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Abstract

Input-gradient-based feature attribution methods, such as Vanilla Gradient, Integrated Gra-
dients, and SmoothGrad, are widely used to explain image classifiers by generating saliency
maps. However, these methods struggle to provide explanations that are both visually clear
and quantitatively robust. Key challenges include ensuring that explanations are sparse,
stable, and faithfully reflect the model’s decision-making. Adversarial training, known for
enhancing model robustness, have been shown to produce sparser explanations with these
methods; however, this sparsity often comes at the cost of stability. In this work, we inves-
tigate the trade-off between stability and sparsity in saliency maps and propose the use of a
smoothing layer during adversarial training. Through extensive experiments and evaluation,
we demonstrate this smoothing technique improves the stability and faithfulness of saliency
maps without sacrificing sparsity. Furthermore, a qualitative user study reveals that human
evaluators tend to distrust explanations that are overly noisy or excessively sparse—issues
commonly associated with explanations in naturally and adversarially trained models, re-
spectively and prefer explanations produced by our proposed approach. Our findings offer a
promising direction for generating reliable explanations with adversarially trained models,
striking a balance between clarity and usability.

1 Introduction

Input gradient-based explanation methods highlight the features most influential to a model’s decision by
calculating the gradient of the model’s output with respect to its input, visualized as saliency maps in
images. One of the earliest approaches, Vanilla Gradient (VG) (Simonyan et al., 2014), computes gradients
across input pixels, ranking features by their gradient magnitude. While prior studies have shown that
input-gradients can capture relevant information regarding a model output (Samek et al., 2016), VG suffers
from noisy saliency map. Hence, various methods like Integrated Gradient (IG) (Sundararajan et al., 2017),
and SmoothGrad (SG) (Smilkov et al., 2017) have been proposed that modifies the input-gradient approach
to reduce saliency map noise and improve the visual quality of the explanations.

However, quality explanations require more than visual appeal. Explanations should be comprehensible to
users and satisfy quantitative measures to ensure their practical utility. Key properties include sparsity,
which ensures explanations focus on the most relevant features by discarding irrelevant ones (Chalasani
et al., 2020); stability, which guarantees consistent explanations across small input perturbations (Alvarez-
Melis & Jaakkola, 2018); and faithfulness, ensuring that the explanations accurately reflect the model’s
actual decision-making process (Rong et al., 2022). These attributes are essential for explanations to be
trustworthy and actionable in real-world applications.

In this work, we take a complementary approach by studying the quality of saliency maps in naturally and
adversarially trained models and demonstrate a way to enhance above-mentioned properties of explanations
in input-gradient based methods. We consider three representative input-gradient based methods (Vanilla
Gradient (VG), Integrated Gradient (IG), and SmoothGrad (SG)) and first demonstrate that the stability
of their explanations is closely tied to the model’s sensitivity to input perturbations. Adversarial training
(Goodfellow et al., 2015), a technique commonly used to improve model robustness, results in explanations
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that are sparser, aligning with previous studies (Chalasani et al., 2020; Etmann et al., 2019). However, we
observe that this increased sparsity comes at the cost of reduced stability in explanations. To mitigate this
trade-off, we introduce a smoothing layer applied during adversarial training. Our extensive experiments with
FMNIST, CIFAR-10 and ImageNette demonstrate that including feature-map smoothing using local filters
like mean, median or Gaussian during adversarial training preserves stability and faithfulness of explanations
without sacrificing on sparsity, resulting in explanations that are both clearer and more reliable.

Test image Naturally trained Adversarially trained Feature map smoothed

Figure 1: Saliency maps examples us-
ing Vanilla Gradient for different mod-
els that correctly classify the test images.
Natural models produce noisy saliency
maps (2nd column), adversarial models
produce sparser maps (3rd column), and
feature-map smoothed models smoothens
the sparse maps (4th column), improving
comprehensibility.

In addition, we conduct a qualitative study to assess the com-
prehensibility of these explanations in human subjects. We in-
terview 65 graduate students specializing in computer vision to
assess their understanding of different types of explanations,
which varies in terms of sparsity and smoothness. We use
the Hoffman satisfaction scale as our assessment tool (Hoffman
et al., 2023). Our findings reveal that explanations of input-
gradient based attribution methods in naturally trained models
are perceived as noisy and untrustworthy, while highly sparse
explanations in adversarially trained models are also problem-
atic due to the loss of information for enhancing sparsity. Ex-
planations generated by input-gradient attribution methods for
feature-map smoothed models are rated as more comprehensi-
ble, striking a balance between sparsity and clarity.

Figure 1 shows examples of saliency maps for different mod-
els on FMNIST, CIFAR-10, and ImageNette test images using
Vanilla Gradient. We observe that saliency maps (a) for nat-
urally trained models (second column) are noisy, and difficult
to comprehend, (b) for adversarially trained models (third col-
umn) are sparse and align with the contours of the input image,
but overly sparse saliency maps can lead to incomplete model
understanding, and (c) for adversarially trained models with
feature-map smoothing (fourth column) shows a reduction in
sparsity to strike a balance between clarity and comprehensive-
ness. The smoothing helps reduce noise in the saliency map,
resulting in explanations that are more continuous and coherent, while still maintaining a focus on key re-
gions. Visualizations for Integrated Gradient, SmoothGrad and additional visualizations for Vanilla Gradient
are provided in the Appendix J.

2 Related work

As highlighted by Ilyas et al. (2019), explanations that are meaningful and faithful to the model’s decision-
making process cannot be pursued independently from the training of the model, a principle central to our
approach. Below we discuss such related works.

Improving saliency maps by training modification: Previous studies have proposed several modifi-
cations to model training to improve saliency maps. For instance, Kim et al. (2019) introduce layer-wise
thresholding during backpropagation, while Dombrowski et al. (2019) suggest soft-plus activations as an
alternative to ReLU for refining saliency maps. Wicker et al. (2023) develop a framework for certifying
the robustness of explanations through training constraints. Meanwhile, Chenyang & Chan (2023) propose
training object detectors by ensuring explanation consistency within same object and distinctions between
different objects. In contrast, we do not make such modifications, and enhance the quality of explanations
by applying simple smoothing filters during adversarial training.

Study of saliency maps in adversarially trained models: Some previous works have also explored
saliency map quality in robust models (Etmann et al., 2019; Zhang & Zhu, 2019; Chalasani et al., 2020;
Mangla et al., 2020; Shah et al., 2021), typically evaluating sparsity, or visual quality. Chalasani et al. (2020)
show that adversarial training with L∞ attacks leads to sparse saliency maps, and theoretically demonstrate
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that training a 1-layer network by encouraging stability of explanations is equivalent to adversarial training,
but do not present results on multi-layer networks. Etmann et al. (2019) explain the interpretability of
robust models by demonstrating alignment between image and saliency maps, which works well for smaller
datasets like MNIST but does not scale to larger datasets like ImageNet. Zhang & Zhu (2019) argue
that adversarially trained models produce shape-biased representations, resulting in sparser saliency maps.
In contrast, we approach the quality of saliency maps via the stability of the input-gradient explanation
methods and establish a theoretical connection with model sensitivity, and propose adversarial training with
feature-map smoothing as the mitigation of sparsity-stability tradeoff.

3 Method

Preliminaries: Consider a differentiable function F (x), which represents a deep neural network. For
simplicity, let us examine a single-layer model with the form F (x) = H(⟨w, x⟩), where H is a differentiable
scalar-valued activation function (e.g., sigmoid), ⟨w, x⟩ is the dot product between the weight vector w and
input x ∈ Rd. The Vanilla Gradient (VG) method (Simonyan et al., 2014) measures the sensitivity of the
model output F (x) with respect to each feature of the input x. This is given by computing the gradient of
the output F (x) with respect to the input x. The Integrated Gradients (IG) method (Sundararajan et al.,
2017) averages the gradients along a straight-line path from a baseline input x′ (often a zero vector) to
the actual input x. SmoothGrad (SG) (Smilkov et al., 2017) improves on any gradient-based explanations
like VG or IG by adding random noise to the input x multiple times, calculating the explanations for each
noisy version, and then averaging the results. While these methods are widely used, their stability—how
consistent the explanations remain under small perturbations—is crucial for reliability. We next establish a
formal connection between model sensitivity and explanation stability.

3.1 Relationship between explanation stability and model sensitivity

We first compute explanation using VG given by:

V G(x) = ∂F (x)
∂x = ∂H(⟨w, x⟩)

∂x = H ′(⟨w, x⟩)w (1)

Here, H ′(⟨w, x⟩) is the gradient of activation function H with respect to the ⟨w, x⟩. For example, for a
sigmoid activation function, H ′(z) = H(z)(1 − H(z)) where z = ⟨w, x⟩. This gives the VG attribution as:

V GF (x) = H(⟨w, x⟩)(1 − H(⟨w, x⟩))w = F (x)(1 − F (x))w (2)

Similarly, the IG feature attribution score for feature i of input image x ∈ Rd with baseline u for model F
is given by Eqn. 3:

IGF
i (x, u) = (xi − ui).

∫ 1

α=0
∂iF (u + α(x − u))∂α (3)

Using a closed-form expression from Chalasani et al. (2020), IG can be rewritten as Eqn. 4:

IGF (x, u) = [F (x) − F (u)] (x − u) ⊙ w
⟨x − u, w⟩

(4)

For SG, we add Gaussian noise n ∼ N (0, σ2) to the input x and compute the input-gradient for multiple
noisy samples xk = x + nk for k = 1, . . . , N , where N is the number of noise samples. SG explanation, when
aggregating VG, is given by:

SG(x) = 1
N

N∑
k=1

∂F (xk)
∂xk

= 1
N

N∑
k=1

∂H(⟨w, xk⟩)
∂xk

= 1
N

N∑
k=1

H ′(⟨w, xk⟩).w = 1
N

N∑
k=1

F (xk)(1 − F (xk))w (5)
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Now consider x′ ∈ Nx is a noisy version of input image x where Nx indicates a neighborhood of inputs
x where the model prediction is locally consistent. The stability of explanations-VG, IG and SG-can be
computed by measuring the norm of the difference between the original explanation and explanation for the
noisy image. Using Eqns. 1, 4 and 5, we obtain,

∆V G = ||V GF (x′) − V GF (x)||1 ≤ (F (x′) − F (x))).w (6)

∆IG = ||IGF (x′, u) − IGF (x, u)||1 ≈ ||IGF (x′, x)||1 ≈
∣∣∣∣∣∣[F (x′) − F (x)] (x

′ − x) ⊙ w
⟨x′ − x, w⟩

∣∣∣∣∣∣
1

(7)

∆SG =
N∑

k=1

||SGF (x′) − SGF (x)||1 ≤ 1
N

(F (x′) − F (x))).w (8)

Since w is fixed for a given model, the bounds in Eqns 6, 7 and 8 indicate that the stability of explanations
is influenced by the model sensitivity F (x′) − F (x), setting up a basis for using methods that enhance
explanation stability by reducing model sensitivity. However, these bounds do not serve a strict proportional
relationship between model sensitivity and attribution stability, and should not be interpreted as such.
Rather, the bounds serve as approximate indicators, highlighting that attribution stability is influenced by
model sensitivity. For a detailed derivation, see Appendix H, and for conditions affecting the tightness of
these bounds, refer to Appendix F.

