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ABSTRACT

Recently, the study of heavy-tailed noises in first-order nonconvex stochastic op-
timization has gotten a lot of attention since it was recognized as a more realistic
condition as suggested by many empirical observations. Specifically, the stochas-
tic noise (the difference between the stochastic and true gradient) is considered
only to have a finite p-th moment where p ∈ (1, 2] instead of assuming it always
satisfies the classical finite variance assumption. To deal with this more challeng-
ing setting, people have proposed different algorithms and proved them to con-
verge at an optimal O(T

1−p
3p−2 ) rate for smooth objectives after T iterates. Notably,

all these new-designed algorithms are based on the same technique – gradient
clipping. Naturally, one may want to know whether the clipping method is a nec-
essary ingredient and the only way to guarantee convergence under heavy-tailed
noises. In this work, by revisiting the existing Batched Normalized Stochastic
Gradient Descent with Momentum (Batched NSGDM) algorithm, we provide the
first convergence result under heavy-tailed noises but without gradient clipping.
Concretely, we prove that Batched NSGDM can achieve the optimal O(T

1−p
3p−2 )

rate even under the relaxed smooth condition. More interestingly, we also es-
tablish the first O(T

1−p
2p ) convergence rate in the case where the tail index p is

unknown in advance, which is arguably the common scenario in practice.

1 INTRODUCTION

This paper studies the optimization problem minx∈Rd F (x) where F : Rd → R is differentiable
and could be nonconvex. When F is smooth (i.e., the gradient of F is Lipschitz), the classical first-
order method, Gradient Descent (GD), is known to converge at the optimal rate O(T− 1

2 ) to find a
stationary point (i.e., to minimize ∥∇F (x)∥) (Nesterov et al., 2018). However, a main drawback of
GD in the modern view is that it requires true gradients, which could be computationally burdensome
(e.g., large-scale tasks) or even infeasible to obtain (e.g., streaming data). As such, a famous variant
of GD, Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951), has become the gold standard
and been widely implemented nowadays due to its lightweight yet efficient computational procedure.
Under the standard finite variance noise condition, i.e., the second moment of the difference between
the stochastic gradient and the true gradient is bounded, SGD has been proved to converge in the
rate of O(T− 1

4 ) (Ghadimi & Lan, 2013), which is unimprovable if without further assumptions as
indicated by the lower bound (Arjevani et al., 2023).

Though the finite variance assumption has been widely adopted in theoretical study (see, e.g., Lan
(2020)), it has been recently recognized as too optimistic in modern machine learning tasks pointed
out by empirical observations (Simsekli et al., 2019; Şimşekli et al., 2019; Zhang et al., 2020c) who
reveal a more realistic setting: the heavy-tailed regime, i.e., the stochastic noise only has a finite p-th
moment where p ∈ (1, 2], which brings new challenges in both algorithmic design and theoretical
analysis since SGD unfortunately fails to work and the prior theory for SGD becomes invalid when
p < 2 (Zhang et al., 2020c).

To resolve the failure of SGD under heavy-tailed noises, Clipped SGD (or its further variants) has
been proposed and shown to converge both in expectation (Zhang et al., 2020c) and in high proba-
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bility (Cutkosky & Mehta, 2021; Liu et al., 2023; Nguyen et al., 2023; Liu et al., 2024) at the rate
O(T

1−p
3p−2 ), which is indeed optimal (Zhang et al., 2020c). As suggested by the name, the central tool

lying in all these existing algorithms is gradient clipping, which seems to be a necessary ingredient
against heavy-tailed noises so far. Therefore, we are naturally led to the following question:

Is gradient clipping the only way to guarantee convergence under heavy-tailed noises? If not, can
we find an algorithm that converges at the optimal rate O(T

1−p
3p−2 ) without clipping?

Another important but often omitted issue in the previous studies is that the tail index p of heavy-
tailed noises is always implicitly assumed to be known and then used to choose the clipping mag-
nitude and the stepsize (or the momentum parameter) (Zhang et al., 2020c; Cutkosky & Mehta,
2021; Liu et al., 2023; Nguyen et al., 2023; Liu et al., 2024). However, knowing p exactly or even
estimating its approximate value is a non-trivial task in lots of cases, e.g., the online setting. Conse-
quently, the existing convergence theory for Clipped SGD immediately becomes vacuous when no
prior information on p is guaranteed, which is however arguably the common scenario in practice.
The above discussion thereby leads us to another research question:

Does there exist an algorithm that provably converges under heavy-tailed noises even if the tail
index p is unknown?

This work provides affirmative answers to both of the above questions by revisiting a well-known
technique in optimization: gradient normalization, which is surprisingly effective even under heavy-
tailed noises as demonstrated by our refined theoretical analysis.

1.1 OUR CONTRIBUTIONS

We study the Batched Normalized Stochastic Gradient Descent with Momentum (Batched NSGDM)
algorithm (Cutkosky & Mehta, 2020) under heavy-tailed noises and establish several new results.
More specifically:

• We prove that Batched NSGDM converges in expectation at the optimal rate O(T
1−p
3p−2 )

when noises only have finite p-th moment where p ∈ (1, 2], which is the first convergence
result under heavy-tailed noises not requiring gradient clipping.

• We establish a refined lower complexity result having a more precise order on problem-
dependent parameters (e.g., the noise level σ0), which perfectly matches our new conver-
gence theory for Batched NSGDM further showing the optimality of our analysis.

• We initiate the study of optimization under heavy-tailed noises with an unknown tail index
p and provide the first provable rate O(T

1−p
2p ) also achieved by the same Batched NSGDM

method indicating the robustness of gradient normalization against heavy-tailed noises.
• Our analysis goes beyond the classical smoothness condition and heavy-tailed noises as-

sumption studied in the previous works and is the first to hold under their generalized
counterparts (see Assumptions 2.2 and 2.4).

• Our proof is based on a novel expected inequality for the vector-valued martingale differ-
ence sequence, which might be of independent interest.

1.2 RELATED WORK

We focus on the literature studying nonconvex problems under heavy-tailed noises. For recent
progress on convex optimization, the reader can refer to Zhang & Cutkosky (2022); Sadiev et al.
(2023); Liu & Zhou (2023); Kornilov et al. (2024); Gorbunov et al. (2024) for details.

Upper bound under heavy-tailed noises. For smooth objectives, different works have established
the optimal rate O(T

1−p
3p−2 ) (up to a logarithmic factor) for Clipped SGD or its variants (Zhang

et al., 2020c; Cutkosky & Mehta, 2021; Liu et al., 2023; Nguyen et al., 2023; Liu et al., 2024),
among which, Zhang et al. (2020c) and Nguyen et al. (2023) respectively provide the best expected
and high-probability bounds for Clipped SGD as their results do not contain any extra O(log T )

factor. Notably, Zhang et al. (2020c) can recover the standard O(T− 1
2 ) rate in the noiseless case. In
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contrast, the rates by Cutkosky & Mehta (2021); Liu et al. (2023); Nguyen et al. (2023); Liu et al.
(2024) are not adaptive to the noise level. In addition, we note that the results from Cutkosky &
Mehta (2021) also depend on an extra vulnerable assumption, i.e., the stochastic gradient itself has
finite p-the moment, which can be easily violated. Moreover, all of these works require the tail index
p to establish the convergence theory, which however may not be realistic in practice.

Lower bound under heavy-tailed noises. As far as we know, Zhang et al. (2020c) is the first and the
only work that provides the Ω(T

1−p
3p−2 ) lower bound for nonconvex optimization under the classical

smooth assumption and the finite p-th moment condition on noises, where the proof is based on the
tool named probability zero-chain developed by Arjevani et al. (2023). However, we should remind
the reader that the lower bound by Zhang et al. (2020c) is actually proved based on assuming a finite
p-th moment on the stochastic gradient instead of the noise and hence may fail to provide a correct
dependence on problem-dependent parameters like the noise level σ0.

In addition, we provide a quick review of the gradient normalization technique.

Gradient Normalization. The normalized gradient method has a long history and could date back to
the pioneering work of Nesterov (1984), which is the first paper to suggest considering normalization
in (quasi-)convex optimization problems and provides a theoretical convergence rate. Many later
works (e.g., Kiwiel (2001); Hazan et al. (2015); Levy (2016); Nacson et al. (2019)) further explore
the potential of gradient normalization. In deep learning, gradient normalization (or its variant) also
has gotten more and more attention since it can tackle the gradient explosion/vanish issue and has
been observed to accelerate the training (You et al., 2017; 2019). However, a provable theory still
lacks for general nonconvex problems until (Cutkosky & Mehta, 2020), who established the first
meaningful bound by adding momentum into the normalized method, which is also the algorithm
studied in this work.

2 PRELIMINARIES

Notation. N denotes the set of natural numbers (excluding 0). [T ] ≜ {1, 2, · · · , T} for any T ∈ N.
⟨·, ·⟩ is the Euclidean inner product on Rd and ∥·∥ ≜

√
⟨·, ·⟩ is the ℓ2 norm. Given a sequence

rt ∈ R,∀t ∈ [T ], we use the notation rs:t ≜
∏t

ℓ=s rℓ for any 1 ≤ s ≤ t ≤ T and rs:t ≜ 1 if s > t.

