
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SWE-POLYBENCH: A MULTI-LANGUAGE BENCH-
MARK FOR REPOSITORY LEVEL EVALUATION OF COD-
ING AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Coding agents powered by large language models have shown impressive capabili-
ties in software engineering tasks, but evaluating their performance across diverse
programming languages and real-world scenarios remains challenging. We in-
troduce SWE-PolyBench, a new multi-language benchmark for repository-level,
execution-based evaluation of coding agents. SWE-PolyBench contains 2110 in-
stances from 21 repositories and includes tasks in Java, JavaScript, TypeScript and
Python, covering bug fixes, feature additions, and code refactoring. We offer a cu-
rated and validated subset of 382 instances (SWE-PolyBench Verified) featuring
high-quality issue descriptions, code and test patches. Additionally, we release an
evaluation harness that enables fully automated assessment. We further introduce
novel instance stratifications and retrieval metrics rooted in syntax tree analysis to
deepen the understanding of coding agent performances. Our experiments with
leading open-source coding agents on SWE-PolyBench show that current agents
exhibit uneven performances across languages and struggle with complex prob-
lems, while showing higher performance on simpler tasks. SWE-PolyBench aims
to drive progress in developing more versatile and robust AI coding assistants for
real-world software engineering.

1 INTRODUCTION

Coding agents are autonomous systems based on language models that are able to create or modify
software with limited human input. Over the last year, coding agents have garnered substantial at-
tention due to their potential to dramatically enhance human productivity. The current generation of
coding agents exhibit impressive performance on a wide-range of text-based tasks like code comple-
tion (Guo et al., 2023; Ding et al., 2024), code translation (Szafraniec et al., 2023), documentation
generation (Luo et al., 2024), unit test generation (Alshahwan et al., 2024), debugging (Tian et al.,
2024), and conversational code generation (Nijkamp et al., 2023). At the same time, their effec-
tiveness in different scenarios is far from being broadly understood. This led to the proliferation of
benchmarks aimed at assessing the coding effectiveness of said systems in controlled environments.

In particular, SWE-Bench (Jimenez et al., 2024), which measures the performance of systems at
“solving” GitHub issues has spurred the development of capable coding agents resulting in several
leaderboard submissions, becoming the de-facto standard for benchmarking a coding agent. De-
spite its significant impact as a pioneering benchmark, SWE-Bench, and in particular its “verified”
subset (Chowdhury et al., 2024), also shows some limitations. It contains only Python reposito-
ries, the majority of tasks are bug fixes, and with over 45 % of all tasks, the Django repository
is significantly over-represented. Lastly, optimizing for a single dataset may result in “overfitted”
agents whose capabilities no longer generalize to the broader goal of developing versatile, useful,
and robust AI coding assistants.

To address these gaps, we have curated a dataset that aims to provide a diverse benchmarking envi-
ronment for AI coding agents. Our dataset comprises pull requests (PRs) and issues from 21 repos-
itories from four of the ten most popular languages (according to Stack Overflow (2023)), spanning
five categories (feature request, bug fix, refactoring, security, and testing task) and several levels of
complexity. Breaking down performance into task categories and complexity can help developers

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

All

Java

JavaScript

TypeScript

Python

0%
6%

12%
18%

25%

All

Single Func.

Func. only

Class only

Single Class

No nodes

Mixed

0%
13%

27%
41%

55%

Aider-PB (Sonnet 3.5) Agentless-PB (Sonnet 3.5) SWE-agent-PB (Sonnet 3.5)

Figure 1: Pass rates of coding agents across programming languages (left) and across subsets of
different complexities based on syntax tree analysis (see Section 4 for details on labels).

pinpoint agents’ strengths and weaknesses. We further curate an annotated verified subset of 382
instances covering all languages, SWE-PolyBench Verified, that filters out instances based on issue
description, code and test quality.

Our evaluation framework introduces novel file and node-level retrieval metrics based on syntax
tree analysis. These metrics complement the standard execution-based “resolve rate”, providing
insights into the ability of an agent to navigate complex codebases. We carry out an extensive set
of experiments on SWE-PolyBench with leading open-source agents. Our results, summarized in
Figure 1, demonstrate varying performance across different programming languages, with notable
difficulties in tasks requiring complex, multi-file modifications or extensive code changes.

2 RELATED WORK

Code generation has a long history extending back to program synthesis (Manna & Waldinger, 1971;
Gulwani et al., 2017). Here we focus on the recent work using large language models (LLM) for
code generation (Jiang et al., 2024) and their corresponding methods for evaluation. Prior bench-
marks for LLM based code generation can be broadly categorised into retrieval-free and retrieval-
augmented, based on whether retrieval of salient snippets for editing is required prior to code
generation. Several retrieval-free benchmarks have been proposed like APPS (Hendrycks et al.,
2021), HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021; Athiwaratkun et al., 2023), and
MCoNaLa (Wang et al., 2022). Library specific datasets like NumpyEval (Zan et al., 2022) have
been proposed to study LLMs when fine-tuned on those libraries’ APIs. These benchmarks, provid-
ing all necessary information in the prompt, fail to simulate real-world software engineering tasks
where identifying the location for edits is as crucial as determining the edits themselves.

Benchmarks can further be classified as execution-free or execution-based, depending on how code
correctness is assessed. Execution-based benchmarks, more common among the aforementioned
ones, use predefined tests to verify generated code. Among these, SWE-bench (Jimenez et al.,
2024) is the first dataset that mirrors real-world software engineering, in which a code generation
system is provided with a codebase and a problem statement, and is tasked to edit that codebase to
solve the problem. SWE-bench was collected from GitHub issues of popular Python repositories.
Tests for correctness are the unit tests automatically extracted from the repositories themselves.
SWE-bench-java (Zan et al., 2024) comprises instances in Java, SWE-bench Multimodal includes
visual elements from front-end tasks (Yang et al., 2024b), and Multi-SWE-Bench (Zan et al., 2025),
most similar to our work, contains 1632 samples from seven languages. While Multi-SWE-Bench
provides samples from additional languages, its evaluation procedure remains superficial, focusing
primarily on pass rates and thus limiting insights into both agent performance and failure modes.

SWE-Lancer (Miserendino et al., 2025) includes web development and “manager-style” problems,
where the task is to select among different implementations. Extending the topic of the problems
being considered, Baxbench (Vero et al., 2025) is security focused and shows that most LLMs
generate insecure code. SWE-PolyBench falls in the same category of execution-based datasets.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Testing

Runtime
Setup

Issue #3039

 #3147
-19+42

Closed

Issue #3039

#3147

-19+42

Closed

Issue #3039

 #3147
-19+42

Closed

 Issue #3039

 PR #3147

-19+42

Closed

Java

100+

✅ ✅ P2P

❌ ✅ F2P

Metadata Filter

❌ Tutorials & Guides
✅ 100 PRs
✅ Updated last year
✅ PR fixes issue

before after Test-Based Filter

✔ At least one F2P
✔ Testable

Figure 2: Overview of our dataset generation pipeline. We start by collecting pull requests (PRs) that
close an issue from popular repositories across our four target languages. After applying a metadata
filter, we then create containerized environments for test execution. We compare test outcomes
before and after patch application. A test is fail-to-pass (F2P) if it initially fails but passes after
applying the patch, other tests are pass-to-pass (P2P). The final test-based filter selects PRs that
have at least one F2P test and are considered “testable” (condition detailed in Section 3).

It seeks to overcome some limitations of previous datasets, such as over-representation of single
repositories, or lack of diversity in programming languages or type of tasks.

3 BUILDING SWE-POLYBENCH

In this section, we summarize the construction process of SWE-PolyBench, which involved first a
metadata-based screening of public repositories, and then a runtime-based filtering to ensure feasi-
bility of execution-based evaluation of proposed solutions through running (unit) test suites. Fig. 2
overviews our dataset collection pipeline. Tables 9 and 10 in the appendix provide an overview of
the dataset statistics throughout the collection and filtering process.