3.2 Adversarial training and impact on saliency map stability

Building on the observations from Section 3.1, various regularization strategies can enhance the quality
and stability of saliency maps. One such approach is natural training-based regularization, which involves
incorporating explicit smoothness constraints on the model’s gradients or feature activations. A fundamental
technique in this category is input noise regularization, where Gaussian noise is injected into training samples
during optimization (Bishop, 1995). This method has been shown to produce smoother and more reliable
saliency maps (Smilkov et al., 2017).

To explicitly address the issue of model sensitivity to worst-case perturbations, we consider adversarial
training (Goodfellow et al., 2015) as a method for improving robustness. Adversarial training modifies the
loss function to minimize sensitivity to input perturbations by solving E(x,y)∼D

[
max∥δ∥∞≤ϵ L(x + δ, y; w)

]
where δ is a small, worst-case perturbation and ϵ is the perturbation bound. The inner maximization finds
the most adversarial perturbation within the constraint ||δ||∞ ≤ ϵ, while the outer minimization ensures
that the model learns to be invariant to such perturbations.

In Figure 3, given a test image from the ImageNette dataset, we visualize feature maps derived from (a)
a naturally trained model and (b) an adversarially trained model. All models use the identical ResNet18
architecture (He et al., 2016) and training settings. Feature maps are extracted from the first residual
block (which consists of 128 channels), and three representative channels are shown for comparison. A key
observation is that adversarial training shrinks many feature activations, leading to more selective attention
in learned representations. This behavior directly affects input-gradient-based saliency maps, making them
sparser in adversarially trained models compared to naturally trained ones (see Figure 3(d)). This effect is
also explored by Etmann et al. (2019); Chalasani et al. (2020).

However, adversarial training does not necessarily improve explanation stability in deep networks. As we
demonstrate in Sections 4.1 and 4.3, while adversarial training enforces sparsity in saliency maps, it does not
guarantee stability and comprehensibility of saliency maps. This leads to a trade-off: sparser explanations
may enhance readability but can also reduce attribution stability. Our findings suggest that while adversarial
training enhances sparsity of saliency maps, additional mechanisms (such as feature-map smoothing) may
be required to preserve the stability of gradient-based explanations.
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Figure 3: Plot of feature maps (channel=7, 21, 127) after first residual block for a test
image on different ResNet18 ImageNette models: (a) a naturally trained model, (b)
an adversarially-trained model, (c) an adversarially-trained model with feature-map
smoothing (mean filter) (d) corresponding saliency maps using Vanilla Gradient.

3.3 Feature map smoothing for comprehensible explanations

To address the limitations of adversarial training on saliency map stability and comprehensibility, we in-
corporate feature map smoothing (Xie et al., 2019). By smoothing out the sharp reductions in feature
activations, these smoothing techniques help stabilize input-gradient-based explanations, producing saliency
maps that are both sparse and stable, when combined with adversarial training.

Feature map smoothing can also be considered as a regularization technique that regularizes intermediate
feature activations, preventing sudden activation changes that negatively impact interpretability. This is
particularly relevant for gradient-based explanations, as smoother activations lead to more structured and
comprehensible saliency maps. Unlike direct input perturbation methods such as SmoothGrad (Smilkov
et al., 2017), which focus on reducing variance in saliency maps by averaging gradients across noisy sam-
ples, feature map smoothing operates at the representation level by enforcing local consistency in feature
activations.

In our study, we explore three local-smoothing filters (mean, median, and Gaussian) and two non-local
smoothing filters (non-local Gaussian and embedded Gaussian) (Wang et al., 2018), leveraging their com-
plementary properties in stabilizing feature maps. Local smoothing filters reduce noise by averaging feature
activations in a small spatial neighborhood. For example, a mean filter replaces each feature with the aver-
age of nearby features within a defined kernel. A median filter, unlike a mean filter, computes the median
value within a small sliding window over the feature map. A Gaussian filter applies a smoothing effect
to feature maps by convolving them with a Gaussian kernel, effectively reducing Gaussian noise. Unlike
local-smoothing filters, non-local filters consider long-range dependencies, preserving important structural
patterns in activations. Given a feature map x, such filters calculate a weighted average of features across all
spatial positions within the set L, given by mi = 1

C(x)
∑

∀j∈L f(xi, xj).xj where f(xi, xj) is feature depen-
dent weighting function and C(x) is a normalization function. Non-local gaussian filter formulates the feature
dependent function as the dot-product similarity between the feature maps f(xi, xj) = e(xT

i xj). Embedded
Gaussian computes similarity in embedding space by computing embedded versions of the feature map x,
given by f(xi, xj) = e(θ(xi)T η(xj)) where, θ(xi) = Wθxi and η(xj) = Wϕxj are the embeddings of feature
maps, obtained after 1×1 convolution. See Appendix B for more discussion on each filter.

Figure 2 illustrates a feature-map smoothing block, which can be applied to any feature map within a model.
This block consists of a smoothing operation, followed by a 1x1 convolutional layer. The feature map is then
merged with the original input via a residual connection, ensuring that the model retains essential feature
information while benefiting from the smoothing operation. The introduction of this smoothing block has
minimal impact on model accuracy (see Appendix C), yet it significantly alters the behavior of gradient-based
explanations, leading to more stable and interpretable saliency maps.

As shown in Figure 3(c), applying feature map smoothing to an adversarially trained model introduces a
noticeable smoothing effect, which varies depending on the type of filter used. For example, mean filtering
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reduces rapid fluctuations in feature map values by averaging neighboring activations. While adversarial
training alone (Figure 3(b)) shrinks feature activations leading to discontinuities in the learned representa-
tions, the addition of smoothing alleviates this issue by preserving key feature activations while eliminating
high-frequency artifacts typically seen in naturally trained models. This results in smoother and more in-
terpretable saliency maps, as illustrated in Figure 3(d). Furthermore, feature map smoothing aligns with
the theoretical stability bounds derived in Section 3.1. Since smoothing reduces the norm of feature vari-
ations—specifically, ∥F (x′) − F (x)∥—this leads to tighter stability bounds for Vanilla Gradients (VG),
Integrated Gradients (IG), and SmoothGrad (SG).

In Appendix G, we also analyze the effect of the convolution operation on receptive field expansion within the
smoothing block. We modify the feature smoothing block so that it performs only a convolution (identity or
randomly initialized) operation. This modified setup ensures that there is only an expansion of the receptive
field without filtering operations and it can provide a baseline study to analyze the effect of receptive field
expansion on its own. Our experiments show that feature map smoothing provides a competitive advantage,
in terms of sparsity and stability of saliency maps. By effectively balancing robustness, interpretability, and
stability, adversarial training with feature-map smoothing enhances the utility of saliency maps in real-world
applications.

4 Experiment and Analysis

4.1 Experiment Framework

Setup: We evaluate our approach on three datasets: FMNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky
et al., 2009), and ImageNette (Howard, 2020), training several model variants for each. The variants include:
1) naturally trained (N), 2) adversarially trained (A), 3) adversarial training with mean-filter smoothing
(M1), 4) adversarial training with median-filter smoothing (M2), 5) adversarial training with Gaussian-filter
smoothing (G), 6) adversarial training with embedded filter smoothing (E), and 7) adversarial training with
non-local Gaussian smoothing (NG). Following the setup from Chalasani et al. (2020), we use LeNet (LeCun
et al., 1998) for FMNIST and Wide-ResNet (Zagoruyko & Komodakis, 2016) for CIFAR-10. We use ResNet-
18 He et al. (2016)for ImageNette. For adversarial training, we apply perturbations under the L∞ norm using
the PGD attack (Madry et al., 2018). The models are trained with ϵ = 0.1 for FMNIST and CIFAR-10, and
ϵ = 1/255 for ImageNette, as these values yielded the best performance across our evaluations. We achieved
optimal results by adding the smoothing block after the first convolutional or residual block. We discuss the
impact of altering the smoothing block’s position in Appendix D. Full details of our datasets and training
methodology are provided in Appendix A. We also discuss the effect of feature map smoothing on saliency
map quality for a different network architecture in Appendix E.

Evaluation Metrics: Given a saliency map from Vanilla Gradient (VG), Integrated Gradient (IG) and
SmoothGrad (SG) for each model and dataset, we compute its sparseness using Gini index (G) (Chalasani
et al., 2020), and its stability using relative input stability (RIS), relative output stability (ROS) and relative
representation stability (RRS) (Agarwal et al., 2022). We analyze faithfulness using ROAD analysis (Rong
et al., 2022) and saliency map similarity using structural similarity index (SSIM) (Adebayo et al., 2018). All
results are aggregated for 1000 randomly selected test images that the model accurately classifies across all
datasets. See Appendix I for detail discussion on metrics. Our code is available at https://anonymous.
4open.science/r/iclr2025xai/README.md.

4.2 Results and discussion

4.2.1 On the sparsity and stability of saliency maps

Similar to Chalasani et al. (2020), we compare the sparsity and stability improvement of saliency maps
with respect to the naturally trained model (N). Specifically, for a given training method (M), we compute
the following metrics that quantify the improvement in sparseness (dG), relative input stability (dRIS),
relative output stability (dROS), and relative representation stability (dRRS) of the explanation method
ϕ(.) ∈ {V G, IG, SG}
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dG[ϕ(x)] = GM [ϕ(x)] − GN [ϕ(x)]
dRIS[ϕ(x)] = RISM [ϕ(x)] − RISN [ϕ(x)]

dROS[ϕ(x)] = ROSM [ϕ(x)] − ROSN [ϕ(x)]
dRRS[ϕ(x)] = RRSM [ϕ(x)] − RRSN [ϕ(x)

Table 1: Sparsity-Stability evaluation of Vanilla Gradient (VG), Integrated Gradient (IG) and SmoothGrad
(SG) on the following FMNIST, CIFAR-10 and ImageNette models: naturally trained (N), adversarially
trained (A), adversarial training with mean-filter smoothing (M1), adversarial training with median-filter
smoothing (M2), adversarial training with Gaussian-filter smoothing (G), adversarial training with embedded
filter smoothing (E), and adversarial training with non-local Gaussian smoothing (NG). ↑ and ↓ indicate
that larger & smaller values are better respectively. Results show that increase in sparsity comes at the
expense of stability.

