Under review as a conference paper at ICLR 2026

SWE-POLYBENCH: A MULTI-LANGUAGE BENCH-
MARK FOR REPOSITORY LEVEL EVALUATION OF COD-
ING AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Coding agents powered by large language models have shown impressive capabili-
ties in software engineering tasks, but evaluating their performance across diverse
programming languages and real-world scenarios remains challenging. We in-
troduce SWE-PolyBench, a new multi-language benchmark for repository-level,
execution-based evaluation of coding agents. SWE-PolyBench contains 2110 in-
stances from 21 repositories and includes tasks in Java, JavaScript, TypeScript and
Python, covering bug fixes, feature additions, and code refactoring. We offer a cu-
rated and validated subset of 382 instances (SWE-PolyBench_Verified) featuring
high-quality issue descriptions, code and test patches. Additionally, we release an
evaluation harness that enables fully automated assessment. We further introduce
novel instance stratifications and retrieval metrics rooted in syntax tree analysis to
deepen the understanding of coding agent performances. Our experiments with
leading open-source coding agents on SWE-PolyBench show that current agents
exhibit uneven performances across languages and struggle with complex prob-
lems, while showing higher performance on simpler tasks. SWE-PolyBench aims
to drive progress in developing more versatile and robust Al coding assistants for
real-world software engineering.

1 INTRODUCTION

Coding agents are autonomous systems based on language models that are able to create or modify
software with limited human input. Over the last year, coding agents have garnered substantial at-
tention due to their potential to dramatically enhance human productivity. The current generation of
coding agents exhibit impressive performance on a wide-range of text-based tasks like code comple-
tion (Guo et al., 2023; Ding et al., 2024), code translation (Szafraniec et al., 2023), documentation
generation (Luo et al., 2024), unit test generation (Alshahwan et al., 2024), debugging (Tian et al.,
2024), and conversational code generation (Nijkamp et al., 2023). At the same time, their effec-
tiveness in different scenarios is far from being broadly understood. This led to the proliferation of
benchmarks aimed at assessing the coding effectiveness of said systems in controlled environments.

In particular, SWE-Bench (Jimenez et al., 2024), which measures the performance of systems at
“solving” GitHub issues has spurred the development of capable coding agents resulting in several
leaderboard submissions, becoming the de-facto standard for benchmarking a coding agent. De-
spite its significant impact as a pioneering benchmark, SWE-Bench, and in particular its “verified”
subset (Chowdhury et al., 2024), also shows some limitations. It contains only Python reposito-
ries, the majority of tasks are bug fixes, and with over 45 % of all tasks, the Django repository
is significantly over-represented. Lastly, optimizing for a single dataset may result in “overfitted”
agents whose capabilities no longer generalize to the broader goal of developing versatile, useful,
and robust Al coding assistants.

To address these gaps, we have curated a dataset that aims to provide a diverse benchmarking envi-
ronment for Al coding agents. Our dataset comprises pull requests (PRs) and issues from 21 repos-
itories from four of the ten most popular languages (according to Stack Overflow (2023)), spanning
five categories (feature request, bug fix, refactoring, security, and testing task) and several levels of
complexity. Breaking down performance into task categories and complexity can help developers

Under review as a conference paper at ICLR 2026

Java Func. only
Single Func.

JavaScript
Class only
18% 41%
27%
13%
All All

Single Class
TypeScript

Mixed

Python No nodes

Aider-PB (Sonnet 3.5) Agentless-PB (Sonnet 3.5) ~ —— SWE-agent-PB (Sonnet 3.5)

Figure 1: Pass rates of coding agents across programming languages (left) and across subsets of
different complexities based on syntax tree analysis (see Section 4 for details on labels).

pinpoint agents’ strengths and weaknesses. We further curate an annotated verified subset of 382
instances covering all languages, SWE-PolyBench_Verified, that filters out instances based on issue
description, code and test quality.

Our evaluation framework introduces novel file and node-level retrieval metrics based on syntax
tree analysis. These metrics complement the standard execution-based “resolve rate”, providing
insights into the ability of an agent to navigate complex codebases. We carry out an extensive set
of experiments on SWE-PolyBench with leading open-source agents. Our results, summarized in
Figure 1, demonstrate varying performance across different programming languages, with notable
difficulties in tasks requiring complex, multi-file modifications or extensive code changes.

2 RELATED WORK

Code generation has a long history extending back to program synthesis (Manna & Waldinger, 1971;
Gulwani et al., 2017). Here we focus on the recent work using large language models (LLM) for
code generation (Jiang et al., 2024) and their corresponding methods for evaluation. Prior bench-
marks for LLM based code generation can be broadly categorised into retrieval-free and retrieval-
augmented, based on whether retrieval of salient snippets for editing is required prior to code
generation. Several retrieval-free benchmarks have been proposed like APPS (Hendrycks et al.,
2021), HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021; Athiwaratkun et al., 2023), and
MCoNaLa (Wang et al., 2022). Library specific datasets like NumpyEval (Zan et al., 2022) have
been proposed to study LL.Ms when fine-tuned on those libraries’ APIs. These benchmarks, provid-
ing all necessary information in the prompt, fail to simulate real-world software engineering tasks
where identifying the location for edits is as crucial as determining the edits themselves.

Benchmarks can further be classified as execution-free or execution-based, depending on how code
correctness is assessed. Execution-based benchmarks, more common among the aforementioned
ones, use predefined tests to verify generated code. Among these, SWE-bench (Jimenez et al.,
2024) is the first dataset that mirrors real-world software engineering, in which a code generation
system is provided with a codebase and a problem statement, and is tasked to edit that codebase to
solve the problem. SWE-bench was collected from GitHub issues of popular Python repositories.
Tests for correctness are the unit tests automatically extracted from the repositories themselves.
SWE-bench-java (Zan et al., 2024) comprises instances in Java, SWE-bench Multimodal includes
visual elements from front-end tasks (Yang et al., 2024b), and Multi-SWE-Bench (Zan et al., 2025),
most similar to our work, contains 1632 samples from seven languages. While Multi-SWE-Bench
provides samples from additional languages, its evaluation procedure remains superficial, focusing
primarily on pass rates and thus limiting insights into both agent performance and failure modes.

SWE-Lancer (Miserendino et al., 2025) includes web development and “manager-style” problems,
where the task is to select among different implementations. Extending the topic of the problems
being considered, Baxbench (Vero et al., 2025) is security focused and shows that most LLMs
generate insecure code. SWE-PolyBench falls in the same category of execution-based datasets.

Under review as a conference paper at ICLR 2026

Runtime

Setup L 4

JS) 1ssue #3039 1% 100+

. = Metadata Filter Testing

TS %o PR #3147 X Tutorials & Guides e = Test-Based Filter
100+ PRs & o v

P +42-19 HEEE Updated last year P2p Atleast one F2P

V Testable
PR fixes issue X
Java F2P

Figure 2: Overview of our dataset generation pipeline. We start by collecting pull requests (PRs) that
close an issue from popular repositories across our four target languages. After applying a metadata
filter, we then create containerized environments for test execution. We compare test outcomes
before and after patch application. A test is fail-to-pass (F2P) if it initially fails but passes after
applying the patch, other tests are pass-to-pass (P2P). The final test-based filter selects PRs that
have at least one F2P test and are considered “testable” (condition detailed in Section 3).

It seeks to overcome some limitations of previous datasets, such as over-representation of single
repositories, or lack of diversity in programming languages or type of tasks.

3 BUILDING SWE-POLYBENCH

In this section, we summarize the construction process of SWE-PolyBench, which involved first a
metadata-based screening of public repositories, and then a runtime-based filtering to ensure feasi-
bility of execution-based evaluation of proposed solutions through running (unit) test suites. Fig. 2
overviews our dataset collection pipeline. Tables 9 and 10 in the appendix provide an overview of
the dataset statistics throughout the collection and filtering process.