Following the practice established by SWE-Bench, each instance of SWE-PolyBench includes a
problem statement (which could be an issue or a PR description or combination of both), a reference
to the repository, the “base commit” hash and the repository content, a “code patch” and a “test
patch”, which are git diffs of main source code and test suites, respectively. We postpone a broader
formalization to Section 5.

Data collection. We built SWE-PolyBench using public GitHub repositories whose primary pro-
gramming language is either Java, JavaScript (JS), Python, or TypeScript (TS) as these languages
represent a significant portion of modern software development projects, according to Stack Over-
flow (2023). We set up the following rules as an initial filter: the repository A) is implementation-
focused (namely we exclude guides, tutorials and similar repositories to focus on code); B) contains
at least 100 pull requests (PRs), chosen as a threshold to indicate a non-trivial software project with
an established history of collaborative development; C) was updated in the last 12 months to main-
tain relevance to current practices; D) is permissively licensed to allow unrestricted use for research;
E) is in English (primarily), to facilitate analysis of code and discussions. Having collected a num-
ber of repositories that satisfy these rules, we consider a PR for inclusion into SWE-PolyBench if it
solves an issue and provides respective test code that allows for execution-based verifiability. This
process resulted in 17 repositories for Java, 12 for JS and 10 for Python and TS, yielding a total of
377 300 PRs. To ensure independent evaluation of model performance, we excluded any repositories
found in SWE-Bench.

Runtime setup. We want to make sure that the correctness of proposed solutions are verifiable by
executing a suite of unit tests. Thus, we filter PRs based on the following rules: 1) after applying
the “test patch” to the base commit, the test suite includes at least one test that fails at base commit
but passes after applying the “code patch”; following convention we call such set of tests “fail-to-
pass”; 2) we exclude PRs that introduce and test new files in the code patch, as tests cannot reliably
evaluate LLM-generated code when correct functionality appears in unexpected file locations or
function names. Running these filters required creating Docker environments in which to execute
tests, which we release alongside the evaluation harness. Further details in Appendix B.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Sufficient NL
Reproducible

Partial None

Description

0

100

200

300

400

500

600

700

None
Partial

Complete Exact
Misleading

Solution
Exact NL

Exact trace
Keywords None

Location

C
ou

nt

Java JavaScript Python TypeScript

Figure 3: Classification of SWE-PolyBench issue descriptions with respect to their descriptive-
ness (left plot), hints at the solution (middle plot), and information on the localization of the is-
sue (right plot). NL stands for natural language.

4 SWE-POLYBENCH CHARACTERISTICS

In this section, we cover the categorizations of SWE-PolyBench instances along three axes: the
type of task, the informativeness level of the problem statement, and the task complexity. Next, we
describe the curation of our verified version, SWE-PolyBench Verified, partially informed by the
aforementioned categorizations. Finally, we contrast our datasets with the established SWE-Bench
and its “verified” subset, and discuss similarities and differences.

Type of task. Software issues encompass various tasks beyond bug fixes, such as refactoring re-
quests or new feature implementations. We classified each problem statement into one of five cat-
egories: “bug fix“, “feature request“, “refactoring“, “security“ or “testing“. We used as classifier a
zero-shot prompted LLM, giving as context the problem statement, the code and test patches and
and a task instruction which we report in Appendix E.2 and show the distribution of different task
categories in Table 1.

Informativeness of the problem statement. We assess problem statements’ “quality” along the
dimensions and classes introduced by Xia et al. (2024). Specifically, we break down informativeness
and quality alongside the following three dimensions: i) how descriptive is the problem statement,
ii) how much information does the problem statement contain with respect to the desired solution,
and iii) what localization information (e.g. file path) is available to address the described issue. For
each of these dimensions, we consider four or five different classes to indicate informativeness levels,
e.g. ranging from “full information” to “no information” (further details in Table 7). As above, we
use a zero-shot prompted LLM to perform the three classification tasks, providing as context the
problem statement and code and test patches and a prompt template we report in Appendix C.2.
We provide descriptive statistics pertaining to the above classifications in Fig. 3. Importantly, we
observe that only few instances provide the exact or complete solutions in the problem statement.

Complexity of the task. We measure task complexity in SWE-PolyBench through two primary
metrics: (1) the number of files that need to be modified to implement a solution, and (2) the gran-
ularity and distribution of changes in the concrete syntax tree (CST) nodes, specifically focusing
on modifications to class and function nodes. At the CST level, we categorize changes into four
types: those requiring no class or function modifications (None), function-only changes, class-only
changes, and mixed modifications affecting both classes and functions. Table 8 (middle rows) sum-
marizes our analysis. Overall Java instances exhibit the highest complexity, requiring modifications
to 3.6 files on average and showing mixed node changes in 66.06% of cases. Python tasks demon-
strate moderate complexity, while JavaScript and TypeScript show distinct patterns - JavaScript has
the highest proportion of function-only modifications, and TypeScript shows the highest percentage
of non-class/function changes.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Contrasting SWE-PolyBench (PB) and SWE-PolyBench Verified (PBv) file statis-
tics and task categories with SWE-Bench (SWEb) (Yang et al., 2024a) and SWE-Bench veri-
fied (SWEv) (Chowdhury et al., 2024).

Modified Files (avg.) Task Category (%)
Python Java JS TS All Bug Fix Feature Req. Refac. Misc.

SWEb 1.6 – – – 1.6 75.50 18.40 5.14 0.96
SWEv 1.2 – – – 1.2 87.20 8.60 4.00 0.20

PB 2.0 3.6 2.2 3.1 2.6 74.50 21.94 2.94 0.61
PBv 1.5 3.1 2.0 3.1 2.4 59.80 14.0 2.6 0.00

Table 2: Dataset complexity in terms of changes in concrete syntax tree nodes. Highest numbers per
column are highlighted in bold.

Node Change Category (%) Node Change Count (avg.)

Dataset Language None Func.
only

Class
only Mixed Func. Class Num.

Nodes

SWEb Py 1.48 67.26 3.27 27.99 2.81 0.72 3.54
SWEv Py 1.80 77.60 4.20 16.40 1.87 0.30 2.18

PB

Py 1.01 55.78 5.53 37.69 4.09 1.67 5.76
Java 0.00 32.12 1.82 66.06 7.35 2.45 9.81
JS 3.74 84.27 0.29 11.70 2.45 0.14 2.60
TS 30.59 56.24 1.78 11.39 1.86 0.21 2.06
All 12.46 67.82 1.42 18.29 2.78 0.49 3.28

PBv

Py 0.00 67.26 7.08 25.66 3.22 1.10 4.32
Java 0.00 39.13 1.45 59.42 7.39 1.97 9.36
JS 5.00 82.00 0.00 13.00 2.21 0.17 2.39
TS 27.00 64.00 2.00 7.00 1.66 0.11 1.77
All 8.38 65.18 2.88 23.56 3.30 0.75 4.06

4.1 SWE-POLYBENCH VERIFIED

To create a high-quality subset for efficient experimentation, we enlisted expert annotators to eval-
uate the quality of issue descriptions, code, and test patches in our dataset. After removing en-
tries that fell below our quality threshold and downsampling JavaScript and TypeScript instances
to maintain a manageable dataset size, we curated a refined collection of 382 instances span-
ning four programming languages. This carefully selected subset enables more rapid and focused
experimentation while preserving essential quality standards. We refer to this dataset as SWE-
PolyBench Verified (PBv). The details of the annotation process and our scoring criteria is described
in Appendix A.