FMNIST CIFAR-10 ImageNette
A M1 M2 G E NG A M1 M2 G E NG A M1 M2 G E NG

VG

dG ↑ 0.198 0.198 0.171 0.183 0.188 0.219 0.188 0.185 0.181 0.185 0.189 0.190 0.050 0.018 0.036 0.063 0.117 0.107
dRIS ↓ 2.193 1.396 -1.025 1.168 -0.400 1.781 -0.458 -0.621 -0.676 -0.465 -0.503 -0.637 -0.056 -0.121 -0.016 -0.098 0.767 0.401
dROS ↓ 2.084 1.121 -1.222 0.739 -0.451 1.785 0.217 0.260 0.214 0.226 0.280 0.257 -0.362 -0.470 -0.297 -0.456 0.386 0.240
dRRS ↓ 2.489 1.600 -0.799 1.452 -0.126 2.202 0.445 0.453 0.433 0.457 0.438 0.467 0.241 -0.218 -0.096 -0.078 0.778 0.441

IG

dG ↑ 0.067 0.075 0.047 0.050 0.021 0.069 0.091 0.091 0.092 0.094 0.087 0.095 0.034 0.033 0.062 0.041 0.063 0.056
dRIS ↓ 2.016 2.679 -0.843 4.564 1.007 2.714 -1.056 -1.504 -1.862 -1.662 -1.499 -1.597 0.143 -0.0071 0.135 0.276 0.370 0.163
dROS ↓ 1.931 2.917 -0.698 4.681 2.103 2.526 0.228 0.350 -0.123 -0.090 0.593 0.041 -0.230 -0.532 -0.451 -0.376 -0.273 -0.038
dRRS ↓ 2.037 2.811 -0.741 5.030 1.622 2.676 1.050 0.219 0.163 0.410 0.258 0.243 -0.157 -0.121 -0.027 -0.224 0.135 -0.232

SG

dG ↑ 0.198 0.198 0.171 0.183 0.158 0.219 0.681 0.684 0.684 0.678 0.684 0.686 0.036 0.028 0.064 0.035 0.101 0.068
dRIS ↓ 0.945 0.799 -0.466 0.994 -0.282 2.015 -0.040 -0.034 -0.191 0.885 0.372 0.340 0.017 -0.148 0.719 0.045 0.272 0.030
dROS ↓ 5.593 3.418 -0.194 2.034 1.099 2.988 4.619 5.087 4.393 4.540 4.733 0.494 -0.576 -0.728 -0.589 -0.657 -0.331 -0.348
dRRS ↓ -1.360 0.028 -0.850 -0.694 -2.085 1.245 -2.561 -2.469 -2.693 -2.612 -2.440 -2.582 -0.274 -0.381 -0.216 -0.306 0.010 -0.234

As illustrated in Table 1, across all datasets-FMNIST, CIFAR-10 and ImageNette-all models consistently
achieve positive dG values for all three explanation methods (VG, IG, SG), indicating that compared to
naturally trained models, these explanation methods produce sparser saliency maps in adversarially trained
models and adversarially trained models with feature map smoothing. Notably, the highest sparsity gains in
explanations are observed in adversarially trained models utilizing non-local smoothing filters. On FMNIST
and CIFAR-10, the NG models (adversarially trained with non-local gaussian) attain the highest sparsity
across all explanation methods, and on ImageNette dataset, model E (adversarially trained with embedded
gaussian) achieves the highest sparsity for Vanilla Gradient, Integrated Gradient and SmoothGrad. However,
this increase in sparsity comes at the expense of stability, as most robust models exhibit reduced stability
in their explanations, suggesting an inverse relationship between the sparsity and stability of saliency maps.
For example: adversarially trained models with non-local gaussian filter (NG), while achieving high spar-
sity for explanations, show significant drops in dRIS, dROS, and dRRS, indicating that their explanations
may be more sensitive to input perturbations or variations in model representations. Notably, models M1
(adversarially trained with mean filtering) and M2 (adversarially trained with median filtering) provide a
promising middle-ground. On FMNIST and CIFAR-10, explanations consistently achieves the highest sta-
bility in adversarially trained models with median filtering (M2) across all methods, while still maintaining
sparsity gain. On ImageNette, adversarially trained model with mean filtering (M1) offers the best stability
across explanation methods. These results suggest that the use of local smoothing filters like mean and
median filters during adversarial training can preserve the stability of saliency maps while maintaining a
degree of sparsity.

4.2.2 On the faithfulness of explanation

We evaluate faithfulness of explanations using ROAD (Rong et al., 2022) and its area under curve (dROAD).
We also include a random baseline (randomly sampled saliency map) for comparison of explanation faith-
fulness with Vanilla Gradient, Integrated Gradient and SmoothGrad.

Faithfulness metrics that involve pixel removal and measuring model prediction changes (such as inser-
tion/deletion (Petsiuk et al., 2018)) introduces artifacts and cause a distribution shift in the perturbed
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Table 2: Area under perturbation curve for ROAD evaluation using most relevant feature for Vanilla Gra-
dient, Integrated Gradient, SmoothGrad and Random Gradient on the following FMNIST, CIFAR and
ImageNette models: naturally trained (N), adversarially trained (A), adversarial training with mean-filter
smoothing (M1), adversarial training with median-filter smoothing (M2), adversarial training with Gaussian-
filter smoothing (G), adversarial training with embedded filter smoothing (E), and adversarial training with
non-local Gaussian smoothing (NG). Results show that naturally trained models are less faithful than ad-
versarially trained models.

N A M1 M2 G E NG
Vanilla Gradient 0.224 0.219 0.179 0.174 0.230 0.225 0.206

FMNIST Integrated Gradient 0.316 0.306 0.246 0.287 0.281 0.366 0.282
SmoothGrad 0.133 0.139 0.133 0.115 0.124 0.395 0.117

Random Gradient 0.010 0.013 0.011 0.012 0.013 0.012 0.013
Vanilla Gradient 0.197 0.225 0.233 0.232 0.236 0.231 0.237

CIFAR Integrated Gradient 0.420 0.490 0.496 0.511 0.489 0.508 0.517
SmoothGrad 0.113 0.116 0.110 0.125 0.144 0.240 0.146

Random Gradient 0.036 0.034 0.038 0.037 0.038 0.037 0.035
Vanilla Gradient 0.134 0.126 0.286 0.149 0.187 0.229 0.139

ImageNette Integrated Gradient 0.332 0.396 0.378 0.349 0.383 0.398 0.390
SmoothGrad 0.123 0.144 0.123 0.142 0.119 0.115 0.124

Random Gradient 0.017 0.051 0.041 0.056 0.044 0.036 0.039

inputs. Retraining based approaches like ROAR (Hooker et al., 2019) addresses this problem but is com-
putationally expensive. ROAD (Rong et al., 2022) addresses both concerns in faithfulness evaluation by
measuring model accuracy on the test set as pixels are iteratively removed using a nosily linear imputation
strategy. We adopt the MoRF (Most Relevant First) removal strategy where a faster drop in accuracy with
increase in removal of k most important features indicate that key discriminative features are being removed.
ROAD demonstrates consistent results with both MoRF and LeRF (Least Removal First) removal strategy.
For further details, see Rong et al. (2022).

In addition, we quantify the ROAD plot using area under perturbation curve, computed as dROAD =
1

L+1
∑L

k=1
〈
f(x(0)) − f(x(k))

〉
where, L represents the number of feature removal steps, and f(x) is the

classifier’s output probability for the originally predicted class given the input x. The term x(0) corresponds
to the unperturbed input image, while x(k) represents the image after k perturbation steps. This is averaged
across all the test images.
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(b) Integrated Gradient
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(c) SmoothGrad
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(d) Random Gradient

Figure 4: ROAD evaluation for measuring saliency map faithfulness where sharper drop in accuracy is better
on various FMNIST models: naturally trained (N), adversarially trained (A), adversarial training with mean-
filter smoothing (M1), adversarial training with median-filter smoothing (M2), adversarial training with
Gaussian-filter smoothing (G), adversarial training with embedded filter smoothing (E), and adversarial
training with non-local Gaussian smoothing (NG).

FMNIST: Table 2 shows that the faithfulness score of Vanilla Gradient is the highest for models G (adver-
sarially trained model with a Gaussian filter) and E (adversarially trained model with an embedded filter),
with the naturally trained model closely following. This is validated by the accuracy drop in Figure 4a,
where these models exhibit a similar decrease in accuracy. With Integrated Gradient, Figure 4b shows that
the naturally trained model experiences the steepest drop, which then flattens, whereas model E (adver-
sarially trained with an embedded filter) continues to show a decline in accuracy. This trend is supported
by the dROAD score in Table 2, where model E has the highest score, followed by the naturally trained
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model. Similarly, SmoothGrad achieves the highest dROAD score with model E (adversarially trained with
an embedded filter), as it exhibits the sharpest drop in accuracy in Figure 4c. Finally, the dROAD score for
the baseline Random Gradient remains consistently low in Table 2, corresponding with the lowest drop in
accuracy in Figure 5d, further validating the reliability of the evaluation.
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(c) SmoothGrad
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Figure 5: ROAD evaluation for measuring saliency map faithfulness where sharper drop in accuracy is better
on various CIFAR10 models: naturally trained (N), adversarially trained (A), adversarial training with mean-
filter smoothing (M1), adversarial training with median-filter smoothing (M2), adversarial training with
Gaussian-filter smoothing (G), adversarial training with embedded filter smoothing (E), and adversarial
training with non-local Gaussian smoothing (NG)

CIFAR-10: On CIFAR-10, all smoothing methods enhance the faithfulness of explanations for Vanilla
Gradient, as observed in the dSCORE values in Table 2 and the steep drop in Figure 5a, with model NG
(adversarially trained with a non-local Gaussian filter) achieving the highest score. Integrated Gradient also
demonstrates improved faithfulness across all smoothing methods, with NG (adversarially trained with a
non-local Gaussian filter) scoring the highest. This is further validated in Figure 5b, where the naturally
trained model exhibits a less steep drop in accuracy compared to the other models. For SmoothGrad, Table
2 shows that, except for M1 (adversarially trained with a mean filter), all other models achieve a higher
faithfulness score than the naturally trained model, with model E (adversarially trained with an embedded
filter) scoring the highest. This is confirmed by Figure 5c, which shows the steepest drop for model E. The
baseline Random Gradient again remains consistently low, further validating the reliability of the evaluation.
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(b) Integrated Gradient
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(c) SmoothGrad
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Figure 6: ROAD evaluation for measuring saliency map faithfulness where sharper drop in accuracy is better
on various ImageNette models: naturally trained (N), adversarially trained (A), adversarial training with
mean-filter smoothing (M1), adversarial training with median-filter smoothing (M2), adversarial training
with Gaussian-filter smoothing (G), adversarial training with embedded filter smoothing (E), and adversarial
training with non-local Gaussian smoothing (NG)

ImageNette: In Vanilla Gradient, Figure 6a shows that most models exhibit a sharper drop in accuracy
compared to the naturally trained model, particularly M1 (adversarially trained with a mean filter) and E
(adversarially trained with an embedded filter). Table 2 confirms that these models achieve the highest scores
among all models. Integrated Gradient follows a similar trend, where naturally trained models experience a
less steep drop in accuracy (see Figure 6b) and are therefore less faithful than other models. Table 2 further
supports this, as the naturally trained model has the lowest dROAD score, while models E (adversarially
trained with an embedded filter) and A (adversarially trained) have the highest scores, closely followed by
NG (adversarially trained with a non-local Gaussian filter). For SmoothGrad, Figure 6c and score in Table
2 show minimal improvements across different models, with the best performance observed in adversarial
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training without explicit smoothing, followed closely by model NG (adversarially trained with a non-local
Gaussian filter).

