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Abstract001

This paper introduces DrDiff, a novel frame-002
work for long-text generation that overcomes003
the efficiency-quality trade-off through three004
core technologies. First, we design a dynamic005
expert scheduling mechanism that intelligently006
allocates computational resources during the007
diffusion process based on text complexity, en-008
abling more efficient handling of text genera-009
tion tasks of varying difficulty. Second, we in-010
troduce a Hierarchical Sparse Attention (HSA)011
mechanism that adaptively adjusts attention pat-012
terns according to a variety of input lengths, re-013
ducing computational complexity from O(n2)014
to O(n) while maintaining model performance.015
Finally, we propose a soft absorption guidance016
optimization strategy that combines with DPM-017
solver++ to reduce diffusion steps, significantly018
improving generation speed. Comprehensive019
experiments on various long-text generation020
benchmarks demonstrate the superiority of our021
DrDiff over the existing SOTA methods.022

1 Introduction023

Large Language Models (LLMs) (Radford et al.,024

2019; Brown et al., 2020a; Touvron et al., 2023;025

OpenAI, 2024) have demonstrated remarkable ca-026

pabilities in knowledge encoding and contextual un-027

derstanding during their pre-training phase, achiev-028

ing significant success across a variety of natural029

language processing tasks. However, despite these030

advanced abilities, LLMs encounter substantial bot-031

tlenecks when generating ultra-long texts (e.g., ex-032

ceeding 10,000 tokens) (Krishna et al., 2023; Liu033

et al., 2024). These challenges primarily manifest034

in maintaining long-range coherence, managing035

quadratically increasing computational complex-036

ity, and ensuring contextual consistency (Bai et al.,037

2024b; Liu et al., 2024; Wu et al., 2025). While di-038

rectly fine-tuning on long sequences might appear039

as a straightforward solution, this method demands040

prohibitive computational resources and proves dif-041

ficult to optimize effectively for documents span- 042

ning tens of thousands of tokens or more. 043

To address these challenges, the academic com- 044

munity has proposed various methods to enhance 045

the efficiency and effectiveness of LLMs in process- 046

ing long sequences. These can be broadly catego- 047

rized into two main types: (1) approaches based on 048

optimizing the attention mechanism, such as sparse 049

attention (e.g., Longformer (Beltagy et al., 2020), 050

etc. (Bertsch et al., 2023; Kitaev et al., 2020; Child 051

et al., 2019a)), which reduce complexity by mod- 052

ifying the attention computation pattern; and (2) 053

explorations into emerging generation paradigms 054

tailored for long sequences, for instance, applying 055

diffusion models (Tang et al., 2023; Becker et al., 056

2025) to text generation or specifically optimiz- 057

ing LLM training and inference strategies (Chen 058

et al., 2023) for extended contexts. Although these 059

methods have achieved certain progress in specific 060

scenarios, they typically employ relatively fixed re- 061

source allocation and information processing flows 062

when handling extremely long sequences. Neither 063

the fixed sparse patterns of sparse attention nor 064

the generally consistent iterative approach through- 065

out the denoising process in diffusion models ade- 066

quately considers the heterogeneous requirements 067

of different text generation stages or varying text 068

segments, thereby limiting their adaptability. 069

This inherent “fixedness” becomes particularly 070

pronounced in scenarios involving ultra-long text 071

generation (e.g., over 10,000 tokens), directly lead- 072

ing to three critical, yet unresolved, limitations: 073

(1) The feature dimension. (2) Suboptimal com- 074

putational resource allocation: Applying a uni- 075

form computational intensity to all text segments 076

or generation stages results in resource wastage 077

on structurally simple or information-sparse parts, 078

while potentially providing insufficient computa- 079

tional power for complex or critical semantic junc- 080

tures, ultimately impacting overall efficiency and 081

performance. (3) Significant degradation in gener- 082
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ation quality with increasing length: As sequence083

length drastically increases, models often struggle084

to maintain a unified narrative thread, exhibiting085

a higher tendency for content repetition, logical086

discontinuities, and even “forgetting” important087

information generated earlier. Consequently, ex-088

isting methods find it challenging to achieve an089

ideal balance among efficiency, dynamic resource090

scheduling, and high-quality long-text generation.091

To tackle these fundamental issues, we move092

beyond attempting localized improvements on ex-093

isting fixed architectures and propose DrDiff, a094

novel dynamic generation framework. DrDiff’s095

core principle is the dynamic adjustment of its in-096

ternal processing mechanisms. To avoid sacrific-097

ing efficiency through indiscriminate complexity098

increases, we introduce a strategy that combines099

Hierarchical Sparse Attention (HSA) with a dy-100

namically routed diffusion mechanism. The central101

idea of HSA is to adaptively select and combine102

different attention patterns (local, dilated, global)103

based on the current text length and content char-104

acteristics, ensuring effective dependency capture105

at various scales while optimizing computational106

complexity from O(N2) to nearly O(N). Further-107

more, we deeply integrate this dynamic attention108

mechanism with the denoising process of diffu-109

sion models. Through Dynamic Expert Scheduling110

(DES), the model can allocate different computa-111

tional resources (i.e., expert networks) to text seg-112

ments or generation steps of varying complexities.113

Additionally, soft absorbing state guidance is em-114

ployed to optimize diffusion paths and attention115

allocation, which, combined with efficient solvers116

such as DPM-solver++, further enhances genera-117

tion efficiency. Essentially, this design ensures that118

computational resources and attention focus are in-119

telligently allocated based on real-time demands,120

rather than adhering to predefined patterns. Specif-121

ically, DrDiff introduces three key innovations:122

• Dynamic Hierarchical Sparse Attention:123

Adaptively selects different attention mecha-124

nisms based on text complexity and length,125

significantly enhancing long-range depen-126

dency modeling capabilities while reducing127

computational complexity.128

• Dynamic Expert Scheduling and Diffu-129

sion: Dynamically allocates computational130

resources during the generation process, ef-131

ficiently integrating dynamic attention with132

diffusion models to improve generation qual- 133

ity and efficiency. 134

• Soft Absorbing State Optimized Inference 135

Path: Leverages a soft absorbing mechanism 136

to optimize diffusion paths and attention allo- 137

cation, further improving the coherence and 138

efficiency for ultra-long text generation. 139

2 Related Work 140

Long-Text Generation and Transformer Ar- 141

chitecture. Since its introduction, the Trans- 142

former (Raffel et al., 2023; Brown et al., 2020b; Tay 143

et al., 2022a; Dai et al., 2019; Wang et al., 2020; 144

Child et al., 2019b; Zhang et al., 2025b,a) archi- 145

tecture has demonstrated remarkable performance 146

in natural language processing (NLP) tasks, par- 147

ticularly in long-text generation (Bai et al., 2024c; 148

Guan et al., 2021). However, despite its advan- 149

tages in maintaining textual coherence and contex- 150

tual consistency, its computational complexity of 151

O(n2) (Child et al., 2019b; Beltagy et al., 2020) 152

when handling extremely long sequences presents 153

severe computational resource bottlenecks (Ashk- 154

boos et al., 2024; Chamberlain et al., 2008). More 155

recently, researchers have explored various opti- 156

mization techniques to enhance the efficiency and 157

quality of Transformers in long-text generation, 158

e.g., models such as BERT and GPT perform excep- 159

tionally well in generating short to medium-length 160

texts. However, their performance significantly de- 161

grades when handling generation tasks exceeding 162

10,000 tokens, limiting their practical applicability. 163

Sparse Attention Mechanisms. To improve 164

the efficiency of Transformers (Vaswani et al., 165

2023) in processing long sequences, sparse atten- 166

tion mechanisms have emerged as effective solu- 167

tions (Child et al., 2019c; Lan et al., 2020; Tay 168

et al., 2022b; Clark et al., 2020; Chen et al., 2021; 169

Rasooli and Tetreault, 2015). Longformer, for ex- 170

ample, restricts each token’s attention span to a 171

local neighborhood, reducing the computational 172

complexity from O(n2) to O(nw) (Vaswani et al., 173

2023), where w represents the window size. Big- 174

Bird (Devlin et al., 2019) further integrates lo- 175

cal attention, random attention, and global atten- 176

tion, maintaining linear complexity while capturing 177

global dependencies more effectively. Although 178

sparse attention enhances long-text processing effi- 179

ciency, these methods still struggle to model global 180

semantic dependencies and maintain coherence as 181

sequence length increases. Prior studies (Gao et al., 182
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Figure 1: The Hierarchical Sparse Attention (HSA) mechanism dynamically adjusts attention patterns for texts of
different lengths: using dense attention for short texts within 512 tokens, local + sparse dilated attention combination
for 512–4K, sparse dilated + global attention for 4K–8K texts, and global attention with larger windows for texts
above 8K. This hierarchical strategy reduces computational complexity from O(n2) to O(n) while maintaining
model performance.