4.2 CONTRASTING SWE-POLYBENCH WITH SWE-BENCH

We compare key characteristics of SWE-PolyBench (PB) and SWE-PolyBench Verified (PBv) with
SWE-Bench (SWEb) and SWE-Bench verified (SWEv), as the latter two are widely recognized as
the current standard for evaluating coding agent performance. Key comparison statistics alongside
the axes discussed above are reported in Table 1 and Table 2. PB exhibits higher complexity in terms
of modified files across all languages. Overall 63 % more files need to be edited to solve a task in
PB compared to SWEb. The task categories are similarly distributed between PB and SWEb.

5 METRICS

We assess coding agents by calculating their pass rates and various retrieval metrics, which we
formalize in this section. Let X be a space of finite sequences of strings. Given a problem statement
p ∈ X and the contents of a repository r ∈ X , an LLM-based agent fLLM outputs an updated

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

repository r′ = fLLM(p, r) ∈ X 1. Furthermore, denote by r′ \ r ∈ X the difference between the
input repository and the edited repository.

Pass rate. We consider p to be solved by the agent if the execution of a set of tests on r′ is
successful. In line with previous work (Jimenez et al., 2024), the tests comprise a number of pass-
to-pass (P2P) and fail-to-pass tests (P2P), as detailed in Section 3. Formally, this means that for
each instance of SWE-PolyBench we provide two Boolean functions tP2P : X → {0, 1} and tF2P :
X → {0, 1} such that tP2P(r) = 1 and tF2P(r) = 0. We let t = tP2P ∧ tF2P be their conjunction.
Then, we define the pass rate of an agent fLLM on a dataset D as follows:

PassRate(fLLM,D) =
1

|D|
∑

(p,r,t)∈D

t(fLLM(p, r)). (1)

Retrieval scores based on code edits. While pass rate is a central metric to measure code genera-
tion performance, it might fail to capture an agent’s ability to successfully navigate a repository and
localize relevant code elements. For this reason, we calculate file-level retrieval metrics (recall and
precision) and introduce a new set of CST node-level retrieval metrics which we define below.

Let r∗ ∈ X be the repository patched with the ground truth patch, and let F : X → 2X be a set-
valued function that given a diff string, extracts the file paths changed in the diff. Then, to compute
file-level retrieval scores (e.g., recall and precision) we use F(r∗ \ r) as the ground truth set and
F(r′ \ r) as the predicted set.

For node-level retrieval scores, we construct the CST for each changed file of a given diff string.
A CST is a detailed tree representation of the source code that preserves syntactic details while
representing structural elements like functions and classes as nodes in the tree. We then retrieve the
modified nodes (i.e., module, class, function) accounting for their depth in the tree. More
formally, let CST : X × X → T be the parsing function that given a diff string and a repository,
returns a labeled tree representing the portion of the CST touched by the diff. The labels of each
node uniquely identify a section of the repository (e.g. class, or function), but do not include
their actual content. Let Paths : T → 2T be a function that extract all root-to-leaf paths of a
tree, yielding a set of paths (i.e., trees with degree at most 1). Then, to compute node-level retrieval
scores we consider Paths(CST(r∗ \ r, r∗)) to be the ground truth set and Paths(CST(r′ \ r, r′))
to be the predicted set. For details about CST construction, please refer to Appendix D.

6 EVALUATING OPEN-SOURCE CODING AGENTS

We run a series of experiments with open-source agents on SWE-PolyBench and SWE-
PolyBench Verified to provide a snapshot of current performances on our newly introduce datasets.
We start the section by describing the code agents we chose and then discuss experimental results,
focusing on the metrics introduced above.

Coding agents. For our comparison, we selected three open-source agents that are widely recog-
nized and appreciated in both the research community and among practitioners:

• Aider (Gauthier, 2024) (v0.75.2), an interactive pair programming agent. The agent sug-
gests different changes to the codebase and the user can select or submit their preferences.
For benchmarking, we run Aider in non-interactive mode.

• SWE-agent (Yang et al., 2024a) (v1.0) which employs an agent-computer interface that can
create and edit code files, navigate entire repositories, and execute tests and other programs.

• Agentless (Xia et al., 2024) (v1.5.0) which uses a three-phase approach to 1) localize, 2) re-
pair, and 3) validate code. Agentless does not rely on autonomous agent-based interactions
with tools.

We modified and adapted these agents to address the specific challenges of SWE-PolyBench, result-
ing in their modified versions: Aider-PB, SWE-Agent-PB, and Agentless-PB. In summary:

1For simplicity, we take here the agent to be deterministic. In practice, agents are typically stochastic.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Pass rates of open source agents on SWE-PolyBench.

Language
Agent Base LLM Java JS TS Python Overall

Agentless-PB Sonnet 3.5 10.9±2.44 7.2±0.81 4.7±0.77 20.1±2.95 7.8±0.59

SWE-Agent-PB Sonnet 3.5 16.4±2.88 6.5±0.77 10.2±1.10 24.1±3.05 10.2±0.66

Aider-PB

Sonnet 3.5 15.8±2.86 12.6±1.04 13.0±1.24 24.1±3.05 14.1±0.77

Deepseek R1 12.1±2.55 10.1±0.95 11.5±1.17 18.1±2.81 11.5±0.71

Haiku 11.5±2.49 8.1±0.85 9.7±1.09 18.1±2.81 9.9±0.65

Mistral-Large 6.7±1.96 4.8±0.66 6.9±0.93 7.0±1.83 5.9±0.51

Llama 3.3 70B 9.1±2.24 4.2±0.62 6.4±0.91 11.1±2.27 6.0±0.52

DeepSeek-R1-
Distill-Llama-70B 5.5±1.78 3.5±0.57 5.8±0.86 12.6±2.40 5.3±0.48

1) we removed the validation step of Aider (aider-swe-bench), as the original implementation is
tailored to Python projects; 2) we modified SWE-agent’s containerized environment by creating
custom Docker configurations and using Javascript base images to resolve package compatibility
issues; 3) we adapted Agentless to support multiple languages by replacing Python-specific tools
with tree-sitter and implementing language-specific execution commands. We refer the reader to
Appendix E.1 for further details on technical challenges of adapting these agents to multi-language
settings. All implementations utilize Anthropic’s Claude 3.5 (claude-3-sonnet-20241022)
as the foundation large language model if not stated otherwise.

6.1 RESULTS

Pass rates. In Tables 3 to 5, we examine pass rates across programming languages, task complex-
ity, task categories as well as token efficiency. Performance stratified by task types is reported in
Appendix E.2. In addition, Table 6 summarizes both file and CST node retrieval accuracy to get a
fine-grained view of the agents’ capability to navigate the code repository. If not indicated other-
wise, we report the mean pass rate with associated standard error (%±SE), estimated via bootstrap
resampling over n = 2000 iterations. Fig. 1 and Tables 3 and 8 reveal significant performance
variations across programming languages and change types for the three Sonnet 3.5-based agents.
All agents demonstrate their strongest performance in Python (20 % to 24 %), however these rates
remain relatively modest compared to pass rates in SWE-bench (Jimenez et al., 2024). Performance
in Java (11 % to 16 %) and particularly TypeScript (5 % to 13 %) is strikingly lower than the other
two languages. These findings suggest that pass rates stem from a complex interplay between task
complexity, node change types, and language-specific factors that likely reflect the distribution of
programming languages and structural patterns in LLMs’ pretraining data. Stratifying problems by
their complexity (Table 8), models perform best on “class only” and “single class” modifications
(25 % to 40 %), while degrading significantly with “mixed” changes (8 % to 15 %). Surprisingly,
“function only” and “single function” changes also yield relatively low success rates (around 15 %),
despite their typically more contained scope. Table 4 breaks down performance by task category.
Aider-PB achieves the highest average pass rates, while being more token efficient than other
agents. Table 5 reveals how performance degrades with increasing task complexity, where all meth-
ods reach their maximal pass rate on single file edits.