4.2.3 On the structural similarity of saliency maps

Following Adebayo et al. (2018), we plot the structural similarity of attribution maps. For each image x,
we introduce Gaussian noise (N (0, σ)) to create its noisy counterpart x′ while ensuring consistent model
predictions. Subsequently, we compute saliency maps for x and x′ and measure the structural similarity
between the maps.
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(a) Vanilla Gradient
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(b) Integrated Gradient
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(c) SmoothGrad

Figure 7: Structural similarity evaluation of saliency maps on various FMNIST models: naturally trained (N),
adversarially trained (A), adversarial training with mean-filter smoothing (M1), adversarial training with
median-filter smoothing (M2), adversarial training with Gaussian-filter smoothing (G), adversarial training
with embedded filter smoothing (E), and adversarial training with non-local Gaussian smoothing (NG).
Results demonstrate that naturally trained models consistently yield lower SSIM values, and adversarial
training combined with smoothing methods significantly enhances structural consistency.

FMNIST: Figure 7a shows that as noise increases, the structural similarity index (SSIM) of Vanilla Gradient
saliency maps generated from naturally trained models deteriorates rapidly. In contrast, all other models have
significantly higher similarity scores. Among the smoothing techniques integrated into adversarial training,
embedded filter smoothing (E) and non-local Gaussian smoothing (NG) demonstrates superior performance,
consistently maintaining the highest SSIM across all noise levels. Figure 7b shows the structural similarity
of saliency maps generated by Integrated Gradient. Similar to Vanilla Gradient, saliency maps derived from
naturally trained (N) models demonstrate a rapid decrease in structural similarity (SSIM) as noise increases.
In contrast, all other model significantly stabilizes these explanations, resulting in considerably higher SSIM
values even at higher noise levels. Notably, adversarial training with embedded filter smoothing (E) consis-
tently achieves the highest SSIM. Figure 7c shows the plot for SmoothGrad. Notably, all methods including
naturally trained (N) show relatively constant and high SSIM values across increasing noise levels. This
is primarily due to the intrinsic averaging mechanism of SmoothGrad, which already involves aggregating
gradients computed over several noise-added inputs, inherently producing stable attribution maps. How-
ever, clear differences exist between the SSIM values as adversarial training enhanced by embedded (E) and
median-filter smoothing (M2) consistently achieves the highest SSIM values.

CIFAR-10: The structural similarity (SSIM) of saliency maps generated by Vanilla Gradient for CIFAR-10
models is illustrated in Figure 8a, which demonstrates the rapid decline in SSIM values with increased noise
in the naturally trained (N) model. In contrast, all other models show substantially improved robustness
with high structural similarity even with high noise. In Figure 8b, we can observe the structural similarity
(SSIM) of Integrated Gradient-based saliency maps where, naturally trained (N) models display very low
structural similarity values, underscoring their susceptibility to even minor input perturbations. Conversely,
adversarially trained models with embedded (E) filter and non-local Gaussian (NG) filter consistently results
in significantly higher and stable SSIM scores. Figure 8c presents the structural similarity (SSIM) of saliency
maps generated using SmoothGrad. Unlike FMNIST, SmoothGrad in CIFAR-10 exhibits a subtle decrease
in SSIM values with increasing noise. However, the decline in SSIM score is relatively small and SSIM score
is still high, across all the models. Adversarially trained models with smoothing filters again have higher
SSIM values.
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(a) Vanilla Gradient
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(b) Integrated Gradient
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(c) SmoothGrad

Figure 8: Structural similarity evaluation of saliency maps on various CIFAR-10 models: naturally trained
(N), adversarially trained (A), adversarial training with mean-filter smoothing (M1), adversarial training with
median-filter smoothing (M2), adversarial training with Gaussian-filter smoothing (G), adversarial training
with embedded filter smoothing (E), and adversarial training with non-local Gaussian smoothing (NG).
Results demonstrate that naturally trained models consistently yield lower SSIM values, and adversarial
training combined with smoothing methods significantly enhances structural consistency.
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(b) Integrated Gradient
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Figure 9: Structural similarity evaluation of saliency maps on various ImageNette models: naturally trained
(N), adversarially trained (A), adversarial training with mean-filter smoothing (M1), adversarial training with
median-filter smoothing (M2), adversarial training with Gaussian-filter smoothing (G), adversarial training
with embedded filter smoothing (E), and adversarial training with non-local Gaussian smoothing (NG).
Results demonstrate that naturally trained models consistently yield lower SSIM values, and adversarial
training combined with smoothing methods significantly enhances structural consistency.

ImageNette: Figure 9a shows the structural similarity (SSIM) of saliency maps generated by the Vanilla
Gradient explanation method for Imagenette models as the input noise increases. Again, naturally trained
(N) models exhibit a high sensitivity, with SSIM significantly dropping at higher noise intensities. In con-
trast, all other models maintain relatively stable and notably higher SSIM values, demonstrating improved
robustness, notably adversarially trained models with Gaussian-filter smoothing (G), median-filter smooth-
ing (M2), and non-local Gaussian smoothing (NG). In Figure 9b, we illustrate the structural similarity
(SSIM) of Integrated Gradient-generated saliency maps where naturally trained (N) models show the lowest
SSIM values with a clear declining trend, and all other models demonstrate enhanced robustness and consis-
tently higher structural similarity. Notably, adversarially trained models with non-local Gaussian smoothing
(NG) and mean-filter smoothing (M1) achieve the highest SSIM values. Figure 9c presents the structural
similarity (SSIM) of SmoothGrad-generated saliency maps. Unlike CIFAR-10 and FMNIST, Imagenette
models exhibit high SSIM values with minimal variations, underscoring SmoothGrad’s inherent robustness
in producing stable explanations. However, adversarially trained models with non-local Gaussian smoothing
(NG), mean-filter smoothing (M1), and median-filter smoothing (M2) achieve the highest and most stable
SSIM scores. Naturally trained models again exhibit relatively flat SSIM values as noise increases, indicating
SmoothGrad partially mitigates noise sensitivity.
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4.2.4 Trade-off between model performance & saliency map quality

Our findings reveal that: (a) input-gradient based attribution methods produce sparse saliency maps in
adversarially trained models (See Section 4.2.1), (b) adversarially trained models with non-local-feature-
map smoothing, increase the sparsity of saliency maps but compromise on stability (See Table 1), (c)
adversarially trained models, with local-feature-map smoothing, enhances the stability of saliency maps
without compromising on sparsity (See Table 1), (d) saliency maps in adversarially trained models with
feature map smoothing consistently demonstrate invariance to noise (See Section 4.2.3), and (e) saliency
maps in adversarially trained models with feature map smoothing are more faithful to the underlying model
than naturally trained counterparts (See Table 2). This aligns with the findings of Shah et al. (2021), which
showed that naturally trained models fail to capture the most discriminative features, often due to feature
leakage and Eberle et al. (2022) which showed that less sparse attention vectors in transformers are less
faithful to the model predictions.
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Figure 10: Tradeoff between saliency map quality and model performance on FMNIST models : naturally
trained (N), adversarially trained (A), adversarial training with mean-filter smoothing (M1), adversarial
training with median-filter smoothing (M2), adversarial training with Gaussian-filter smoothing (G), ad-
versarial training with embedded filter smoothing (E), and adversarial training with non-local Gaussian
smoothing (NG). Results show that adversarially trained models (with smoothing filters) improve saliency
map quality but at the expense of benign accuracy.

These observations lead to the conclusion that saliency maps in adversarially trained models (with feature
map smoothing) are more reliable and interpretable than natural models for the input-gradient based at-
tribution methods. However, it’s important to note a caveat: such models come at the expense of benign
accuracy.

We illustrate this tradeoff in Figure 10 and Figure 11. We train L∞(ϵ) robust FMNIST and CIFAR-10
models with perturbation strength ϵ ∈ [0.01, 0.03, 0.06, 0.1] for adversarial training (A), adversarial training
with smoothing filters of mean (M1), median (M2), Gaussian (G), embedded (E) and nonlocal Gaussian
(NG). For each model, we compute its benign accuracy, and three saliency map characteristics using Vanilla
Gradient: sparsity (Chalasani et al., 2020), faithfulness estimate (Alvarez Melis & Jaakkola, 2018), and
structural similarity (Adebayo et al., 2018). Faithfulness estimate measures faithfulness of explanations as a
correlation score by iteratively modifying a given image and computing the correlation between the sum of
attributions and the difference in model prediction. Then, we plot the saliency map characteristics against
the benign accuracy of the model. Figure 10 and Figure 11 illustrate that the higher the sparsity, faithfulness,
and sensitivity, the lower the benign accuracy. This trend holds across all models, where increasing model
robustness tends to reduce benign accuracy but enhances sparsity, faithfulness and structural similarity of
saliency maps. In contrast, naturally trained models have lower values of all three saliency map metrics but
at much higher benign accuracy.

4.2.5 Relationship between model robustness & saliency map quality

In Section 4.2.4, we observed that as the ϵ perturbation strength of adversarial training increases, the
benign accuracy of the model decreases. However, this is accompanied by an improvement in the quality

12



Under review as submission to TMLR

0.80 0.82 0.84 0.86 0.88 0.90 0.92
Accuracy

0.55

0.60

0.65

0.70

Sp
ar

sit
y

N
A
M1
M2
G
E
NG

(a) Sparsity

0.80 0.82 0.84 0.86 0.88 0.90 0.92
Accuracy

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Fa
ith

fu
ln

es
s

N
A
M1
M2
G
E
NG

(b) Faithfulness

0.80 0.82 0.84 0.86 0.88 0.90 0.92
Accuracy

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SS
IM

N
A
M1
M2
G
E
NG

0.80 0.85 0.90

0.825

0.850

0.875

0.900

(c) Structural similarity (y-axis
zoomed)

Figure 11: Tradeoff between saliency map quality and model performance on CIFAR-10 models: naturally
trained (N), adversarially trained (A), adversarial training with mean-filter smoothing (M1), adversarial
training with median-filter smoothing (M2), adversarial training with Gaussian-filter smoothing (G), ad-
versarial training with embedded filter smoothing (E), and adversarial training with non-local Gaussian
smoothing (NG). Results show that adversarially trained models (with smoothing filters) improve saliency
map quality but at the expense of benign accuracy.
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Figure 12: Relationship between model robustness and saliency map quality on FMNIST models: naturally
trained (N), adversarially trained (A), adversarial training with mean-filter smoothing (M1), adversarial
training with median-filter smoothing (M2), adversarial training with Gaussian-filter smoothing (G), ad-
versarial training with embedded filter smoothing (E), and adversarial training with non-local Gaussian
smoothing (NG). Results show that increasing robustness of adversarially trained models (with smoothing
filters) improves saliency map quality.

of saliency maps. In this section, we provide a supplementary analysis by evaluating the quality of saliency
maps in relation to the robust accuracy of the models. As the ϵ perturbation strength increases, model
robustness—defined as the ability to correctly classify adversarially perturbed inputs—also improves. For
each L∞(ϵ) model trained at ϵ ∈ {0.01, 0.03, 0.06, 0.1}, we compute its robust accuracy by evaluating its
performance on PGD (Madry et al., 2018) adversarial examples, generated with ϵ = 0.1 and 100 steps.
Then, we plot the relationship between sparsity (Chalasani et al., 2020), faithfulness estimate (Alvarez Melis
& Jaakkola, 2018), and structural similarity (Adebayo et al., 2018) against robust accuracy in Figure 12 and
Figure 13, where we can observe that the sparsity, faithfulness, and sensitivity of saliency maps improves
with the increase in the robustness of the model.