Following the practice established by SWE-Bench, each instance of SWE-PolyBench includes a
problem statement (which could be an issue or a PR description or combination of both), a reference
to the repository, the “base commit” hash and the repository content, a “code patch” and a “test
patch”, which are git diffs of main source code and test suites, respectively. We postpone a broader
formalization to Section 5.

Data collection. We built SWE-PolyBench using public GitHub repositories whose primary pro-
gramming language is either Java, JavaScript (JS), Python, or TypeScript (TS) as these languages
represent a significant portion of modern software development projects, according to Stack Over-
flow (2023). We set up the following rules as an initial filter: the repository A) is implementation-
focused (namely we exclude guides, tutorials and similar repositories to focus on code); B) contains
at least 100 pull requests (PRs), chosen as a threshold to indicate a non-trivial software project with
an established history of collaborative development; C) was updated in the last 12 months to main-
tain relevance to current practices; D) is permissively licensed to allow unrestricted use for research;
E) is in English (primarily), to facilitate analysis of code and discussions. Having collected a num-
ber of repositories that satisfy these rules, we consider a PR for inclusion into SWE-PolyBench if it
solves an issue and provides respective test code that allows for execution-based verifiability. This
process resulted in 17 repositories for Java, 12 for JS and 10 for Python and TS, yielding a total of
377300 PRs. To ensure independent evaluation of model performance, we excluded any repositories
found in SWE-Bench.

Runtime setup. We want to make sure that the correctness of proposed solutions are verifiable by
executing a suite of unit tests. Thus, we filter PRs based on the following rules: 1) after applying
the “test patch” to the base commit, the test suite includes at least one test that fails at base commit
but passes after applying the “code patch”; following convention we call such set of tests “fail-to-
pass”’; 2) we exclude PRs that introduce and test new files in the code patch, as tests cannot reliably
evaluate LLM-generated code when correct functionality appears in unexpected file locations or
function names. Running these filters required creating Docker environments in which to execute
tests, which we release alongside the evaluation harness. Further details in Appendix B.

Under review as a conference paper at ICLR 2026

700
600
500

400

200
100 I I I I I
| - — EE_m il = __ I I ulin.

\ \
u“‘c‘e“‘ R roduc\b\e partid Nore Mo poriel olete pract N\S\eadm% E)@d\\\ o et 12 \Qe\;"”ds Nore

Count
w
j=3
s

Description Solution Location
. Java W JavaScript B Python BN TypeScript

Figure 3: Classification of SWE-PolyBench issue descriptions with respect to their descriptive-
ness (left plot), hints at the solution (middle plot), and information on the localization of the is-
sue (right plot). NL stands for natural language.

4 SWE-POLYBENCH CHARACTERISTICS

In this section, we cover the categorizations of SWE-PolyBench instances along three axes: the
type of task, the informativeness level of the problem statement, and the task complexity. Next, we
describe the curation of our verified version, SWE-PolyBench_Verified, partially informed by the
aforementioned categorizations. Finally, we contrast our datasets with the established SWE-Bench
and its “verified” subset, and discuss similarities and differences.

Type of task. Software issues encompass various tasks beyond bug fixes, such as refactoring re-
quests or new feature implementations. We classified each problem statement into one of five cat-
egories: “bug fix“, “feature request“ “refactoring®, “security* or “testing“. We used as classifier a
zero-shot prompted LLM, giving as context the problem statement, the code and test patches and
and a task instruction which we report in Appendix E.2 and show the distribution of different task
categories in Table 1.

LT3

Informativeness of the problem statement. We assess problem statements’ “quality” along the
dimensions and classes introduced by Xia et al. (2024). Specifically, we break down informativeness
and quality alongside the following three dimensions: i) how descriptive is the problem statement,
ii) how much information does the problem statement contain with respect to the desired solution,
and iii) what localization information (e.g. file path) is available to address the described issue. For
each of these dimensions, we consider four or five different classes to indicate informativeness levels,
e.g. ranging from “full information” to “no information” (further details in Table 7). As above, we
use a zero-shot prompted LLM to perform the three classification tasks, providing as context the
problem statement and code and test patches and a prompt template we report in Appendix C.2.
We provide descriptive statistics pertaining to the above classifications in Fig. 3. Importantly, we
observe that only few instances provide the exact or complete solutions in the problem statement.

Complexity of the task. We measure task complexity in SWE-PolyBench through two primary
metrics: (1) the number of files that need to be modified to implement a solution, and (2) the gran-
ularity and distribution of changes in the concrete syntax tree (CST) nodes, specifically focusing
on modifications to class and function nodes. At the CST level, we categorize changes into four
types: those requiring no class or function modifications (None), function-only changes, class-only
changes, and mixed modifications affecting both classes and functions. Table 8 (middle rows) sum-
marizes our analysis. Overall Java instances exhibit the highest complexity, requiring modifications
to 3.6 files on average and showing mixed node changes in 66.06% of cases. Python tasks demon-
strate moderate complexity, while JavaScript and TypeScript show distinct patterns - JavaScript has
the highest proportion of function-only modifications, and TypeScript shows the highest percentage
of non-class/function changes.

Under review as a conference paper at ICLR 2026

Table 1: Contrasting SWE-PolyBench (PB) and SWE-PolyBench_Verified (PBv) file statis-
tics and task categories with SWE-Bench (SWEb) (Yang et al., 2024a) and SWE-Bench veri-
fied (SWEv) (Chowdhury et al., 2024).

Modified Files (avg.) Task Category (%)
Python Java JS TS All | BugFix Feature Req. Refac. Misc.
SWEDb 1.6 - - - 16| 7550 18.40 5.14 0.96
SWEv 1.2 - - - 12 87.20 8.60 4.00 0.20
PB 2.0 36 22 31 26| 7450 21.94 2.94 0.61
PBv 1.5 31 2.0 31 24| 59.80 14.0 2.6 0.00

Table 2: Dataset complexity in terms of changes in concrete syntax tree nodes. Highest numbers per
column are highlighted in bold.

Node Change Category (%) Node Change Count (avg.)

Func. Class . Num.

Dataset | Language | None only only Mixed | Func. Class Nodes
SWEb Py 148 6726 327 2799 | 281 0.72 3.54
SWEvV Py 1.80 77.60 420 1640 | 1.87 0.30 2.18
Py 1.01 5578 553 37.69 | 4.09 1.67 5.76
PR Java 0.00 32.12 1.82 66.06 | 7.35 245 9.81
IS 374 8427 029 1170 | 245 0.14 2.60
TS 30.59 56.24 1.78 1139 | 1.86 0.21 2.06
All 12.46 67.82 142 1829 | 278 049 3.28
Py 0.00 6726 7.08 2566 | 3.22 1.10 432
- Java 0.00 39.13 145 5942 | 7.39 1.97 9.36
v IS 5.00 82.00 0.00 13.00 | 221 0.17 2.39
TS 27.00 64.00 2.00 7.00 | 1.66 0.11 1.77
All 838 65.18 288 2356 | 330 0.75 4.06

4.1 SWE-POLYBENCH_VERIFIED

To create a high-quality subset for efficient experimentation, we enlisted expert annotators to eval-
uate the quality of issue descriptions, code, and test patches in our dataset. After removing en-
tries that fell below our quality threshold and downsampling JavaScript and TypeScript instances
to maintain a manageable dataset size, we curated a refined collection of 382 instances span-
ning four programming languages. This carefully selected subset enables more rapid and focused
experimentation while preserving essential quality standards. We refer to this dataset as SWE-
PolyBench_Verified (PBv). The details of the annotation process and our scoring criteria is described
in Appendix A.