On SWE-PolyBench Verified, Aider-PB (sonnet 3.5) also achieves the highest average pass rate
(16.23%), with SWE-Agent-PB scoring 14.4% and Agentless-PB scoring 13.35%.

Retrieval metrics. Table 6 presents an evaluation of file and node retrieval metrics, demonstrating
varying efficacy of different agent-model combinations. In file retrieval, performance varies sig-
nificantly across languages, with SWE-Agent-PB achieving the highest recall in Java (51.6 %),
while Aider-PB with Sonnet 3.5 excels in precision (65.1 %). For both JavaScript and TypeScript,
Aider-PB performs significantly better than other agents in both precision and recall. Notably,
while Agentless-PB outperforms all other configurations in Python file and node retrieval, its
strength is limited to Python instances alone. Node retrieval results follow similar patterns, with
Aider-PB leading in Java, JavaScript, and TypeScript, and Agentless-PB maintaining supe-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Average pass rates with standard error by task category and average token usage per in-
stance.

Category Tokens (avg.)
Agent Base LLM Bug Fix Feature Req. Refac. Input Output

Agentless-PB Sonnet 3.5 8.8±0.71 5.2±1.03 3.2±2.27 315 461 10 900

SWE-Agent-PB Sonnet 3.5 10.2±0.76 9.5±1.34 16.1±4.70 338 828 679

Aider-PB

Sonnet 3.5 13.8±0.89 15.1±1.66 12.9±4.25 64 521 845
Deepseek R1 11.7±0.82 10.4±1.40 16.1±4.70 53 440 2367

Haiku 9.9±0.75 9.9±1.37 9.7±3.72 64 067 1094
Mistral-Large 5.7±0.57 6.5±1.14 4.8±2.77 63 946 7319

Llama 3.3 70B 6.6±0.62 4.1±0.93 4.8±2.77 84 311 2002
DeepSeek-R1-

Distill-Llama-70B 5.9±0.58 3.2±0.81 6.5±3.14 58 028 2241

Table 5: Performance of different open-source agents on SWE-PolyBench with varying task com-
plexity in terms of files edited. Number of instances in the dataset are in parenthesis.

Files to be modified
Agent Base LLM 1 (1085) 2 (417) 3 (200) 4 (130) 5+ (278)

Agentless-PB Sonnet 3.5 10.8±0.94 7.0±1.24 4.0±1.38 2.3±1.33 2.9±1.02

SWE-Agent-PB Sonnet 3.5 12.5±1.01 10.6±1.49 5.0±1.56 3.8±1.71 7.2±1.56

Aider-PB

Sonnet 3.5 17.7±1.18 13.9±1.72 8.0±1.89 6.9±2.27 7.9±1.63

Deepseek R1 14.9±1.09 9.8±1.45 6.0±1.68 7.7±2.35 6.5±1.51

Haiku 12.9±1.02 8.6±1.37 4.0±1.38 6.2±2.17 5.8±1.43

Mistral-Large 7.5±0.79 5.0±1.08 4.5±1.47 2.3±1.33 3.6±1.13

Llama 3.3 70B 8.3±0.84 6.5±1.21 2.5±1.11 0.8±0.78 1.4±0.72

DeepSeek-R1-
Distill-Llama-70B 7.5±0.79 4.6±1.02 2.0±0.99 1.5±1.07 2.2±0.88

riority in Python tasks. In general, we observe a significant gap between Python and the other
languages. The highest file retrieval metrics in Python are ahead of the highest metric for any other
language by 9.3 p.p. (percentage point) and 12.5 p.p. for recall and precision, respectively. The
same holds for node retrieval, where Python metrics are ahead by 7.7 p.p. and 12.5 p.p. for recall
and precision, respectively. Lastly, we would like to stress that, as evidenced by the pass rate of
Agentless-PB, high retrieval metrics are (most of the time) a necessary but not sufficient condi-
tion for high pass rates.

7 CONCLUSIONS AND LIMITATIONS

We introduced SWE-PolyBench, a repository-level, multi-language benchmark for execution-based
evaluation of coding agents. SWE-PolyBench comprises 2110 samples from 21 repositories across
Java, JavaScript, TypeScript, and Python, covering bug fixes, feature requests, and code refactoring.
We also provided SWE-PolyBench Verified, an annotated high-quality subset for efficient experi-
mentation. Our evaluation of leading open-source coding agents required significant effort to adapt
the agents to multiple languages and revealed significant variations of performance across languages
in terms of both pass rate and navigation proficiency (observed through our introduced retrieval
metrics). Together, these factors stress the (over)-specialization to the Python ecosystem of several
current solutions. Our categorization of the datasets along CST-rooted complexity axes revealed a
consistent decline in performance as task complexity increased. Our findings underscore the need
for more versatile and robust AI coding assistants capable of handling complex real-world software
engineering tasks across multiple programming languages. SWE-PolyBench aims to drive progress
in developing such agents by providing a comprehensive, multi-lingual evaluation framework.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: File and node retrieval metrics for different open-source agents on SWE-PolyBench.

File Retrieval (%)
Java JavaScript TypeScript Python

Agent Base LLM Recall Precision Recall Precision Recall Precision Recall Precision

Agentless-PB Sonnet 3.5 29.5 49.7 23.4 35.2 17.5 27.7 60.9 77.6

SWE-Agent-PB Sonnet 3.5 51.6 58.5 27.5 28.5 29.8 36.4 59.7 44.2

Aider-PB

Sonnet 3.5 41.7 65.1 37.1 53.5 33.3 52.0 58.2 73.8
Deepseek R1 37.6 53.8 31.5 40.8 33.8 46.0 54.7 63.3

Haiku 35.0 53.2 28.3 40.3 30.2 45.1 56.8 70.3
Mistral Large 30.6 46.8 21.6 30.9 25.2 38.5 47.6 55.9

Llama 3.3 70B 27.7 43.3 20.6 28.9 24.7 39.6 42.9 54.5
DeepSeek-R1-

Distill-Llama-70B 31.9 47.0 25.0 31.7 27.1 36.2 48.7 59.9

Node Retrieval (%)
Agentless-PB Sonnet 3.5 20.6 38.9 18.9 27.6 17.2 22.9 38.2 63.6

SWE-Agent-PB Sonnet 3.5 32.5 52.3 28.8 23.7 21.7 20.6 38.6 61.1

Aider-PB

Sonnet 3.5 29.2 51.1 30.5 39.9 20.2 26.7 36.7 59.9
Deepseek R1 24.6 40.2 26.2 31.2 23.6 29.4 33.5 50.9

Haiku 22.8 38.4 22.8 29.1 18.2 23.5 33.0 53.8
Mistral Large 24.3 21.3 17.5 16.4 15.3 15.9 38.1 16.7

Llama 3.3 70B 18.7 31.5 15.0 19.4 15.0 18.9 24.4 39.5
DeepSeek-R1-

Distill-Llama-70B 20.5 32.5 19.4 22.0 17.8 20.5 28.1 44.9

Limitations and societal impact. We conclude the work with a discussion of limitations, societal
impact of SWE-PolyBench and potential future directions.

Task diversity: there is a “long tail” of problems that are part of the day-to-day work of software
developers that are not addressed in this benchmark.We believe that targeting the “head of the dis-
tribution” of tasks is a good first step, but future work should consider expanding to cover a broader
range of software engineering challenges.

Evaluation Metrics: our evaluation metrics do not capture several aspects of code quality and cor-
rectness, such as adherence to code best practices or repository style guides, maintainability, or the
presence of potential security flaws in the generated code. Providing a more holistic assessment of
coding agent performance – remains a challenging direction for future work.

Limits of execution-based evaluation: execution-based evaluation using (unit) test suites is the de-
facto standard for coding benchmarks, providing a quick and cheap feedback signal. However, it
may also constrain the type of tasks one may be able to reasonably verify and hardly accounts for
completely valid variations (e.g., in class, function, and variable naming). Going beyond the current
practice remains an open area of research.