2024; Tang et al., 2024) have introduced hierar-183

chical attention structures and dynamic (Shazeer184

et al., 2017) attention patterns to strengthen sparse185

attention’s capability, providing new avenues for186

improving long-text generation quality.187

Application of Diffusion Models in Text Gen-188

eration. Diffusion models (Ho et al., 2020; Yuan189

et al., 2023) have shown great potential in struc-190

tured text generation (Lin et al., 2023; Xu et al.,191

2025; Mirbeygi and Beigy, 2025), leveraging an192

iterative denoising process to produce high-quality193

(Nichol and Dhariwal, 2021), complex text while194

capturing fine-grained semantics (Beltagy et al.,195

2020). However, in the long-sequence generation,196

they suffer from slow convergence and high train-197

ing costs, especially when handling sequences ex-198

ceeding 10,000 tokens, where computational de-199

mands escalate sharply, reducing efficiency. En-200

suring stability and quality control in long-text201

generation remains challenging. Researchers have202

proposed various optimizations, such as DiffSeq203

(Gong et al., 2023), which significantly improves204

efficiency and quality. Yet, a key challenge per-205

sists: enhancing coherence and semantic consis-206

tency while minimizing computational costs. To207

achieve this, we propose our DrDiff framework,208

which integrates dynamic sparse diffusion routing209

and hierarchical attention mechanisms to funda-210

mentally improve efficiency and quality in long-211

text generation.212

3 Method213

3.1 Overview of the DrDiff Framework214

DrDiff is architected as a diffusion model-based215

framework for text generation, designed to tackle216

the aforementioned challenges inherent in produc-217

ing ultra-long texts. As illustrated in Figure 2, an 218

input text sequence, denoted as x, is first tokenized 219

and processed through an embedding layer to yield 220

an initial token embedding sequence Z0 ∈ RN×d, 221

where N is the sequence length and d is the embed- 222

ding dimension. 223

The forward process of the diffusion model is 224

defined as a Markov chain that gradually introduces 225

Gaussian noise to Z0 over T steps: 226
q(Zt | Zt−1) = N

(
Zt;

√
1 − βtZt−1︸ ︷︷ ︸

attenuated previous state

, βtI︸︷︷︸
injected noise variance

)
(1) 227

where t ∈ {1, ..., T}, and βt ∈ (0, 1) are prede- 228

fined noise schedule parameters. Using αt = 1−βt 229

and ᾱt =
∏t

s=1 αs, the noisy state Zt at any 230

timestep t can be directly derived from Z0: 231

Zt =
√
ᾱtZ0︸ ︷︷ ︸

original data component

+
√
1− ᾱtϵ︸ ︷︷ ︸

cumulative noise component

where ϵ ∼ N (0, I)

(2) 232
The reverse denoising process involves learning a 233

neural network ϵθ(Zt, t), parameterized by θ, to 234

predict the noise ϵ added at timestep t given Zt. 235

The core innovation of DrDiff lies within its denois- 236

ing network ϵθ, which deeply integrates Hierarchi- 237

cal Sparse Attention (HSA), a Dynamic Routing 238

Diffusion mechanism based on Mixture of Experts 239

(MoE), and employs Soft Absorbing States (SAS) 240

for explicit path guidance and optimization. These 241

components operate synergistically to achieve ef- 242

ficient and high-quality generation of ultra-long 243

sequences. 244

3.2 Hierarchical Sparse Attention (HSA) 245

To overcome the O(N2) computational bottleneck 246

of standard self-attention and to dynamically adapt 247

to the dependency modeling requirements of texts 248

with varying lengths, DrDiff incorporates Hierar- 249

chical Sparse Attention (HSA) within the Trans- 250

former modules of its denoising network ϵθ. The 251
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Figure 2: This diagram illustrates the diffusion process in text generation, transforming input text through tokeniza-
tion into word embeddings (Z0), then following a forward process that gradually adds Gaussian noise to create
pure noise (Zt). The reverse process uses a denoising model with qϕ(Zt|Zt−1) transitions to reconstruct the text,
enhanced by a Mixture-of-Experts (MoE) architecture with a Router directing computation to specialized FFN
experts, and incorporating Hierarchical Sparse Attention (HSA) for efficient processing of varying text lengths.

central concept of HSA is the dynamic construc-252

tion of a sparse attention mask MHSA(N) based253

on the input sequence length N , which dictates the254

scope of attention computations. As depicted in255

Figure 1, standard self-attention is computed as256

Attention(Q,K, V ) = softmax
(
QKT
√
dk

)
V . HSA257

modifies the attention scores (prior to softmax) us-258

ing the mask:259

SHSA
ij =


QiK

T
j√

dk
if (MHSA(N))ij = 1

−∞ if (MHSA(N))ij = 0

(3)260

The construction strategy for MHSA(N) hier-261

archically combines several base sparse patterns,262

with its parameters (such as window size w, dila-263

tion rate δ, number/proportion of global nodes, and264

length thresholds N1, N2, N3) determined through265

analysis of target task data characteristics and pre-266

liminary hyperparameter tuning. This strategy un-267

folds as follows: for short sequences (N ≤ N1),268

dense attention (MHSA(N) = Mdense) is em-269

ployed to capture all local details; for medium270

sequences (N1 < N ≤ N2), a combination of271

local attention with a fixed window w1 and dilated272

attention with a dilation rate δ1 (MHSA(N) =273

M local(w1) ∨Mdilated(δ1)) is used to effectively274

cover short to medium-range dependencies; for275

longer sequences (N2 < N ≤ N3), dilated at-276

tention with a larger dilation rate δ2 is combined277

with global attention based on a pre-selected set of278

global nodes G1 (e.g., tokens selected at regular279

intervals or based on learnable importance scores)280

(MHSA(N) = Mdilated(δ2) ∨Mglobal(G1)); and281

for ultra-long sequences (N > N3), the mechanism282

primarily relies on global attention (MHSA(N) =283

Mglobal(G2,Wg(N))), where the global node se-284

lection strategy G2 may be more dynamic (e.g.,285

based on saliency from previous layer outputs),286

and its effective “window size” or attention span 287

Wg(N) employs a dynamic scaling strategy, such 288

as Wg(N) = min(N, c · N/ logN) or another 289

smooth growth function, to adapt to inputs of ar- 290

bitrary length and ensure global information cap- 291

ture. The innovation of HSA, distinct from existing 292

fixed sparse patterns, lies in its hierarchical, length- 293

based dynamic pattern switching and parameter 294

adjustment logic, coupled with an adaptive scal- 295

ing mechanism for the global attention range in 296

ultra-long sequences. This approach significantly 297

reduces the average computational complexity, ap- 298

proaching linear complexity, while retaining the 299

ability to capture critical long-range dependencies. 300

3.3 Dynamic Routing Diffusion 301

To address the heterogeneous computational re- 302

quirements of different stages and content segments 303

during text generation, DrDiff incorporates a Dy- 304

namic Routing Diffusion mechanism based on Mix- 305

ture of Experts (MoE) within the Feed-Forward 306

Network (FFN) components of its ϵθ Transformer 307

modules. The input hidden state ht (from the HSA 308

layer) is routed to one or more expert networks for 309

processing. 310

Routing Decision. A routing network Rgate, 311

typically a small MLP, computes logits s(ht) for 312

each of the M experts based on ht. We posit that ht, 313

having been processed by HSA, already encodes 314

the complexity and dependency characteristics of 315

the current context, enabling the routing network to 316

learn a mapping from these features to an optimal 317

selection of experts. 318
s(ht) = [s1(ht), . . . , sM (ht)] = Wgate · StopGradient(ht) + bgate︸ ︷︷ ︸

raw logits for expert selection

(4) 319
DrDiff employs Top-k sparse gating (where k is 320

typically 1 or 2) to select experts. The gating 321
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weight Gj(ht) for expert j is:322