4.2 CONTRASTING SWE-POLYBENCH WITH SWE-BENCH

We compare key characteristics of SWE-PolyBench (PB) and SWE-PolyBench_Verified (PBv) with
SWE-Bench (SWEb) and SWE-Bench verified (SWEv), as the latter two are widely recognized as
the current standard for evaluating coding agent performance. Key comparison statistics alongside
the axes discussed above are reported in Table 1 and Table 2. PB exhibits higher complexity in terms
of modified files across all languages. Overall 63 % more files need to be edited to solve a task in
PB compared to SWEb. The task categories are similarly distributed between PB and SWEb.

5 METRICS

We assess coding agents by calculating their pass rates and various retrieval metrics, which we
formalize in this section. Let X be a space of finite sequences of strings. Given a problem statement
p € X and the contents of a repository r € X, an LLM-based agent fi;y outputs an updated

Under review as a conference paper at ICLR 2026

repository ' = fipm(p,7) € X '. Furthermore, denote by r’ \ r € X the difference between the
input repository and the edited repository.

Pass rate. We consider p to be solved by the agent if the execution of a set of tests on 7/ is
successful. In line with previous work (Jimenez et al., 2024), the tests comprise a number of pass-
to-pass (P2P) and fail-to-pass tests (P2P), as detailed in Section 3. Formally, this means that for
each instance of SWE-PolyBench we provide two Boolean functions ¢ppp : X — {0,1} and tpyp :
X — {0,1} such that tpop(r) = 1 and tpop(r) = 0. We let t = tpop A tpop be their conjunction.
Then, we define the pass rate of an agent fiy on a dataset D as follows:

PassRate(fLLM,D):i Z t(fum(p, 7). (D

ol 2
p,m,t)ED

Retrieval scores based on code edits. While pass rate is a central metric to measure code genera-
tion performance, it might fail to capture an agent’s ability to successfully navigate a repository and
localize relevant code elements. For this reason, we calculate file-level retrieval metrics (recall and
precision) and introduce a new set of CST node-level retrieval metrics which we define below.

Let 7* € X be the repository patched with the ground truth patch, and let F : X — 2% be a set-
valued function that given a diff string, extracts the file paths changed in the diff. Then, to compute
file-level retrieval scores (e.g., recall and precision) we use F(r* \ r) as the ground truth set and
F(r’ \ r) as the predicted set.

For node-level retrieval scores, we construct the CST for each changed file of a given diff string.
A CST is a detailed tree representation of the source code that preserves syntactic details while
representing structural elements like functions and classes as nodes in the tree. We then retrieve the
modified nodes (i.e., module, class, function) accounting for their depth in the tree. More
formally, let CST : X x X — 7T be the parsing function that given a diff string and a repository,
returns a labeled tree representing the portion of the CST touched by the dif f. The labels of each
node uniquely identify a section of the repository (e.g. class, or function), but do not include
their actual content. Let Paths : 7 — 27 be a function that extract all root-to-leaf paths of a
tree, yielding a set of paths (i.e., trees with degree at most 1). Then, to compute node-level retrieval
scores we consider Paths(CST(r* \ r,r*)) to be the ground truth set and Paths(CST(r’' \ r, 7))
to be the predicted set. For details about CST construction, please refer to Appendix D.

6 EVALUATING OPEN-SOURCE CODING AGENTS

We run a series of experiments with open-source agents on SWE-PolyBench and SWE-
PolyBench_Verified to provide a snapshot of current performances on our newly introduce datasets.
We start the section by describing the code agents we chose and then discuss experimental results,
focusing on the metrics introduced above.

Coding agents. For our comparison, we selected three open-source agents that are widely recog-
nized and appreciated in both the research community and among practitioners:

* Aider (Gauthier, 2024) (v0.75.2), an interactive pair programming agent. The agent sug-
gests different changes to the codebase and the user can select or submit their preferences.
For benchmarking, we run Aider in non-interactive mode.

* SWE-agent (Yang et al., 2024a) (v1.0) which employs an agent-computer interface that can
create and edit code files, navigate entire repositories, and execute tests and other programs.

* Agentless (Xiaetal., 2024) (v1.5.0) which uses a three-phase approach to 1) localize, 2) re-
pair, and 3) validate code. Agentless does not rely on autonomous agent-based interactions
with tools.

We modified and adapted these agents to address the specific challenges of SWE-PolyBench, result-
ing in their modified versions: Aider-PB, SWE-Agent-PB, and Agent less—PB. In summary:

"For simplicity, we take here the agent to be deterministic. In practice, agents are typically stochastic.

Under review as a conference paper at ICLR 2026

Table 3: Pass rates of open source agents on SWE-PolyBench.

Language
Agent Base LLM Java JS TS Python ‘ Overall
Agentless-PB Sonnet 3.5 ‘ 10.942 44 7.210.81 4.7 1077 20.145 .05 ‘ 7.840.50
SWE-Agent-PB Somnet 3.5 | 16.41288 6.5:0.77 10.241.00 24.113.05 | 10.2:0.66

Sonnet 3.5 15-8i2A86 12.6i1,04 13.0i1_24 24.1i3_05 14.1i0,77

Deepseek R1 12.145.55 10.140.05 11.541 17 18.142.51 11.540.71
Aider-PB Haiku 11~5i2A49 8-1i0_85 9.7i1,09 18.1i2_81 9~9i0.65
Mistral-Large 6.7+1.06 4.8410.66 6.910.03 7.041.83 5.940.51
Llama 3.3 70B 914004 4241062 6.410.01 1114507 6.040.52

DeepSeek-R1-
Distll Llamatop | 55+1rs 35sosr 58iose 1265240 | 53sous

1) we removed the validation step of Aider (aider-swe-bench), as the original implementation is
tailored to Python projects; 2) we modified SWE-agent’s containerized environment by creating
custom Docker configurations and using Javascript base images to resolve package compatibility
issues; 3) we adapted Agentless to support multiple languages by replacing Python-specific tools
with tree-sitter and implementing language-specific execution commands. We refer the reader to
Appendix E.1 for further details on technical challenges of adapting these agents to multi-language
settings. All implementations utilize Anthropic’s Claude 3.5 (claude-3-sonnet-20241022)
as the foundation large language model if not stated otherwise.

6.1 RESULTS

Pass rates. In Tables 3 to 5, we examine pass rates across programming languages, task complex-
ity, task categories as well as token efficiency. Performance stratified by task types is reported in
Appendix E.2. In addition, Table 6 summarizes both file and CST node retrieval accuracy to get a
fine-grained view of the agents’ capability to navigate the code repository. If not indicated other-
wise, we report the mean pass rate with associated standard error (%-sg), estimated via bootstrap
resampling over n = 2000 iterations. Fig. 1 and Tables 3 and 8 reveal significant performance
variations across programming languages and change types for the three Sonnet 3.5-based agents.
All agents demonstrate their strongest performance in Python (20 % to 24 %), however these rates
remain relatively modest compared to pass rates in SWE-bench (Jimenez et al., 2024). Performance
in Java (11 % to 16 %) and particularly TypeScript (5 % to 13 %) is strikingly lower than the other
two languages. These findings suggest that pass rates stem from a complex interplay between task
complexity, node change types, and language-specific factors that likely reflect the distribution of
programming languages and structural patterns in LLMs’ pretraining data. Stratifying problems by
their complexity (Table 8), models perform best on “class only” and “single class” modifications
(25 % to 40 %), while degrading significantly with “mixed” changes (8 % to 15 %). Surprisingly,
“function only” and “single function” changes also yield relatively low success rates (around 15 %),
despite their typically more contained scope. Table 4 breaks down performance by task category.
Aider-PB achieves the highest average pass rates, while being more token efficient than other
agents. Table 5 reveals how performance degrades with increasing task complexity, where all meth-
ods reach their maximal pass rate on single file edits.

On SWE-PolyBench_Verified, 2ider—PB (sonnet 3.5) also achieves the highest average pass rate
(16.23%), with SWE-Agent—PB scoring 14.4% and Agent less—PB scoring 13.35%.