Verifiability: another important limitation of SWE-PolyBench is the lack of human verification to
ensure that all tasks are “solvable” based on the provided information. Future benchmarks should
strive to balance the need for verifiable tasks with the preservation of diverse issue description qual-
ities, mirroring the range of scenarios encountered in practical software development.

LLM-based classifications: for our analysis of task type and informativeness of the task description,
we made extensive use of LLM-based zero-shot classifiers. Our annotations provide complementary
information that can guide the development of specialized approaches and adds another dimension to
the evaluation which informs about existing gaps. However, LLM-based annotations are not without
risk as pointed out in Ahmed et al. (2024) and should be interpreted accordingly.

Data leakage: the publicly available data used to create SWE-PolyBench may have been utilized
during training of foundational LLMs we used in evaluation, or might be used in the future. Data
leakage concerns and lack of transparency creates an ever-shrinking window to develop truly novel
evaluation data, underscoring the need for innovative approaches to evaluation and benchmarking,
e.g. test-set slot guessing (Deng et al., 2023).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

We have uploaded our evaluation source code along with the dataset files under datasets/ inside
the zip file in the supplement materials. The instructions to run the evaluation and get the pass rates
with retrieval metrics can be found in README.md. The steps to install the dependencies can be
found in requirements.txt.

REFERENCES

Toufique Ahmed, Premkumar Devanbu, Christoph Treude, and Michael Pradel. Can llms replace
manual annotation of software engineering artifacts? arXiv preprint arXiv:2408.05534, 2024.

Nadia Alshahwan, Jubin Chheda, Anastasia Finogenova, Beliz Gokkaya, Mark Harman, Inna
Harper, Alexandru Marginean, Shubho Sengupta, and Eddy Wang. Automated unit test im-
provement using large language models at meta. In Companion Proceedings of the 32nd ACM
International Conference on the Foundations of Software Engineering, pp. 185–196, 2024.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan,
Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Sujan Kumar Gonugondla, Hantian
Ding, Varun Kumar, Nathan Fulton, Arash Farahani, Siddhartha Jain, Robert Giaquinto, Haifeng
Qian, Murali Krishna Ramanathan, Ramesh Nallapati, Baishakhi Ray, Parminder Bhatia, Sudipta
Sengupta, Dan Roth, and Bing Xiang. Multi-lingual evaluation of code generation models. In
The Eleventh International Conference on Learning Representations, 2023. URL https://
openreview.net/forum?id=Bo7eeXm6An8.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Neil Chowdhury, James Aung, Chan Jun Shern, Oliver Jaffe, Dane Sherburn, Giulio Starace, Evan
Mays, Rachel Dias, Marwan Aljubeh, Mia Glaese, Carlos E. Jimenez, John Yang, Leyton Ho,
Tejal Patwardhan, Kevin Liu, and Aleksander Madry. Introducing SWE-bench Verified, 2024.
URL https://openai.com/index/introducing-swe-bench-verified/. Ac-
cessed on March 2, 2025.

Chunyuan Deng, Yilun Zhao, Xiangru Tang, Mark Gerstein, and Arman Cohan. Benchmark prob-
ing: Investigating data leakage in large language models. In NeurIPS 2023 Workshop on Back-
doors in Deep Learning-The Good, the Bad, and the Ugly, 2023.

Yangruibo Ding, Zijian Wang, Wasi Ahmad, Murali Krishna Ramanathan, Ramesh Nallapati, Par-
minder Bhatia, Dan Roth, and Bing Xiang. CoCoMIC: Code completion by jointly modeling
in-file and cross-file context. In Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessan-
dro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Proceedings of the 2024 Joint Interna-
tional Conference on Computational Linguistics, Language Resources and Evaluation (LREC-
COLING 2024), pp. 3433–3445, Torino, Italia, May 2024. ELRA and ICCL. URL https:
//aclanthology.org/2024.lrec-main.305.

Paul Gauthier. Aider is ai pair programming in your terminal. https://github.com/paul-
gauthier/aider, 2024.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program synthesis. Foundations and
Trends® in Programming Languages, 4(1-2):1–119, 2017.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Julian McAuley. Longcoder: A long-range pre-
trained language model for code completion. In International Conference on Machine Learning,
pp. 12098–12107. PMLR, 2023.

10

https://openreview.net/forum?id=Bo7eeXm6An8
https://openreview.net/forum?id=Bo7eeXm6An8
https://openai.com/index/introducing-swe-bench-verified/
https://aclanthology.org/2024.lrec-main.305
https://aclanthology.org/2024.lrec-main.305
https://github.com/paul-gauthier/aider
https://github.com/paul-gauthier/aider

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding chal-
lenge competence with APPS. In Thirty-fifth Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track (Round 2), 2021. URL https://openreview.net/
forum?id=sD93GOzH3i5.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. arXiv preprint arXiv:2406.00515, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

Qinyu Luo, Yining Ye, Shihao Liang, Zhong Zhang, Yujia Qin, Yaxi Lu, Yesai Wu, Xin Cong,
Yankai Lin, Yingli Zhang, Xiaoyin Che, Zhiyuan Liu, and Maosong Sun. Repoagent: An llm-
powered open-source framework for repository-level code documentation generation, 2024.

Zohar Manna and Richard J. Waldinger. Toward automatic program synthesis. Commun. ACM, 14
(3):151–165, mar 1971. ISSN 0001-0782. doi: 10.1145/362566.362568. URL https://doi.
org/10.1145/362566.362568.

Samuel Miserendino, Michele Wang, Tejal Patwardhan, and Johannes Heidecke. Swe-lancer: Can
frontier llms earn 1 million from real-world freelance software engineering? arXiv preprint
arXiv:2502.12115, 2025.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=iaYcJKpY2B_.

Stack Overflow. Stack overflow developer survey 2023. https://survey.stackoverflow.
co/2023/#most-popular-technologies-language-prof, 2023.

Marc Szafraniec, Baptiste Roziere, Hugh James Leather, Patrick Labatut, Francois Charton, and
Gabriel Synnaeve. Code translation with compiler representations. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=XomEU3eNeSQ.

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai Lin, Yinxu Pan, Yesai Wu, Hui Haotian,
Liu Weichuan, Zhiyuan Liu, and Maosong Sun. DebugBench: Evaluating debugging capability
of large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings
of the Association for Computational Linguistics ACL 2024, pp. 4173–4198, Bangkok, Thailand
and virtual meeting, August 2024. Association for Computational Linguistics. URL https:
//aclanthology.org/2024.findings-acl.247.

Mark Vero, Niels Mündler, Victor Chibotaru, Veselin Raychev, Maximilian Baader, Nikola Jo-
vanović, Jingxuan He, and Martin Vechev. Baxbench: Can llms generate correct and secure
backends? 2025.

Zhiruo Wang, Grace Cuenca, Shuyan Zhou, Frank F Xu, and Graham Neubig. Mconala: a bench-
mark for code generation from multiple natural languages. arXiv preprint arXiv:2203.08388,
2022.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying llm-
based software engineering agents, 2024. URL https://arxiv.org/abs/2407.01489.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
arXiv preprint arXiv:2405.15793, 2024a.

11

https://openreview.net/forum?id=sD93GOzH3i5
https://openreview.net/forum?id=sD93GOzH3i5
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.1145/362566.362568
https://doi.org/10.1145/362566.362568
https://openreview.net/forum?id=iaYcJKpY2B_
https://survey.stackoverflow.co/2023/#most-popular-technologies-language-prof
https://survey.stackoverflow.co/2023/#most-popular-technologies-language-prof
https://openreview.net/forum?id=XomEU3eNeSQ
https://openreview.net/forum?id=XomEU3eNeSQ
https://aclanthology.org/2024.findings-acl.247
https://aclanthology.org/2024.findings-acl.247
https://arxiv.org/abs/2407.01489

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

John Yang, Carlos E. Jimenez, Alex L. Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press,
Niklas Muennighoff, Gabriel Synnaeve, Karthik R. Narasimhan, Diyi Yang, Sida I. Wang, and
Ofir Press. Swe-bench multimodal: Do ai systems generalize to visual software domains?, 2024b.
URL https://arxiv.org/abs/2410.03859.