Gj(ht) =


exp(sj(ht))∑

l∈TopK(s(ht))

exp(sl(ht))
if expert j ∈ TopK(s(ht))︸ ︷︷ ︸

k experts selected based on logits

0 otherwise

(5)323
Expert Networks & Specialization. There are324

M expert networks {Ej}Mj=1 operating in parallel.325

A key innovation in DrDiff is the differentiated de-326

sign of these expert networks to promote functional327

specialization. This includes: capacity differences,328

where some experts employ FFNs with smaller di-329

mensions (e.g., 0.5 times the standard FFN dimen-330

sion) to process simpler or repetitive text segments331

more economically; and optionally, structural dif-332

ferences or task-specific fine-tuning, where some333

experts might feature slightly different activation334

functions or layer normalization strategies, or even335

undergo preliminary, lightweight fine-tuning on336

specific sub-tasks (such as syntactic generation or337

content generation for particular topics) during a338

pre-training phase to enhance their sensitivity to339

certain input types. Each activated expert Ej pro-340

cesses the input ht as follows:341

Oj(ht) = Ej(ht) = W
(j)
2 ReLU

( first linear transform & activation︷ ︸︸ ︷
W

(j)
1 ht + b

(j)
1

)
︸ ︷︷ ︸

second linear transform

+ b
(j)
2

(6)342
Output Integration & Load Balancing. The final343

output of the MoE layer is h′t =
∑M

j=1Gj(ht) ·344

Oj(ht). During training, an auxiliary load balanc-345

ing loss Laux = λaux
∑M

j=1 fj ·Pj (where fj is the346

fraction of tokens dispatched to expert j and Pj is347

the routing probability for expert j) is introduced to348

ensure all experts are sufficiently trained. Through349

this mechanism, the MoE learns to dynamically350

allocate computational load to the most suitable351

experts based on input features (which serve as352

implicit “complexity” signals), thereby avoiding353

the inefficient computation characteristic of fixed354

structures that treat all inputs uniformly.355

3.4 Soft Absorbing States Guided356

Optimization and Efficient Inference357

To further optimize the generation path for ultra-358

long texts, enhance global coherence, and accel-359

erate inference, DrDiff introduces Soft Absorbing360

States (SAS), denoted as Ẑtk , for explicit guidance361

at specific intermediate denoising timesteps tk (e.g.,362

tk ∈ {T/4, T/2, 3T/4}, chosen based on a con-363

ceptual division of typical text generation phases).364

The core innovation of SAS lies in its target defini-365

tion and acquisition mechanism.366

Construction of SAS Targets Ẑtk . We ex-367

plore methods such as the following for construct-368

ing SAS targets: SAS based on simplified repre- 369

sentations, where for a given Z0, a core seman- 370

tic summary Summ(Z0) is extracted using a pre- 371

trained, lightweight summary generation model or 372

a topic model. Ẑtk is then defined as the ideal 373

noisy state corresponding to this summary informa- 374

tion at timestep tk: Ẑtk =
√
ᾱtkE(Summ(Z0)) + 375√

1− ᾱtkϵ
′, where E is an embedding function. 376

This form of SAS guides the model to first generate 377

a structure compliant with the summary; and op- 378

tionally, a more complex SAS based on clustering, 379

which involves feature extraction and clustering 380

of noisy states q(Ztk |Z0) from a large corpus of 381

real texts at various timesteps tk. The centroid of 382

each cluster can serve as an SAS target, guiding 383

the generation process towards typical regions of 384

the data manifold. 385

SAS-guided Training Objective. In addition 386

to the standard diffusion loss Ldiffusion, an SAS 387

guidance loss LSAS is incorporated: 388

Ldiffusion = Et, Z0, ϵ

∥∥∥∥∥∥∥ ϵ︸︷︷︸
target noise

− ϵθ(Zt, t)︸ ︷︷ ︸
model’s predicted noise

∥∥∥∥∥∥∥
2

(7) 389

To compute LSAS , we estimate the state Z̃θ
tk
(Zt) 390

that the model would generate at the target timestep 391

tk, given the current state Zt and the model’s pre- 392

dicted noise ϵθ(Zt, t). This can be achieved by 393

first estimating Z̃0 through a one-step deterministic 394

reverse process (e.g., DDIM/DDPM): 395

Z̃0(Zt, ϵθ) =
1

√
ᾱt

(
Zt −

√
1 − ᾱt ϵθ(Zt, t)

)
(8) 396

and then applying the forward diffusion process to 397

reach tk: 398

Z̃
θ
tk

(Zt) =
√

ᾱtk
Z̃0(Zt, ϵθ) +

√
1 − ᾱtk

ϵ
′ (9) 399

The SAS loss is then defined as: 400

LSAS =

KSAS∑
k=1

λSAS,k · || Z̃θ
tk
(Zt)︸ ︷︷ ︸

model’s predicted state at tk

− Ẑtk︸︷︷︸
desired soft absorbing state at tk

||2

(10) 401
This explicit path guidance is a key differentiator 402

of DrDiff from traditional diffusion models, as it 403

constrains the generation trajectory to align with 404

pre-defined structural information at critical inter- 405

mediate junctures. 406

Combination with Efficient ODE/SDE 407

Solvers. The denoising path guided by SAS is 408

generally smoother and more “goal-oriented,” 409

reducing the stochasticity and complexity of 410

the diffusion trajectory. This facilitates the 411

effective operation of efficient numerical Ordi- 412

nary Differential Equation (ODE) / Stochastic 413

Differential Equation (SDE) solvers, such as 414

DPM-Solver++, which treat the discrete de- 415

noising steps as solving an ODE/SDE of the 416
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form dZt = f(Zt, t)dt + g(t)dWt. Specifically,417

a smoother path may imply better Lipschitz418

properties for the function f(Zt, t), or a more419

consistent evolution of the model’s prediction ϵθ420

with respect to t. This allows the solver to employ421

larger integration steps, thereby significantly422

reducing the number of sampling steps S ≪ T423

while maintaining or even enhancing generation424

quality and coherence.425

4 Experiments426

The evaluation consists of four main experimen-427

tal categories: Natural Language Understanding428

(NLU): We test DrDiff on the LongBench bench-429

mark (Bai et al., 2024a) tasks to evaluate its ability430

to understand and process language in long text431

effectively. Long-Text Generation and Question432

Answering: We assess DrDiff’s performance on433

multi-hop and long-form question-answering tasks,434

as well as its ability to generate coherent and struc-435

tured long texts. Long-Text Summarization: We436

evaluate DrDiff’s summarization capabilities on437

datasets such as Arxiv and Alpaca, focusing on its438

ability to condense long documents while preserv-439

ing key information. Mixture-of-Experts (MoE)440

Expert Count Impact: We investigate how different441

numbers of MoE experts affect DrDiff’s perfor-442

mance across datasets like Arxiv, HotpotQA, Com-443

monsense Conversation, and QQP. Additionally,444

we conduct ablation studies and hyperparameter445

sensitivity analyses to validate the contributions of446

different components in DrDiff’s architecture. We447

also perform long-text stress testing to examine the448

model’s ability to handle extremely long sequences449

and evaluate the impact of different diffusion strate-450

gies on model performance (see Appendix A.4 and451

A.6 for more details). All experiments are con-452

ducted on NVIDIA A100 GPUs, and the specific453

hyperparameter settings are in Appendix A.1.454

4.1 Natural Language Understanding455

Experimental Setting. To comprehensively eval-456

uate the performance of DrDiff, particularly its457

ability to handle diverse tasks and long sequences,458

we assessed it on the LongBench benchmark.459

LongBench encompasses a variety of challenging460

tasks, including single-document question answer-461

ing, multi-document question answering, long in-462

context learning, long dialogue, code repository463

analysis, and long structured data processing. For464

comparison, we included several strong baseline465

models: GPT-4o, Qwen2.5-72B, Llama 3.1 70B, 466

Longformer (Beltagy et al., 2020), Qwen2.5-7B, 467

Llama 3.1 8B (LLAMA3, 2024), and DiffuSeq. 468

Given the substantial size of GPT-4o, Qwen2.5- 469

72B, and Llama 3.1 70B, we utilized the Open- 470

Router API for inference. All other models were 471

run locally on NVIDIA A100 GPUs. We report 472

the overall accuracy on the LongBench dataset, as 473

well as the performance breakdown across differ- 474

ent difficulty levels (Easy, Hard), sequence lengths 475

(Short, Medium, Long), and task types. 476

Comparisons and Analyses. The results of 477

our evaluation on the LongBench benchmark are 478

presented in Table 1. As shown in Table 1, 479

DrDiff, with approximately 220M active param- 480

eters, achieves an overall score of 33.5% on Long- 481

Bench, surpassing several competitive baselines 482

including Llama 3.1 70B (32.1%), Longformer 483

(31.0%), and DiffuSeq (29.5%). Notably, DrDiff 484

demonstrates particular strengths in handling long 485

sequences (35.6%), dialogue (38.7%), and struc- 486

tured data (34.6%). While it lags behind the signifi- 487

cantly larger models like GPT-4o and Qwen2.5- 488

72B, its competitive performance with a much 489

smaller parameter count highlights its efficiency. 490

Table 4 also provides a detailed breakdown of 491

performance across different task types, where 492

DrDiff exhibits strong performance in long dia- 493

logue (38.7%) and long structured data processing 494

(34.6%), indicating its capability in managing com- 495

plex, extended inputs in these domains. Its per- 496

formance in single-document QA (31.6%), multi- 497

document QA (32.4%), long in-context learning 498

(32.5%), and code repository analysis (29.1%) is 499

also competitive with the other smaller baseline 500

models. These results collectively underscore the 501

effectiveness and lightweight nature of the DrDiff 502

architecture for handling a diverse range of long- 503

context tasks. 504

4.2 Natural Language Generation and 505

Question Answering 506

Experimental Setting. We evaluate model per- 507

formance on long text generation and QA using 508

five datasets: WikiHop (Welbl et al., 2018), Triv- 509

iaQA (Joshi et al., 2017), OntoNotes, Hyperparti- 510

san News Detection (Yang et al., 2018), and Hot- 511

potQA (Yang et al., 2018). These datasets are cho- 512

sen to assess the model’s ability to generate co- 513

herent, lengthy responses and to answer complex, 514

multi-hop questions. We compare our DrDiff with 515

nine baselines—GPT-4o, Qwen2.5-72B, Llama 3.1 516
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Table 1: LongBench Dataset Model Performance Comparison