Retrieval metrics. Table 6 presents an evaluation of file and node retrieval metrics, demonstrating
varying efficacy of different agent-model combinations. In file retrieval, performance varies sig-
nificantly across languages, with SWE-Agent—PB achieving the highest recall in Java (51.6 %),
while Aider—PB with Sonnet 3.5 excels in precision (65.1 %). For both JavaScript and TypeScript,
Aider-PB performs significantly better than other agents in both precision and recall. Notably,
while Agent less—PB outperforms all other configurations in Python file and node retrieval, its
strength is limited to Python instances alone. Node retrieval results follow similar patterns, with
Aider-PB leading in Java, JavaScript, and TypeScript, and Agent less-PB maintaining supe-

Under review as a conference paper at ICLR 2026

Table 4: Average pass rates with standard error by task category and average token usage per in-
stance.

Category Tokens (avg.)
Agent Base LLM Bug Fix Feature Req. Refac. | Input Output
Agentless-PB Sonnet 3.5 ‘ 8.810.71 5.211.03 3.240.97 ‘ 315461 10900
SWE-Agent-PB Sonnet 3.5 | 10.2:0.76 9.541314 16.1:a70 | 338828 679
Sonnet 3.5 13.810.89 15.111.66 12.944.05 64521 845
Deepseek R1 11.740.52 1044140 16.11470 | 53440 2367
Aider-PB Haiku 9.940.75 9.941.37 971372 | 64067 1094
Mistral-Large 5.710.57 6.541.14 4.845.77 63946 7319
Llama 3.3 70B 6.610.62 4.140.03 4.842.77 84311 2002
DeepSeck-R1-| o 3.2:08 6.5.5.4 | 58028 2241

Distill-Llama-70B

Table 5: Performance of different open-source agents on SWE-PolyBench with varying task com-
plexity in terms of files edited. Number of instances in the dataset are in parenthesis.

Files to be modified

Agent Base LLM 1 (1085) 2 (417) 3 (200) 4 (130) 5+ (278)
Agentless-PB Sonnet 3.5 ‘ 10-8;{:0.94 7.0;{:1_24 4-0:(:1.38 2-3j:1.33 2-9i1-02
SWE-Agent-PB Sonnet3.5 | 12.5:11.01 10.641 40 504156 3.841.71 724156

Sonnet 3.5 17~7i1.18 13.941.72 8.0+1 .89 6.949.07 7-9i1.63

Deepseek R1 | 14.941 00 9.841.45 6.0+16s T.T1235 6.5115

Aider-PB Haiku 12.941.02 8.641.37 4.041.38 6.21517 5.841.43
Mistral-Large 7.510.79 5.041.08 4.541 .47 2.341.33 3.641.13

Llama 3.3 70B 8-3i0_84 6.5i1_21 2.5i1,11 O.8io,7g 1-4i0‘72

DeepSeek-R1-
Distll Llamatop | 75+0m 461102 20s000 L5iior 2240ss

riority in Python tasks. In general, we observe a significant gap between Python and the other
languages. The highest file retrieval metrics in Python are ahead of the highest metric for any other
language by 9.3 p.p. (percentage point) and 12.5p.p. for recall and precision, respectively. The
same holds for node retrieval, where Python metrics are ahead by 7.7 p.p. and 12.5 p.p. for recall
and precision, respectively. Lastly, we would like to stress that, as evidenced by the pass rate of
Agent less-PB, high retrieval metrics are (most of the time) a necessary but not sufficient condi-
tion for high pass rates.

7 CONCLUSIONS AND LIMITATIONS

We introduced SWE-PolyBench, a repository-level, multi-language benchmark for execution-based
evaluation of coding agents. SWE-PolyBench comprises 2110 samples from 21 repositories across
Java, JavaScript, TypeScript, and Python, covering bug fixes, feature requests, and code refactoring.
We also provided SWE-PolyBench_Verified, an annotated high-quality subset for efficient experi-
mentation. Our evaluation of leading open-source coding agents required significant effort to adapt
the agents to multiple languages and revealed significant variations of performance across languages
in terms of both pass rate and navigation proficiency (observed through our introduced retrieval
metrics). Together, these factors stress the (over)-specialization to the Python ecosystem of several
current solutions. Our categorization of the datasets along CST-rooted complexity axes revealed a
consistent decline in performance as task complexity increased. Our findings underscore the need
for more versatile and robust Al coding assistants capable of handling complex real-world software
engineering tasks across multiple programming languages. SWE-PolyBench aims to drive progress
in developing such agents by providing a comprehensive, multi-lingual evaluation framework.

Under review as a conference paper at ICLR 2026

Table 6: File and node retrieval metrics for different open-source agents on SWE-PolyBench.

File Retrieval (%)

Java JavaScript TypeScript Python
Agent Base LLM Recall Precision ‘ Recall Precision ‘ Recall Precision ‘ Recall Precision
Agentless-PB Sonnet 3.5 ‘ 29.5 49.7 ‘ 234 35.2 ‘ 17.5 27.7 ‘ 60.9 77.6
SWE-Agent-PB Somnet3.5 | 51.6 585 | 275 285 | 298 364 | 597 442
Sonnet 3.5 | 41.7 65.1 371 53.5 333 52.0 58.2 73.8
Deepseek R1 | 37.6 53.8 31.5 40.8 33.8 46.0 54.7 63.3
Aider-PB Haiku | 35.0 53.2 28.3 40.3 30.2 45.1 56.8 70.3
© Mistral Large | 30.6 46.8 21.6 30.9 25.2 38.5 47.6 55.9
Llama 3.3 70B | 27.7 433 20.6 28.9 24.7 39.6 429 54.5
DeepSeek-R1-
Distill-Llama-70B 31.9 47.0 25.0 31.7 27.1 36.2 48.7 59.9
Node Retrieval (%)
Agentless-PB Sonnet 3.5 | 20.6 38.9 ‘ 18.9 27.6 ‘ 17.2 22.9 ‘ 38.2 63.6
SWE-Agent-PB Sonnet 3.5 | 32.5 52.3 ‘ 28.8 23.7 ‘ 21.7 20.6 ‘ 38.6 61.1
Sonnet 3.5 | 29.2 51.1 30.5 39.9 20.2 26.7 36.7 59.9
Deepseek R1 | 24.6 40.2 26.2 31.2 23.6 294 335 50.9
Aider—PB Haiku | 22.8 38.4 22.8 29.1 18.2 23.5 33.0 53.8
© Mistral Large | 24.3 21.3 17.5 16.4 15.3 15.9 38.1 16.7
Llama 3.3 70B | 18.7 31.5 15.0 194 15.0 18.9 24.4 39.5
DeepSeek-R1-
Distill-Llama-70B 20.5 325 194 22.0 17.8 20.5 28.1 44.9

Limitations and societal impact. We conclude the work with a discussion of limitations, societal
impact of SWE-PolyBench and potential future directions.

Task diversity: there is a “long tail” of problems that are part of the day-to-day work of software
developers that are not addressed in this benchmark.We believe that targeting the “head of the dis-
tribution” of tasks is a good first step, but future work should consider expanding to cover a broader
range of software engineering challenges.

Evaluation Metrics: our evaluation metrics do not capture several aspects of code quality and cor-
rectness, such as adherence to code best practices or repository style guides, maintainability, or the
presence of potential security flaws in the generated code. Providing a more holistic assessment of
coding agent performance — remains a challenging direction for future work.

Limits of execution-based evaluation: execution-based evaluation using (unit) test suites is the de-
facto standard for coding benchmarks, providing a quick and cheap feedback signal. However, it
may also constrain the type of tasks one may be able to reasonably verify and hardly accounts for
completely valid variations (e.g., in class, function, and variable naming). Going beyond the current
practice remains an open area of research.