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu Kim, Bei Guan, Yongji Wang, Weizhu
Chen, and Jian-Guang Lou. Cert: continual pre-training on sketches for library-oriented code
generation. arXiv preprint arXiv:2206.06888, 2022.

Daoguang Zan, Zhirong Huang, Ailun Yu, Shaoxin Lin, Yifan Shi, Wei Liu, Dong Chen, Zongshuai
Qi, Hao Yu, Lei Yu, Dezhi Ran, Muhan Zeng, Bo Shen, Pan Bian, Guangtai Liang, Bei Guan,
Pengjie Huang, Tao Xie, Yongji Wang, and Qianxiang Wang. Swe-bench-java: A github issue
resolving benchmark for java, 2024. URL https://arxiv.org/abs/2408.14354.

Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen, Linhao Zhang, Shulin Xin, Lu Chen, Qi Liu,
Xiaojian Zhong, Aoyan Li, et al. Multi-swe-bench: A multilingual benchmark for issue resolving.
arXiv preprint arXiv:2504.02605, 2025.

12

https://arxiv.org/abs/2410.03859
https://arxiv.org/abs/2408.14354

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A CURATING SWE-POLYBENCH VERIFIED

Annotation. We enlisted expert annotators to score the instances from our datasets on different
metrics. Our annotators are software developers with experience in the programming language they
were tasked to annotate. They are asked the following questions per instance:

1. Issue Quality: I have sufficient information to implement a solution.

• Scores range from 0 to 3, with 0 being the lowest quality score

2. Code Quality: Which of the functionalities from the issue description are covered in the
code changes?

• Scores range from 0 to 3, with 0 being changes unrelated to the issue

3. Test Quality: How effectively do the tests evaluate solutions for the described issue?

• Scores range from 0 to 3, with 0 and 1 being prone to false positive/false negatives,
respectively. Score 2 means generally reliable test, 3 indicates highly accurate tests

Filtering. We applied the following filtering criteria to ensure high-quality instances:

• Issue Quality: All raters have assigned a score of at least 2 (i.e., “I have most of the
required information and can infer any minor missing details to proceed with implemen-
tation” (2) or “I have all the necessary details and context to create a meaningful solution
without any additional information” (3))

• Code Quality: All raters have assigned a score of exactly 2 (i.e., “All specified functional-
ity is implemented exactly as described”)

• Test Quality: All raters have assigned a score of at least 2 (i.e., “Generally Reliable: Tests
are effective in most cases but may occasionally produce false positives (passing incorrect
solutions) or false negatives (failing correct solutions), particularly with edge cases or less
common scenarios” (2) or “Highly Accurate: Tests consistently identify correct solutions
and reject incorrect ones” (3))

This filtering process resulted in 382 instances (69 in Java, 113 in Python, 100 in JS, 100 in TS)
from 20 repositories.

B RUNTIME SETUP.

In addition to the filtering mentioned in Section 3, we assess whether a PR can be included in
the dataset through execution. In the following we refer to “test patch” and “code patch” which
are defined as follows: The code patch is the git diff containing changes in the PR that do not
relate to the tests. We refer to this patch also as the “ground truth patch” as it is the ground truth code
implementation which solves the issue. The test patch is the git diff containing only changes
relating to test updates. Additionally, the “base commit” is the commit onto which the respective
PR was merged.

For each PR, to which we also refer to as task, a Docker file is defined to serve as the execution
context in which the code base is installed prior to applying any patches. Given that each program-
ming language has its own package manager, installation procedures, and version requirements, we
tailored the setup accordingly. For example, Java projects commonly use Maven for project man-
agement and build automation, while JavaScript and TypeScript projects typically rely on npm for
package and dependency management. For each repository and/or base commit, we manually con-
figured Docker files to set up the execution environment. Within this environment, we ran the test
suite both before and after applying the code patch. We then logged two sets of tests: those that
transitioned from a ‘failed’ state to a ‘passed’ state (which we refer to as F2P or fail-to-pass), and
those that passed both before and after the application of the code patch (which we call P2P or
pass-to-pass).

For a PR to be included in the dataset it must contain at least one F2P test. Lastly, we deem
PRs untestable and exclude them if the code patch introduces new files whose contents are tested

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

in the code patch. This is because created tests cannot reliably evaluate LLM-generated code if
functionally correct code was created in unexpected file or function names. To run execution-based
evaluation, all Docker files are published alongside our evaluation harness.

Tables 9 and 10 in the appendix provide an overview of the dataset statistics throughout the col-
lection and filtering process. The average repository size varies significantly across languages, with
TypeScript repositories being the largest on average (8946.0 files) and Python repositories the small-
est (1928.1 files). Note that these counts include binary and documentation files.

C PROMPTS

C.1 PROMPT FOR CLASSIFICATION OF TASKS

prompt = """
You will be provided with a problem description provided by a

↪→ user to a github repository, which is labeled as an issue
↪→ in github, along with the patch that solves the problem.
↪→ Your task is to try to classify the problem in to a
↪→ category from the list of categories provided below.

Problem description:
{{problem_statement}}
The gold patch is a diff file that addresses the changes made

↪→ to the files in the repository in order to solve the
↪→ issue. It contains the list of files modified or added or
↪→ removed and the code lines that have been added or
↪→ replaced or removed.

Following is the gold patch in a diff format that solves the
↪→ issue:

{{gold_patch}}

This is the list of classes we want to classify into, each with
↪→ description of which issue would the class as its label:

"Bug Fix": "the problem asks for addressing bugs or issues
↪→ reported",

"Feature": "the problem is about introducing new features or
↪→ enhancements",

"Testing": "the problem is about adding new testing methods for
↪→ given code or refactoring existing tests. These could be
↪→ unit or integration (e2e) tests",

"Refactoring": "the problem suggests to refactor existing code
↪→ without changing its external behavior. This could
↪→ include improving code readability, performance
↪→ optimizations, or restructuring code for better
↪→ maintainability",

"Security": "the problem asks to address security
↪→ vulnerabilities or concerns in the codebase",

You should output the selected class in the XML format
↪→ mentioned below. You should only classify into exactly
↪→ one class. An example output will look like:

‘‘‘
<category>Feature</category>
‘‘‘
You must not include any additional text other than the XML and

↪→ no additional XML tags as well. The value within XML
↪→ tags should be exactly the same as one of the categories:
↪→ Bug Fix, Feature, Refactoring.

"""

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C.2 PROMPTS FOR CLASSIFICATION OF PROBLEM STATEMENTS

prompt = """
Your job is to do the following three things:
1. You will classify the issues description according to its

↪→ level of detail.
2. You will classify the issues description according to

↪→ whether it is solvable given the provided information.
3. You will classify the issues description according to

↪→ whether it mentions precise code locations to be changed.

For tasks 1 to 3 I will also provide you with the correct
↪→ solution of the problem, termed ground truth.

Here is a detailed description of the tasks:

TASK 1
You will assess if a github issue description is sufficiently

↪→ detailed such that a software engineer can implemented
↪→ the solution for the issue after inspecting the code base
↪→ .

You will have access to the issue description as well as a
↪→ ground truth code patch, that is the desired solution.
↪→ You will not have access to the code base itself.

You will provide a brief explanation for your decision and then
↪→ provide a label, ‘A‘, ‘B‘, ‘C‘ or ‘D‘ in the XML tags.

