TIMIT
(Fisher et al., 1986), and the text dataset Newsgroup (Lang, 1995). The datasets are briefly in-
troduced as follows. YaleB contains face images of 38 persons, with about 64 faces per person.
CIFAR10 consists of 60,000 color images from 10 different classes, with each class having 6,000 im-
ages. For the above two image datasets, we separately extract their features using Discrete Wavelet
Transform (DWT) and ResNet18 (He et al., 2016). For ease of simulation, the resulting feature
vectors are dimensionally reduced by integer multiples, leading to the sizes of 1200 and 5018, re-
spectively. From TIMIT, as in (Mohamed et al., 2011; Hutchinson et al., 2012), we extract 39 classes
of 429-dimensional phoneme features for classification, totally with 1,134,138 training samples and
58,399 test samples. Newsgroup comprises 20 categories of texts, with 11,269 samples for training,
and 7,505 samples for testing. The feature dimension is reduced to 5000 by selecting the top 5000
most frequent words in the bag of words, as done in (Larochelle et al., 2012).

For each dataset, we enumerate all possible class pairs to conduct binary classification. The samples
for training and testing are selected according to the default settings of the datasets. For YaleB
without prior settings, we randomly assign half of the samples for training and the remaining half
for testing. In the simulation, we need to test the classification performance of quantized data across
varying quantization threshold τ . The value of τ should correlate with the element scale of the
feature vectors, in the pursuit of the case outperforming the original data. To address the scale
varying of τ across different data, we here suppose that τ = γ · η, where η denotes the average
magnitude of the feature elements (coordinates) in all the feature vectors used for classification, and
γ is a scaling parameter. By adjusting γ within a narrow range, as illustrated later, we can derive
the desired τ for various types of data. The results for KNN with Euclidean distance and SVM with
linear kernel are provided in Figures 4-7, and the results for KNN with cosine distance, are given in
the appendix, Figure 14.
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4.2.2 RESULTS
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Figure 5: Classification accuracy for the binary, ternary, and original data by KNN (Euclidean dis-
tance) and SVM on CIFAR10. The parameter γ corresponds to a threshold τ = γ · η, where η
denotes the average magnitude of the feature elements in all feature vectors.
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(d) Ternary data with SVM

Figure 6: Classification accuracy for the binary, ternary, and original data by KNN (Euclidean dis-
tance) and SVM on TIMIT. The parameter γ corresponds to a threshold τ = γ · η, where η denotes
the average magnitude of the feature elements in all feature vectors.

From Figures 4-7 and 14, it is evident that within certain ranges of quantization thresholds τ , both the
binary and ternary quantization can achieve superior or at least equivalent classification performance
compared the original data across four diverse datasets, when employing three distinct classifiers.
Similarly as the classification on synthetic data, when focusing on the range and significance of the
thresholds τ that have classification advantage over the original data, it can be seen that KNN with
Euclidean distance achieves superior classification performance than original data on all datasets,
and performs best among the three classifiers. In contrast, as shown in Figure 5, SVM merely pro-
vides comparable performance with original data on CIFAR10. The inferior performance of SVM
has been discussed in the previous study on synthetic data, mainly due to its sensitivity to quanti-
zation noise. Comparing the results between Figures 4-7 and 14, it can be seen that KNN tends to
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Figure 7: Classification accuracy for the binary, ternary, and original data by KNN (Euclidean dis-
tance) and SVM on Newsgroup. The parameter γ corresponds to a threshold τ = γ · η, where η
denotes the average magnitude of the feature elements in all feature vectors.

achieve a broader range of τ conductive to enhancing classification accuracy, when using Euclidean
distance as opposed to cosine distance. As discussed earlier, this discrepancy can be attributed to the
inherent advantage of Euclidean distance over cosine distance in measuring the distance between
two quantization data vectors that include zero elements. Moreover, in align with previous theoreti-
cal and numerical analyses, binary quantization typically exhibits slightly inferior performance than
ternary quantization, in the pursuit of the threshold τ that can improve classification accuracy.