We consider the following optimization problem in this work
min
x∈Rd

F (x),

where F is differentiable on Rd and possibly nonconvex. Next, we list the assumptions used in the
analysis as follows:
Assumption 2.1. Finite Lower bound. F∗ ≜ infx∈Rd F (x) > −∞.
Assumption 2.2. Generalized Smoothness. There exist L0 ≥ 0 and L1 ≥ 0 such that
∥∇F (x)−∇F (y)∥ ≤ (L0 + L1 ∥∇F (x)∥) ∥x− y∥ for any x,y ∈ Rd satisfying ∥x− y∥ ≤ 1

L1
.

Assumption 2.2 is known as the generalized/relaxed smooth condition, which better fits modern
machine learning tasks (Zhang et al., 2020b; Jin et al., 2021). The original definition of this new
condition was proposed by Zhang et al. (2020b) but required the objective to be twice differentiable.
Here, we instead adopt a weaker version later introduced by Zhang et al. (2020a), which only needs
F to be differentiable. As one can see, Assumption 2.2 degenerates to the standard L0-smoothness
when L1 = 0 and hence is more general. We note that there exist other versions of generalized
smoothness proposed recently and refer to Chen et al. (2023); Li et al. (2023a;b) for details.
Assumption 2.3. Unbiased Estimator. At the t-th iterate, we can access a batch of unbiased gra-
dient estimator Gt ≜

{
g1
t , · · · , gB

t

}
, i.e., E

[
gi
t | Ft−1

]
= ∇F (xt),∀i ∈ [B], where B is the batch

size and Ft ≜ σ(G1, · · · , Gt) denotes the natural filtration. Moreover, we assume gi
t,∀i ∈ [B] are

mutually independent for any fixed t.
Assumption 2.4. Generalized Heavy-Tailed Noises. There exist p ∈ (1, 2], σ0 ≥ 0 and σ1 ≥ 0 such

that E
[∥∥ξit∥∥p | Ft−1

]
≤ σp

0 + σp
1 ∥∇F (xt)∥p ,∀i ∈ [B] almost surely where ξit ≜ gi

t −∇F (xt).

We remark that Assumption 2.4 is a relaxation of the traditional heavy-tailed noises assumption
(i.e., set σ1 = 0) and is new as far as we know. The reason for proposing this generalized version
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is that the finite p-th moment requirement used in prior works can be violated in certain situations
where the new assumption instead holds. We refer the reader to Example A.1 provided in Appendix
A for details. In addition, such a form of Assumption 2.4 may reminisce about the affine variance
condition studied in the existing literature (Bottou et al., 2018). Indeed, this new assumption is
inspired by it and can be also viewed as its extension.

However, to make our work more reader-friendly, we will stick to the case σ1 = 0 (i.e., the classical
heavy-tailed noises assumption used in prior works) in the main text to focus on conveying our high-
level idea and avoid further complicating the analysis. The full version of our new result considering
an arbitrary pair (σ0, σ1) in Assumption 2.4 is deferred into Appendix D.

To finish this section, we introduce the following smooth inequality under Assumption 2.2, whose
proof is omitted and can be found in, for example, Zhang et al. (2020a).
Lemma 2.5. Under Assumption 2.2, for any x,y ∈ Rd satisfying ∥x− y∥ ≤ 1

L1
, there is

F (y) ≤ F (x) + ⟨∇F (x),y − x⟩+ L0 + L1 ∥∇F (x)∥
2

∥x− y∥2 .

3 CONVERGENCE WITHOUT GRADIENT CLIPPING

Algorithm 1 Batched Normalized Stochastic Gradient Descent with Momentum (Batched NSGDM)
Input: initial point x1 ∈ Rd, batch size B ∈ N, momentum parameter βt ∈ [0, 1], stepsize ηt > 0
for t = 1 to T do

gt =
1
B

∑B
i=1 g

i
t

mt = βtmt−1 + (1− βt)gt ▷ where m0 ≜ g1

xt+1 = xt − ηt
mt

∥mt∥ ▷ where 0
∥0∥ ≜ 0

end for

Remark 3.1. Instead of the norm normalization employed in Algorithm 1, we can consider the
elementwise normalization update rule (i.e., xt+1[i] = xt[i] − ηt

mt[i]
|mt[i]| ,∀i ∈ [d]), which is known

as Batched Signed Stochastic Gradient Descent with Momentum (Batched SSGDM). By applying
the idea introduced in Section 4 later, one can also establish the convergence of Batched SSGDM
under heavy-tailed noises.

The method we are interested in, Batched NSGDM (Cutkosky & Mehta, 2020), is provided above
in Algorithm 1. Compared to the widely used Batched SGDM algorithm, the only difference is the
extra normalization step, which we will show has a crucial effect when dealing with heavy-tailed
noises. Since many prior works (e.g., You et al. (2017); Cutkosky & Mehta (2020); Jin et al. (2021))
have explained how and why Batched NSGDM works (in the finite/affine variance case), we hence
do not repeat the discussion here again. The reader seeking intuition behind the algorithm could
refer to, for example, Cutkosky & Mehta (2020) for details.

Now we are ready to present our new result for this classical algorithm under heavy-tailed noises.

3.1 CONVERGENCE WITH A KNOWN TAIL INDEX p

In this subsection, we provide the convergence rate of Batched NSGDM under an ideal situation,
i.e., when every problem-dependent parameter is known, which is commonly assumed implicitly in
the optimization literature.
Theorem 3.2. Under Assumptions 2.1, 2.2, 2.3 and 2.4 (with σ1 = 0), let ∆1 ≜ F (x1)− F∗, then
for any T ∈ N, by taking

βt ≡ β = 1−min

{
1,max

{(
∆1L1 + σ0

σ0T

) p
2p−1

,

(
∆1L0

σ2
0T

) p
3p−2

}}
,

ηt ≡ η = min


√

(1− β)∆1

L0T
,
1− β

8L1

 , B = 1,
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Algorithm 1 guarantees

1

T

T∑
t=1

E [∥∇F (xt)∥] = O

∆1L1

T
+

√
∆1L0

T
+

(∆1L1)
p−1
2p−1σ

p
2p−1

0 + σ0

T
p−1
2p−1

+
(∆1L0)

p−1
3p−2σ

p
3p−2

0

T
p−1
3p−2

 .

Theorem 3.2 states the convergence rate of Algorithm 1 under heavy-tailed noises. The full version,
Theorem D.1, that works for any σ1 ≥ 0 is deferred into Appendix D. As a quick sanity check,
Theorem 3.2 reduces to the rate O((∆1L0σ

2
0/T )

1
4 ) when p = 2 (i.e., the finite variance case),

which is known to be tight not only in T but also in ∆1, L0 and σ0 (Arjevani et al., 2023).

We would like to discuss this theorem here further. First and most importantly, as far as we know,
this is the first and the only convergence result for nonconvex stochastic optimization under heavy-
tailed noises but without employing the gradient clipping technique, which is the central tool for all
previous algorithms under the same setting, not to mention the rate O(T

1−p
3p−2 ) is also optimal in T

since it matches the lower bound Ω(T
1−p
3p−2 ) proved in Zhang et al. (2020c). In fact, the lower-order

term O((∆1L0σ
p

p−1

0 /T )
p−1
3p−2 ) in our rate is also tight in ∆1, L0 and σ0 as indicated by Theorem 3.3

below, where we present a refined lower bound by extending the prior result (Zhang et al., 2020c).
To the best of our knowledge, we are also the first to obtain a tight dependence on these parameters
compared to the previous best-known bounds for Clipped SGD that are only optimal in T (Zhang
et al., 2020c; Nguyen et al., 2023). The proof of Theorem 3.3 is given in Appendix D and mostly
follows the same way established in Carmon et al. (2020); Arjevani et al. (2023); Zhang et al. (2020c)
but with a simple alteration to ensure the noise magnitude σ0 shows up in a correct order.
Theorem 3.3. For any given p ∈ (1, 2], ∆1, L0, σ0 > 0, and small enough ε > 0, there exist a
function F (depending on the previous parameters) satisfying Assumptions 2.1 and 2.2 (with L1 = 0)
and a stochastic oracle satisfying Assumptions 2.3 (with B = 1) and 2.4 (with σ1 = 0) such that any

zero-respecting algorithm1 requires Ω(∆1L0σ
p

p−1

0 ε−
3p−2
p−1 ) iterations to find an ε-stationary point,

i.e., E [∥∇F (x)∥] ≤ ε.
Remark 3.4. The careful reader may find that Theorem 3.3 is established under the classical smooth
assumption instead of the relaxed (L0, L1)-smooth condition. However, by noticing that the function
class satisfying the traditional smoothness is a subclass of the function set fulfilling the generalized
smoothness, this lower bound can thus be directly applied to the setting considered in Theorem 3.2.
Remark 3.5. We also note that, when p = 2, Theorem 3.3 perfectly matches the existing lower
bound Ω(∆1L0σ

2
0ε

−4) in the finite variance case (Arjevani et al., 2023).

Moreover, we would like to mention that Theorem 3.2 holds under the generalized smoothness (and
generalized heavy-tailed noises), which greatly extends the implication of our result compared to the
previous works (Zhang et al., 2020c; Nguyen et al., 2023) that can be only applied to the classical
setting. In addition, the reader may want to ask why we need a batch size B given it is set to 1. The
reason for considering B is that it plays an important role when σ1 > 0. To be precise, B could be
possibly larger than 1 to guarantee the convergence when σ1 > 0. For details about how the batch
size B works, please refer to Theorem D.1 and its proof. Lastly, we want to point out that Theorem
3.2 perfectly recovers the fastest rate in the noiseless case. In other words, when σ0 = 0, the rate
degenerates to O(∆1L1/T+

√
∆1L0/T ), which is the best result for deterministic (L0, L1)-smooth

nonconvex optimization as far as we are aware.