Here are the different lables that you will use:
‘A‘ contains enough information in natural language to solve

↪→ the issue
‘B‘ contains a reproducible failure example
‘C‘ contains a partially reproducible example
‘D‘ does not contain enough information to solve the issue

Here is the format of the output:

<explanation_description>YOUR_EXPLANATION</
↪→ explanation_description>

<label_description>YOUR_LABEL</label_description>

TASK 2

You will help me evaluating the quality of a github issues
↪→ description together with a ground truth patch that
↪→ solves the described problem.

In particular, your tasks is to check whether the solution or
↪→ steps to solve the problem are already provided in the
↪→ issue description.

You will have access to the issue description as well as a
↪→ ground truth code patch, that is the desired solution.
↪→ You will not have access to the code base itself.

You will provide a brief explanation for your decision and then
↪→ provide a label, ‘A‘, ‘B‘, ‘C‘, ‘D‘ or ‘E‘ in the XML
↪→ tags.

Here are the different lables that you will use:
‘A‘ no solution or steps provided

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

‘B‘ partial solution provided (e.g., some steps in natural
↪→ language)

‘C‘ complete solution provided (e.g., complete steps in natural
↪→ language)

‘D‘ exact patch provided
‘E‘ misleading solution or steps

Here is the format of the output:

<explanation_solution>YOUR_EXPLANATION</explanation_solution>
<label_solution>YOUR_LABEL</label_solution>

TASK 3

You will help me evaluating the quality of a github issues
↪→ description together with a ground truth patch that
↪→ solves the described problem.

In particular, your tasks is to check whether the issue
↪→ description contains information on the issue location, i
↪→ .e., which part of the code

needs to modified or fixed to address the issue.

You will have access to the issue description as well as a
↪→ ground truth code patch, that is the desired solution.

You will not have access to the code base itself.

You will provide a brief explanation for your decision and then
↪→ provide a label, ‘A‘, ‘B‘, ‘C‘, ‘D‘

in XML tags. You have to assign exactly one label per issue
↪→ description.

Here are the different lables that you will use:
‘A‘ exact locations in natural language provided
‘B‘ exact locations provided in failure stack traces
‘C‘ related keywords in the issue description are provided that

↪→ can be used to search for the location
‘D‘ no location provided.

Here is the format of the output:

<explanation_location>YOUR_EXPLANATION</explanation_location>
<label_location>YOUR_LABEL</label_location>
"""

D DETAILS CST RETRIEVAL METRICS

For node-level retrieval, we identify the deepest node of the concrete syntax tree (CST) accompany-
ing a change. Let a CST be defined by the tuple (V, E ,L, r, λ, σ), where V is the set of all vertices,
E ⊆ V ×V the set of directed edges, L a finite set of node labels (e.g., class, function), r ∈ V
the root node (e.g., a python module), and λ a map λ : V → L assigning a label to a node. Fur-
thermore, let a line span be defined as an interval S := [s, e] where s, e ∈ N+ and s < e. Lastly,
σ : V → S is a map assigning a line span to a node. Since the line span of a higher-level node
encompasses the spans of their descendants (e.g., a function’s span lies in the interval of its parent’s
class’s span), we want to identify the deepest node that is affected by a change. Formally, let c ∈ S
be the line span of a change on the code base. All nodes affected by a given change are defined as
the set of nodes overlapping with the change (they have a non-empty overlap):

affected(c,CST) := {v ∈ V|c ∩ σ(v) ̸= ∅}.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The deepest node affected by change c can then defined as

deepestNode(c,CST) := v ∈ affected(c,CST)|∄u ∈ affected(c,CST) : σ(u) ⊂ σ(v).

In other words, the deepest node is the one among all affected nodes that does not contain another
affected node.

To compute node-level retrieval metrics, we obtain N i as the set of deepest nodes modified in the
ground truth patch of task i, and N̂ i as the set of deepest nodes affected by the predicted code
changes for the task. Note, that for simplicity, we omitted indexing CST and changes with a file
name. Naturally, we assume that the CST was constructed for the file in which changes were made.

E FURTHER EXPERIMENTAL DETAILS

E.1 TECHNICAL CHALLENGES IN MAKING CODING AGENTS MULTI-LINGUAL

Aider During its execution pipeline, Aider (v0.75.2) includes a validation step that runs preex-
isting tests against the model-generated patch to ensure it doesn’t introduce regressions. This step
requires two key components: access to the test execution command and a parser to interpret test re-
sults. In the original implementation, these components are specifically tailored for Python projects,
utilizing pytest as the testing framework. However, adapting this process for SWE-PolyBench
presents significant challenges. First, it would require maintaining a comprehensive database of test
execution commands for each instance. Second, we would need to develop robust log parsers ca-
pable of interpreting test results across diverse testing frameworks. Given these complexities, we
opted to exclude this validation step in Aider-PB.

Agentless The original Agentless (v1.5.0) implementation employs Python-specific tools for its
fault localization process, primarily using the ast python module to identify files, functions, and
classes requiring modifications, as well as for linting. This Python-centric approach, however, lim-
its its applicability to other programming languages. Similarly, its bug reproduction mechanism
relies on generating and executing Python scripts, which is not generalizable across different lan-
guages. Furthermore, Agentless encounters the same regression testing limitations as Aider. In
our adaptation, Agentless-PB, we address these limitations by incorporating tree-sitter
for parsing and extracting code structures across JavaScript, TypeScript, and Java. We also imple-
ment language-specific execution commands for bug reproduction scripts. As with Aider-PB, we
exclude the regression testing step from the pipeline.

SWE-agent The original SWE-agent (v1.0) implementation relies on a containerized environment
using SWE-ReX for interacting with repository contents. While SWE-agent supports custom Docker
images, our adaptation process revealed significant compatibility challenges. It imposes specific
requirements on pre-installed packages, including Python3.11, SWE-ReX, and pipx, within the
provided Docker images. In our adaptation, SWE-Agent-PB, we initially addressed these issues
by directly installing the missing packages in our Docker images, which resolved problems for
a subset of instances. For the remaining cases, we explored an alternative approach: building a
new Docker image on top of our provided image with a standalone Python installation. This method
successfully isolates the required packages from the base image for many instances. However, it fails
for 129 instances due to version incompatibilities between system libraries. For example, the new
Docker image requires a specific glibc library version while some of our images contained older
versions. For these 129 instances, we used the Javascript base image as generic image, which has
a comprehensive list of pre-installed packages and also meets SWE-agent’s package requirements.
We then provided it as a custom docker image to run SWE-agent. Among the 129 instances, we
obtained predictions for 111 instances. We treated the remaining 18 instances as empty predictions
in SWE-Agent-PB when reporting performance metrics.

E.2 TASK CLASSIFICATIONS AND PASS RATES

Following the categories in Xia et al. (2024) we use the categories in Table 7 for our classification,
roughly ordered with respect to their level of information content. Fig. 4 shows the distribution of
task categories on the sub-sampled SWE-PolyBench500 dataset.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 7: Informativeness of the problem statements

Category Description of the categories
Descriptiveness of the problem statement
A Contains enough information in natural language to solve the issue
B Contains a reproducible failure example
C Contains a partially reproducible example
D Does not contain enough information to solve the issue
Solution content already present in the problem statement
A No solution or steps provided
B Partial solution provided (e.g., some steps in natural language)
C Complete solution provided (e.g., complete steps in natural language)
D Exact patch provided
E Misleading solution or steps provided
Location information on the required changes
A Exact locations in natural language provided
B Exact locations provided in failure stack traces
C Related keywords provided that can be used to search for the location
D No location provided

Sufficient NL
Reproducible

Partial None

Description

0

20

40

60

80

None
Partial

Complete Exact
Misleading

Solution
Exact NL

Exact trace
Keywords None

Location

C
ou

nt

Java JavaScript Python TypeScript

Figure 4: Classification of SWE-PolyBench Verified issue descriptions with respect to their descrip-
tiveness (left plot), hints a the solution (middle plot) and information on the localization of the issue
(right plot

In Fig. 5 we highlight how the level of informativeness of the problem statements impact the pass
rates across agents. Overall, more informative problem statements, be it with respect to location,
hints at the solution or level of descriptiveness, result in higher pass rates. This confirms the intuition
that less details in the problem statement make it more difficult for a task being solved.