Verifiability: another important limitation of SWE-PolyBench is the lack of human verification to
ensure that all tasks are “solvable” based on the provided information. Future benchmarks should
strive to balance the need for verifiable tasks with the preservation of diverse issue description qual-
ities, mirroring the range of scenarios encountered in practical software development.

LLM-based classifications: for our analysis of task type and informativeness of the task description,
we made extensive use of LLM-based zero-shot classifiers. Our annotations provide complementary
information that can guide the development of specialized approaches and adds another dimension to
the evaluation which informs about existing gaps. However, LLM-based annotations are not without
risk as pointed out in Ahmed et al. (2024) and should be interpreted accordingly.

Data leakage: the publicly available data used to create SWE-PolyBench may have been utilized
during training of foundational LLMs we used in evaluation, or might be used in the future. Data
leakage concerns and lack of transparency creates an ever-shrinking window to develop truly novel
evaluation data, underscoring the need for innovative approaches to evaluation and benchmarking,
e.g. test-set slot guessing (Deng et al., 2023).

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

We have uploaded our evaluation source code along with the dataset files under datasets/ inside
the zip file in the supplement materials. The instructions to run the evaluation and get the pass rates
with retrieval metrics can be found in README .md. The steps to install the dependencies can be
found in requirements.txt.

REFERENCES

Toufique Ahmed, Premkumar Devanbu, Christoph Treude, and Michael Pradel. Can llms replace
manual annotation of software engineering artifacts? arXiv preprint arXiv:2408.05534, 2024.

Nadia Alshahwan, Jubin Chheda, Anastasia Finogenova, Beliz Gokkaya, Mark Harman, Inna
Harper, Alexandru Marginean, Shubho Sengupta, and Eddy Wang. Automated unit test im-
provement using large language models at meta. In Companion Proceedings of the 32nd ACM
International Conference on the Foundations of Software Engineering, pp. 185-196, 2024.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan,
Wasi Uddin Ahmad, Shigi Wang, Qing Sun, Mingyue Shang, Sujan Kumar Gonugondla, Hantian
Ding, Varun Kumar, Nathan Fulton, Arash Farahani, Siddhartha Jain, Robert Giaquinto, Haifeng
Qian, Murali Krishna Ramanathan, Ramesh Nallapati, Baishakhi Ray, Parminder Bhatia, Sudipta
Sengupta, Dan Roth, and Bing Xiang. Multi-lingual evaluation of code generation models. In
The Eleventh International Conference on Learning Representations, 2023. URL https://
openreview.net/forum?id=Bo7eeXm6AnSs.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Neil Chowdhury, James Aung, Chan Jun Shern, Oliver Jaffe, Dane Sherburn, Giulio Starace, Evan
Mays, Rachel Dias, Marwan Aljubeh, Mia Glaese, Carlos E. Jimenez, John Yang, Leyton Ho,
Tejal Patwardhan, Kevin Liu, and Aleksander Madry. Introducing SWE-bench Verified, 2024.
URL https://openai.com/index/introducing-swe-bench-verified/. Ac-
cessed on March 2, 2025.

Chunyuan Deng, Yilun Zhao, Xiangru Tang, Mark Gerstein, and Arman Cohan. Benchmark prob-
ing: Investigating data leakage in large language models. In NeurIPS 2023 Workshop on Back-
doors in Deep Learning-The Good, the Bad, and the Ugly, 2023.

Yangruibo Ding, Zijian Wang, Wasi Ahmad, Murali Krishna Ramanathan, Ramesh Nallapati, Par-
minder Bhatia, Dan Roth, and Bing Xiang. CoCoMIC: Code completion by jointly modeling
in-file and cross-file context. In Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessan-
dro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Proceedings of the 2024 Joint Interna-
tional Conference on Computational Linguistics, Language Resources and Evaluation (LREC-
COLING 2024), pp. 3433-3445, Torino, Italia, May 2024. ELRA and ICCL. URL https:
//aclanthology.org/2024.1lrec-main.305.

Paul Gauthier. Aider is ai pair programming in your terminal. https://github.com/paul-
gauthier/aider, 2024.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program synthesis. Foundations and
Trends® in Programming Languages, 4(1-2):1-119, 2017.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Julian McAuley. Longcoder: A long-range pre-

trained language model for code completion. In International Conference on Machine Learning,
pp. 12098-12107. PMLR, 2023.

10

https://openreview.net/forum?id=Bo7eeXm6An8
https://openreview.net/forum?id=Bo7eeXm6An8
https://openai.com/index/introducing-swe-bench-verified/
https://aclanthology.org/2024.lrec-main.305
https://aclanthology.org/2024.lrec-main.305
https://github.com/paul-gauthier/aider
https://github.com/paul-gauthier/aider

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding chal-
lenge competence with APPS. In Thirty-fifth Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track (Round 2), 2021. URL https://openreview.net/
forum?id=sD93GOzH315.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. arXiv preprint arXiv:2406.00515, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

Qinyu Luo, Yining Ye, Shihao Liang, Zhong Zhang, Yujia Qin, Yaxi Lu, Yesai Wu, Xin Cong,
Yankai Lin, Yingli Zhang, Xiaoyin Che, Zhiyuan Liu, and Maosong Sun. Repoagent: An llm-
powered open-source framework for repository-level code documentation generation, 2024.

Zohar Manna and Richard J. Waldinger. Toward automatic program synthesis. Commun. ACM, 14
(3):151-165, mar 1971. ISSN 0001-0782. doi: 10.1145/362566.362568. URL https://doi.
org/10.1145/362566.362568.

Samuel Miserendino, Michele Wang, Tejal Patwardhan, and Johannes Heidecke. Swe-lancer: Can
frontier llms earn 1 million from real-world freelance software engineering? arXiv preprint
arXiv:2502.12115, 2025.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=iaYcJKpY2B_.

Stack Overflow. Stack overflow developer survey 2023. https://survey.stackoverflow.
co/2023/#most-popular—technologies—language—prof, 2023.

Marc Szafraniec, Baptiste Roziere, Hugh James Leather, Patrick Labatut, Francois Charton, and
Gabriel Synnaeve. Code translation with compiler representations. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=XomEU3eNeSQ.

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai Lin, Yinxu Pan, Yesai Wu, Hui Haotian,
Liu Weichuan, Zhiyuan Liu, and Maosong Sun. DebugBench: Evaluating debugging capability
of large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings
of the Association for Computational Linguistics ACL 2024, pp. 4173-4198, Bangkok, Thailand
and virtual meeting, August 2024. Association for Computational Linguistics. URL https:
//aclanthology.org/2024.findings—-acl.247.

Mark Vero, Niels Miindler, Victor Chibotaru, Veselin Raychev, Maximilian Baader, Nikola Jo-
vanovi¢, Jingxuan He, and Martin Vechev. Baxbench: Can llms generate correct and secure
backends? 2025.

Zhiruo Wang, Grace Cuenca, Shuyan Zhou, Frank F Xu, and Graham Neubig. Mconala: a bench-
mark for code generation from multiple natural languages. arXiv preprint arXiv:2203.08388,
2022.

Chungiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying llm-
based software engineering agents, 2024. URL https://arxiv.org/abs/2407.01489.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,

and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
arXiv preprint arXiv:2405.15793, 2024a.