Given the above discussion, we believe that our work provides a new insight on how to deal with
heavy-tailed noises, i.e., using normalization, in stochastic nonconvex optimization problems.

3.2 CONVERGENCE WITHOUT A KNOWN TAIL INDEX p

As pointed out at the beginning of Subsection 3.1, the convergence result shown in Theorem 3.2 can
however only hold under full information because the choices of β and η heavily rely on the problem-
dependent parameters, which are however hard to estimate in practice. Especially, assuming prior
information on p is not realistic. As such, we will try to reduce the dependence on these parameters
in this subsection.

1A first-order algorithm is called zero-respecting if it satisfies xt ∈ ∪s<tsupport(gs), ∀t ∈ N. The reader
could refer to Definition 1 in Arjevani et al. (2023) for details.
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Theorem 3.6. Under Assumptions 2.1, 2.2, 2.3 and 2.4 (with σ1 = 0), let ∆1 ≜ F (x1)− F∗, then
for any T ∈ N, by taking

βt ≡ β = 1− 1

T
1
2

, ηt ≡ η = min

{
1

T
3
4
, 1

8L1T
1
2

}
, B = 1,

Algorithm 1 guarantees

1

T

T∑
t=1

E [∥∇F (xt)∥] = O
(
∆1L1√

T
+

∆1 + L0

T
1
4

+
σ0

T
p−1
2p

)
.

Theorem 3.6 shows the first provable convergence upper bound O(T
1−p
2p ) when the tail index p is

unknown and at the same time try to relax the dependence on other parameters. As one can see, the
only parameter we require now is L1. It is noteworthy that, once the time horizon T is large enough
to satisfy T = Ω(L4

1) (or equivalently, L1 is small enough to satisfy L1 = O(T
1
4 )), we can get rid

of L1 in η and thus do not need any information on the problem. A remarkable implication is that,
in the same classical smooth case (i.e., when L1 = 0) studied in the previous works (Zhang et al.,
2020c; Nguyen et al., 2023), Batched NSGDM can converge in the rate O(T

1−p
2p ) without knowing

any of p,∆1, L0, σ0. In contrast, the choices of the clipping magnitude and the stepsize in Clipped
SGD provided by Zhang et al. (2020c); Nguyen et al. (2023) heavily depend on these parameters.

In addition, there are several points we would like to clarify. First, one may want to ask whether the
requirement of knowing L1 can be totally lifted, which we incline to a negative answer under the
current version of (L0, L1)-smoothness. But to prevent deviating from the main topic of our paper
— heavy-tailed noises, we defer the detailed discussion about L1 into Appendix B, in which we will
explain the reason and talk about a possible way to resolve this problem. Another question that we
view important but currently have no answer to is whether the O(T

1−p
3p−2 ) rate is still achievable when

p is unknown, which we leave as an interesting direction to be explored in the future. Moreover, the
reader may find that the rate in Theorem 3.6 loses the adaptivity on σ0 since it can only guarantee
the O(T− 1

4 ) convergence instead of the optimal O(T− 1
2 ) rate in the noiseless case. We remark that

this is a common phenomenon for optimization algorithms when oblivious to the level of noise. For
example, it is well-known that SGD suffers the same issue even under the finite variance assumption
but when σ0 is unknown. The last thing we have to mention is that, unfortunately, the good property
of not needing the tail index p may fail when considering σ1 > 0 in the generalized heavy-tailed
assumption. Precisely speaking, we can only prove there exists a constant threshold σ∗

1 > 0 such
that B can always be set to 1 if σ1 ≤ σ∗

1 and B has to be chosen based on p when σ1 > σ∗
1 . The

details can be found in Theorem D.2 in the appendix.

In summary, we exhibit the first convergence result under heavy-tailed noises when only partial
information about the problem is available. Particularly, under the classical heavy-tailed noises, we
show how to guarantee convergence even if the tail index p is unknown.

4 HOW GRADIENT NORMALIZATION WORKS

In this section, we will explain how gradient normalization works under heavy-tailed noises by
both intuitive discussion and theoretical analysis. Moreover, to keep the analysis simple and better
compare the difference between Batched NSGDM and Clipped SGD studied previously, we will
focus on the classical L0-smooth case (i.e., take L1 = 0 in Assumption 2.2) under finite p-th moment
noises (i.e., take σ1 = 0 in Assumption 2.4) to align with the prior works. Due to limited space, the
missing proofs of presented lemmas (and their full version) are deferred into the appendix.

4.1 WHAT DOES GRADIENT CLIPPING DO?

Before analyzing Algorithm 1, let us first recap the update rule of Clipped SGD:

xt+1 = xt − ηtĝt, ĝt ≜ min

{
1,

τt
∥gt∥

}
gt, (1)

where ĝt is the clipped gradient and τt > 0 is known as the clipping magnitude playing a critical
role in the convergence. Especially, (1) can recover SGD by setting τt = +∞.
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Here we provide a simple analysis to illustrate how gradient clipping helps Clipped SGD to converge
in expectation. First, by the well-known smoothness inequality, i.e., Lemma 2.5 with L1 = 0, we
know

F (xt+1) ≤ F (xt) + ⟨∇F (xt),xt+1 − xt⟩+
L0

2
∥xt+1 − xt∥2

(1)
= F (xt)− ηt ⟨∇F (xt), ĝt⟩+

η2tL0

2
∥ĝt∥

2

= F (xt)−
(
ηt −

η2tL0

2

)
∥∇F (xt)∥2 − (ηt − η2tL0) ⟨∇F (xt), ϵt⟩+

η2tL0

2
∥ϵt∥2 ,

(2)

where ϵt ≜ ĝt − ∇F (xt). Following the existing literature (e.g., Cutkosky & Mehta (2021); Liu
et al. (2023)), we next decompose ϵt into ϵt = ϵut + ϵbt , where ϵut ≜ ĝt − E [ĝt | Ft−1] and
ϵbt ≜ E [ĝt | Ft−1]−∇F (xt). By noticing E [⟨∇F (xt), ϵ

u
t ⟩] = E

[〈
ϵbt , ϵ

u
t

〉]
= 0, we thus have

E [F (xt+1)] ≤E [F (xt)]−
(
ηt −

η2tL0

2

)
E
[
∥∇F (xt)∥2

]
+ (ηt − η2tL0)E

[〈
∇F (xt),−ϵbt

〉]
+

η2tL0

2
E
[
∥ϵut ∥

2
+
∥∥ϵbt∥∥2]

if ηt≤1/L0

≤ E [F (xt)]−
ηt
2
E
[
∥∇F (xt)∥2

]
+

η2tL0

2
E
[
∥ϵut ∥

2
]
+

ηt
2
E
[∥∥ϵbt∥∥2] , (3)

where the last step is by E
[〈
∇F (xt),−ϵbt

〉]
≤

E[∥∇F (xt)∥2]+E
[
∥ϵbt∥2

]
2 and ηt − η2tL0 ≥ 0.

• Now let us check what will happen for SGD if without clipping, i.e., taking τt = +∞. In
this case, (3) recovers the classical one-step inequality for SGD by observing ϵut = ξt ≜
gt −∇F (xt) and ϵbt = 0 now, which also reveals why SGD may fail to converge because
E
[
∥ϵut ∥

2
]
= E

[
∥ξt∥

2
]

could be +∞ under Assumption 2.4.

• In contrast, loosely speaking, setting τt < +∞ would ensure both E
[
∥ϵut ∥

2
]

and

E
[∥∥ϵbt∥∥2] be finite, whose upper bounds could be further controlled by setting τt prop-

erly. Finally, Clipped SGD would converge under carefully picked ηt and τt.

From the above comparison (which though is not strictly rigorous), one can intuitively think that the
key thing done by gradient clipping is making the second moment of the error term E

[
∥ϵt∥2

]
in (2)

be bounded even when the noise ξt only has a finite p-th moment.

4.2 WHAT DOES GRADIENT NORMALIZATION DO?

By the discussion in the previous subsection, we can see that gradient clipping is used to control the
second moment of the error term. A natural thought could be that we may avoid gradient clipping
if the error term ∥ϵt∥2 in (2) is in a lower order, for example, say ∥ϵt∥p which can be bounded in
expectation directly without clipping. However, because p is not necessarily known, we could aim
to decrease the order of ∥ϵt∥ from 2 to 1, i.e., the extreme case.

The above thought experiment may immediately help the reader who is familiar with the optimiza-
tion literature recall the gradient normalization technique, in the analysis of which first-order terms
always show up. As such, it is reasonable to expect that Batched NSGDM can converge under
heavy-tailed noises even without knowing p due to gradient normalization.

From now on, we start analyzing Algorithm 1 rigorously and formally show how the gradient nor-
malization overcomes heavy-tailed noises.
Lemma 4.1. Under Assumptions 2.1 and 2.2 (with L1 = 0), let ∆1 ≜ F (xt)− F∗, then Algorithm
1 guarantees

T∑
t=1

ηtE [∥∇F (xt)∥] ≤ ∆1 +
L0

∑T
t=1 η

2
t

2
+

T∑
t=1

2ηtE [∥ϵt∥] , (4)

7
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where ϵt ≜ mt −∇F (xt),∀t ∈ [T ].

Lemma 4.1 provides a basic inequality used in the analysis of Batched NSGDM. We remark this
inequality is not new and has been proved many times before even when L1 > 0 (e.g., see Cutkosky
& Mehta (2020); Jin et al. (2021)). But for completeness, the proof is provided in Appendix D.