It is noteworthy that the four datasets studied here do not precisely meet the conditions outlined
in our theoretical analysis, which require the data vectors of the same class following Gaussian
distributions at each coordinate. Actually, as the examples shown in Figure 17, there are notable dis-
parities between the distributions of real data and Gaussian distributions. Despite these disparities,
as demonstrated earlier, we can still obtain the desired quantization thresholds τ that can improve
classification accuracy. This suggests that our theoretical findings have broad applicability.

5 CONCLUSION

In the paper, we have proposed employing feature discrimination to analyze the impact of quan-
tization on classification. Unlike traditional analyses based on quantization errors, our feature
discrimination-based analysis offers a more direct and rational assessment of classification perfor-
mance. Through the analysis, we have demonstrated that common binary and ternary quantization
methods can enhance the feature discrimination of original data, particularly when data vectors
within the same class follow Gaussian distributions at each coordinate. These theoretical findings
are supported by numerical analysis. Furthermore, the improvement in discrimination is consis-
tently observed in classification experiments conducted on synthetic data conforming to Gaussian
distributions, as well as on various real-world data, such as the convolutional features of images,
the spectral feature of speeches and the term frequency feature of texts, which do not strictly adhere
to Gaussian distributions. This confirms the broad applicability of our theoretical results. Notably,
our study challenges the traditional belief that larger quantization errors generally lead to poorer
classification performance, laying a theoretical foundation for the pursuit of superior quantization
performance. Furthermore, it is noteworthy that the sparse structures induced by binary and ternary
quantization are prevalent in a wide range of machine learning (Qin et al., 2020; Gholami et al.,
2022) and biological neuron models (Haufe et al., 2010; Dasgupta et al., 2017). Our research may
offer insights for understanding, analyzing, and designing the sparsity of these models.
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A DETAILED PROOF

A.1 PROOF OF THEOREM 1

Let X1 and X2 be i.i.d. samples of X , and Y1 and Y2 be i.i.d. samples of Y . Denote Xi,b and Yi,b as
the binary quantization of Xi and Yi, i.e. Xi,b = fb(Xi; τ) and Yi,b = fb(Yi; τ), where i = 1, 2. By
the distributions of X and Y specified in Property 1 and the binary quantization function fb(x; τ)
defined in Equation(1), the probability mass functions of Xi,b and Yi,b can be derived as

P (Xi,b = k) =

{
1− α, k = 1

α, k = 0
(10)

and

P (Yi,b = k) =

{
1− β, k = 1

β, k = 0
(11)

where α = Φ
(
τ−µ
σ

)
and β = Φ

(
τ+µ
σ

)
. By the probability functions, it is easy to deduce that

E
[
(X1 −X2)

2
]
= 2σ2, E

[
(X1,b −X2,b)

2
]
= 2α− 2α2,

E
[
(Y1 − Y2)

2
]
= 2σ2, E

[
(Y1,b − Y2,b)

2
]
= 2β − 2β2,

E
[
(X1 − Y2)

2
]
= 2σ2 + 4µ2, E

[
(X1,b − Y1,b)

2
]
= α+ β − 2αβ.

With these equations, the discrimination D of original data, as specified in Definition 1, can be
further expressed as

D =
E[(X1 − Y1)

2]

E[(X1 −X2)2] + E[(Y1 − Y2)2]
=

σ2 + 2µ2

2σ2
, (12)

and similarly, the discrimination Db of binary quantized data, as specified in Definition 2, can be
written as

Db =
E[(X1,b − Y1,b)

2]

E[(X1,b −X2,b)2] + E[(Y1,b − Y2,b)2]
=

α− 2αβ + β

(2α− 2α2) + (2β − 2β2)
. (13)

Next, we are ready to prove that Db > D under the condition (8). By Equations (12) and (13), it is
easy to see that Db > D is equivalent to

(σ2 + 2µ2)α2 − 2(σ2β + µ2)α+ (σ2 + 2µ2)β2 − 2µ2β > 0. (14)

This inequality can be viewed as a quadratic inequality in α, which has the discriminant:

∆ = 4µ4 + 16(1− β)µ2β > 0.