11

https://openreview.net/forum?id=sD93GOzH3i5
https://openreview.net/forum?id=sD93GOzH3i5
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.1145/362566.362568
https://doi.org/10.1145/362566.362568
https://openreview.net/forum?id=iaYcJKpY2B_
https://survey.stackoverflow.co/2023/#most-popular-technologies-language-prof
https://survey.stackoverflow.co/2023/#most-popular-technologies-language-prof
https://openreview.net/forum?id=XomEU3eNeSQ
https://openreview.net/forum?id=XomEU3eNeSQ
https://aclanthology.org/2024.findings-acl.247
https://aclanthology.org/2024.findings-acl.247
https://arxiv.org/abs/2407.01489

Under review as a conference paper at ICLR 2026

John Yang, Carlos E. Jimenez, Alex L. Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press,
Niklas Muennighoff, Gabriel Synnaeve, Karthik R. Narasimhan, Diyi Yang, Sida I. Wang, and
Ofir Press. Swe-bench multimodal: Do ai systems generalize to visual software domains?, 2024b.
URL https://arxiv.org/abs/2410.038509.

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu Kim, Bei Guan, Yongji Wang, Weizhu
Chen, and Jian-Guang Lou. Cert: continual pre-training on sketches for library-oriented code
generation. arXiv preprint arXiv:2206.06888, 2022.

Daoguang Zan, Zhirong Huang, Ailun Yu, Shaoxin Lin, Yifan Shi, Wei Liu, Dong Chen, Zongshuai
Qi, Hao Yu, Lei Yu, Dezhi Ran, Muhan Zeng, Bo Shen, Pan Bian, Guangtai Liang, Bei Guan,
Pengjie Huang, Tao Xie, Yongji Wang, and Qianxiang Wang. Swe-bench-java: A github issue
resolving benchmark for java, 2024. URL https://arxiv.org/abs/2408.14354.

Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen, Linhao Zhang, Shulin Xin, Lu Chen, Qi Liu,
Xiaojian Zhong, Aoyan Li, et al. Multi-swe-bench: A multilingual benchmark for issue resolving.
arXiv preprint arXiv:2504.02605, 2025.

12

https://arxiv.org/abs/2410.03859
https://arxiv.org/abs/2408.14354

Under review as a conference paper at ICLR 2026

A CURATING SWE-POLYBENCH_VERIFIED

Annotation. We enlisted expert annotators to score the instances from our datasets on different
metrics. Our annotators are software developers with experience in the programming language they
were tasked to annotate. They are asked the following questions per instance:

1. Issue Quality: I have sufficient information to implement a solution.
* Scores range from 0 to 3, with 0 being the lowest quality score

2. Code Quality: Which of the functionalities from the issue description are covered in the
code changes?

* Scores range from 0 to 3, with 0 being changes unrelated to the issue
3. Test Quality: How effectively do the tests evaluate solutions for the described issue?

* Scores range from 0 to 3, with 0 and 1 being prone to false positive/false negatives,
respectively. Score 2 means generally reliable test, 3 indicates highly accurate tests

Filtering. We applied the following filtering criteria to ensure high-quality instances:

* Issue Quality: All raters have assigned a score of at least 2 (i.e., “I have most of the
required information and can infer any minor missing details to proceed with implemen-
tation” (2) or “I have all the necessary details and context to create a meaningful solution
without any additional information” (3))

* Code Quality: All raters have assigned a score of exactly 2 (i.e., “All specified functional-
ity is implemented exactly as described”)

» Test Quality: All raters have assigned a score of at least 2 (i.e., “Generally Reliable: Tests
are effective in most cases but may occasionally produce false positives (passing incorrect
solutions) or false negatives (failing correct solutions), particularly with edge cases or less
common scenarios” (2) or “Highly Accurate: Tests consistently identify correct solutions
and reject incorrect ones” (3))

This filtering process resulted in 382 instances (69 in Java, 113 in Python, 100 in JS, 100 in TS)
from 20 repositories.

B RUNTIME SETUP.

In addition to the filtering mentioned in Section 3, we assess whether a PR can be included in
the dataset through execution. In the following we refer to “test patch” and “code patch” which
are defined as follows: The code patch is the git diff containing changes in the PR that do not
relate to the tests. We refer to this patch also as the “ground truth patch” as it is the ground truth code
implementation which solves the issue. The test patch is the git diff containing only changes
relating to test updates. Additionally, the “base commit” is the commit onto which the respective
PR was merged.

For each PR, to which we also refer to as task, a Docker file is defined to serve as the execution
context in which the code base is installed prior to applying any patches. Given that each program-
ming language has its own package manager, installation procedures, and version requirements, we
tailored the setup accordingly. For example, Java projects commonly use Maven for project man-
agement and build automation, while JavaScript and TypeScript projects typically rely on npm for
package and dependency management. For each repository and/or base commit, we manually con-
figured Docker files to set up the execution environment. Within this environment, we ran the test
suite both before and after applying the code patch. We then logged two sets of tests: those that
transitioned from a ‘failed’ state to a ‘passed’ state (which we refer to as F2P or fail-to-pass), and
those that passed both before and after the application of the code patch (which we call P2P or
pass-to-pass).

For a PR to be included in the dataset it must contain at least one F2P test. Lastly, we deem
PRs untestable and exclude them if the code patch introduces new files whose contents are tested

13

Under review as a conference paper at ICLR 2026

in the code patch. This is because created tests cannot reliably evaluate LLM-generated code if
functionally correct code was created in unexpected file or function names. To run execution-based
evaluation, all Docker files are published alongside our evaluation harness.

Tables 9 and 10 in the appendix provide an overview of the dataset statistics throughout the col-
lection and filtering process. The average repository size varies significantly across languages, with
TypeScript repositories being the largest on average (8946.0 files) and Python repositories the small-
est (1928.1 files). Note that these counts include binary and documentation files.

C PROMPTS

C.1 PROMPT FOR CLASSIFICATION OF TASKS

prompt = nmn

You will be provided with a problem description provided by a
— user to a github repository, which is labeled as an issue
— in github, along with the patch that solves the problem.
<~ Your task is to try to classify the problem in to a
— category from the list of categories provided below.

Problem description:

{{problem_statement}}

The gold patch is a diff file that addresses the changes made
~— to the files in the repository in order to solve the
<~ issue. It contains the list of files modified or added or
— removed and the code lines that have been added or
— replaced or removed.

Following is the gold patch in a diff format that solves the
— issue:

{{gold_patch}}

This is the list of classes we want to classify into, each with
— description of which issue would the class as its label:

"Bug Fix": "the problem asks for addressing bugs or issues
— reported",

"Feature": "the problem is about introducing new features or
< enhancements",

"Testing": "the problem is about adding new testing methods for
< given code or refactoring existing tests. These could be
<— unit or integration (e2e) tests",

"Refactoring": "the problem suggests to refactor existing code
— without changing its external behavior. This could
— include improving code readability, performance
— optimizations, or restructuring code for better
< maintainability",

"Security": "the problem asks to address security
— vulnerabilities or concerns in the codebase",

You should output the selected class in the XML format
— mentioned below. You should only classify into exactly
< one class. An example output will look like:

ANRURY

<category>Feature</category>

You must not include any additional text other than the XML and
— no additional XML tags as well. The value within XML
— tags should be exactly the same as one of the categories:

— Bug Fix, Feature, Refactoring.
mmnn

14

Under review as a conference paper at ICLR 2026

C.2 PROMPTS FOR CLASSIFICATION OF PROBLEM STATEMENTS

prompt = mmn

Your job is to do the following three things:

1. You will classify the issues description according to its
— level of detail.

2. You will classify the issues description according to
— whether it is solvable given the provided information.

3. You will classify the issues description according to
— whether it mentions precise code locations to be changed.

For tasks 1 to 3 I will also provide you with the correct
— solution of the problem, termed ground truth.

Here is a detailed description of the tasks:

##4# TASK 1 #4#

You will assess if a github issue description is sufficiently
— detailed such that a software engineer can implemented
— the solution for the issue after inspecting the code base
— .

You will have access to the issue description as well as a
— ground truth code patch, that is the desired solution.
<~ You will not have access to the code base itself.

You will provide a brief explanation for your decision and then
<~ provide a label, ‘A, ‘BY, ‘C' or ‘D' in the XML tags.