E.3 RESULTS ON SWE-POLYBENCH VERIFIED

Fig. 6 presents the coding agents’ performance across different programming languages and code
change complexities. The left radar chart shows the pass rates for Java, JavaScript, TypeScript,
Python, and overall performance. The right chart illustrates the agents’ effectiveness in handling
various types of code modifications, ranging from changes confined to a single class or function to
more complex scenarios involving multiple structural elements.

F COLLECTED REPOSITORIES

Tables 9 and 10 shows the repositories we collected and provides some statistics on the data col-
lected.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Sufficient NL
Reproducible

Partial None

Description

0%

10%

20%

30%

40%

50%

60%

None
Partial

Complete Exact
Misleading

Solution

Exact NL
Exact trace

Keywords None

Location

P
as

s
ra

te

Agentless-PB (Sonnet 3.5) Aider-PB (Sonnet 3.5) SWE-agent-PB (Sonnet 3.5)

(a) Pass rates by task classification on SWE-PolyBench.

Sufficient NL
Reproducible

Partial None

Description

0%

10%

20%

30%

40%

50%

60%

None
Partial

Complete Exact
Misleading

Solution

Exact NL
Exact trace

Keywords None

Location

P
as

s
ra

te

Agentless-PB (Sonnet 3.5) Aider-PB (Sonnet 3.5) SWE-agent-PB (Sonnet 3.5)

(b) Pass rates by task classification on SWE-PolyBench Verified.

Figure 5: Pass rates of instances with respect to their descriptiveness (left plot), hints a the solution
(middle plot) and information on the localization of the issue (right plot).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

All

Java

JavaScript

TypeScript

Python

0%
5%

11%
17%

23%

All

Single Func.

Func. only

Class only

Single Class

No nodes

Mixed

0%
17%

35%
52%

70%

Aider-PB (Sonnet 3.5) Agentless-PB (Sonnet 3.5) SWE-agent-PB (Sonnet 3.5)

Figure 6: SWE-PolyBench Verified pass rates of coding agents across programming languages (left)
and across subsets of different complexities based on syntax tree nodes. The right plot categorizes
changes by type (class or function) and scope (single or multiple), with ”No nodes” indicating no
class or function changes and ”Mixed” requiring both.

Table 8: Pass rates of open source agents on SWE-PolyBench by complexity in terms of CST node
changes.

Node Change Category

Agent Base LLM None
(n = 263)

Single Func.
(n = 848)

Func. Only
(n = 1431)

Single Class
(25)

Class Only
(n = 30)

Mixed
(n = 386)

Agentless-PB Sonnet 3.5 3.8±1.20 11.2±1.08 8.7±0.74 32.0±9.42 26.7±8.10 5.7±1.18

SWE-Agent-PB Sonnet 3.5 14.4±2.23 11.3±1.09 9.6±0.79 52.0±9.96 46.7±9.12 6.5±1.26

Aider-PB

Sonnet 3.5 19.8±2.48 17.0±1.29 13.8±0.94 40.0±9.78 36.7±8.93 9.3±1.48

Deepseek R1 17.5±2.36 13.7±1.18 10.8±0.83 40.0±9.78 36.7±8.93 8.3±1.41

Haiku 16.3±2.30 12.3±1.12 9.3±0.77 24.0±8.58 23.3±7.80 6.5±1.26

Mistral-Large 11.8±2.02 7.1±0.88 5.4±0.58 20.0±8.03 20.0±7.41 2.6±0.82

Llama 3.3 70B 11.4±1.98 7.4±0.90 5.2±0.58 32.0±9.42 26.7±8.10 3.6±0.96

DeepSeek-R1-
Distill-Llama-70B 7.6±1.63 7.1±0.88 5.0±0.57 28.0±9.00 26.7±8.10 3.1±0.89

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Language Repository #PRs collected License

Java

spring-projects/spring-boot 6286 Apache 2.0
PhilJay/MPAndroidChart 378 Apache 2.0
spring-projects/spring-framework 4792 Apache 2.0
google/guava 2268 Apache 2.0
NationalSecurityAgency/ghidra 1044 Apache 2.0
ReactiveX/RxJava 3906 Apache 2.0
apache/dubbo 7165 Apache 2.0
skylot/jadx 536 Apache 2.0
apolloconfig/apollo 1676 Apache 2.0
netty/netty 7524 Apache 2.0
Netflix/Hystrix 760 Apache 2.0
google/gson 933 Apache 2.0
libgdx/libgdx 3576 Apache 2.0
apache/rocketmq 3794 Apache 2.0
thingsboard/thingsboard 5378 Apache 2.0
JetBrains/intellij-community 2518 Apache 2.0
trinodb/trino 16840 Apache 2.0

JavaScript

vercel/next.js 22087 MIT
nodejs/node 33429 MIT
axios/axios 1482 MIT
mrdoob/three.js 16172 MIT
facebook/react 15393 MIT
twbs/bootstrap 15096 MIT
sveltejs/svelte 5324 MIT
atom/atom 5249 MIT
angular/angular.js 7928 MIT
lodash/lodash 1383 MIT
prettier/prettier 9613 MIT
serverless/serverless 5557 MIT

TypeScript

freeCodeCamp/freeCodeCamp 36730 BSD 3 clause
microsoft/vscode 30660 MIT
angular/angular 27565 MIT
mui/material-ui 22533 MIT
puppeteer/puppeteer 5831 Apache 2.0
storybookjs/storybook 12461 MIT
tailwindlabs/tailwindcss 2655 MIT
gothinkster/realworld 795 MIT
supabase/supabase 10743 Apache 2.0
coder/code-server 1863 MIT

Python

Significant-Gravitas/AutoGPT 3939 MIT
huggingface/transformers 16135 Apache 2.0
langchain-ai/langchain 13358 MIT
yt-dlp/yt-dlp 2701 Unlicense
tensorflow/models 3632 Apache 2.0
tiangolo/fastapi 3056 MIT
keras-team/keras 7310 Apache 2.0
localstack/localstack 5641 Apache 2.0
geekan/MetaGPT 773 MIT
3b1b/manim 782 MIT

Table 9: List of repositories and total number of PRs collected for four languages.

Table 10: Contrasting numbers of processed pull requests at the beginning of data collection and at
the end as well as average repository size measured in number of files.

Language Total #repos
collected

Total #PRs
collected

Total #PRs
w/ tests

Final #
samples

Final #
repos

Avg. repository
size (files)

Java 17 69 374 1433 165 6 2420.6
JavaScript 12 138 713 3136 1078 4 3706.5

Python 10 57 327 1012 199 6 1928.1
TypeScript 10 151 836 3042 729 5 8946.0

21

	Introduction
	Related work
	Building SWE-PolyBench
	SWE-PolyBench characteristics
	SWE-PolyBench_Verified
	Contrasting SWE-PolyBench with SWE-Bench

	Metrics
	Evaluating open-source coding agents
	Results

	Conclusions and Limitations
	Reproducibility statement
	Curating SWE-PolyBench_Verified
	Runtime setup.
	Prompts
	Prompt for classification of tasks
	Prompts for classification of problem statements

	Details CST retrieval metrics
	Further experimental details
	Technical Challenges in Making Coding Agents Multi-Lingual
	Task classifications and pass rates
	Results on SWE-PolyBench_Verified

	Collected Repositories