As mentioned earlier, the first moment E [∥ϵt∥] is exactly what we want, which we hope could be
finite even under Assumption 2.4. To bound this term, we first recall the following widely used
decomposition when studying gradient normalization (Cutkosky & Mehta, 2020; 2021; Jin et al.,
2021; Liu et al., 2023).
Lemma 4.2. Algorithm 1 guarantees

ϵt = β1:tϵ0 +

t∑
s=1

βs:tDs +

t∑
s=1

(1− βs)βs+1:tξs,∀t ∈ [T ] , (5)

where

ϵ0 ≜ g1 −∇F (x1), Dt ≜

{
∇F (xt−1)−∇F (xt) 2 ≤ t ≤ T

0 t = 1
, ξt ≜ gt −∇F (xt).

Proof. By the definition of ϵt when t ≥ 2,

ϵt = mt −∇F (xt) = βtmt−1 + (1− βt)gt −∇F (xt)

= βt(mt−1 −∇F (xt−1)) + βt(∇F (xt−1)−∇F (xt)) + (1− βt)(gt −∇F (xt))

= βtϵt−1 + βtDt + (1− βt)ξt.

One can verify that the above equation also holds when t = 1 under our notations (recall m0 = g1
in Algorithm 1). Unrolling the equation recursively, we can finally obtain the desired result.

After plugging (5) into (4), as one can imagine, our remaining task is to upper bound E [∥ϵ0∥],
E
[∥∥∥∑t

s=1 βs:tDs

∥∥∥] and E
[∥∥∥∑t

s=1(1− βs)βs+1:tξs

∥∥∥]. For simplicity, we consider the batch size
B = 1 in the following.

First, note that E
[∥∥∥∑t

s=1 βs:tDs

∥∥∥] ≤
∑t

s=1 βs:tE [∥Ds∥] and ∥Ds∥ can be bounded by L0-
smoothness easily (even under (L0, L1)-smoothness), hence we skip the calculation here. Next,

when B = 1, one can use Hölder’s inequality to bound E [∥ϵ0∥] ≤
(
E
[
∥ϵ0∥p

]) 1
p ≤ σ0 where the

last step is by Assumption 2.4 when σ1 = 0. For the left term E
[∥∥∥∑t

s=1(1− βs)βs+1:tξs

∥∥∥]:
• When p = 2, prior works like Cutkosky & Mehta (2020) invoke Hölder’s inequality to have

E

[∥∥∥∥∥
t∑

s=1

(1− βs)βs+1:tξs

∥∥∥∥∥
]
≤

√√√√√E

∥∥∥∥∥
t∑

s=1

(1− βs)βs+1:tξs

∥∥∥∥∥
2


≤

√√√√ t∑
s=1

((1− βs)βs+1:tσ0)2,

where the last step is due to E [⟨ξs, ξt⟩] = 0 for every cross term and E
[
∥ξs∥

2
]
≤ σ2

0 .

• Naturally, when noises only have finite p-th moments, one may want to apply Hölder’s
inequality in the following form,

E

[∥∥∥∥∥
t∑

s=1

(1− βs)βs+1:tξs

∥∥∥∥∥
]
≤

(
E

[∥∥∥∥∥
t∑

s=1

(1− βs)βs+1:tξs

∥∥∥∥∥
p]) 1

p

.

However, a critical issue here is that ∥·∥p cannot be expanded like ∥·∥2 to make the cross
term ⟨ξs, ξt⟩ show up, which fails the analysis.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

As such, how to establish a meaningful bound on E
[∥∥∥∑t

s=1(1− βs)βs+1:tξs

∥∥∥] is the novel part of
our proofs, which essentially differs from the existing analysis when p = 2.

Fix t ∈ [T ], to ease the notation, we denote by vs ≜ (1−βs)βs+1:tξs,∀s ∈ [t]. Hence, our goal can
be summarized to bound the norm of

∑t
s=1 vs, where vs is a vector-valued martingale difference

sequence (MDS). To do so, we introduce the following inequality, which is the core in our analysis.
Lemma 4.3. Given a sequence of random vectors vt ∈ Rd,∀t ∈ N such that E [vt | Ft−1] = 0

where Ft ≜ σ (v1, . . . ,vt) is the natural filtration, then for any p ∈ [1, 2], there is

E

[∥∥∥∥∥
T∑

t=1

vt

∥∥∥∥∥
]
≤ 2

√
2E

( T∑
t=1

∥vt∥p
) 1

p

 ,∀T ∈ N. (6)

At first glance, (6) seems wrong because it provides E
[∥∥∥∑T

t=1 vt

∥∥∥] ≤ 2
√
2E
[√∑T

t=1 ∥vt∥2
]

by

taking p = 2. However, one may only expect E
[∥∥∥∑T

t=1 vt

∥∥∥] ≤
√∑T

t=1 E
[
∥vt∥2

]
to hold. So

why is (6) true? Intuitively, this is because (6) is only stated for the MDS in contrast to Hölder’s
inequality being able to apply to any sequence.

To let the reader believe Lemma 4.3 is correct, we first consider the case of d = 1 and recall the
famous Burkholder-Davis-Gundy (BDG) inequality.
Lemma 4.4. (Burkholder-Davis-Gundy Inequality (Burkholder, 1966; Burkholder & Gundy, 1970;
Davis, 1970), simplified version) Given a discrete martingale Xt ∈ R with X0 = 0, then there exists
a constant C1 > 0 such that

E
[
max
t∈[T ]

|Xt|
]
≤ C1E


√√√√ T∑

t=1

(Xt −Xt−1)2

 ,∀T ∈ N.

Let Xt ≜
∑t

s=1 vs, BDG inequality immediately implies (6) under d = 1 and p = 2 (up to a
constant) due to

E

[∣∣∣∣∣
T∑

t=1

vt

∣∣∣∣∣
]
= E [|XT |] ≤ E

[
max
t∈[T ]

|Xt|
]
≤ C1E


√√√√ T∑

t=1

(Xt −Xt−1)2

 = C1E


√√√√ T∑

t=1

|vt|2
 .

One more step, by noticing ∥·∥ ≤ ∥·∥p for p ∈ [1, 2], Lemma 4.3 thereby holds when d = 1 by

E

[∣∣∣∣∣
T∑

t=1

vt

∣∣∣∣∣
]
≤ C1E


√√√√ T∑

t=1

|vt|2
 ≤ C1E

( T∑
t=1

|vt|p
) 1

p

 .

Though we have applied BDG inequality to prove Lemma 4.3 for d = 1, extending the above
analysis into the high-dimensional case is not obvious and could be non-trivial.

Here, inspired by Rakhlin & Sridharan (2017), we will provide a simple proof of Lemma 4.3 via
the regret analysis from online learning. Specifically, we will prove the regret bound of the famous
AdaGrad algorithm (McMahan & Streeter, 2010; Duchi et al., 2011) implies Lemma 4.3, which is
kindly surprising (at least in our opinion) and shows the impressive power of online learning. Due
to space limitations, the proof of Lemma 4.3 is deferred to Appendix C.

Before moving on, we make two comments on Lemma 4.3. First, as one can see, Lemma 4.3 holds
for any p ∈ [1, 2] meaning that this analysis is adaptive to the tail index p automatically. Next, one
may wonder why we keep the expectation outside on the R.H.S. of (6) instead of putting it inside by
Hölder’s inequality. This is because under the full version of Assumption 2.4 (i.e., σ1 > 0), making
expectations inside may fail the analysis. For details, we refer the reader to the proof of Lemma D.5
in the appendix.
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Now, we can apply Lemma 4.3 to bound E
[∥∥∥∑t

s=1(1− βs)βs+1:tξs

∥∥∥] under Assumption 2.4 with
σ1 = 0 and then obtain the following inequality for E [∥ϵt∥] by combining the previous bounds on
E [∥ϵ0∥] and E

[∥∥∥∑t
s=1 βs:tDs

∥∥∥].
Lemma 4.5. Under Assumptions 2.2 (with L1 = 0), 2.3 (with B = 1) and 2.4 (with σ1 = 0), then
Algorithm 1 guarantees

E [∥ϵt∥] ≤ 2
√
2

β1:tσ0 +

(
t∑

s=1

(1− βs)
p(βs+1:t)

p

) 1
p

σ0

+

t∑
s=2

βs:tL0ηs−1,∀t ∈ [T ] .

The full version of the above result, Lemma D.5, that works for any L1, B, σ1 can be found in
Appendix D, which requires extra efforts as mentioned earlier.

Finally, equipped with Lemmas 4.1 and 4.5, we are able to prove the convergence of Batched NS-
GDM under the classical smooth condition and heavy-tailed noises by plugging in the stepsize and
momentum parameter introduced in Theorems 3.2 and 3.6, respectively.

Before ending this section, we briefly talk about the intuition behind the rate O(T
1−p
2p ) achieved

when the tail index p is unknown, i.e., Theorem 3.6. Actually, we take a quite simple strategy: setting
the stepsize and the momentum parameter while pretending the tail index p to be 2. Amazingly,
this straightforward policy is already enough to guarantee convergence even if there is no prior
information on p.