Model Overall (%) Easy (%) Hard (%) Short (%) Medium (%) Long (%)

GPT-4o 51.9 61.4 47.1 53.9 55.2 40.7
Qwen2.5-72B 42.6 43.2 42.3 48.1 37.6 43.9
Llama 3.1 70B 32.1 32.8 31.7 41.6 27.9 24.6
Longformer 31.0 30.4 29.2 32.5 31.7 30.8
Qwen2.5-7B 30.5 31.2 30.1 41.1 24.7 24.6
Llama 3.1 8B 30.5 31.2 30.1 35.5 28.4 26.4
DiffuSeq 29.5 30.2 28.8 34.5 27.0 25.0

DrDiff (ours) 33.5 31.7 29.8 35.5 32.4 35.6

70B, Longformer (Beltagy et al., 2020), LLaMA3-517

8B (LLAMA3, 2024), DeepSeek-R1-Distill-Qwen-518

1.5B (DeepSeek-AI, 2025), GPT-2 Large (Radford519

et al., 2019), DiffuSeq, and Llama2-7B (LLAMA2,520

2023)—each of which is fine-tuned on respective521

training splits using standard protocols.These mod-522

els include the most advanced models available523

today, as well as open source models ranging from524

large to small, and models similar to ours that525

specifically address long text problems. All experi-526

ments run under controlled hardware with fixed ran-527

dom seeds for reproducibility, reporting the highest528

test-set scores per model.529

Comparisons and Analyses. As shown in Table530

2, DrDiff demonstrates strong performance in nat-531

ural language generation and question answering532

tasks. While state-of-the-art models like GPT-4o533

and Qwen2.5-72B lead in overall scores, DrDiff534

achieves competitive results, scoring 76.2% accu-535

racy on WikiHop, 82.1% F1 on TriviaQA, 82.4%536

F1 on OntoNotes, 95.0% F1 on Hyperpartisan, and537

68.0% Joint F1 on HotpotQA. Notably, these re-538

sults place DrDiff ahead of other significant mod-539

els such as Llama 3.1 70B (77.5% average) and540

Longformer (77.0% average). For instance, Long-541

former achieved 74.6% on WikiHop, 74.1% on542

TriviaQA, and 78.4% on OntoNotes. Furthermore,543

DrDiff outperforms other models like LLaMA3-544

8B, DeepSeek-R1-Distill-Qwen-1.5B, LLaMA2-545

7B, DiffuSeq, and GPT-2 Large across these546

datasets.547

4.3 Number of Experts in MoE548

Experimental Setting. This experiment aims to549

fairly evaluate the inference performance of the550

Mixture-of-Experts (MoE) (Shazeer et al., 2017)551

compared to single-model baselines. We use552

the Arxiv dataset and measure performance using553

BLEU, ROUGE-L, and BERTScore to assess text554

quality. For a balanced comparison, the single- 555

model baseline has 160M parameters. Our MoE 556

structure consists of smaller expert models, each 557

with 20M parameters. We design three MoE con- 558

figurations with varying total numbers of experts: 559

2 experts (resulting in 40M total parameters), 4 ex- 560

perts (80M total parameters), and 8 experts (160M 561

total parameters). It is crucial to distinguish be- 562

tween “total parameters” (which scale with the 563

number of experts in a configuration) and “active 564

parameters” (the parameters engaged during a sin- 565

gle inference pass). To maintain consistency and 566

fairness in computational cost across these config- 567

urations, we activate a fixed number of 2 experts 568

(thus, 2 experts × 20M parameters/expert = 40M 569

active parameters) per inference. This ensures that 570

while the model’s capacity (total parameters) varies, 571

the computational load per inference (active param- 572

eters) remains comparable. Beyond performance 573

metrics, we also record inference time and trainable 574

parameters to analyze computational efficiency and 575

scalability. These additional measurements help as- 576

sess the trade-offs between overall model size (total 577

parameters), inference speed, and output quality. 578

Comparisons and Ablation Studies. Figure 3 579

illustrates trends in model configuration and per- 580

formance. The upper chart shows that as the total 581

number of available experts increases from 1 to 8 in 582

DrDiff (leading to an increase in total model param- 583

eters), the active parameters per inference remain 584

constant at 40M, due to our strategy of activating 585

a fixed K=2 experts. Concurrently, inference time 586

drops from 2.30s to 1.95s. The lower chart indi- 587

cates that performance metrics (BLEU, ROUGE-L, 588

BERTScore) improve with more total experts up 589

to 8 but decline slightly at 12, suggesting diminish- 590

ing returns on increasing model capacity beyond 591

a certain point. DrDiff significantly reduces active 592

parameters and inference time compared to dense 593
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Table 2: Performance on natural language generation and question answering tasks. Evaluation is conducted on five
datasets: WikiHop (multi-hop QA), TriviaQA (open QA), OntoNotes (coreference resolution), Hyperpartisan News
Detection (long document classification), and HotpotQA (distractor setting, joint F1). The scores (accuracy or F1,
as appropriate) are reported with standard deviations, and the final column shows the average across all tasks.

Method WikiHop TriviaQA OntoNotes Hyperpartisan HotpotQA Avg Score
(Acc.) (F1) (F1) (F1) (Joint F1)

GPT-4o 77.2±0.6 82.9±0.5 83.3±0.6 95.6±0.5 69.2±0.7 81.6±0.6
Qwen2.5-72B 76.8±0.7 82.5±0.6 82.9±0.7 95.3±0.6 68.8±0.8 81.3±0.7
Llama 3.1 70B 73.0±0.7 78.5±0.6 79.0±0.7 92.0±0.6 65.0±0.8 77.5±0.7
Longformer 74.6±0.7 74.1±0.9 78.4±0.7 93.8±0.6 63.9±0.7 77.0±0.7
LLaMA3-8B 69.8±0.7 69.5±0.5 74.1±0.6 84.7±0.7 59.8±0.8 71.6±0.6
DeepSeek-R1-Distill-Qwen-1.5B 67.5±0.6 71.4±0.7 73.2±0.5 79.8±0.6 61.3±0.6 70.6±0.6
LLaMA2-7B 59.2±0.7 64.8±0.6 69.5±0.7 77.4±0.6 54.2±0.7 65.0±0.6
DiffuSeq 64.1±0.6 54.3±0.7 61.2±0.6 84.3±0.7 49.6±0.6 62.7±0.6
GPT-2 Large 49.8±0.5 39.6±0.7 48.3±0.8 69.5±0.6 34.7±0.5 48.4±0.6
DrDiff (ours) 76.2±0.8 82.1±0.6 82.4±0.7 95.0±0.7 68.0±0.8 78.6±0.7

Figure 3: The figure above shows the changes in model training parameters and inference time after setting different
experts. The figure below shows the changes in score indicators on the Arxiv dataset after setting different numbers
of experts.

models of similar total capacity, while maintain-594

ing competitive performance, demonstrating that595

the MoE framework efficiently allocates computa-596

tional resources. The 8-expert model (with 160M597

total parameters, but still 40M active parameters598

per inference) achieves the best balance between599

efficiency and quality. To further analyze DrDiff’s600

components, we conducted an ablation study by601

modifying sparse attention, diffusion steps, and602

attention window sizes in Table 5. The baseline603

model integrates sparse attention with DiffuSeq.604

Detailed descriptions of these experiments are pro-605

vided in Appendix A.3 and A.8.606

5 Conclusion607

This paper introduces DrDiff, a novel frame-608

work that addresses long-text generation challenges609

through dynamic routing diffusion with Hierarchi-610

cal Attention. Our results show that DrDiff outper-611

forms existing methods in both computational effi-612

ciency and generation quality. The dynamic expert613

scheduling mechanism reduces computational com-614

plexity from O(n2) to O(n) while preserving text 615

coherence, enabling more efficient long-sequence 616

processing. Additionally, Hierarchical Sparse At- 617

tention effectively handles sequences up to and be- 618

yond 8K tokens, ensuring robustness across tasks. 619

A key innovation is soft absorption guidance, which 620

optimizes diffusion by accelerating generation time 621

without compromising quality. This technique bal- 622

ances efficiency and fidelity, making the model 623

well-suited for real-world long-text applications. 624

DrDiff is a promising solution for scientific writ- 625

ing, creative generation, and summarization. 626

Future work will extend sequence length, en- 627

hance adaptability, and refine domain-specific co- 628

herence. Moreover, we plan to deepen the theoreti- 629

cal analysis of dynamic routing and diffusion pro- 630

cesses, and explore multi-modal extensions (e.g., 631

integrating visual or structured data) to further 632

broaden DrDiff’s applicability. We also conduct 633

large-scale user studies to validate the framework 634

in practical real-world scenarios and assess its per- 635

formance across diverse application contexts. 636
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Limitations637