4.3 Qualitative Analysis

Our quantitative studies demonstrate that saliency maps in adversarially trained models are sparse but
at the expense of stability. Incorporating local feature-map smoothing improves stability of saliency maps
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Figure 13: Relationship between model robustness and saliency map quality on CIFAR-10 models: naturally
trained (N), adversarially trained (A), adversarial training with mean-filter smoothing (M1), adversarial
training with median-filter smoothing (M2), adversarial training with Gaussian-filter smoothing (G), ad-
versarial training with embedded filter smoothing (E), and adversarial training with non-local Gaussian
smoothing (NG). Results show that increasing robustness of adversarially trained models (with smoothing
filters) improves saliency map quality.

without drastically compromising sparsity, balancing these two aspects. In this section, we analyze how well
end-users comprehend saliency maps from different model training strategies based on the level of sparsity.

Motivation: The goal of an explanation method is to provide insights into the model’s reasoning process.
While faithfulness is crucial, the comprehensibility of explanations to human users is equally important,
particularly in decision-making contexts where AI models assist experts. Since saliency maps are used
by human end-users, an explanation method must be both faithful and understandable to be effective. An
explanation that accurately reflects model behavior but is too noisy or unclear may not be useful for practical
decision-making (Gilpin et al., 2018). While prior works (Nguyen et al., 2021; Kim et al., 2022; Adebayo
et al., 2020) have focused on qualitative evaluation for utility of explanations, we conduct a survey to measure
comprehensibility of saliency maps.

Test Case 1: Observe the image from class "Sandal" and its corresponding saliency map and 
answer the questions that follow.

Rate your agreement with the statement: The given explanation has sufficient information 
i.e. the pixel distribution in the heatmap are enough to understand the model prediction. 
1: Strongly disagree 5: Strongly agree.

1
2
3
4
5

Rate your agreement with the statement: Given this heatmap, I can trust this model in its 
classification task. 
1: Strongly disagree 5: Strongly agree

1
2
3
4
5

Figure 14: A sample of question from the survey.
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Survey Methodology: We conducted an experiment with 65 graduate students (Ph.D./ Masters), each
with at least a year of experience in computer vision1. The objective was to determine whether the informa-
tion conveyed by saliency maps was sufficient for understanding and trusting the underlying model behavior.
Participants were shown saliency maps using Vanilla Gradient from three models—naturally trained, adver-
sarially trained, and adversarially trained with feature-map smoothing (median filter)—for 10 images across
FMNIST and CIFAR-10 datasets, resulting in 60 image-saliency pairs. The saliency maps were presented in
random order, and participants were unaware of the model that generated them. Afterward, they rated each
saliency map using the Hoffman satisfaction scale (Hoffman et al., 2023), responding to two key questions:
1) “Does the explanation provide sufficient information?” and 2) “Do you trust the model’s classification
based on this saliency map?” Ratings were on a scale of 1 (strongly disagree) to 5 (strongly agree) (See
Figure 14 for a sample). Finally, participants were asked to compare saliency maps from all three models
side by side (as shown in Figure 15) and select the most comprehensible explanation, providing free-text
justifications for their choices.

Results: We assessed the comprehensibility of the saliency maps based on two metrics: sufficiency and
trust. Sufficiency metric corresponds to the survey question “Does the given explanation have sufficient
information?” and trust corresponds to the survey question “Given this heatmap, do you trust the model’s
classification?”. For the naturally trained model, participants rated sufficiency at an average of 2.08 (±
0.75) and trust at 2.02 (± 0.82), indicating that the noisy maps from this model were generally considered
untrustworthy. In contrast, adversarially trained models fared better, with sufficiency scoring 2.99 (± 0.93)
and trust 3.08 (± 0.90), as participants found these maps clearer and more aligned with the images. The
feature-map smoothed adversarial model scored the highest, with sufficiency at 3.33 (± 1.03) and trust at
3.14 (± 1.01). Participants appreciated the reduction in noise and highlighted the clarity and relevance of
the explanations. When comparing saliency maps directly, 56% of participants preferred the maps from
the feature-map smoothed model, 29% favored the adversarial model, and only 15% selected the naturally
trained model. The majority cited reasons such as “highlighting important features without excessive detail"
and “close enough to the image with the least noise".

1

2 3

Figure 15: Sample image and saliency maps used in
the survey.

Wilcoxon (p-value) one-way ANOVA
N vs A A vs M2 N vs M2 F-stat p value

Sufficiency 9.79E-41 4.26E-14 3.71E-27 200.38 7.82E-72
Trust 5.56E-39 3.24E-11 3.89E-24 193.86 6.58E-70

Table 3: Wilcoxon and ANOVA test results on the
survey where, N refers to a naturally trained model,
A refers to an adversarially-trained model, and M2
referes an adversarial-trained feature-map smoothed
model.

To ensure that the observed differences in participant ratings were statistically meaningful rather than ran-
dom variations, we performed Wilcoxon signed-rank tests Woolson (2007) and one-way ANOVA Cuevas
et al. (2004). The Wilcoxon test assesses whether paired differences between two conditions (e.g., adversari-
ally trained vs. naturally trained) are statistically significant, making it well-suited for analyzing subjective
survey responses. The one-way ANOVA test determines whether there are significant differences across all
three models. As shown in Table 3, the extremely small p-values (< 0.001) indicate that differences in both
sufficiency and trust scores across training strategies are statistically significant. This supports our claim
that adversarial training and feature-map smoothing significantly improve the interpretability of saliency
maps.

1An Institutional Review Board (IRB) approval was granted by our institution prior to interviewing human subjects for our
qualitative study.
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5 Limitations

Our analysis by modeling a deep neural network as a single-layer system does not fully capture the complex
inter-layer interactions and non-linearities present in the deep architectures. While our theoretical analysis
provides useful insights, and empirical results demonstrate that the trends hold in practical settings, its
direct applicability to highly non-linear deep networks should be interpreted with caution. Similarly, we
perform our analysis by conducting experiments on three popular datasets such as FMNIST, CIFAR-10,
and ImageNette. However, as model complexity and dataset size grow, especially with higher class counts,
adversarial training becomes increasingly difficult (Zhang et al., 2019). Maintaining both high accuracy and
robustness in such settings presents a significant challenge. Additionally, while we explored several local and
non-local smoothing filters, the choice of the optimal filter and its parameter remains largely empirical and
task-dependent.

6 Conclusion

In this paper, we explore the connection between model training strategies and quality of explanations, and
propose a simple modification to adversarial training to improve the comprehensibility of saliency maps.
Through a comprehensive study, we established that the quality of saliency maps is tied to the sensitivity of
a model, with adversarially trained models producing sparser but unstable explanations. Incorporating local
feature-map smoothing during adversarial training enhances stability and faithfulness without sacrificing
sparsity. Our work underscores that meaningful and faithful explanations are tied to the model training
strategy. By shedding light on the trade-offs between robustness of a model and saliency map quality, we
advocate for the designing models that strike a balance between performance and saliency map comprehen-
sibility.
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A Dataset and Training

FMNIST (Xiao et al., 2017): The Fashion MNIST dataset consists of 28x28 pixel grayscale images of
various clothing items and accessories. It contains a total of 70,000 images, divided into a training set of
60,000 examples and a test set of 10,000 examples. Similar to Chalasani et al. (2020), we train a neural
network consisting of two convolutional layers with 32 and 64 filters, respectively, each followed by 2x2
max-pooling and a fully connected layer of 1024. We use the Adam optimizer with a learning rate of 0.001,
a batch size of 32 and 50 training epochs.

CIFAR-10 (Krizhevsky et al., 2009): CIFAR-10 consists of 60,000 32x32 pixel color images,
with each image belonging to one of ten different classes. These classes include common objects and animals
such as airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks. Similar to Chalasani
et al. (2020), we use a wide Residual Network (Zagoruyko & Komodakis, 2016) for training CIFAR-10 with
the following hyperparameter settings: batch size=128, momentum optimizer with momentum = 0.9, and
weight decay = 5e-4, training steps = 70000. We use an adaptive learning rate where the learning rate is
set to 0.1 for the first 40000 steps, 0.01 for 40000-50000 steps, and 0.001 for the remaining steps. The wide
residual network is trained with 28 layers and widen factor of 10.

ImageNette (Howard, 2020): ImageNette is a 10-class subset of ImageNet (Deng et al., 2009)
with 9469 training images and 3925 test images. We use the 320-pixel resolution images (for the shortest
side) and randomly resize and crop them to 224x224 pixels during training. We use the standard ResNet-18
model architecture for training on the dataset. We use Ranger optimizer (Wright, 2019) with an initial
learning rate of 8e-03 and epsilon 1e-6. We train the models from scratch for 200 epochs and employ the
early stopping criterion to select the best-performing model for evaluation.

A.1 Adversarial training

Adversarial training (Goodfellow et al., 2015) is a machine learning technique that involves training a model
in the presence of adversarial examples. Adversarial examples are inputs specifically designed to mislead
or deceive the model, causing the model to make incorrect predictions. The goal of adversarial training
is to improve the robustness and generalization of a model against such perturbed examples. To perform
adversarial training, we generate adversarial examples that are produced from natural samples x ∈ Rd by
adding a perturbation vector δ ∈ Rd. The perturbation vector differs based on the type of attack employed.
We use the PGD (Madry et al., 2018) attack to obtain adversarial perturbations. PGD is an iterative attack
where the perturbation is computed multiple times with small steps. The hyper-parameters of PGD attack
in our adversarial training: for FMNIST and CIFAR-10, ϵ ∈ {0.01, 0.03, 0.06, 0.1}, attack step size = ϵ/10,
and number of iterations = 40; for ImageNette ϵ = 1/255, step size = 0.00784 and number of iterations =
20. Other training hyperparameters are kept as explained in Appendix A.

B Smoothing filters

A generic convolutional neural network with a feature map smoothing block is presented in Figure 16. The
smoothing block consists of local or non-local filtering operations. All feature-map smoothed models are
trained with the same hyper-parameter settings as explained in Appendix A. We use with the following
filters in the paper:

B.1 Local smoothing:

Local smoothing applies filtering operations to a neighborhood of a feature map. We use the following local
smoothing filters in our approach:

• Mean filter: A mean filter, equivalent to an average pooling with a stride of 1, replaces each feature
with the average of nearby features within a defined kernel. This smoothing effect reduces noise and
enhances robustness to spatial variations. For an input feature map (I) of size HxW and a K-sized
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Figure 16: A generic convolutional neural network with a feature-map smoothing block.

kernel, the output feature map O(u, v) is calculated using Eqn. 9:

O(u, v) = 1
K2

K−1∑
i=0

K−1∑
j=0

I(u + i, v + j) (9)

Here, u and v represent spatial coordinates in the output feature map, ranging from 0 to H −K and
0 to W − K respectively. I(u + i, v + j) denotes the feature value at spatial location (u + i, v + j) in
the input feature map. This operation is applied independently to each channel of the input feature
map.