5 CONCLUSION AND FUTURE WORK

In this work, we present the first optimal expected convergence result under heavy-tailed noises but
without gradient clipping, which is instead achieved by gradient normalization. More specifically,
we study the existing Batched NSGDM algorithm and prove it converges in expectation at an optimal
O(T

1−p
3p−2 ) rate. Additionally, the order of problem-dependent parameters in our upper bound is also

the first to be tight as indicated by a newly matched lower bound improved from the prior work. One
step further, we initiate the study of convergence under heavy-tailed noises but without knowing
the tail index p and then obtain the first provable O(T

1−p
2p ) rate. Thus, our work suggests gradient

normalization is a powerful tool for dealing with heavy-tailed noises, which we believe will bring
new insights into the optimization community and open potential ways for future algorithm design.

However, there still remain some directions worth exploring, and we list three specific topics here:

Minimax rate for unknown tail index p. As discussed previously, to achieve the minimax
Θ(T

1−p
3p−2 ) rate under heavy-tailed noises, all of the optimal algorithms so far require to know the tail

index p. Thus, it would be interesting to consider the optimal upper/lower bound of the convergence
rate when p is unknown. We provide two concrete problems here and hope them being addressed in
the future: 1. When lacking any prior information on p, is it possible to find an algorithm that can
improve our new O(T

1−p
2p ) upper bound to the best-known O(T

1−p
3p−2 ) rate? 2. If the answer to the

former question is negative, what is the corresponding lower bound when p is unknown?

Adaptive gradient methods. Though we have established the first convergence result under heavy-
tailed noises without gradient clipping, the Batched NSGDM algorithm we studied is not commonly
used in practice. In comparison, the family of adaptive gradient methods (e.g., AdaGrad (McMa-
han & Streeter, 2010; Duchi et al., 2011), RMSprop (Tieleman et al., 2012), Adam (Kingma &
Ba, 2014) and their variants) is more popular and has been widely implemented nowadays espe-
cially when training neural networks. Surprisingly, their performances are still good even though
the stochastic noises are empirically observed to be heavy-tailed. However, as far as we know, no
rigorous theoretical justification has been established to show adaptive gradient methods can con-
verge under heavy-tailed noises. Hence, it is worth studying and trying to close this important gap
between theory and practice.

Time-varying choices. Another potential extension is to study the time-varying stepsize and mo-
mentum parameter to make the algorithm more practical, which we believe is possible given our
general lemmas.
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A AN EXAMPLE FAILS THE EXISTING HEAVY-TAILED NOISES ASSUMPTION

In this section, we provide a simple one-dimensional case that violates the previously used finite p-
th moment assumption but satisfies our new generalized heavy-tailed noises condition, Assumption
2.4. Extending the example to high dimensions is straightforward, which is left to the reader.

Example A.1. Let F (x) ≜ 1
2Ea,b

[
(ax− b)2

]
where x ∈ R, a ≜ Bernoulli(q) for some q ∈ (0, 1),

and b ≜ ax∗+ω where x∗ ∈ R is fixed and ω is a centered random variable being independent of a
and only has a finite p-th moment (i.e., Eω

[
|ω|p

]
≤ σp for some σ ≥ 0). For the stochastic gradient

g(x, a, b) ≜ a2x− ab and the true gradient ∇F (x) ≜ Ea

[
a2
]
x−Ea,b [ab], we let the the noise be

ξ(x) ≜ g(x, a, b)−∇F (x), then

• Assumption 2.4 is failed for any pair (σ0, 0) where σ0 ≥ 0 can be arbitrary;

• Assumption 2.4 is satisfied for a certain pair (σ0, σ1) where σ1 > 0.

Proof. Note that g(x, a, b) and ∇F (x) can be simplified into

g(x, a, b) = a2(x− x∗)− aω, ∇F (x) = q(x− x∗).

Thus, we know

ξ(x) = (a2 − q)(x− x∗)− aω

⇒ Ea,b

[
|ξ(x)|p

]
= Ea,ω

[∣∣(a2 − q)(x− x∗)− aω
∣∣p]

= (1− q)qp |x− x∗|p + qEω

[
|(1− q)(x− x∗)− ω|p

]
.

On the one side, we have

Ea,b

[
|ξ(x)|p

]
≥ (1− q)qp |x− x∗|p

x→±∞−→ +∞,

Therefore, Ea,b

[
|ξ(x)|p

]
≤ σp

0 cannot hold for any σ0 ≥ 0.

On the other side, we observe

Eω

[
|(1− q)(x− x∗)− ω|p

]
≤ Eω

[
|(1− q) |x− x∗|+ |ω||p

]
≤ 2p−1(1− q)p |x− x∗|p + 2p−1Eω

[
|ω|p

]
≤ 2p−1(1− q)p |x− x∗|p + 2p−1σp.

Hence,

Ea,b

[
|ξ(x)|p

]
≤ 2p−1qσp +

[
(1− q)qp + 2p−1q(1− q)p

]
|x− x∗|p

= 2p−1qσp +
[
1− q + 2p−1q1−p(1− q)p

]
|∇F (x)|p .

So Assumption 2.4 is satisfied for σp
0 ≜ 2p−1qσp and σp

1 ≜ 1− q + 2p−1q1−p(1− q)p.

B FURTHER DISCUSSION ON L1 IN THEOREM 3.6

We first explain why L1 is needed under the present version of (L0, L1)-smoothness (i.e., Assump-
tion 2.2). It is because the current form of (L0, L1)-smoothness can be only invoked under the hard
constraint ∥x− y∥ ≤ 1

L1
. As such, regardless of whichever two points xs and xt we want to apply

to the descent inequality in Lemma D.4 (which serves as the cornerstone in the whole proof), they
have to satisfy ∥xs − xt∥ ≤ 1

L1
. In other words, one has to know L1 to set the stepsize to ensure

Lemma D.4 can be used. Moreover, even if when p = 2 or under a weaker condition on noises
(e.g., almost surely bounded noises), we remark that all prior works under the exactly same form of
Assumption 2.2 require the value of L1 (e.g., see Jin et al. (2021); Crawshaw et al. (2022)), even for
the famous adaptive method – AdaGrad (Faw et al., 2023; Wang et al., 2023; Hong & Lin, 2024)
and Adam (Wang et al., 2024), which further confirms the above explanation.

A possible way to completely remove the prior knowledge of L1 in Theorem 3.6 is in-
stead assuming a stronger version (L0, L1)-smoothness, for example, ∥∇F (x)−∇F (y)∥ ≤
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(A(c)L0 +B(c)L1 ∥∇F (x)∥) ∥x− y∥ for any c > 0 and ∥x− y∥ ≤ c
L1

, where A(c) =

1 + ec − ec−1
c and B(c) = ec−1

c . Note that this new form is still weaker than the original defi-
nition proposed by Zhang et al. (2020b) as indicated by Corollary A.4 in Zhang et al. (2020a), but
stronger than our Assumption 2.2. Under this new slightly stronger condition, it is possible to com-
bine the dynamic stepsize and time-varying momentum, i.e., taking ηt = ηt−a and βt = βt−b for
some η, β, a, b > 0 as suggested in Hübler et al. (2024), to get rid of L1since we can control the size
of gradient norm during the warm-up period (i.e., the time before ηt = O(L−1

1 )) because the new
inequality can be applied to any two points due to its new soft constraint. Whereas, as a trade-off,
one has to incur an exponential dependence on L1 in the final convergence rate as pointed out by
Hübler et al. (2024).

C PROOF OF THE CORE LEMMA 4.3

Before proving Lemma 4.3, we need the following technique tool, which is based on the regret
analysis of the AdaGrad algorithm as mentioned in Subsection 4.2.
Lemma C.1. (Based on Lemma 2 in Rakhlin & Sridharan (2017)) Given a sequence of vectors
vt ∈ Rd,∀t ∈ N, then there exists a sequence of vectors wt ∈ Rd such that ∥wt∥ ≤ 1 and every
wt only depends on v1 to vt−1 satisfying∥∥∥∥∥

T∑
t=1

vt

∥∥∥∥∥ ≤ 2

√√√√2

T∑
t=1

∥vt∥2 −
T∑

t=1

⟨vt,wt⟩ ,∀T ∈ N.

Proof. W.l.o.g., we assume ∥v1∥ > 0. Otherwise, we let τ ≜ argmin {t ∈ N : ∥vt∥ > 0}, set
wt ≜ 0 ∈ Rd,∀t ∈ [τ − 1], and start the following proof at time τ .