Despite the promising results achieved by DrDiff,638

several important limitations deserve attention and639

point to directions for future research:640

Limited Exploration of Extreme-Length641

Texts: While our framework shows improvements642

in handling sequences up to 8K tokens, the ex-643

ploration of even longer texts (e.g., >20K tokens)644

remains limited. The current architecture’s effec-645

tiveness for extreme-length document generation646

needs further investigation, as the complexity of se-647

mantic dependencies and memory constraints may648

introduce unforeseen challenges at such scales.649

Theoretical Foundation: Although empirical650

results demonstrate the effectiveness of our dy-651

namic routing mechanism, the theoretical under-652

pinnings of why this approach works well for long-653

text generation lack rigorous mathematical proof.654

Specifically, the convergence properties of the dif-655

fusion process under dynamic expert scheduling656

and the optimal balance between different attention657

patterns require more thorough theoretical analysis.658

Limited Interpretability: The current version659

of DrDiff operates largely as a black box, particu-660

larly in its expert scheduling decisions. The lack of661

interpretability in how the model allocates compu-662

tational resources and switches between different663

attention patterns makes it challenging to diagnose664

potential failure cases or optimize the model for665

specific applications.666

Resource Consumption Trade-offs: While667

our approach reduces computational complexity,668

the multi-expert architecture introduces additional669

memory overhead. The balance between compu-670

tational efficiency and memory usage requires fur-671

ther optimization, especially for deployment in672

resource-constrained environments.673

Domain Adaptability: Our evaluation primarily674

focused on general-domain text generation. The675

framework’s effectiveness in specialized domains676

(e.g., scientific papers, legal documents) where677

strict formatting or domain-specific knowledge is678

required remains to be thoroughly validated.679

These limitations highlight several promising680

directions for future research, including developing681

more robust theoretical frameworks for long-text682

generation, improving model interpretability, and683

exploring more efficient architectures for extreme-684

length text generation. Addressing these challenges685

will be crucial for advancing the field of long-text686

generation and expanding its practical applications.687
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A.1 Hyperparameter Settings954

The unified hyperparameter settings for all experi-955

ments are shown in Table 3. Note that for batchsize956

and Epoch, we follow the official test configura-957

tions for different datasets.958

A.2 Hierarchical Attention Mode Switching959

Strategy, HAMSS960

To achieve an adaptive balance between compu-961

tational efficiency and modeling capability for se-962

quence length, DrDiff employs the Hierarchical963

Attention Mode Switching Strategy (HAMSS).964

The core idea of HAMSS is to dynamically se-965

lect the optimal attention mode based on the input966

sequence length, ensuring high-quality text genera-967

tion while maintaining efficient computation.968

HAMSS consists of four attention modes:

H = (MD,M4K ,M8K ,M16K+)

Each mode M∗ is composed of five elements:

M∗ = ⟨Ψ∗,Ω∗, C∗,G∗, T∗⟩

A.2.1 Dense Mode (MD)969

Activation Condition: Input sequence length n ≤
512. Neighborhood Definition:

ND(i) = {1, 2, . . . , n}, ∀i ∈ {1, . . . , n}

The attention weight matrix AD ∈ Rn×n satisfies:

A
(i,j)
D = Softmax

(
QiK

⊤
j√
d

)
, ∀(i, j)

Computational Complexity:

CD(n) = O(n2)︸ ︷︷ ︸
attention computation

+ O(n2d)︸ ︷︷ ︸
storage overhead

A.2.2 4K Mode (M4K)970

Activation Condition: 512 < n ≤ 4,096.971

Structural Parameters: Local window width972

w4K = 256, global token count m =973

⌈
√
n⌉. Hybrid Neighborhood Definition:974

N4K(i) = {j | max(1, i− w4K) ≤ j ≤ min(n, i+ w4K)}︸ ︷︷ ︸
Local Window

∪ Tglobal︸ ︷︷ ︸
Global Token Set

975

Attention Weight Calculation:

A
(i,j)
4K =


exp(QiK

⊤
j /

√
d)∑

k∈N4K (i) exp(QiK⊤
k /

√
d)
, j ∈ N4K(i)

0, otherwise

Computational Complexity:

C4K(n)=O(n · (2w4K +m))︸ ︷︷ ︸
dynamic sparse computation

+ O(nmd)︸ ︷︷ ︸
cross-window communication

When m = Θ(
√
n), C4K(n) = O(n3/2).976

A.2.3 8K Mode (M8K) 977

Activation Condition: 4,096 < n ≤ 8,192. 978

Topological Parameters: Dilated window 979

width w8K = 512, stride s = 4, hierarchical dila- 980

tion factor dl = 2⌊l/L⌋. 981

Dilated Neighborhood Generation: 982

N (l)
8K(i) =

{
i+ k · s · dl

∣∣∣∣ k ∈ Z, |k| ≤ w8K
2sdl

}
∩ {1, . . . , n} 983

Fractal Attention Weights: 984

A
(l,i,j)
8K =

exp

(
Q
(l)
i

K
(l)⊤
j√
d

)
∑

k∈N (l)
8K

(i)

exp

(
Q
(l)
i

K
(l)⊤
k√
d

) · I
(
j ∈ N (l)

8K(i)
)

985

Complexity Analysis:

C8K(n) =
L∑
l=1

O

(
nw8K

sdl

)
= O(n log n)

A.2.4 16K+ Mode (M16K+) 986

Activation Condition: n > 8,192. 987

Extreme Parameters: Super-window width 988

w16K = 1024, meta-stride smeta = 8, key token 989

ratio ρ = 0.05. 990

Hierarchical Attention Architecture: 991

N16K+(i) =

{
i+ ksmeta | k = − w16K

2smeta
, . . . ,

w16K

2smeta

}
︸ ︷︷ ︸

Sparse Local

∪
{⌊

n · m
M

⌋
| m = 1, . . . , ⌈ρn⌉

}
︸ ︷︷ ︸

Semantic Anchors

992

Hybrid Attention Weights:

A
(i,j)
16K+ = α ·A(i,j)

local + (1− α) ·A(i,j)
global

where α = σ(β ·(j−i)) is a position-aware mixing 993

coefficient, and β is a learnable parameter. Linear 994

Complexity Proof: 995

C16K+(n) =
O

(
n ·
(
w16K

smeta
+ ρn

))
= O(n) (when ρ = O(1/n))

996

A.2.5 Mode Switching Decision Function 997

Mode switching is achieved via the decision net-
work Fϕ : Rd → [0, 1]4:

[πD, π4K , π8K , π16K+]
⊤ = Softmax(Fϕ(h̄))

where h̄ = 1
n

∑n
i=1 hi is the average sequence

feature. The final active mode is:

Mactive = argmax
∗

(π∗ · I(n ∈ Ω∗))

This strategy ensures the model achieves an op- 998

timal trade-off on the Pareto frontier, satisfying: 999

∀n, ∃M∗ ∈ H,

C∗(n)
CD(n)

≤ ϵ(n),

Perf(M∗) ≥ γ · Perf(MD).

1000
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Hyperparameter Value

Transformer Layers 12
Attention Heads per Layer 12
Sparse Attention Mechanism Hierarchical Sparse Attention
MoE Strategy Multiple Expert Networks per Layer, Dynamic Selection via Gating Mechanism
Diffusion Steps 2048, Square Root Noise Scheduling
DPM-Solver++ Integration Integrated to Reduce Diffusion Steps and Improve Generation Speed
Batch Size Determined by different datasets
Epoch Determined by different datasets
Learning Rate 1e-4
Warm-up Steps 5000
Weight Decay 0.01
Optimizer AdamW
Max Sequence Length 512
Gradient Clipping 1.0
Dropout Rate 0.1
Expert Size per Expert in MoE 20M
Experts per Layer 2, 4, or 8 (depending on experiment configuration)
Framework PyTorch

Table 3: Hyperparameter Settings for All Experiments

Table 4: Task Type Breakdown Performance on LongBench. This table shows the performance of different models
across various task types, including Single-Document QA, Multi-Document QA, Long ICL, Long Dialogue, Code
Repo, Long Structured tasks, along with their average performance.