By the above inequality, the inequality (14) holds when α ∈ (−∞, α1) ∪ (α2,+∞), where

α1 = β +
µ2(1− 2β)− µ

√
µ2 + 4β(1− β)

1 + µ2
,

and

α2 = β +
µ2(1− 2β) + µ

√
µ2 + 4β(1− β)

1 + µ2
. (15)

Given (15), we can further derive α2 > β, since µ2(1− 2β) + µ
√

µ2 + 4β(1− β) > 0. However,
this result contradicts the conclusion that α < β we can derive with the probability mass functions
shown in (10) and (11), mainly by the increasing property of Φ(·). So the solution to the inequality

(14) should be α ∈ (−∞, α1), implying β − α+
µ2(1−2β)−µ

√
µ2+4β(1−β)

1+µ2 > 0.

A.2 PROOF OF THEOREM 2

Let X1 and X2 be i.i.d. samples of X , and Y1 and Y2 be i.i.d. samples of Y . Denote Xi,t = ft(Xi; τ)
and Yi,t = ft(Yi; τ), where i = 1, 2. By the distributions of X and Y specified in Property 1 and
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the ternary quantization ft(x; τ) defined in Equation (2), the probability mass functions of Xi,t and
Yi,t can be derived as

P (Xi,t = k) =


β, k = 1

1−α− β, k = 0

α, k = −1

(16)

P (Yi,t = k) =


α, k = 1

1−α− β, k = 0

β, k = −1

(17)

where α = Φ(−τ−µ
σ ) and β = Φ(−τ+µ

σ ).

Then, by Definition 2, the discrimination Dt of ternary quantization can be derived as

Dt =
E[(X1,t − Y1,t)

2]

E[(X1,t −X2,t)2] + E[(Y1,t − Y2,t)2]
=

(α+ α2 − 2aβ + β + β2)

2(α− α2 + 2αβ + β − β2)
. (18)

By Equations (12) and (18), it can be seen that Dt > D is equivalent to

(α+ β) + (α− β)2

2(α+ β)− 2(α− β)2
>

σ2 + 2µ2

2σ2
,

which can simplify to
α2 − (2β + µ2)α+ β2 − µ2β > 0. (19)

Clearly, (19) can be regarded as a quadratic inequality in α, with its discriminant:

∆ = µ4 + 8µ2β > 0.

This inequality implies that the inequality (19) holds when α ∈ (−∞, α1) ∪ (α2,+∞), where

α1 = β +
µ2 −

√
µ4 + 8µ2β

2

and

α2 = β +
µ2 +

√
µ4 + 8µ2β

2
. (20)

In (20), the term µ2 +
√

µ4 + 8µ2β > 0, implying α2 > β. In contrast, we will derive α < β by
the probability functions shown in Equations (16) and (17), particularly by the increasing property
of Φ(·). By this contradiction, we can say that Dt > D holds only under the case of α ∈ (−∞, α1),
namely

β − α+
µ2 −

√
µ4 + 8µ2β

2
> 0.
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B OTHER RESULTS

B.1 NUMERICAL ANALYSIS
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(a) Theoretical results for the data with distri-
bution parameters µ = 0.99 and σ2 = 0.02
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(b) Numerical results for the data with distri-
bution parameters µ = 0.99 and σ2 = 0.02
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(c) Theoretical results for the data with distri-
bution parameters µ = 0.76 and σ2 = 0.42
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(d) Numerical results for the data with distri-
bution parameters µ = 0.76 and σ2 = 0.42

Figure 8: Consider the binary quantization on two classes of data X ∼ N(µ, σ2) and Y ∼
N(−µ, σ2) as specified in Property 1. For two kinds of data with distribution parameters (µ = 0.99,
σ2 = 0.02) and (µ = 0.76, σ2 = 0.42), the values for the left and right side of Equations (8) are
provided in (a) and (c) respectively; and their discrimination D and Db statistically estimated with
Equations (5) and (6) are illustrated in (b) and (d), respectively.
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(a) Theoretical results for the data with distri-
bution parameters µ = 0.99 and σ2 = 0.02
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(b) Numerical results for the data with distri-
bution parameters µ = 0.99 and σ2 = 0.02
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(c) Theoretical results for the data with distri-
bution parameters µ = 0.66 and σ2 = 0.56
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(d) Numerical results for the data with distri-
bution parameters µ = 0.66 and σ2 = 0.56