Let w1 ≜ 0 and recursively define wt+1 ≜ ΠBd (wt − γtvt) where ΠBd denotes the Euclidean
projection operator onto the unit ball Bd in Rd and γt ≜

√
2∑t

s=1∥vs∥2 . Clearly, ∥wt∥ ≤ 1 and wt

only depends on v1 to vt−1 by the construction. Next, observe that

wt+1 = ΠBd (wt − γtvt) = argminw∈Bd ∥w −wt + γtvt∥2 ,

which by the optimality condition implies for any u ∈ Bd,

⟨wt+1 −wt + γtvt,wt+1 − u⟩ ≤ 0

⇒ ⟨vt,wt+1 − u⟩ ≤ ⟨wt −wt+1,wt+1 − u⟩
γt

=
∥u−wt∥2 − ∥u−wt+1∥2 − ∥wt −wt+1∥2

2γt

⇒ ⟨vt,wt − u⟩ ≤ ∥u−wt∥2 − ∥u−wt+1∥2 − ∥wt −wt+1∥2

2γt
+ ⟨vt,wt −wt+1⟩

(a)

≤ ∥u−wt∥2 − ∥u−wt+1∥2

2γt
+

γt ∥vt∥2

2
,

where (a) is by the Arithmetic Mean-Geometric Mean inequality. Hence, for any u ∈ Bd and
T ∈ N,
T∑

t=1

⟨vt,wt − u⟩ ≤
T∑

t=1

∥u−wt∥2 − ∥u−wt+1∥2

2γt
+

γt ∥vt∥2

2

=
∥u−w1∥2

2γ1
− ∥u−wT+1∥2

2γT
+

T∑
t=2

∥u−wt∥2

2

(
1

γt
− 1

γt−1

)
+

T∑
t=1

γt ∥vt∥2

2

(b)

≤ 2

γ1
+

T∑
t=2

2

(
1

γt
− 1

γt−1

)
+

T∑
t=1

γt ∥vt∥2

2
=

2

γT
+

T∑
t=1

γt ∥vt∥2

2
, (7)
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where (b) is due to 1
γt
− 1

γt−1
≥ 0,∀t ≥ 2 by the definition of γt =

√
2∑t

s=1∥vs∥2 and ∥u−wt∥ ≤ 2

since u and wt are both in Bd. In addition, let 1
γ0

≜ 0, we notice that

T∑
t=1

γt ∥vt∥2

2
=

T∑
t=1

γt

(
1

γ2
t

− 1

γ2
t−1

)
≤

T∑
t=1

2

(
1

γt
− 1

γt−1

)
=

2

γT
. (8)

Combining (7) and (8) and using γT =
√

2∑T
t=1∥vt∥2 , we have〈

T∑
t=1

vt,−u

〉
≤ 2

√√√√2

T∑
t=1

∥vt∥2 −
T∑

t=1

⟨vt,wt⟩ ,∀u ∈ Bd, T ∈ N.

Finally, we use maxu∈Bd

〈∑T
t=1 vt,−u

〉
=
∥∥∥∑T

t=1 vt

∥∥∥ to obtain∥∥∥∥∥
T∑

t=1

vt

∥∥∥∥∥ ≤ 2

√√√√2

T∑
t=1

∥vt∥2 −
T∑

t=1

⟨vt,wt⟩ ,∀T ∈ N.

Now we are ready to prove Lemma 4.3.

Proof of Lemma 4.3. By Lemma C.1, there exists a sequence of random vectors wt ∈ Rd such that
wt ∈ Ft−1 satisfying ∥∥∥∥∥

T∑
t=1

vt

∥∥∥∥∥ ≤ 2

√√√√2

T∑
t=1

∥vt∥2 −
T∑

t=1

⟨vt,wt⟩ ,∀T ∈ N.

We take expectations on both sides to get

E

[∥∥∥∥∥
T∑

t=1

vt

∥∥∥∥∥
]
≤ 2

√
2E


√√√√ T∑

t=1

∥vt∥2
−

T∑
t=1

E [⟨vt,wt⟩] .

By noticing that
E [⟨vt,wt⟩] = E [E [⟨vt,wt⟩ | Ft−1]] = E [⟨E [vt | Ft−1] ,wt⟩] = 0,

we find

E

[∥∥∥∥∥
T∑

t=1

vt

∥∥∥∥∥
]
≤ 2

√
2E


√√√√ T∑

t=1

∥vt∥2
 .

Finally, by observing
√∑T

t=1 ∥vt∥2 ≤
(∑T

t=1 ∥vt∥p
) 1

p

,∀p ∈ [1, 2], the proof is hence completed.

D FULL THEOREMS AND OTHER MISSING PROOFS

D.1 UPPER BOUNDS

Theorem D.1. (Full version of Theorem 3.2) Under Assumptions 2.1, 2.2, 2.3 and 2.4, let ∆1 ≜
F (x1)− F∗, then for any T ∈ N, by taking

βt ≡ β = 1−min

1,max


(
∆1L1B

p−1
p + σ0 + σ1 ∥∇F (x1)∥

σ0T

) p
2p−1

,

(
∆1L0B

2(p−1)
p

σ2
0T

) p
3p−2


 ,

ηt ≡ η = min


√

(1− β)∆1

L0T
,
1− β

8L1

 , B = max
{⌈

(16
√
2σ1)

p
p−1

⌉
, 1
}
,
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Algorithm 1 guarantees

1

T

T∑
t=1

E [∥∇F (xt)∥] =O

(
∆1L1 + (σ0 + σ1 ∥∇F (x1)∥)/B

p−1
p

T
+

√
∆1L0

T

+
(∆1L1 + (σ0 + σ1 ∥∇F (x1)∥)/B

p−1
p )

p−1
2p−1σ

p
2p−1

0

(BT )
p−1
2p−1

+
(∆1L0)

p−1
3p−2σ

p
3p−2

0

(BT )
p−1
3p−2

 .

Proof. Because ηt ≡ η ≤ 1−β
8L1

≤ 1
L1

,∀t ∈ [T ], we can safely invoke Lemma D.4 with ηt ≡ η,∀t ∈
[T ] to obtain

T∑
t=1

ηE [∥∇F (xt)∥] ≤ ∆1 +
η2L0T

2
+

T∑
t=1

2ηE [∥ϵt∥] +
T∑

t=1

η2L1

2
E [∥∇F (xt)∥] . (9)

Next, by Lemma D.5 with ηt ≡ η, βt ≡ β,∀t ∈ [T ], we have for any t ∈ [T ],

E [∥ϵt∥] ≤
2
√
2

B
p−1
p

βt (σ0 + σ1 ∥∇F (x1)∥) + (1− β)

(
t∑

s=1

βp(t−s)

) 1
p

σ0


+

t∑
s=2

βt−s+1 (L0 + L1E [∥∇F (xs−1)∥]) η +
2
√
2

B
p−1
p

t∑
s=1

(1− β)βt−sσ1E [∥∇F (xs)∥]

≤ 2
√
2

B
p−1
p

[
βt (σ0 + σ1 ∥∇F (x1)∥) +

1− β

(1− βp)
1
p

σ0

]
+

βηL0

1− β

+

t∑
s=2

βt−s+1ηL1E [∥∇F (xs−1)∥] +
2
√
2

B
p−1
p

t∑
s=1

(1− β)βt−sσ1E [∥∇F (xs)∥]

≤ 2
√
2

B
p−1
p

[
βt (σ0 + σ1 ∥∇F (x1)∥) + (1− β)

p−1
p σ0

]
+

βηL0

1− β

+

t∑
s=2

βt−s+1ηL1E [∥∇F (xs−1)∥] +
2
√
2

B
p−1
p

t∑
s=1

(1− β)βt−sσ1E [∥∇F (xs)∥] ,

where we use βp ≤ β when p ≥ 1 and β ≤ 1 in the last step. As such, we know

T∑
t=1

2ηE [∥ϵt∥] ≤
4
√
2η

B
p−1
p

T∑
t=1

[
βt (σ0 + σ1 ∥∇F (x1)∥) + (1− β)

p−1
p σ0

]
+

T∑
t=1

2βη2L0

1− β

+

T∑
t=1

t∑
s=2

2βt−s+1η2L1E [∥∇F (xs−1)∥] +
4
√
2η

B
p−1
p

T∑
t=1

t∑
s=1

(1− β)βt−sσ1E [∥∇F (xs)∥]

≤4
√
2η

B
p−1
p

[
β (σ0 + σ1 ∥∇F (x1)∥)

1− β
+ (1− β)

p−1
p Tσ0

]
+

2βη2L0T

1− β

+

T∑
t=1

(
2βη2L1

1− β
+

4
√
2ησ1

B
p−1
p

)
E [∥∇F (xt)∥] , (10)

where in the last step we use
∑T

t=1

∑t
s=i · =

∑T
s=i

∑T
t=s · ≤

∑T
s=i

∑∞
t=s · when the summands

are non-negative for i ∈ {1, 2}.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Now plugging (10) into (9) to get

T∑
t=1

ηE [∥∇F (xt)∥]

≤∆1 +
(1 + 3β)η2L0T

2(1− β)
+

4
√
2η

B
p−1
p

[
β (σ0 + σ1 ∥∇F (x1)∥)

1− β
+ (1− β)

p−1
p Tσ0

]
+

T∑
t=1

(
(1 + 3β)η2L1

2(1− β)
+

4
√
2ησ1

B
p−1
p

)
E [∥∇F (xt)∥]

(a)

≤∆1 +
2η2L0T

1− β
+

4
√
2η

B
p−1
p

[
σ0 + σ1 ∥∇F (x1)∥

1− β
+ (1− β)

p−1
p Tσ0

]
+

T∑
t=1

(
2η2L1

1− β
+

4
√
2ησ1

B
p−1
p

)
E [∥∇F (xt)∥]

(b)

≤∆1 +
2η2L0T

1− β
+

4
√
2η

B
p−1
p

[
σ0 + σ1 ∥∇F (x1)∥

1− β
+ (1− β)

p−1
p Tσ0

]
+

T∑
t=1

η

2
E [∥∇F (xt)∥] ,

(11)

where we use β ≤ 1 in (a) and η ≤ 1−β
8L1

, B ≥ (16
√
2σ1)

p
p−1 in (b). We observe that (11) implies

T∑
t=1

E [∥∇F (xt)∥]

≤2∆1

η
+

4ηL0T

1− β
+

8
√
2

B
p−1
p

[
σ0 + σ1 ∥∇F (x1)∥

1− β
+ (1− β)

p−1
p Tσ0

]
(12)

(c)
=O

(
∆1L1 + (σ0 + σ1 ∥∇F (x1)∥)/B

p−1
p

1− β
+

√
∆L0T

1− β
+

(1− β)
p−1
p σ0T

B
p−1
p

)
(d)
=O

(
∆1L1 + (σ0 + σ1 ∥∇F (x1)∥)/B

p−1
p +

√
∆L0T

+
(∆1L1 + (σ0 + σ1 ∥∇F (x1)∥)/B

p−1
p )

p−1
2p−1 (σ0T )

p
2p−1

B
p−1
2p−1

+
(∆1L0)

p−1
3p−2σ

p
3p−2

0 T
2p−1
3p−2

B
p−1
3p−2

 ,

(13)

where we plug in η = min

{√
(1−β)∆1

L0T
, 1−β
8L1

}
in (c) and 1 − β =

min

{
1,max

{(
∆1L1B

p−1
p +σ0+σ1∥∇F (x1)∥

σ0T

) p
2p−1

,

(
∆1L0B

2(p−1)
p

σ2
0T

) p
3p−2

}}
in (d). Finally,

dividing both sides of (13) by T to obtain the desired result.