Here are the different lables that you will use:

‘AY contains enough information in natural language to solve
<~ the issue

‘B' contains a reproducible failure example

‘C' contains a partially reproducible example

‘D' does not contain enough information to solve the issue

Here is the format of the output:

<explanation_description>YOUR_EXPLANATION</
<~ explanation_description>
<label_description>YOUR_LABEL</label_description>

TASK 2

You will help me evaluating the quality of a github issues
<~ description together with a ground truth patch that
< solves the described problem.

In particular, your tasks is to check whether the solution or
— steps to solve the problem are already provided in the
< issue description.

You will have access to the issue description as well as a
— ground truth code patch, that is the desired solution.
< You will not have access to the code base itself.

You will provide a brief explanation for your decision and then
<~ provide a label, ‘A, '‘B', ‘C', ‘D' or ‘E' in the XML
— tags.

Here are the different lables that you will use:

‘A no solution or steps provided

15

Under review as a conference paper at ICLR 2026

‘B partial solution provided (e.g., some steps in natural
— language)

‘C' complete solution provided (e.g., complete steps in natural
— language)

‘D' exact patch provided

‘E' misleading solution or steps

Here is the format of the output:

<explanation_solution>YOUR_EXPLANATION</explanation_solution>
<label_solution>YOUR_LABEL</label_ solution>

TASK 3

You will help me evaluating the quality of a github issues
— description together with a ground truth patch that
— solves the described problem.
In particular, your tasks is to check whether the issue
— description contains information on the issue location, i
— .e., which part of the code
needs to modified or fixed to address the issue.

You will have access to the issue description as well as a
<~ ground truth code patch, that is the desired solution.
You will not have access to the code base itself.

You will provide a brief explanation for your decision and then
<~ provide a label, ‘A, ‘BY, C', ‘D!

in XML tags. You have to assign exactly one label per issue
— description.

Here are the different lables that you will use:

‘A' exact locations in natural language provided

‘B' exact locations provided in failure stack traces

‘C' related keywords in the issue description are provided that
— can be used to search for the location

‘D' no location provided.

Here is the format of the output:

<explanation_location>YOUR_EXPLANATION</explanation_location>
<label_location>YOUR_LABEL</label_location>

mnmnn

D DETAILS CST RETRIEVAL METRICS

For node-level retrieval, we identify the deepest node of the concrete syntax tree (CST) accompany-
ing a change. Let a CST be defined by the tuple (V, &, L, 7, A, o), where V is the set of all vertices,
E C V x V the set of directed edges, L a finite set of node labels (e.g., class, function),r € V
the root node (e.g., a python module), and A a map A : V — L assigning a label to a node. Fur-
thermore, let a line span be defined as an interval S := [s, ¢] where s, e € NT and s < e. Lastly,
o :V — S is a map assigning a line span to a node. Since the line span of a higher-level node
encompasses the spans of their descendants (e.g., a function’s span lies in the interval of its parent’s
class’s span), we want to identify the deepest node that is affected by a change. Formally, let ¢ € .S
be the line span of a change on the code base. All nodes affected by a given change are defined as
the set of nodes overlapping with the change (they have a non-empty overlap):

affected(c, CST) := {v € V|cNo(v) # 0}.

16

Under review as a conference paper at ICLR 2026

The deepest node affected by change c can then defined as
deepestNode(c, CST) := v € affected(c, CST)|Pu € affected(c, CST) : o(u) C o(v).

In other words, the deepest node is the one among all affected nodes that does not contain another
affected node.

To compute node-level retrieval metrics, we obtain A% as the set of deepest nodes modified in the

ground truth patch of task ¢, and N as the set of deepest nodes affected by the predicted code
changes for the task. Note, that for simplicity, we omitted indexing CST and changes with a file
name. Naturally, we assume that the CST was constructed for the file in which changes were made.

E FURTHER EXPERIMENTAL DETAILS

E.1 TECHNICAL CHALLENGES IN MAKING CODING AGENTS MULTI-LINGUAL

Aider During its execution pipeline, Aider (v0.75.2) includes a validation step that runs preex-
isting tests against the model-generated patch to ensure it doesn’t introduce regressions. This step
requires two key components: access to the test execution command and a parser to interpret test re-
sults. In the original implementation, these components are specifically tailored for Python projects,
utilizing pytest as the testing framework. However, adapting this process for SWE-PolyBench
presents significant challenges. First, it would require maintaining a comprehensive database of test
execution commands for each instance. Second, we would need to develop robust log parsers ca-
pable of interpreting test results across diverse testing frameworks. Given these complexities, we
opted to exclude this validation step in Aider—PB.

Agentless The original Agentless (v1.5.0) implementation employs Python-specific tools for its
fault localization process, primarily using the ast python module to identify files, functions, and
classes requiring modifications, as well as for linting. This Python-centric approach, however, lim-
its its applicability to other programming languages. Similarly, its bug reproduction mechanism
relies on generating and executing Python scripts, which is not generalizable across different lan-
guages. Furthermore, Agentless encounters the same regression testing limitations as Aider. In
our adaptation, Agentless-PB, we address these limitations by incorporating tree-sitter
for parsing and extracting code structures across JavaScript, TypeScript, and Java. We also imple-
ment language-specific execution commands for bug reproduction scripts. As with Aider—-PB, we
exclude the regression testing step from the pipeline.

SWE-agent The original SWE-agent (v1.0) implementation relies on a containerized environment
using SWE—ReX for interacting with repository contents. While SWE-agent supports custom Docker
images, our adaptation process revealed significant compatibility challenges. It imposes specific
requirements on pre-installed packages, including Python3.11, SWE-ReX, and pipx, within the
provided Docker images. In our adaptation, SWE—-Agent—PB, we initially addressed these issues
by directly installing the missing packages in our Docker images, which resolved problems for
a subset of instances. For the remaining cases, we explored an alternative approach: building a
new Docker image on top of our provided image with a standalone Python installation. This method
successfully isolates the required packages from the base image for many instances. However, it fails
for 129 instances due to version incompatibilities between system libraries. For example, the new
Docker image requires a specific glibc library version while some of our images contained older
versions. For these 129 instances, we used the Javascript base image as generic image, which has
a comprehensive list of pre-installed packages and also meets SWE-agent’s package requirements.
We then provided it as a custom docker image to run SWE-agent. Among the 129 instances, we
obtained predictions for 111 instances. We treated the remaining 18 instances as empty predictions
in SWE-Agent -PB when reporting performance metrics.

E.2 TASK CLASSIFICATIONS AND PASS RATES
Following the categories in Xia et al. (2024) we use the categories in Table 7 for our classification,

roughly ordered with respect to their level of information content. Fig. 4 shows the distribution of
task categories on the sub-sampled SWE-PolyBench500 dataset.

17

Under review as a conference paper at ICLR 2026

Table 7: Informativeness of the problem statements

Category Description of the categories
Descriptiveness of the problem statement

A Contains enough information in natural language to solve the issue
B Contains a reproducible failure example

C Contains a partially reproducible example

D Does not contain enough information to solve the issue

Solution content already present in the problem statement

No solution or steps provided

Partial solution provided (e.g., some steps in natural language)
Complete solution provided (e.g., complete steps in natural language)
Exact patch provided

Misleading solution or steps provided

Location information on the required changes

Exact locations in natural language provided

B Exact locations provided in failure stack traces

C Related keywords provided that can be used to search for the location
D No location provided

moQw >

>

Count

S“‘C‘e“‘ Rep oduc‘b\e parid) None None pgreid) Cmv\ele Eract \Ead\“g E*BC‘NL Eadﬂac \/\eywo(ds None

Description Solution Location

. Java B JavaScript s Python s TypeScript

Figure 4: Classification of SWE-PolyBench_Verified issue descriptions with respect to their descrip-
tiveness (left plot), hints a the solution (middle plot) and information on the localization of the issue
(right plot

In Fig. 5 we highlight how the level of informativeness of the problem statements impact the pass
rates across agents. Overall, more informative problem statements, be it with respect to location,
hints at the solution or level of descriptiveness, result in higher pass rates. This confirms the intuition
that less details in the problem statement make it more difficult for a task being solved.