• Median filter: A median filter, unlike a mean filter, computes the median value within a small
sliding window over the feature map, given by Eqn. 10. This method also removes noise, making
representations more robust. It also preserves edges and fine details as it selects the median value.
Given an input feature map I and a median filter window size K, the output feature map O(u, v) is
computed using Eqn. 10:

O(u, v) = median(I(u − K

2 : u + K

2 , v − K

2 : v + K

2 ) (10)

Here, I(u − K
2 : u + K

2 , v − K
2 : v + K

2 ) represents the subset of the input feature around (u, v) with
a size of KxK. This operation is applied independently to each channel of the input feature map.
Since median filters are non-linear and non-differentiable operations, this can pose challenges when
training a neural network end-to-end. We utilize the approximation of the median filter available in
Kornia (Riba et al., 2020), which is differentiable.

• Gaussian filter: A Gaussian filter applies a smoothing effect to feature maps by convolving them
with a Gaussian kernel, effectively reducing Gaussian noise. This process improves the signal-to-noise
ratio and preserves edges better than mean filtering due to the Gaussian kernel giving more weight
to nearby features while still considering distant feature contributions. The degree of smoothing can
be adjusted by modifying the standard deviation (σ) of the Gaussian kernel. Given an input feature
map I and a Gaussian filter kernel K, the output feature map O(u, v) is calculated with Eqn. 11:

O(u, v) = (I ∗ K)(u, v) (11)

Here, ∗ denotes 2D convolution. The Gaussian kernel K is generated using a Gaussian function with
a specific standard deviation σ, defined in Eqn. 12:

K(u, v) = 1
2πσ2 e(− u2+v2

2σ2 ) (12)

This operation is independently applied to each channel of the input feature map.

Implementation: We utilize the differentiable filters available in Kornia (Riba et al., 2020). We use a 3x3
Kernel for mean, median, and Gaussian filtering. The standard deviation of the kernel for Gaussian filtering
was computed as (0.3 ∗ ((x.shape[3] − 1) ∗ 0.5 − 1) + 0.8, 0.3 ∗ ((x.shape[2] − 1) ∗ 0.5 − 1) + 0.8) where x is
the input image.
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B.2 Non-local smoothing:

The non-local approach (Buades et al., 2005) derives a smooth feature map m from an input feature map x
by calculating a weighted average of features across all spatial positions within the set L. Eqn. 13 shows the
formulation where f(xi, xj) is feature dependent weighting function and C(x) is a normalization function.

mi = 1
C(x)

∑
∀j∈L

f(xi, xj).xj (13)

We consider the following forms of weighting function f(.):

• Non-local Gaussian (Wang et al., 2018): Eqn. 14 formulates the non-local gaussian function
where xT

i xj is the dot product similarity between the feature maps. The normalization function is
set as C(x) =

∑
∀x f(xi, xj).

f(xi, xj) = e(xT
i xj) (14)

• Embedded Gaussian (Wang et al., 2018): This non-local mean computes similarity in em-
bedding space by computing embedded versions of the feature map x. As shown in Eqn. 15,
θ(xi) = Wθxi and η(xj) = Wϕxj are the two embeddings of feature map x, obtained after 1×1
convolution. The normalization function is set as C(x) =

∑
∀x f(xi, xj).

f(xi, xj) = e(θ(xi)T η(xj)) (15)

We use the open-source implementation of non-local means available in AlexHex7 (2018).

Table 4: Natural and Robust Accuracy of Various FMNIST, CIFAR-10, and ImageNette models: naturally
trained (N), adversarially trained (A), natural training with mean-filter smoothing (M1), adversarial train-
ing with mean-filter smoothing (M1+A), natural training with median-filter smoothing (M2), adversarial
training with median-filter smoothing (M2+A), natural training with Gaussian-filter smoothing (G), ad-
versarial training with Gaussian-filter smoothing (G+A), natural training with embedded filter smoothing
(E), adversarial training with embedded filter smoothing (E+A), natural training with non-local Gaussian
smoothing (NG), and adversarial training with non-local Gaussian smoothing (NG+A).

Dataset Models/Accuracy N A M1 M1+A M2 M2+A G G+A E E+A NG NG+A

FMNIST Benign Accuracy 89.9 79.9 88.4 80.0 88.8 80.5 89.1 80.3 89.4 81.1 89.23 81.3
Robust Accuracy 9.5 67.7 8.5 67.1 8.2 68.6 6.9 66.8 7.31 64.7 7.23 69.5

CIFAR-10 Benign Accuracy 90.9 80.5 89.7 79.6 88.6 80.1 90.2 80.8 90.6 79.6 89.9 81.9
Robust Accuracy 4.8 54.3 4.5 51.2 4.7 56.3 6.8 53.9 5.1 55.5 7.1 55.8

ImageNette Benign Accuracy 96.3 70.8 93.3 58.8 90.9 55.3 95.5 51.6 88.4 60.8 86.3 58.4
Robust Accuracy 1.6 12.2 1.2 6.5 2.3 14.3 3.7 13.5 3.1 13.9 2.5 18.9

C Effect of smoothing filter

In Table 4, we present the results of various models on FMNIST, CIFAR-10 and ImageNette, with both
natural (benign) and adversarial (robust) accuracy. Benign accuracy measures the model performance on
benign (clean) test set, whereas robust accuracy evaluates how well the models detect adversarially perturbed
samples. The robust models under evaluation are trained at ϵ = 0.1 for FMNIST and CIFAR-10 and
ϵ = 1/255 for ImageNette. Evaluation is performed on a test-set consisting of adversarial samples created
using PGD attack (Madry et al., 2018) at ϵ = 0.1 l∞ perturbation bound.

Across all datasets, applying smoothing filters alone did not result in significant changes in natural or robust
accuracy (≈ ±3%). The smoothing filters, when used without adversarial training, did not drastically
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Table 5: Sparsity and Stability evaluation, when
smoothing block is placed after second residual
block, on various CIFAR-10 models: adversarial
training with mean-filter smoothing (M1), adver-
sarial training with median-filter smoothing (M2),
adversarial training with Gaussian-filter smooth-
ing (G), adversarial training with embedded filter
smoothing (E), and adversarial training with non-
local Gaussian smoothing (NG)

CIFAR-10
M1 M2 G E NG

dG (higher the better) 0.178 0.185 0.176 0.190 0.191
dRIS (lower the better) -0.605 -0.663 -0.477 -0.528 -0.621
dROS (lower the better) 0.268 0.225 0.239 0.273 0.269
dRRS (lower the better) 0.464 0.445 0.462 0.453 0.475

Table 6: Sparsity and Stability evaluation, when
smoothing block is placed after third residual block,
on various CIFAR-10 models: adversarial training
with mean-filter smoothing (M1), adversarial train-
ing with median-filter smoothing (M2), adversar-
ial training with Gaussian-filter smoothing (G), ad-
versarial training with embedded filter smoothing
(E), and adversarial training with non-local Gaus-
sian smoothing (NG)

CIFAR-10
M1 M2 G E NG

dG (higher the better) 0.185 0.180 0.187 0.191 0.192
dRIS (lower the better) -0.599 -0.670 -0.470 -0.517 -0.612
dROS (lower the better) 0.271 0.221 0.235 0.276 0.261
dRRS (lower the better) 0.470 0.429 0.468 0.446 0.473

improve robustness or reduce natural accuracy, indicating that their primary role may be in stabilizing
feature maps without dramatically altering decision boundaries.

However, when smoothing filters were combined with adversarial training, robust accuracy improved for
some filters, particularly in FMNIST and CIFAR-10, where models trained with adversarial samples and
smoothing exhibited stronger defense against adversarial attacks. On the ImageNette dataset, we observed
a notable drop in benign accuracy when smoothing filters were applied during adversarial training.

D Ablation study: Position of smoothing filters

In this section, we investigate how the placement of smoothing filters within the network affects the stability
and sparsity of saliency maps. Specifically, we consider different positions for inserting the smoothing filters
in a CIFAR-10 network and report the results in Tables 5 and 6 for Vanilla Gradient (Simonyan et al., 2014).
This CIFAR-10 Residual Network consists of three residual blocks. We add smoothing filters after second
residual block in Table 5 and after third residual block in Table 6. In Table 1, smoothing filters are added
after the first residual block.

Across all Tables, the sparsity gain remains consistent between 0.176 to 0.192; however, when smoothing
filter is added after third residual block (Table 6), there is a slight improvement in the sparsity. Smoothing
after the first block consistently yields better results in stability. Hence, to strike a balance between stability
and sparsity, we place the smoothing block after the first residual block.

E Additional experiment

In this section, we demonstrate the effects of robust training strategy on saliency map quality for a different
network, VGG16 (Simonyan & Zisserman, 2015) on CIFAR-10. We train a VGG-16 convolutional neural
network for 120 epochs using stochastic gradient descent (SGD) with momentum, a learning rate of 0.1,
and weight decay of 5e-4. The model consists of five convolutional blocks with batch normalization, ReLU
activations, max-pooling layers, and a fully connected classifier. The training utilizes a learning rate sched-
uler, which reduces the learning rate by a factor of 0.1 every 30 epochs. For adversarial training, we use
the same hyperparameter (PGD attack at ϵ = 0.1). The hyperparameters for smoothing blocks are also
kept as discussed in Appendix B. Similar to previous sections, we train following models for this network:
naturally-trained (N), adversarially-trained (A), adversarial training with mean-filter smoothing (M1), adver-
sarial training with median-filter smoothing (M2), adversarial training with Gaussian-filter smoothing (G),
adversarial training with embedded filter smoothing (E), and adversarial training with non-local gaussian
smoothing (NG).
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Table 7: Sparsity and Stability Evaluations for VG, IG, and SG on various VGG-16 models: adversarially-
trained (A), adversarial training with mean-filter smoothing (M1), adversarial training with median-filter
smoothing (M2), adversarial training with Gaussian-filter smoothing (G), adversarial training with embedded
filter smoothing (E), and adversarial training with non-local Gaussian smoothing (NG). Here, ↑ and ↓ indicate
higher and lower values are better.

Vanilla Gradient (VG) Integrated Gradient (IG) SmoothGrad (SG)
A M1 M2 G E NG A M1 M2 G E NG A M1 M2 G E NG

dG ↑ 0.10 0.10 0.10 0.10 0.11 0.09 0.02 0.03 0.02 0.01 0.01 0.02 0.08 0.08 0.08 0.08 0.08 0.08
dRIS ↓ -0.30 -0.40 -0.35 -0.39 -0.39 -0.42 -0.29 -0.62 -0.74 -0.60 -0.84 -0.81 -0.33 -0.36 -0.46 -0.10 -0.49 -0.52
dROS ↓ -0.24 -0.31 -0.26 -0.30 -0.30 -0.32 -0.13 -0.22 -0.52 -0.24 -0.52 -0.56 -0.42 -0.50 -0.49 -0.40 -0.47 -0.53
dRRS ↓ 0.28 0.21 0.25 0.19 0.19 0.18 0.24 0.17 -0.25 0.04 -0.35 -0.24 0.06 0.03 0.02 0.05 0.01 -0.09

Next to evaluate sparsity, and stability, for each model, we compute explanations using Vanilla Gradient
(VG), Integrated Gradient (IG), and SmoothGrad (SG), and then compute its sparseness using Gini index
(G) (Chalasani et al., 2020), and its stability using relative input stability (RIS), relative output stability
(ROS) and relative representation stability (RRS) (Agarwal et al., 2022). Similar to Chalasini et al. (Cha-
lasani et al., 2020), we compare the sparsity and stability improvement of saliency maps with respect to the
naturally trained model (N). Specifically, for a given training method (M), we compute the following metrics
that quantify the improvement in sparseness (dG), relative input stability (dRIS), relative output stability
(dROS), and relative representation stability (dRRS) of the explanation method ϕ(.) ∈ {V G, IG, SG}:

dG[ϕ(x)] = GM [ϕ(x)] − GN [ϕ(x)] (16)

dRIS[ϕ(x)] = RISM [ϕ(x)] − RISN [ϕ(x)] (17)

dROS[ϕ(x)] = ROSM [ϕ(x)] − ROSN [ϕ(x)] (18)

dRRS[ϕ(x)] = RRSM [ϕ(x)] − RRSN [ϕ(x)] (19)

Table 7 shows the results of sparsity and stability evaluation of saliency maps generated by Vanilla Gradient
(VG), Integrated Gradient (IG), and SmoothGrad (SG) across a variety of models in VGG network. We can
observe that all explanation methods show positive dG values across all models, indicating that the saliency
maps become sparser when used with robust, adversarially trained VGG models. The sparsity gain, however,
remains relatively stable across models, with only slight variations. This suggests that while robust training
introduces sparsity, the choice of smoothing filter does not significantly impact the sparsity of explanations.