Model Single-Doc QA Multi-Doc QA Long ICL Long Dialogue Code Repo Long Structured Average

GPT-4o 65.3 63.8 58.9 62.4 60.1 58.5 51.9
Qwen2.5-72B 44.8 43.7 42.0 43.0 41.3 40.7 42.6
DrDiff (ours) 31.6 32.4 32.5 38.7 29.1 34.6 33.5
Llama 3.1 70B 34.0 32.9 32.3 32.5 30.2 30.6 32.1
Longformer 31.3 31.0 30.4 36.0 28.5 27.9 30.9
Qwen2.5-7B 32.0 30.5 29.0 32.5 31.5 28.5 30.7
Llama 3.1 8B 31.5 29.0 28.5 32.0 31.0 30.5 30.4
DiffuSeq 31.2 28.2 28.8 29.5 27.0 28.8 28.9

A.2.6 Parameter Selection Rationale and1001

Tuning for HSA Modes1002

The Hierarchical Sparse Attention (HSA) mecha-1003

nism is designed to dynamically adapt the attention1004

strategy based on input sequence length n, balanc-1005

ing computational efficiency with modeling capa-1006

bility. The specific parameters for each attention1007

mode—including length thresholds (N1, N2, N3),1008

window sizes (w), dilation rates (δ), and the config-1009

uration of global nodes—were determined through1010

a combination of factors, as outlined below:1011

Length Thresholds (N1 = 512, N2 =1012

4096, N3 = 8192): These thresholds were estab-1013

lished by analyzing typical sequence length distri-1014

butions encountered in our target long-text gener-1015

ation benchmarks (e.g., Arxiv). N1 = 512 was1016

chosen as a common maximum length for standard1017

dense attention models, beyond which quadratic1018

complexity becomes prohibitive. The transitions1019

at N2 = 4K and N3 = 8K correspond to points1020

where different sparse attention strategies offer1021

demonstrably better trade-offs. These were refined 1022

based on preliminary experiments observing per- 1023

formance shifts and computational costs when ap- 1024

plying simpler fixed sparse patterns to these length 1025

categories. The aim was to align mode switches 1026

with points where a more specialized attention pat- 1027

tern (e.g., incorporating more global attention for 1028

4K − 8K, or a more aggressive sparse pattern for 1029

16K+) becomes beneficial. Mode-Specific Param- 1030

eters (e.g., w4K , w8K , w16K+,m, s, ρ): General 1031

Principle: The parameters within each mode (de- 1032

tailed in Appendix A.2.1-A.2.4) were selected to 1033

optimize the balance between capturing sufficient 1034

contextual information (local, dilated, global) and 1035

adhering to a near-linear computational complexity 1036

budget for that length category. Window Sizes (w): 1037

Local window sizes (e.g., w4K = 256, w8K = 1038

512, w16K+ = 1024) were chosen to be large 1039

enough to capture meaningful local dependencies 1040

relevant to text generation tasks. These were in- 1041

formed by common practices in prior work on 1042

sparse attention (e.g., Longformer, BigBird) and ad- 1043
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justed through pilot experiments on validation sets1044

to ensure good performance without excessive com-1045

putation. Dilation Rates (δ) and Strides (s): For1046

modes like M8K , dilation rates and strides were1047

configured to expand the receptive field efficiently,1048

allowing the model to attend to more distant tokens1049

without incurring the cost of a fully dense or very1050

large local window. The hierarchical dilation factor1051

(dl = 2⌊l/L⌋) ensures multi-scale context aggrega-1052

tion. Global Node Configuration: The number of1053

global tokens in M4K (m = ⌈
√
n⌉) and the key1054

token ratio in M16K+ (ρ = 0.05) were designed1055

to provide essential global context. The
√
n scaling1056

offers a compromise for medium-length sequences,1057

while a small fixed ratio for ultra-long sequences1058

ensures scalability. The selection of which tokens1059

become global (e.g., regularly spaced, learnable1060

importance) was based on simplicity and effective-1061

ness observed in initial trials. Preliminary Tuning:1062

While an exhaustive grid search over all HSA pa-1063

rameters would be computationally prohibitive, the1064

final parameter values were arrived at through an it-1065

erative process. This involved setting initial values1066

based on literature and theoretical considerations,1067

followed by a series of preliminary experiments on1068

a subset of the data or tasks to observe their im-1069

pact on perplexity, generation quality, and computa-1070

tional throughput. Adjustments were then made to1071

refine the balance for the overall DrDiff framework.1072

The goal was to find a robust set of parameters that1073

generalizes well across the targeted long-text sce-1074

narios rather than fine-tuning for a single specific1075

dataset. The parameters detailed in Appendix A.21076

represent the outcome of this design and prelimi-1077

nary tuning process, aimed at achieving a practical1078

and effective hierarchical attention strategy.1079

A.2.7 Mode Switching Decision Function Fϕ1080

Explained1081

As introduced in Appendix A.2.5, the mode switch-1082

ing in the Hierarchical Sparse Attention (HSA)1083

mechanism is guided by the sequence length n and1084

facilitated by a decision network Fϕ.1085

Role and Input/Output: The decision network1086

Fϕ takes the average of the token hidden states for1087

the input sequence, h = 1
n

∑n
i=1 hi, as its input.1088

This average hidden state h ∈ Rd serves as a con-1089

densed representation of the overall characteristics1090

of the current sequence. Fϕ outputs a probability1091

distribution [πD, π4K , π8K , π16K+]
⊤ over the four1092

predefined attention modes via a Softmax function.1093

Each π represents the learned preference for mode1094

M. 1095

Architecture of Fϕ: The specific architecture 1096

of Fϕ is designed to be lightweight to minimize 1097

overhead. In our implementation, Fϕ is a small 1098

Multi-Layer Perceptron (MLP). For instance, it can 1099

consist of one or two fully connected hidden layers 1100

with a non-linear activation function (e.g., ReLU), 1101

followed by the final linear layer that produces log- 1102

its for the Softmax function. The exact dimensions 1103

of these hidden layers are kept small (e.g., a frac- 1104

tion of the main model’s hidden dimension d) to 1105

ensure efficiency. Training and Interaction with 1106

Length Thresholds: The parameters of the Fϕ 1107

network are trained end-to-end as part of the over- 1108

all DrDiff model optimization. This allows Fϕ 1109

to learn a mapping from sequence characteristics 1110

(h) to appropriate attention modes, guided by the 1111

main task loss (e.g., the diffusion model’s denois- 1112

ing objective). It is important to note the interplay 1113

between the learned probabilities π∗ from Fϕ and 1114

the predefined length-based activation conditions 1115

I(n ∈ Ω∗) (where Ω∗ is the valid length range for 1116

mode M∗). The final active mode is selected as 1117

Mactive = arg maxM∗∈H(π∗ · I(n ∈ Ω∗)). In prac- 1118

tice, for sequences falling squarely within a prede- 1119

fined length bracket Ω∗, the I(n ∈ Ω∗) term often 1120

plays a decisive role, ensuring the mode designed 1121

for that length is chosen. The learned component 1122

Fϕ can be particularly influential for sequences 1123

near the boundaries of these length thresholds, po- 1124

tentially learning to enable smoother transitions or 1125

making more nuanced choices if sequence charac- 1126

teristics (captured by h) suggest a deviation from 1127

the default length-based rule. However, the primary 1128

driver for mode selection remains the explicitly de- 1129

fined length ranges, with Fϕ offering a mechanism 1130

for learned refinement within this framework. The 1131

objective of this design is to combine the robustness 1132

of rule-based length thresholds with the potential 1133

adaptability of a learned decision mechanism, en- 1134

suring that HSA selects an appropriate and efficient 1135

attention pattern for any given input sequence. 1136

A.3 Ablation Study 1137

As shown in Table 5, the study includes various 1138

configurations such as removing sparse attention, 1139

altering the diffusion steps, and changing the at- 1140

tention window sizes to evaluate their impact on 1141

performance metrics like BLEU, ROUGE, and 1142

BERTScore. 1143
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Configuration Attention
Type

Diffusion
Steps

Window
Size BLEU/ROUGE/BERTScore

Baseline (Full Model) Sparse 2048 512 75.41/58.96/71.89
No Sparse Attention Standard 2048 512 72.52/56.68/68.41

Reduced Diffusion Steps Sparse 1024 512 73.11/56.97/69.26
Increased Diffusion Steps Sparse 4096 512 74.71/57.32/70.20

Smaller Window Size Sparse 2048 256 73.80/57.79/69.65
Larger Window Size Sparse 2048 1024 74.40/58.52/69.92

Table 5: Ablation study results comparing different configurations of the DrDiff model on the Arxiv dataset.