Figure 9: Consider the ternary quantization on two classes of data X ∼ N(µ, σ2) and Y ∼
N(−µ, σ2) as specified in Property 1. For two kinds of data with distribution parameters (µ = 0.99,
σ2 = 0.02) and (µ = 0.66, σ2 = 0.56), the values for the left and right side of Equations (9) are
provided in (a) and (c) respectively; and their discrimination D and Dt statistically estimated with
Equations (5) and (7) are illustrated in (b) and (d), respectively.
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B.2 SYNTHETIC DATA
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Figure 10: KNN (Cosine) classification accuracy for the 10,000-dimensional binary, ternary, and
original data that are generated with the varying parameter λ ∈ {0, 0.01, 0.1, 1}, which controls the
data sparsity.
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Figure 11: SVM classification accuracy for the 10,000-dimensional binary, ternary, and original data
that are generated with the varying parameter λ ∈ {0, 0.01, 0.1, 1}, which controls the data sparsity.
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(d) 10,000-dim ternary data

Figure 12: KNN (Cosine) classification accuracy for the binary, ternary, and original data generated
with the sparsity parameter λ = 1, and with varying dimensions n ∈ {100, 10000}.
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(f) 10,000-dim ternary data

Figure 13: SVM classification accuracy for the binary, ternary, and original data generated with the
sparsity parameter λ = 1, and with varying dimensions n ∈ {1, 100, 10000}.
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B.3 REAL DATA
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Figure 14: Classification accuracy for the binary, ternary, and original data by KNN (Cosine dis-
tance) on four different datasets. The parameter γ corresponds to a quantization threshold τ = γ · η,
where η denotes the average magnitude of the feature elements in all feature vectors.
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Figure 15: The histogram (blue bar) of the element values on one coordinate of the feature vectors
within a single class of samples selected from four different datasets, accompanied with a Gaussian
fitting curve (red line).
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C RESPONSE TO REVIEWS

C.1 CLASSIFICATION ACCURACY VS. FEATURE DISCRIMINATION VS. QUANTIZATION ERROR

(a) Binary quantization (b) Ternary quantization

Figure 16: KNN (Euclidean distance) classification accuracy for the binary, ternary, and original
synthetic data which are generated with the parameter λ = 1, and with data dimension equal to 1.
For comparison, the feature discrimination values and quantization errors across different thresholds
τ are provided for both binary and ternary data. Comments: It can be observed that the changing
trend of classification values across τ can be reasonably reflected by feature discrimination, rather
than by quantization errors.
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C.2 THE DATA DISTRIBUTION PARAMETER µ ESTIMATED WITH REAL DATA
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Figure 17: The histogram of the data distribution parameter µ (defined in Property 1) for each ele-
ment (coordinate) of the feature vectors used in binary classification. Comments: It can be seen that
with certain probabilities, the µ value of each feature element will fall within the regions of (0.76, 1)
and (0.66, 1), which supports achieving improved classification by binary and ternary quantization.
Despite the fact the the probabilities are not large, namely the amount of feature elements falling
within (0.76, 1) or (0.66, 1) is relatively few, as widely proved in our experiments, we can still ob-
tain the desired thresholds τ that support improving classification on these real data. This robustness
should be attributed to the fact that classification performance is mainly determined by a few im-
portant feature elements of large magnitude, such as the ones with absolute means µ falling within
(0.76, 1) or (0.66, 1).
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C.3 THE BINARY ATTRIBUTE OF FEATURE ELEMENTS ACROSS MULTIPLE CLASSES
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Figure 18: Two histograms are drawn, one for the feature elements with values less than zero (dark
red) and the other for those greater than zero (dark blue). The feature elements are collected from a
same coordinate of feature vectors across all classes. Comments: It can be seen that both histograms
approximately exhibit Gaussian distributions, with their two means separable. This indicates the
binary attribute (strong and weak) of the feature elements at the same coordinate, regardless of the
number of classes from which the feature vectors are drawn. This property enables us to extend
our feature discrimination analysis based on binary classification to multiclass classification. The
reason is as follows. Consider a feature vector x = [x1, x2, .., xn]