Theorem D.2. (Full version of Theorem 3.6) Under Assumptions 2.1, 2.2, 2.3 and 2.4, let ∆1 ≜
F (x1)− F∗, then for any T ∈ N, by taking

βt ≡ β = 1− 1

T
1
2

, ηt ≡ η = min

{
1

T
3
4
, 1

8L1T
1
2

}
, B = max

{⌈
(16

√
2σ1)

p
p−1

⌉
, 1
}
,

Algorithm 1 guarantees

1

T

T∑
t=1

E [∥∇F (xt)∥] = O

(
∆1L1 + (σ0 + σ1 ∥∇F (x1)∥)/B

p−1
p

√
T

+
∆1 + L0

T
1
4

+
σ0

(BT )
p−1
p

)
.

In particular, if σ1 ≤ 1
16

√
2

, we can always set B = 1 to get rid of the tail index p.
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Remark D.3. We note that it is possible to improve the threshold 1
16

√
2

to a slightly bigger constant,
but this still cannot help us to remove the requirement of needing p when σ1 becomes larger. Thus,
we do not put further effort into optimizing this constant but keep it as it is.

Proof. Note that (12) still holds under the current choices of parameters since η =

min

{
1

T
3
4
, 1

8L1T
1
2

}
= min

{√
1−β
T , 1−β

8L1

}
. Hence, we have

T∑
t=1

E [∥∇F (xt)∥]

≤O
(
∆1

η
+

ηL0T

1− β
+

1

B
p−1
p

[
σ0 + σ1 ∥∇F (x1)∥

1− β
+ (1− β)

p−1
p Tσ0

])
(a)
=O

(
∆1L1 + (σ0 + σ1 ∥∇F (x1)∥)/B

p−1
p

1− β
+ (∆1 + L0)

√
T

1− β
+

(1− β)
p−1
p σ0T

B
p−1
p

)
(b)
=O

([
∆1L1 + (σ0 + σ1 ∥∇F (x1)∥)/B

p−1
p

]√
T + (∆1 + L0)T

3
4 +

σ0T
p+1
2p

B
p−1
p

)
,

where we use η = min

{
1

T
3
4
, 1

8L1T
1
2

}
= min

{√
1−β
T , 1−β

8L1

}
in (a) and β = 1 − 1

T
1
2

in (b). We

divide both sides by T to obtain the desired result.

D.2 LOWER BOUND

In this subsection, we will prove the lower bound, Theorem 3.3. The proof is a simple variation of
Zhang et al. (2020c), which itself is based on Carmon et al. (2020); Arjevani et al. (2023).

Proof of Theorem 3.3. For any x ∈ Rd and α ∈ [0, 1], we denote by progα(x) the highest index
whose entry is α-far from 0, i.e.,

progα(x) ≜ max {i ∈ [d] : |x[i]| > α} where max ∅ ≜ 0.

Now given d ∈ N, we introduce the following underlying function originally proposed by Carmon
et al. (2020).

fd(x) ≜ −Ψ(1)Φ(x[1]) +

d∑
i=2

Ψ(−x[i− 1])Φ(−x[i])−Ψ(x[i− 1])Φ(x[i]),

where

Ψ(t) ≜

{
0 t ≤ 1

2

exp
(
1− (2t− 1)−2

)
t > 1

2

, Φ(t) ≜
√
e

∫ t

−∞
exp(−τ2/2)dτ.

By Lemma 2 in Arjevani et al. (2023), fd admits the following properties:

1. fd(0)− fd,∗ ≤ δd, where fd,∗ ≜ infx∈Rd fd(x) and δ = 12.

2. fd is ℓ-smooth, where ℓ = 152.

3. For all x ∈ Rd, ∥∇fd(x)∥∞ ≤ γ, where γ = 23.

4. For all x ∈ Rd, prog0(∇fd(x)) ≤ prog 1
2
(x) + 1.

5. For all x ∈ Rd and i ≜ prog 1
2
(x), ∇fd(x) = ∇fd(x≤1+i) and [∇fd(x)]≤i =

[∇fd(x≤i)]≤i, where y≤i[j] ≜ y[j]1[j ≤ i].

6. For all x ∈ Rd, if prog1(x) < d, then ∥∇fd(x)∥ > 1.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Now we consider the following stochastic oracle introduced by Arjevani et al. (2023),

hd(x, z)[i] ≜ ∇ifd(x)

(
1 + 1

[
i > prog 1

4
(x)
](z

q
− 1

))
,∀i ∈ [d] ,

where z = Bernoulli(q) and q ∈ [0, 1] will be specified later. As one can check, Ez [hd(x, z)] =
∇fd(x),∀x ∈ Rd. Moreover, by Lemma 3 in Arjevani et al. (2023), we know hd is a probability-q
zero-chain (see Definition 2 in Arjevani et al. (2023) for what it is) and satisfies almost surely

∥hd(x, z)−∇fd(x)∥ ≤ γ

∣∣∣∣zq − 1

∣∣∣∣ ,∀x ∈ Rd. (14)

Next, given p ∈ (1, 2], ∆1, L0, σ0 > 0, and small enough ε, we define d ≜
⌊
∆1L0

4δℓε2

⌋
and

Fd(x) ≜
L0λ

2

ℓ
fd

(x
λ

)
, where λ ≜

2ℓε

L0
.

Moreover, we let

gd(x, z) ≜
L0λ

ℓ
hd

(x
λ
, z
)
, and q ≜

(
4γε

σ0

) p
p−1

.

q ≤ 1 can be true since we assume ε small enough.

Note that Fd is lower bounded since fd is lower bounded and thus satisfies Assumption 2.1. In
addition, we have ∇Fd(x) =

L0λ
ℓ ∇fd

(
x
λ

)
, which implies Fd is L0-smooth because fd is ℓ-smooth.

So Fd also satisfies Assumption 2.2 with L1 = 0. Now let us verify

Ez [gd(x, z)] = Ez

[
L0λ

ℓ
hd

(x
λ
, z
)]

=
L0λ

ℓ
∇fd

(x
λ

)
= ∇Fd(x).

Hence, gd(x, z) satisfies Assumption 2.3. Lastly, we know

Ez

[
∥gd(x, z)−∇Fd(x)∥p

]
=

(
L0λ

ℓ

)p

Ez

[∥∥∥hd

(x
λ
, z
)
−∇fd

(x
λ

)∥∥∥p] (14)
≤
(
L0λγ

ℓ

)p

E
[∣∣∣∣zq − 1

∣∣∣∣p]
=

(
L0λγ

ℓ

)p(
1− q +

(1− q)p

qp−1

)
= (2γε)p(1− q)

qp−1 + (1− q)p−1

qp−1

≤ (4γε)p

qp−1
= σp

0 .

Thus, gd(x, z) satisfies Assumption 2.4 with σ1 = 0.

Finally, by Lemma 1 in Arjevani et al. (2023), for any zero-respecting algorithm with the output xt ∈
Rd,∀t ∈ N, with probability at least 1

2 , prog0(xt) < d,∀t ≤ d−1
2q . By noticing that prog1

(
xt

λ

)
≤

prog0
(
xt

λ

)
= prog0(xt) < d, we then have with probability at least 1

2 ,
∥∥∇fd

(
xt

λ

)∥∥ > 1,∀t ≤
d−1
2q , which implies

E [∥∇Fd(xt)∥] =
L0λ

ℓ
E
[∥∥∥∇fd

(xt

λ

)∥∥∥] > L0λ

2ℓ
= ε, ∀t ≤ d− 1

2q
.

Thus, to output an ε-stationary point, the algorithm need at least the following number of iterations

d− 1

2q
=

1

2

(⌊
∆1L0

4δℓε2

⌋
− 1

)
·
(

σ0

4γε

) p
p−1

= Ω

(
∆1L0σ

p
p−1

0 ε−
3p−2
p−1

)
.

D.3 HELPFUL LEMMAS

We first recall the notations as follows
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ϵt ≜

{
mt −∇F (xt) t ∈ [T ]

m0 −∇F (x1) t = 0
, (15)

Dt ≜ 1t≥2 (∇F (xt−1)−∇F (xt)) ,∀t ∈ [T ] , (16)

ξit ≜ gi
t −∇F (xt),∀i ∈ [B] ,∀t ∈ [T ] , (17)

ξt ≜ gt −∇F (xt) =
1

B

B∑
i=1

ξit,∀t ∈ [T ] . (18)

Now we are ready to start the proof.

Lemma D.4. (Full version of Lemma 4.1) Under Assumptions 2.1 and 2.2, let ∆1 ≜ F (xt) − F∗,
if ηt ≤ 1

L1
,∀t ∈ [T ], then Algorithm 1 guarantees

T∑
t=1

ηtE [∥∇F (xt)∥] ≤ ∆1 +

T∑
t=1

2ηtE [∥ϵt∥] +
T∑

t=1

L0 + L1E [∥∇F (xt)∥]
2

η2t .