A.4 Long Text Stress Resistance Experiment1144

A.4.1 Experimental Setup1145

This experiment evaluates the performance and sta-1146

bility of DrDiff in generating and summarizing1147

long texts ranging from 8K to 30K tokens. The1148

dataset includes 1,000 samples per length category1149

(15K, 30K, tokens) from three sources: Project1150

Gutenberg (public domain e-books), PubMed Cen-1151

tral (biomedical papers), and Wikipedia Long Arti-1152

cles. Texts are preprocessed by removing special1153

characters, HTML tags, and incomplete sentences,1154

then truncated or split to fit the model’s maximum1155

input size (5,000 tokens). The experimental tasks1156

focus on long text generation (maintaining coher-1157

ence and logical flow) and summarization (com-1158

pressing information while preserving semantics).1159

Evaluation metrics include ROUGE scores (n-gram1160

overlap), BERTScore (semantic similarity), and1161

perplexity (model adaptability).1162

A.4.2 Experimental Results1163

Description of Experimental Results The exper-1164

imental results for DrDiff on long text genera-1165

tion and summarization are presented in Table 4.1166

The model was evaluated across four text lengths:1167

8,000, 16,000, 24,000, and 30,000 tokens. The met-1168

rics used include ROUGE-1, ROUGE-2, ROUGE-1169

L, BERTScore, and Perplexity. The results show1170

that the model’s performance in terms of ROUGE1171

and BERTScore decreases as the text length in-1172

creases, while Perplexity exhibits a downward1173

trend, indicating improved adaptability to longer1174

texts. Analysis of Experimental Results A key ob-1175

servation from the results is that 16,000 tokens1176

act as a critical threshold for DrDiff. Specifically,1177

ROUGE-1 drops sharply from 80.5 at 8,000 to-1178

kens to 71.8 at 16,000 tokens, while BERTScore1179

decreases from 0.93 to 0.82 over the same range.1180

However, beyond 16,000 tokens, the decline in1181

ROUGE-1 slows significantly (e.g., from 71.81182

at 16,000 tokens to 70.9 at 30,000 tokens), and1183

ROUGE-L remains relatively stable at around 70.1184

Additionally, Perplexity decreases from 30.8 at 1185

8,000 tokens to 27.1 at 30,000 tokens, suggest- 1186

ing that the model adapts better to longer se- 1187

quences. Despite these improvements, the drop 1188

in BERTScore to 0.78 at 30,000 tokens indicates a 1189

risk of information loss in ultra-long texts. These 1190

findings highlight the need for further optimization, 1191

such as adopting sparse attention mechanisms or 1192

hierarchical generation strategies, to enhance the 1193

model’s performance on tasks involving very long 1194

texts. 1195

A.5 Computational Complexity Analysis 1196

In this section, we analyze the GPU time consump- 1197

tion and memory usage trends of DrDiff across 1198

different sequence lengths (512–16K tokens) and 1199

compare them with Longformer and DiffuSeq. All 1200

experiments were conducted on an A100 GPU, 1201

though specific values may vary depending on hard- 1202

ware configurations, optimization strategies, and 1203

batch sizes. 1204

A.5.1 Computational Complexity 1205

Comparison 1206

Table 6 summarizes the training and inference com- 1207

plexity of DiffuSeq, Longformer, and DrDiff, along 1208

with their respective attention mechanisms. 1209

From the results, we observe the following key 1210

insights: 1211

• DrDiff and Longformer are significantly more 1212

efficient for long-text tasks (16K+ tokens) 1213

compared to DiffuSeq. 1214

• DrDiff employs the HSA (Hierarchical Sparse 1215

Attention) mechanism, completely avoiding 1216

O(n2) computations, whereas Longformer 1217

still requires global attention (O(n2)) for cer- 1218

tain tokens. 1219

• While Longformer is well-suited for classifi- 1220

cation and question-answering (QA) tasks, its 1221

applicability to generative tasks, such as those 1222
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Figure 4: Performance metrics across different text lengths. As text length increases from 8,000 to 30,000 tokens,
we observe a general decline in most evaluation metrics. ROUGE-1 drops from 80.5 to 70.9, ROUGE-L decreases
from 77.9 to 69.9, and BERTScore shows the most significant reduction from 0.93 to 0.78. Perplexity improves
slightly with longer texts, decreasing from 30.8 to 27.1, indicating better language modeling with increased context.
These results suggest a trade-off between text length and summarization quality, with optimal performance at shorter
text lengths for most metrics.

handled by DrDiff, remains limited due to its1223

attention constraints.1224

A.5.2 Computational Resource Consumption1225

Comparison1226

Table 7 presents the training time comparison for1227

different sequence lengths among DiffuSeq, Long-1228

former, and DrDiff. The results indicate that DrDiff1229

exhibits competitive efficiency, particularly for1230

long sequences.1231

From the results, we observe that for short se-1232

quences (≤ 4K), DrDiff requires slightly more1233

training time than Longformer. This can be at-1234

tributed to Longformer’s local attention mecha-1235

nism, which effectively optimizes computations for1236

shorter sequences. However, for extremely long1237

sequences (≥ 16K), DrDiff demonstrates supe-1238

rior efficiency. Specifically, DrDiff achieves a 56%1239

reduction in training time compared to DiffuSeq1240

and is 9%–10% faster than Longformer for longer1241

sequences.1242

It is worth noting that DiffuSeq fails to process1243

sequences of length 32K on an A100 GPU due to1244

excessive computational requirements, making it1245

infeasible under our experimental constraints.1246

A.6 Impact of Different Settings of Diffusion 1247

A.6.1 Experimental setup 1248

This experiment investigates the impact of differ- 1249

ent diffusion steps and noise schedules on the F1 1250

score for the TriviaQA task, aiming to identify the 1251

optimal configuration that maximizes performance 1252

while maintaining computational efficiency. Using 1253

the TriviaQA dataset, the experiment evaluates the 1254

F1 score for diffusion steps ranging from 512 to 1255

8192 and for different noise schedules (linear, expo- 1256

nential, cosine, and square root) at 2048 diffusion 1257

steps. 1258

The motivation for this experiment stems from 1259

the need to optimize the performance of diffusion 1260

models on question-answering tasks like TriviaQA. 1261

Diffusion models rely on a series of diffusion steps 1262

and noise schedules to generate high-quality out- 1263

puts, but the impact of these parameters on per- 1264

formance is not well understood. By systemati- 1265

cally evaluating different configurations, this exper- 1266

iment aims to provide insights into how diffusion 1267

steps and noise schedules affect the model’s abil- 1268

ity to generate accurate answers. The findings can 1269

guide the selection of optimal parameters for simi- 1270
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Model Training Complexity Inference Complexity Attention Mechanism

DiffuSeq O(T × n2 × d) O(T ′ × n2 × d) Global Attention (O(n2))
Longformer O(n× w × d) O(n× w × d) Local Sliding Window (O(n)) + Partial Global (O(n2))
DrDiff O(T× n× d) O(T′ × n× d) HSA ( O(n) for 16K+)

Table 6: Computational complexity comparison of DiffuSeq, Longformer, and DrDiff. This table presents the
theoretical training and inference complexity of each model as a function of sequence length (n), hidden dimension
(d), and the number of diffusion steps (T for training, T ′ for inference). w represents the window size for
Longformer’s local attention mechanism. DrDiff introduces the Hierarchical Sparse Attention (HSA) mechanism,
which eliminates the quadratic dependency for long sequences (≥ 16K), achieving O(n) complexity. In contrast,
Longformer still applies global attention to certain tokens, leading to partial O(n) computation. These results
demonstrate that DrDiff is better suited for long-text generation tasks, whereas Longformer is more optimized for
classification and QA tasks.