⊤ for a given sample, where each
element xi corresponds to a specific feature attribute, such as frequencies in DCT features, scale
and spatial positions in DWT features, or filters in convolutional features. The value of xi indicates
the strength of the i-th attribute present within the sample. Consequently, the strength of xi can
be seen as having two distinct states: strong and weak, reflecting the presence or absence of the
i-th attribute in the sample. The two states are evidenced in our statistical analysis on the xi of
real-data feature vectors x. The results are shown in this figure, where the large (>0) and small
values (<0) both exhibit Gaussian distributions, and the means of the two Gaussian distributions
represent the states of strong and weak, respectively. Based on this understanding, the classification
of each dimension/attribute xi in feature vectors x can be considered a binary classification problem,
regardless of the number of classes from which the feature vectors x are drawn. Therefore, we can
say that the capability of quantization to enhance binary classification should also apply to multiclass
classification, provided that the Gaussian distributions of the two attributes at each coordinate of
feature vectors are sufficiently separable, as required in Theorems 1 and 2.
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C.4 NONLINEAR CLASSIFIERS: MLP AND DECISION TREES
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Figure 19: MLP-based binary classification accuracy for the binary, ternary, and original data on
three different datasets. The parameter γ corresponds to a quantization threshold τ = γ · η, where
η denotes the average magnitude of the feature elements in all feature vectors. Comments: Despite
the fact that our linear feature discrimination analysis on quantized data may not directly extend to
nonlinear classification scenarios, experiments using classifiers MLP and decision trees demonstrate
that binary and ternary quantization can achieve improved or at least comparable classification re-
sults even with nonlinear classifiers. This should be attributed to the fact that nonlinear classifiers
generally involve fundamental linear operations, that evaluate the linear discrimination among fea-
tures or model parameters.
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Figure 20: Decision trees-based binary classification accuracy for the binary, ternary, and original
data on three different datasets. The parameter γ corresponds to a quantization threshold τ = γ · η,
where η denotes the average magnitude of the feature elements in all feature vectors. Comments:
Despite the fact that our linear feature discrimination analysis on quantized data may not directly
extend to nonlinear classification scenarios, experiments using classifiers MLP and decision trees
demonstrate that binary and ternary quantization can achieve improved or at least comparable clas-
sification results even with nonlinear classifiers. This should be attributed to the fact that nonlinear
classifiers generally involve fundamental linear operations, that evaluate the linear discrimination
among features or model parameters.
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C.5 BINARY AND MULTICLASS CLASSIFICATIONS ON IMAGENET1000
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Figure 21: Binary classification accuracy for the binary, ternary, and original data in ImageNet1000
(VGG16 features), using the classifier KNN (Euclidean distance). The parameter γ corresponds to a
quantization threshold τ = γ · η, where η denotes the average magnitude of the feature elements in
all feature vectors. Comments: It is evident that there are quantization thresholds that can enhance
the binary classification accuracy of ImageNet1000. Given the complexity of ImageNet1000, this
validates the generalizability of our findings.
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Figure 22: Multiclass classification accuracy for the binary, ternary, and original data in Ima-
geNet1000 (VGG16 features), using the classifier KNN (Euclidean distance). The parameter γ
corresponds to a quantization threshold τ = γ · η, where η denotes the average magnitude of the
feature elements in all feature vectors. Comments: It can be seen that there are quantization thresh-
olds that can enhance the multiclass classification accuracy of ImageNet1000. This validates that
our feature discrimination analysis, rooted in binary classification, can be extended to multiclass
classification, owing to the binary attribute of the same feature element across multiple classes. See
Figure 18 for more explanations.
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