In terms of input and output stability (dRIS and dROS), we observe that models enhanced with smoothing
filters (M1, M2, G, E, NG) consistently exhibit better stability compared to the adversarially trained baseline
(A). This is particularly pronounced in the IG and SG methods, where stability improvements are more
significant. The introduction of smoothing filters, such as median and Gaussian, mitigates the instability of
explanations seen in the baseline model, resulting in more stable and reliable saliency maps.

F Conditions Affecting the Tightness of Stability Bounds

The stability bounds presented in Section 3.1 serve as indicators of the relationship between model sensitivity
and attribution stability. However, these bounds are inherently approximate and depend on several factors.
For example, the nonlinearity of the model, particularly the choice of activation function H, might influence
the bounds’ tightness. For activation functions with bounded gradients, such as sigmoid or tanh, the change in
H ′(⟨w, x⟩) is limited, leading to more consistent attributions across small perturbations and therefore tighter
stability bounds. Specifically, for sigmoid, H(z) = 1

1+e−z and H ′(z) = H(z)(1−H(z)), both of which remain
bounded as H(z) approaches 0 or 1. Conversely, for ReLU activation, H(z) = max(0, z) with H ′(z) = 1 when
z > 0 and 0 otherwise, the gradient can change abruptly across input perturbations. Thus, for perturbations
where x is shifted across the activation boundary, H ′(⟨w, x⟩) may vary significantly, producing looser bounds.
Similarly, the type and scale of input perturbations (Gaussian noise with n ∼ N (0, σ2)) can also impact
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bound tightness. For small perturbations with minimal output change, the stability bounds remain tight.
However, larger perturbations can result in more significant output shifts |F (x′) − F (x)|, leading to looser
bounds. This can be pronounced for high dimensional images which tend to lie close to decision boundaries,
making them susceptible to small noise that can lead to misclassification (Tanay & Griffin, 2016). In addition,
weight regularization techniques, such as weight decay, result in smoother gradients, reducing the sensitivity
of F (x) to input changes. For instance, regularized models with smaller gradient norms can have tighter
stability bounds as H ′(⟨w, x⟩) · w varies less across the input space. Lastly, datasets with high intraclass
variability introduce more variable responses to perturbations, increasing |F (x′)−F (x)|. As a result, stability
bounds may become looser due to the variability in F (x) across samples.

G Study on receptive field expansion

To measure the receptive field effect in the smoothing block, we conduct an additional experiment on CIFAR-
10 where we modify the feature smoothing block so that it performs only a convolution (identify or randomly
initialized). This modified setup ensures that there is only an expansion of the receptive field without filtering
operations and it can provide a baseline study to analyze the effect of receptive field expansion on its own.
Table 8 shows the results for Vanilla Gradient (VG) when compared with the best performing model.

Table 8: Sparsity and Stability evaluation for Vanilla Gradients. Here, M2: adversarial training with median
smoothing, Identity: adversarial training with feature smoothing block consisting of identify convolution but
no smoothing filter and Random: adversarial training with feature smoothing block consisting of randomly
initialized convolution but no smoothing filters

Models M2 Identity Random
Sparsity (dG) (hgiher is better) 0.18 0.16 0.15
Relative input stability (dRIS) (lower is better) -0.68 -0.41 -0.36
Relative output stability (dROS) (lower is better) 0.21 0.07 0.06
Relative representation stability (dRRS) (lower is better) 0.43 0.41 0.43

The results in the table show tha the ‘M2‘ model still achieves the best sparsity, indicating that the smoothing
operation in addition to the convolutional operation helps the model to learn a smaller number of discrim-
inative features. The ‘M2‘ model also performs significantly better in input stability. This indicates that
smoothing filters provide stability in saliency maps with respect to input. Interestingly, the ‘M2‘ model
does not achieve the best score in output stability. This suggests that while smoothing helps in stabilizing
attributions with respect to inputs and internal representations, it might not directly translate to stability
at the model’s output layer. The expanded receptive field introduced by the identity or random convolutions
likely contributes to this improvement. The ‘Identity‘ model achieves the best representation stability but
only marginally outperforming ‘M2‘. Overall, the inclusion of smoothing operations still provides a com-
petitive advantage in improving the quality of saliency maps with respect to sparsity, input stability and
representation stability.

H Relationship between attribution stability and model sensitivity

Consider a single-layer DNN with the form F (x) = H(⟨w, x⟩), where H is a differentiable scalar-valued
activation function (e.g., sigmoid), ⟨w, x⟩ is the dot product between the weight vector w and input x ∈ Rd.

H.1 Relationship for Vanilla Gradient (VG)(Simonyan et al., 2014)

Let x ∈ Rd denote an input image. The Vanilla Gradient (VG) explanation for a model F is computed as,

V G(x) = ∂Fc(x)
∂x (20)
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For a single-layer DNN with the form F (x) = H(⟨w, x⟩), where H is a differentiable scalar-valued activation
function, ⟨w, x⟩ is the dot product between the weight vector w and input x ∈ Rd, the VG can be computed
by applying the chain rule as follows:

V G(x) = ∂H(⟨w, x⟩)
∂⟨w, x⟩

.
∂⟨w, x⟩

∂x = H ′(⟨w, x⟩)w (21)

Here, H ′(⟨w, x⟩) is the gradient of activation function H with respect to the ⟨w, x⟩. Let z = ⟨w, x⟩ and
H(z) = 1

1+exp(−z) be a sigmoid activation function then,

H ′(z) = exp(−z)
(1 + exp(−z))2 (22)

= 1
1 + exp(−z) (1 − 1

1 + exp(−z) )

= H(z)(1 − H(z))

Then, the VG attribution for an input x is given by

V GF (x) = H(⟨w, x⟩)(1 − H(⟨w, x⟩))w (23)

Now consider x′ ∈ Nx is a noisy version of input image x where Nx indicates a neighborhood of inputs x
where the model prediction is locally consistent. Then, the VG attribution for an input x′ is given by

V GF (x′) = H(⟨w, x′⟩)(1 − H(⟨w, x′⟩))w (24)

The stability of the VG attribution is computed as the norm of the difference between the attribution of the
original image and its noisy counterpart and can be expressed as

∆ = ||V GF (x′) − V GF (x)||1 (25)

Substituting the expressions for V GF (x) and V GF (x′), and simplifying, we obtain

∆ = ||V GF (x′) − V GF (x)||1
= ||H(⟨w, x′⟩)(1 − H(⟨w, x′⟩))w − H(< w, x >)(1 − H(⟨w, x⟩)).w||1

= ||
(

H(⟨w, x′⟩)(1 − H(⟨w, x′⟩)) − H(⟨w, x⟩)(1 − H(⟨w, x⟩))
)

w||1

= ||
(

F (x′)(1 − F (x′)) − F (x)(1 − F (x))
)

w||1

= ||
(

(F (x′) − F (x))(1 − F (x′) − F (x))
)

w||1

(26)

Bounding this by the magnitude of the change in model prediction,

∆ ≤ ||
(

F (x′) − F (x)
)

w||1

∆ ≤ ||F (x′) − F (x)||1.||w||1
(27)

Assuming w to be constant for a given model, the stability of the VG attribution is a direct result of the
sensitivity of the model ||F (x′) − F (x)||.
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H.2 Relationship for Integrated Gradient (IG) (Sundararajan et al., 2017)

The feature attribution score computed by Integrated Gradient (IG) for feature i of input image x ∈ Rd

with baseline u, model F is given by:

IGF
i (x, u) = (xi − ui).

∫ 1

α=0
∂iF (u + α(x − u))∂α (28)

For an input image x, IG returns a vector IGF (x, u) ∈ Rd with scores that quantify the contribution of
xi to the model prediction F (x). For a single layer network F (x) = H(⟨w, x⟩) where H is a differentiable
scalar-valued function and ⟨w, x⟩ is the dot product between the weight vector w and input x ∈ Rd, IG
attribution has a closed form expression (Chalasani et al., 2020).

For given x, u and α, let us consider v = u + α(x − u). If the single-layer network is represented as
F (x) = H(⟨w, x⟩) where H is a differentiable scalar-valued function, ∂iF (v) can be computed as:

∂iF (v) = ∂F (v)
vi

= ∂H(⟨w, v⟩)
∂vi

= H ′(z)∂⟨w, v⟩
∂vi

= wiH
′(z) (29)

Here, H ′(z) is the gradient of the activation H(z) where z = ⟨w, v⟩. To compute ∂F (v)
∂α :

∂F (v)
∂α

=
d∑

i=1
(∂F (v)

∂vi

∂vi

∂α
) (30)

We can substitute value of ∂vi

∂α = (xi − ui) and ∂iF (v) from Eq. 29 to Eq. 30.

∂F (v)
∂α

=
d∑

i=1
[wiH

′(z)(xi − ui)]

= ⟨x − u, w⟩H ′(z) (31)

This gives:

dF (v) = ⟨x − u, w⟩H ′(z)∂α (32)

Since ⟨x − u, w⟩ is scalar,

H ′(z)∂α = dF (v)
⟨x − u, w⟩

(33)

Eq. 33 can be used to rewrite the integral in the definition of IGF
i (x) in Eq. 28,
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∫ 1

α=0
∂iF (v)∂α =

∫ 1

α=0
wiH

′(z)∂z [From Eqn. 29]

=
∫ 1

α=0
wi

dF (v)
⟨x − u, w⟩

= wi

⟨x − u, w⟩

∫ 1

α=0
dF (v)

= wi

⟨x − u, w⟩
[F (x) − F (u)] (34)

Hence, we obtain the closed form for Integrated Gradient from its definition in Eqn. 28 as

IGF
i (x, u) = [F (x) − F (u)] (xi − ui)wi

⟨x − u, w⟩

IGF (x, u) = [F (x) − F (u)] (x − u) ⊙ w
⟨x − u, w⟩

(35)

Here, ⊙ is the entry-wise product of two vectors.

Now consider x′ ∈ Nx is a noisy version of input image x where Nx indicates a neighborhood of inputs x
where the model prediction is locally consistent. The stability of the IG attribution can be computed using
Eqn. 36.