E.3 RESULTS ON SWE-POLYBENCH_VERIFIED

Fig. 6 presents the coding agents’ performance across different programming languages and code
change complexities. The left radar chart shows the pass rates for Java, JavaScript, TypeScript,
Python, and overall performance. The right chart illustrates the agents’ effectiveness in handling
various types of code modifications, ranging from changes confined to a single class or function to
more complex scenarios involving multiple structural elements.

F COLLECTED REPOSITORIES

Tables 9 and 10 shows the repositories we collected and provides some statistics on the data col-
lected.

18

Under review as a conference paper at ICLR 2026

972
973
974
975
976
977
978
979
980
981
982
983
984
985 60%
986
987
988 40%
989 30%
990 20%

991
992 10%
||I i o il ||| ‘il I|| | e

\ \
994 ufficen Rp(od“db\e partiel None Nore parial . olete gract Wislead™® E,\ad““ e A 1R qword® e

50%

Pass rate

995 Description Solution Location
996 [Agentless-PB (Sonnet 3.5) s Aider-PB (Sonnet 3.5) BN SWE-agent-PB (Sonnet 3.5)

997 (a) Pass rates by task classification on SWE-PolyBench.
998 60%

999

1000

1001 40%

1002 30%
1003 20%
1004

= ol nin IIl ||| "
1006 0% i IEE mem

1007 i W produd® partd - one No® oo g Bt | geadi®® ppar N ogeor®® on

1008
1009
1010 (b) Pass rates by task classification on SWE-PolyBench_Verified.

1011
101> Figure 5: Pass rates of instances with respect to their descriptiveness (left plot), hints a the solution

1013 (middle plot) and information on the localization of the issue (right plot).

1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

50%

Pass rate

Description Solution Location
[Agentless-PB (Sonnet 3.5) WS Aider-PB (Sonnet 3.5) BN SWE-agent-PB (Sonnet 3.5)

19

Under review as a conference paper at ICLR 2026

Java

JavaScript

Func. only

Class only

23%
17%

5%
0% Al

Single Class

TypeScript

Python

Aider-PB (Sonnet 3.5)

Agentless-PB (Sonnet 3.5)

No nodes

17%

Single Func.

52%
35%

Mixed

—— SWE-agent-PB (Sonnet 3.5)

70%

All

Figure 6: SWE-PolyBench_Verified pass rates of coding agents across programming languages (left)
and across subsets of different complexities based on syntax tree nodes. The right plot categorizes
changes by type (class or function) and scope (single or multiple), with ”No nodes” indicating no

class or function changes and "Mixed” requiring both.

Table 8: Pass rates of open source agents on SWE-PolyBench by complexity in terms of CST node

changes.
Node Change Category
None Single Func. Func. Only Single Class Class Only Mixed

Agent Base LLM | " o4 (n = 848) (n = 1431) 25 (n = 30) (n = 386)
Agentless-PB Sonnet 3.5 ‘ 3.841.20 11.247 08 8.740.74 32.049.42 26.748.10 5.7+1.18
SWE-Agent-PB Sonnet 3.5 ‘ 14.44 5 03 11.341.09 9.640.79 52.049.96 46.7+19.12 6.541 .26
Sonnet3.5 | 19.81248 17.011 29 13.810.94 40.04+9.78 36.748.93 9.3+1.48
Deepseek R1 17.542.36 13.741.18 10.840.83 40.049.78 36.7+8.93 8.341.41
Aider-PB Haiku 16.3+2.30 12.341.12 9.340.77 24.048 58 23.317.80 6.541 .26
Mistral-Large 11.842.02 7.140.88 5.440.58 20.0+s.03 20.047.41 2.6+0.82
Llama 3.3 70B 11~4i1498 7.4;&0,90 5~2i0.58 32‘0:&9.42 26~7i8.10 3.6;&0,95

DeepSeek-R1-
Distill—IE)lamaJ()B 7.64+1.63 7.110.88 5.040.57 28.049.00 26.7+s.10 3.11+0.89

20

Under review as a conference paper at ICLR 2026

Language Repository #PRs collected License
spring-projects/spring-boot 6286 Apache 2.0
PhilJay/MPAndroidChart 378 Apache 2.0
spring-projects/spring-framework 4792 Apache 2.0
google/guava 2268 Apache 2.0
NationalSecurity Agency/ghidra 1044 Apache 2.0
ReactiveX/RxJava 3906 Apache 2.0
apache/dubbo 7165 Apache 2.0
skylot/jadx 536 Apache 2.0

Java apolloconfig/apollo 1676 Apache 2.0
netty/netty 7524 Apache 2.0
Netflix/Hystrix 760 Apache 2.0
google/gson 933 Apache 2.0
libgdx/libgdx 3576 Apache 2.0
apache/rocketmq 3794 Apache 2.0
thingsboard/thingsboard 5378 Apache 2.0
JetBrains/intellij-community 2518 Apache 2.0
trinodb/trino 16840 Apache 2.0
vercel/next.js 22087 MIT
nodejs/node 33429 MIT
axios/axios 1482 MIT
mrdoob/three.js 16172 MIT
facebook/react 15393 MIT

JavaScript twbs/bootstrap 15096 MIT
sveltejs/svelte 5324 MIT
atom/atom 5249 MIT
angular/angular.js 7928 MIT
lodash/lodash 1383 MIT
prettier/prettier 9613 MIT
serverless/serverless 5557 MIT
freeCodeCamp/freeCodeCamp 36730 BSD 3 clause
microsoft/vscode 30660 MIT
angular/angular 27565 MIT
mui/material-ui 22533 MIT

. puppeteer/puppeteer 5831 Apache 2.0

TypeSeript i o rybookis/storybook 12461 MIT
tailwindlabs/tailwindcss 2655 MIT
gothinkster/realworld 795 MIT
supabase/supabase 10743 Apache 2.0
coder/code-server 1863 MIT
Significant-Gravitas/AutoGPT 3939 MIT
huggingface/transformers 16135 Apache 2.0
langchain-ai/langchain 13358 MIT
yt-dlp/yt-dlp 2701 Unlicense

Python tensorflow/models 3632 Apache 2.0
tiangolo/fastapi 3056 MIT
keras-team/keras 7310 Apache 2.0
localstack/localstack 5641 Apache 2.0
geekan/MetaGPT 773 MIT
3blb/manim 782 MIT

Table 9: List of repositories and total number of PRs collected for four languages.

Table 10: Contrasting numbers of processed pull requests at the beginning of data collection and at
the end as well as average repository size measured in number of files.

Total #repos Total #PRs Total #PRs Final # Final# Avg. repository

Language collected collected w/ tests samples repos size (files)
Java 17 69374 1433 165 6 2420.6
JavaScript 12 138713 3136 1078 4 3706.5
Python 10 57327 1012 199 6 1928.1
TypeScript 10 151836 3042 729 5 8946.0

21

	Introduction
	Related work
	Building SWE-PolyBench
	SWE-PolyBench characteristics
	SWE-PolyBench_Verified
	Contrasting SWE-PolyBench with SWE-Bench

	Metrics
	Evaluating open-source coding agents
	Results

	Conclusions and Limitations
	Reproducibility statement
	Curating SWE-PolyBench_Verified
	Runtime setup.
	Prompts
	Prompt for classification of tasks
	Prompts for classification of problem statements

	Details CST retrieval metrics
	Further experimental details
	Technical Challenges in Making Coding Agents Multi-Lingual
	Task classifications and pass rates
	Results on SWE-PolyBench_Verified

	Collected Repositories