Proof. Note that ∥xt+1 − xt∥ =
∥∥∥ηt mt

∥mt∥

∥∥∥ ≤ ηt ≤ 1
L1

now, we then invoke Lemma (2.5) to obtain
for any t ∈ [T ],

F (xt+1) ≤ F (xt) + ⟨∇F (xt),xt+1 − xt⟩+
L0 + L1 ∥∇F (xt)∥

2
∥xt+1 − xt∥2

= F (xt)− ηt ⟨∇F (xt),mt/∥mt∥⟩+
L0 + L1 ∥∇F (xt)∥

2
η2t

(15)
= F (xt)− ηt ∥mt∥+ ηt ⟨ϵt,mt/∥mt∥⟩+

L0 + L1 ∥∇F (xt)∥
2

η2t

(a)

≤ F (xt)− ηt ∥mt∥+ ηt ∥ϵt∥+
L0 + L1 ∥∇F (xt)∥

2
η2t

(b)

≤ F (xt)− ηt ∥∇F (xt)∥+ 2ηt ∥ϵt∥+
L0 + L1 ∥∇F (xt)∥

2
η2t , (19)

where (a) is by ⟨ϵt,mt/∥mt∥⟩ ≤ ∥ϵt∥ ∥mt/∥mt∥∥ = ∥ϵt∥ and (b) is due to ∥mt∥
(15)
=

∥∇F (xt) + ϵt∥ ≥ ∥∇F (xt)∥ − ∥ϵt∥. Taking expectations on both sides of (19) and summing
up from t = 1 to T , we have

E [F (xT+1)] ≤ F (x1)−
T∑

t=1

ηtE [∥∇F (xt)∥] +
T∑

t=1

2ηtE [∥ϵt∥] +
T∑

t=1

L0 + L1E [∥∇F (xt)∥]
2

η2t .

Finally, we rearrange the terms, apply E [F (xT+1)] ≥ F∗ due to Assumption 2.1 and ∆1 = F (xt)−
F∗ to get the desired result.

Lemma D.5. (Full version of Lemma 4.5) Under Assumptions 2.2, 2.3 and 2.4, if ηt ≤ 1
L1

,∀t ∈ [T ],
then Algorithm 1 guarantees

E [∥ϵt∥] ≤
2
√
2

B
p−1
p

β1:t (σ0 + σ1 ∥∇F (x1)∥) +

(
t∑

s=1

(1− βs)
p(βs+1:t)

p

) 1
p

σ0


+

t∑
s=2

βs:t (L0 + L1E [∥∇F (xs−1)∥]) ηs−1

+
2
√
2

B
p−1
p

t∑
s=1

(1− βs)βs+1:tσ1E [∥∇F (xs)∥] ,∀t ∈ [T ] .
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Proof. Based on Lemma 4.2, we know for any t ∈ [T ],

∥ϵt∥ ≤ β1:t ∥ϵ0∥+

∥∥∥∥∥
t∑

s=1

βs:tDs

∥∥∥∥∥+
∥∥∥∥∥

t∑
s=1

(1− βs)βs+1:tξs

∥∥∥∥∥
⇒ E [∥ϵt∥] ≤ β1:tE [∥ϵ0∥] + E

[∥∥∥∥∥
t∑

s=1

βs:tDs

∥∥∥∥∥
]
+ E

[∥∥∥∥∥
t∑

s=1

(1− βs)βs+1:tξs

∥∥∥∥∥
]
. (20)

First, by the definition of ϵ0
(15)
= m0 −∇F (x1) = g1 −∇F (x1)

(17)
= 1

B

∑B
i=1 ξ

i
1, we have

E [∥ϵ0∥] =
1

B
E

[∥∥∥∥∥
B∑
i=1

ξi1

∥∥∥∥∥
]

(a)

≤ 2
√
2

B
E

( B∑
i=1

∥∥ξi1∥∥p
) 1

p


(b)

≤ 2
√
2

B

(
B∑
i=1

E
[∥∥ξi1∥∥p]

) 1
p

Assumption 2.4

≤ 2
√
2

B
p−1
p

(
σp
0 + σp

1 ∥∇F (x1)∥p
) 1

p

(c)

≤ 2
√
2

B
p−1
p

(σ0 + σ1 ∥∇F (x1)∥), (21)

where (a) is by applying Lemma 4.3 with vi ≜ ξi1,∀i ∈ [B], (b) is due to Hölder’s inequality, and
(c) is because of (x+ y)

1
p ≤ x

1
p + y

1
p when p ≥ 1.

Next, we know∥∥∥∥∥
t∑

s=1

βs:tDs

∥∥∥∥∥ ≤
t∑

s=1

βs:t ∥Ds∥
(16)
=

t∑
s=1

βs:t ∥∇F (xs−1)−∇F (xs)∥1s≥2

Assumption 2.2

≤
t∑

s=1

βs:t (L0 + L1 ∥∇F (xs−1)∥) ∥xs − xs−1∥1s≥2

(d)

≤
t∑

s=1

βs:t (L0 + L1 ∥∇F (xs−1)∥) ηs−11s≥2

=

t∑
s=2

βs:t (L0 + L1 ∥∇F (xs−1)∥) ηs−1,

where (d) is by ∥xs − xs−1∥ =
∥∥∥ηs−1

ms−1

∥ms−1∥

∥∥∥ ≤ ηs−1 from the update rule of Algorithm 1.
Therefore, we have

E

[∥∥∥∥∥
t∑

s=1

βs:tDs

∥∥∥∥∥
]
≤

t∑
s=2

βs:t (L0 + L1E [∥∇F (xs−1)∥]) ηs−1. (22)

Moreover, let v(s−1)B+i ≜ (1− βs)βs+1:tξ
i
s,∀i ∈ [B] , s ∈ [t] and note that this sequence satisfies

the requirement of Lemma 4.3, then there is

E

[∥∥∥∥∥
t∑

s=1

(1− βs)βs+1:tξs

∥∥∥∥∥
]

(18)
=

1

B
E

[∥∥∥∥∥
t∑

s=1

B∑
i=1

(1− βs)βs+1:tξ
i
s

∥∥∥∥∥
]
=

1

B
E

[∥∥∥∥∥
t∑

s=1

B∑
i=1

v(s−1)B+i

∥∥∥∥∥
]

≤ 2
√
2

B
E

( t∑
s=1

B∑
i=1

∥∥v(s−1)B+i

∥∥p) 1
p


=

2
√
2

B
E

( t∑
s=1

B∑
i=1

(1− βs)
p(βs+1:t)

p
∥∥ξis∥∥p

) 1
p

 . (23)
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Observe that

E

( t∑
s=1

B∑
i=1

(1− βs)
p(βs+1:t)

p
∥∥ξis∥∥p

) 1
p

| Ft−1


(e)

≤

(
E

[
t∑

s=1

B∑
i=1

(1− βs)
p(βs+1:t)

p
∥∥ξis∥∥p

]
| Ft−1

) 1
p

=

(
E

[
B∑
i=1

(1− βt)
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p
∥∥ξit∥∥p | Ft−1

]
+

t−1∑
s=1
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i=1

(1− βs)
p(βs+1:t)

p
∥∥ξis∥∥p

) 1
p
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≤

(
B(1− βt)

p(βt+1:t)
p(σp

0 + σp
1 ∥∇F (xt)∥p) +

t−1∑
s=1

B∑
i=1

(1− βs)
p(βs+1:t)

p
∥∥ξis∥∥p

) 1
p

≤

(
B(1− βt)

p(βt+1:t)
pσp

0 +

t−1∑
s=1

B∑
i=1

(1− βs)
p(βs+1:t)

p
∥∥ξis∥∥p

) 1
p

+B
1
p (1− βt)βt+1:tσ1 ∥∇F (xt)∥ , (24)

where (e) is by Hölder’s inequality. Taking expectations on both sides of (24) to get

E

( t∑
s=1

B∑
i=1

(1− βs)
p(βs+1:t)

p
∥∥ξis∥∥p

) 1
p


≤E

(B(1− βt)
p(βt+1:t)

pσp
0 +

t−1∑
s=1

B∑
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(1− βs)
p(βs+1:t)

p
∥∥ξis∥∥p

) 1
p


+B

1
p (1− βt)βt+1:tσ1E [∥∇F (xt)∥] .

Recursively applying the above argument from Ft−2 to F0, we can finally obtain

E

( t∑
s=1

B∑
i=1

(1− βs)
p(βs+1:t)

p
∥∥ξis∥∥p

) 1
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1
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p

) 1
p
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1
p
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(1− βs)βs+1:tσ1E [∥∇F (xs)∥] , (25)

which gives us

E
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√
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B
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p
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σ0 +
2
√
2

B
p−1
p
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Combining (20), (21), (22) and (26), we finally obtain for any t ∈ [T ],

E [∥ϵt∥] ≤
2
√
2

B
p−1
p

β1:t (σ0 + σ1 ∥∇F (x1)∥) +

(
t∑

s=1

(1− βs)
p(βs+1:t)

p

) 1
p

σ0


+

t∑
s=2

βs:t (L0 + L1E [∥∇F (xs−1)∥]) ηs−1

+
2
√
2

B
p−1
p

t∑
s=1

(1− βs)βs+1:tσ1E [∥∇F (xs)∥] .
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