∆ = ||IGF (x′, u) − IGF (x, u)||1 (36)

This is equivalent to,

∆ ≈ ||IGF (x′, x)||1

=
∣∣∣∣∣∣[F (x′) − F (x)] (x

′ − x) ⊙ w
⟨x′ − x, w⟩

∣∣∣∣∣∣
1

=
∣∣∣∣∣∣[F (x′) − F (x)]∆x ⊙ w

⟨∆x, w⟩

∣∣∣∣∣∣
1

(37)

Assuming w to be constant for a given model, we can conclude from Eqn. 37 that the sensitivity of the IG
attribution is a direct result of the sensitivity of the model ||F (x′) − F (x)||.

H.3 Relationship for SmoothGrad (SG) (Smilkov et al., 2017)

To compute SmoothGrad (SG), we introduce Gaussian noise n ∼ N (0, σ2) to the input x and compute the
input-gradient for multiple noisy samples xk = x + nk for k = 1, . . . , N , where N is the number of noise
samples.

SG(x) = 1
N

N∑
k=1

∂F (xk)
∂xk

(38)

SG explanation is then obtained by averaging the explanations. Since SG is a simple averaging of Vanilla
Gradient, the relationship for SG follows from relationship of VG, as shown in Section H.1.
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I Evaluation metrics

Below, we discuss evaluation metrics used in our experiments.

I.1 Sparsity (Chalasani et al., 2020)

We measure the sparsity of the attribution vector ϕ(x) by computing its Gini index. Given a vector of
attribution ϕ(x) ∈ Rd, the absolute of the vector is first sorted in non-decreasing order, and the Gini index
is computed using Eqn. 39.

G(ϕ(x)) = 1 − 2
d∑

k=1

ϕ(x)(k)

||ϕ(x)||1
d − k + 0.5

d
(39)

The formula calculates a weighted sum of fractions, where each fraction represents the contribution of the
k-th largest element to the overall sparsity. The formula assigns greater weight to larger elements and smaller
weight to smaller elements. The Gini Index values lie in between [0, 1]; A value of 1 indicates perfect sparsity,
where only one element in the vector ϕi(x) > 0. The sparsity is zero if all the vectors are equal to some
positive value.

I.2 Stability (Agarwal et al., 2022)

The stability metric measures how similar explanations are for similar inputs. Relative input stability (given
by Eqn. 40) is measured as the difference between two attribution vectors ϕ(x) and ϕ(x′) with respect to
the difference between the two inputs x and x′. x′ is computed by perturbing x. A lower RIS value shows
that explanations are similar for similar inputs.

RIS = maxx′

|| ϕ(x)−ϕ(x′)
ϕ(x) ||

max(|| x−x′

x ||p, ϵmin)
∀x′ s.t. x′ ∈ Nx; ŷx = ŷx′

(40)

Relative input stability only measures the difference in input space and does not measure whether there was
a change in the logic path of a network for a perturbed input. Relative representation stability (given by
Eqn. 41) uses the internal representation of the model (a(.)) to compute the stability.

RRS = maxx′

|| ϕ(x)−ϕ(x′)
ϕ(x) ||

max(||a(x) − a(x′)||p, ϵmin)
∀x′ s.t. x′ ∈ Nx; ŷx = ŷx′

(41)

Relative output stability (given by Eqn. 42) measures the difference between two attribution vectors ϕ(x)
and ϕ(x′) with respect to the difference between the model logits for two inputs z(x) and z(x′) when x is
perturbed to produce x′. A lower ROS value shows that explanations are similar for similar inputs.

ROS = maxx′

|| ϕ(x)−ϕ(x′)
ϕ(x) ||

max(||z(x) − z(x′)||p, ϵmin)
∀x′ s.t. x′ ∈ Nx; ŷx = ŷx′

(42)

Nx in Eqn. 40, Eqn. 41 and Eqn. 42 indicates a neighborhood of inputs x′ similar to x. We use the
implementation of the stability metrics available in Quantus (Hedström et al., 2023).
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I.3 Faithfulness

Faithfulness estimate (Alvarez Melis & Jaakkola, 2018): The faithfulness metric measures the
influence of attributed features on model prediction. If the features attributed to an explanation method
truly capture the model behavior, the influence should be high. Influence is measured with a correlation
metric where a given image is iteratively modified to compute the correlation between the sum of attributions
and the difference in model prediction. We use the implementation of the faithfulness estimate available in
Quantus (Hedström et al., 2023).

Performance Information Curves (PIC) (Kapishnikov et al., 2019): Performance Informa-
tion Curves (PIC) is analogous to the area under Receive Operating Characteristics (ROC) curves, proposed
by Kapishnikov et al., to measure the quality of saliency maps. There are two variants of PIC: Area
Under Softmax Information Curve (SIC) and Area Under Accuracy Information Curve (AIC). To measure
PIC, we take a blurred version of a given image and then unblur the pixels by adding features that are
deemed important by an attribution method. We measure the entropy of the unblurred image and model
performance and then map the model performance result as a function of the entropy. The two variants of
the PIC, AIC, and SIC, differ in the model performance metric used to compute the area under the curve.
AIC uses the accuracy of images and SIC uses the proportion of the softmax. We use the implementation
shared by the authors of the original paper (PAIR, 2021).

I.4 ROAD: Remove and Debias (Rong et al., 2022)

ROAD measures the accuracy of a model on the provided test set at each step of an iterative process
of removing k most important pixels. Removal of pixels is done with a noisy linear imputation to avoid
out-of-distribution samples.

We use the MoRF (Most Relevant First) removal strategy implementation of the ROAD evaluation available
in Quantus (Hedström et al., 2023). Given a network F and an input sample, an attribution method assigns
an importance value to each input feature for the sample. The features are then ordered in decreasing order
of importance for MoRF. At each iteration, k most important features are removed and the model accuracy
is measured. We set k = 5 in our experiments. We prefer a sharper drop in accuracy for a better explanation.

We use ROAD instead of Insertion/Deletion (Petsiuk et al., 2018) or ROAR (Hooker et al., 2019) because
Insertion/Deletion introduces artifacts and results in a distribution shift of perturbed inputs, and ROAR
requires an expensive model retraining.

I.5 Similarity (Adebayo et al., 2018)

Similarity measures the structural similarity between saliency maps of original and perturbed samples, given
the same model prediction. We measure the similarity of saliency maps using the structural similarity index
(SSIM). For each image, we add Gaussian noise and generate its noisy version such that the model prediction
is consistent. We then compute the saliency map of the two images and measure the structural similarity
between the maps.

J Additional Visualization

We provide additional visualizations on Vanilla Gradient (VG) in Figures 17, 18 and 19 for various mod-
els: naturally-trained (N), adversarially-trained (A), adversarial training with mean-filter smoothing (M1),
adversarial training with median-filter smoothing (M2), adversarial training with Gaussian-filter smoothing
(G), adversarial training with embedded filter smoothing (E), and adversarial training with non-local gaus-
sian smoothing (NG). We can observe that saliency maps from the adversarial models (A) are sparser than
the naturally trained model (N). Adversarially trained models with local feature map smoothed models (M1,
M2, G) reduce the sparsity to improve stability. The use of non-local smoothing filters (E and NG) increases
the sparsity further.
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Test image N A M1 M2 G E NG

Figure 17: Additional visualization for VG (FMNIST) (N: naturally-trained, A: adversarially-trained, M1:
adversarially-trained with mean-filter, M2: adversarially-trained with median-filter, G: adversarially-trained
with Gaussian-filter, E: adversarially-trained with embedded filter, NG: adversarially-trained with non-local
gaussian)

Test image N A M1 M2 G E NG

Figure 18: Additional visualization for VG (ImageNette) (N: naturally-trained, A: adversarially-trained, M1:
adversarially-trained with mean-filter, M2: adversarially-trained with median-filter, G: adversarially-trained
with Gaussian-filter, E: adversarially-trained with embedded filter, NG: adversarially-trained with non-local
gaussian)

We plot the saliency maps using Integrated Gradient (IG) for various models in Figures 20, 21 and 22. As
illustrated, IG produces more fine-grained saliency maps than Vanilla Gradient even with a naturally trained
model. Robust models increase the sparsity of such saliency maps, compromising stability. Adding local
filters like median during adversarial training reduces sparsity to enhance stability.
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Test image N A M1 M2 G E NG

Figure 19: Additional visualization for VG (CIFAR-10) (N: naturally-trained, A: adversarially-trained, M1:
adversarially-trained with mean-filter, M2: adversarially-trained with median-filter, G: adversarially-trained
with Gaussian-filter, E: adversarially-trained with embedded filter, NG: adversarially-trained with non-local
gaussian)

Test image N A M1 M2 G E NG

Figure 20: Saliency maps visualization on FMNIST using IG across different models (N: naturally-trained,
A: adversarially-trained, M1: adversarially-trained with mean-filter, M2: adversarially-trained with median-
filter, G: adversarially-trained with Gaussian-filter, E: adversarially-trained with embedded filter, NG:
adversarially-trained with non-local gaussian).

We provide illustrations for SmoothGrad (SG) in Figures 23, 24 and 25 where we can observe that saliency
maps of naturally trained models are visually sharper and coherent because of averaging. However, using
robust models increases the sparsity and produces more comprehensible saliency maps.
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Test image N A M1 M2 G E NG

Figure 21: Saliency maps visualization on CIFAR-10 using IG across different models (N: naturally-trained,
A: adversarially-trained, M1: adversarially-trained with mean-filter, M2: adversarially-trained with median-
filter, G: adversarially-trained with Gaussian-filter, E: adversarially-trained with embedded filter, NG:
adversarially-trained with non-local gaussian).

Test image N A M1 M2 G E NG

Figure 22: Saliency maps visualization on ImageNette using IG across different models (N: naturally-
trained, A: adversarially-trained, M1: adversarially-trained with mean-filter, M2: adversarially-trained with
median-filter, G: adversarially-trained with Gaussian-filter, E: adversarially-trained with embedded filter,
NG: adversarially-trained with non-local gaussian).
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Test image N A M1 M2 G E NG

Figure 23: Saliency maps visualization on FMNIST using SmoothGrad across different models (N: naturally-
trained, A: adversarially-trained, M1: adversarially-trained with mean-filter, M2: adversarially-trained with
median-filter, G: adversarially-trained with Gaussian-filter, E: adversarially-trained with embedded filter,
NG: adversarially-trained with non-local gaussian).

Test image N A M1 M2 G E NG

Figure 24: Saliency maps visualization on CIFAR-10 using SmoothGrad across different models (N: naturally-
trained, A: adversarially-trained, M1: adversarially-trained with mean-filter, M2: adversarially-trained with
median-filter, G: adversarially-trained with Gaussian-filter, E: adversarially-trained with embedded filter,
NG: adversarially-trained with non-local gaussian).
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Test image N A M1 M2 G E NG

Figure 25: Saliency maps visualization on ImageNette using SmoothGrad across different models (N:
naturally-trained, A: adversarially-trained, M1: adversarially-trained with mean-filter, M2: adversarially-
trained with median-filter, G: adversarially-trained with Gaussian-filter, E: adversarially-trained with em-
bedded filter, NG: adversarially-trained with non-local gaussian).
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