Sequence Length DiffuSeq (T=2000) Longformer DrDiff (T=2048) DrDiff vs. DiffuSeq DrDiff vs. Longformer
512 90 40 55 ↓ 39% ↑37%
1K 180 80 110 ↓ 39% ↑37%
4K 720 320 400 ↓ 44% ↑25%
16K 2900 1400 1280 ↓ 56% ↓9%
32K – 5800 5200 – ↓10%

Table 7: Training time comparison (seconds per 1K samples) on an A100 GPU. The table reports the average
training time required for different sequence lengths (n) across three models: DiffuSeq, Longformer, and DrDiff. T
and T ′ represent the number of diffusion steps used during training and inference, respectively. The “DrDiff vs.
DiffuSeq” and “DrDiff vs. Longformer” columns indicate the relative speed improvement or slowdown of DrDiff
compared to DiffuSeq and Longformer, respectively. A negative percentage (↓) indicates a reduction in training
time, while a positive percentage (↑) indicates an increase. For sequence length 32K, DiffuSeq could not run due to
excessive memory requirements (denoted as “–”). The results show that while Longformer is slightly faster for
short sequences (≤ 4K), DrDiff outperforms both DiffuSeq and Longformer for long sequences (≥ 16K).

lar tasks, improving the efficiency and effectiveness1271

of diffusion models in real-world applications.1272

A.6.2 Experimental Results1273

Figure 6(left) presents the F1 score comparison1274

across different noise schedules for the TriviaQA1275

task using the DrDiff model. The results show1276

that the cosine noise schedule achieves the highest1277

F1 score of 81.9, followed by the exponential and1278

square root schedules with F1 scores of 80.7 and1279

80.3, respectively. The linear schedule performs1280

the worst, with an F1 score of 78.6. Figure 6(right)1281

illustrates the relationship between the number of1282

diffusion steps and the F1 score. The F1 score1283

increases from 74.1 at 512 steps to 78.4 at 10241284

steps, reaches the highest value of 81.9 at 20481285

steps, and then declines to 80.2 at 4096 steps and1286

79.8 at 8192 steps.1287

The experimental results indicate that the num-1288

ber of diffusion steps and the choice of noise sched-1289

ule significantly impact the performance of the1290

DrDiff model on the TriviaQA task. The F1 score1291

improves with an increase in diffusion steps up to1292

2048, suggesting that a moderate number of steps1293

helps in effectively reducing noise and enhancing1294

answer quality. However, further increasing the1295

number of steps beyond 2048 leads to a decline 1296

in performance, possibly due to over-denoising, 1297

which results in the loss of critical information. 1298

Among the noise schedules, the cosine schedule 1299

outperforms the others, achieving the highest F1 1300

score. This suggests that the cosine schedule is 1301

more effective in balancing the trade-off between 1302

noise reduction and information retention, making 1303

it particularly suitable for the TriviaQA task. The 1304

linear schedule, on the other hand, performs poorly, 1305

likely because it fails to adequately preserve critical 1306

information during the denoising process. These 1307

findings provide valuable insights for optimizing 1308

the diffusion process in our model, highlighting 1309

the importance of selecting appropriate diffusion 1310

steps and noise schedules to maximize performance 1311

while maintaining computational efficiency. 1312

A.7 Soft Absorption State Guidance (SAS) 1313

Weight Tuning and Impact 1314

We assess the effect of the LSAS loss weight 1315

λSAS,k ∈ {0.0, 0.1, 0.3, 0.5, 0.7, 1.0} on genera- 1316

tion quality (ROUGE-1/2/L, BERTScore) and di- 1317

versity (text entropy, BLEU coefficient of vari- 1318

ation) using the Arxiv dataset (500 documents, 1319

17



Linear Exponential Cosine Sqrt
Noise Schedule

77

78

79

80

81

82

83

F1
 S

co
re

78.6

80.7

81.9

80.3

F1 Score Comparison Across Different Noise Schedules

512 1024 2048 4096 8192
Number of Diffusion Steps

70

72

74

76

78

80

82

84

F1
 S

co
re

74.1

78.4

81.9

80.2
79.8

F1 Score vs. Diffusion Steps

F1 Score
Best Score (81.9)

Figure 5: The left figure shows the impact of different Noise Schedule strategies on the F1 Score of the TriviaQA
task. The right figure shows the impact of different Number of Diffusion Steps on the F1 Score of the TriviaQA task.
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Figure 6: The left figure shows the impact of differ-
ent Noise Schedule strategies on the F1 Score of the
TriviaQA task. The right figure shows the impact of
different Number of Diffusion Steps on the F1 Score of
the TriviaQA task.

8K-16K tokens). The DrDiff model with HSA1320

and DES is fine-tuned for 1 epoch (learning rate1321

1e-4) with 2048 diffusion steps and square-root1322

noise scheduling. Weights are consistent at tk ∈1323

{T/4, T/2, 3T/4}. Metrics are averaged over 31324

runs with a fixed random seed 6.1325

Procedure: Extract 500 documents (8K-16K to-1326

kens) from Arxiv, remove special characters, and1327

tokenize. For each λSAS,k, load pre-trained DrDiff,1328

fine-tune with Ldiffusion + LSAS (1 epoch, learn-1329

ing rate 1e-4). Generate text, record generation1330

time, compute ROUGE-1/2/L, BERTScore. Gener-1331

ate 5 times per document to calculate text entropy1332

and BLEU coefficient of variation.1333

Expected Results: ROUGE-1 peaks near1334

λSAS,k = 0.5 (78.1 vs. 75.2 at λSAS,k = 0.0),1335

with ROUGE-2/L and BERTScore following, due1336

to improved coherence. At λSAS,k = 1.0, quality1337

may slightly drop due to over-constraint. Diversity1338

decreases with higher λSAS,k (text entropy from1339

4.85 to 4.60, BLEU coefficient of variation drops1340

10%). Generation time rises from 1.90s to 2.05s.1341

A.8 Extended Ablation Study on HSA and 1342

DES 1343

To further demonstrate the individual contributions 1344

of Hierarchical Sparse Attention (HSA) and Dy- 1345

namic Expert Scheduling (DES) within the DrDiff 1346

model, we conducted an extended ablation study. 1347

This study was performed on the Arxiv, TriviaQA, 1348

and LongBench datasets. We evaluated three dis- 1349

tinct variants of the DrDiff model 8: 1350

1. DrDiff w/o HSA: In this variant, the Hierar- 1351

chical Sparse Attention mechanism was re- 1352

placed with a fixed local sparse attention op- 1353

erating on 256-token windows. 1354

2. DrDiff w/o DES: This variant utilized a stan- 1355

dard Mixture-of-Experts (MoE) architecture 1356

employing a fixed top-2 expert selection strat- 1357

egy, instead of Dynamic Expert Scheduling. 1358

3. DrDiff w/o Both (HSA & DES): This variant 1359

combined the modifications from the previous 1360

two, incorporating both the fixed local atten- 1361

tion mechanism and the standard MoE with 1362

fixed top-2 expert selection. 1363

The results of this ablation study are presented 1364

in Table 8. The findings indicate that the removal 1365

of HSA primarily degrades performance on tasks 1366

involving long sequences. For instance, on the 1367

LongBench Long sub-task, the score dropped from 1368

35.6% to 30.6%. The removal of DES, on the 1369

other hand, was observed to impact both process- 1370

ing efficiency and output quality, as exemplified by 1371

the Arxiv ROUGE-L score decreasing from 73.31 1372

to 71.80. When both HSA and DES components 1373

were absent, a more pronounced decline in perfor- 1374

mance was recorded across tasks; for example, the 1375

TriviaQA F1 score fell from 82.1 to 76.0. These 1376
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Table 8: Ablation study on key components of DrDiff: Hierarchical Sparse Attention (HSA) and Dynamic Expert
Scheduling (DES). Performance is evaluated on Arxiv (ROUGE scores), TriviaQA (F1 score), and LongBench
(accuracy %).

Model Variant Arxiv Arxiv Arxiv TriviaQA LB Overall LB Easy LB Hard LB Short LB Medium LB Long
R-1 R-2 R-L F1 (%) (%) (%) (%) (%) (%)

DrDiff (Full Model) 78.12 46.71 73.31 82.1 33.5 31.7 29.8 35.5 32.4 35.6
DrDiff w/o HSA 74.50 42.80 69.50 78.0 30.5 30.2 28.3 34.5 30.4 30.6
DrDiff w/o DES 76.20 44.90 71.80 80.0 32.0 30.7 28.8 35.0 31.4 33.6
DrDiff w/o Both (HSA & DES) 72.30 40.50 67.20 76.0 29.0 29.2 27.3 34.0 29.4 28.6

results empirically validate the crucial role of HSA1377

in managing computational complexity effectively1378

for long sequences and underscore the contribution1379

of DES towards enabling adaptive computation and1380

enhancing overall model quality. Further details1381

regarding these ablation studies have been incorpo-1382

rated into the revised manuscript.1383

A.9 Training Datasets1384

DrDiff’s foundational language understanding and1385

generative capabilities are developed through a1386

multi-stage training process. Initial pre-training1387

is conducted on extensive and diverse text corpora,1388

primarily leveraging a carefully filtered version of1389

the Common Crawl and The Pile, which together1390

provide billions of tokens covering a wide array1391

of domains including web text, books, academic1392

papers, and code. This large-scale pre-training en-1393

sures the model acquires a broad understanding of1394

linguistic structures, factual knowledge, and rea-1395

soning patterns. Subsequently, DrDiff undergoes1396

fine-tuning on more specialized datasets tailored to1397

enhance its performance on specific downstream1398

tasks, particularly those involving long-form text1399

generation, comprehension, and domain-specific1400

knowledge. Key datasets used in this phase include1401

the Arxiv dataset for scientific and technical docu-1402

ments, selections from Project Gutenberg for liter-1403

ary long-form text, and task-specific benchmarks1404

such as TriviaQA for question answering, to en-1405

sure robust performance and adaptability across its1406

target applications.1407
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