
Are All the Datasets in Benchmark Necessary?
A Pilot Study of Dataset Evaluation for Text Classification

Anonymous ACL submission

Abstract
In this paper, we ask the research question001
if all the datasets in the benchmark are nec-002
essary. We approach this by first character-003
izing the distinguishability of datasets when004
comparing different systems. Experiments on005
9 datasets and 36 systems show that several006
existing benchmark datasets contribute little007
to discriminating top-scoring systems, while008
those less used datasets exhibit impressive dis-009
criminative power. We further, taking the text010
classification task as a case study, investigate011
the possibility of predicting dataset discrimi-012
nation based on its properties (e.g., average013
sentence length). Our preliminary experiments014
promisingly show that given a sufficient num-015
ber of training experimental records, a mean-016
ingful predictor can be learned to estimate017
dataset discrimination over unseen datasets.018

We released all related code at Github 1 and019
a new benchmark dataset for text classification020
based on our observations.021

1 Introduction022

In natural language processing (NLP) tasks, there023

are often datasets that we use as benchmarks024

against which to evaluate machine learning models,025

either explicitly defined such as GLUE (Wang et al.,026

2018) and XTREME (Hu et al., 2020a) or implicitly027

bound to the task (e.g., DPedia (Zhang et al., 2015)028

has become a default dataset for the evaluation of029

text classification systems). Given this mission,030

one important feature of a good benchmark dataset031

is the ability to statistically differentiate diverse032

systems (Bowman and Dahl, 2021). With the large033

pre-trained model (Devlin et al., 2018; Lewis et al.,034

2019) constantly updating the best performance of035

NLP tasks, the performances of many of them have036

reached a plateau (Zhong et al., 2020; Fu et al.,037

2020). In other words, it is challenging to discrimi-038

nate a better model using existing datasets (Wang039

1https://github.com/annonnlp-demo/
acl-V2
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Figure 1: Illustrate different datasets’ distinguishing
ability w.r.t top-scoring systems characterized by our
measure log(λsva) on text classification and their corre-
sponding citations.

et al., 2019a). In this context, we ask the question: 040

are all benchmark’s datasets necessary? We use 041

the text classification task as a case study and try 042

to answer the following two sub-questions: 043

RQ1: How can we quantify the distinguishing 044

ability of benchmark datasets? To answer this 045

question, we first design measures with varying 046

calculation difficulties (§4) to judge datasets’ dis- 047

crimination ability based on top-scoring systems’ 048

performances. By exploring correlations among 049

different measures, we then evaluate how reliable 050

a dataset’s discrimination is when discrimination 051

is calculated solely based on overall results that 052

top-scoring systems have achieved, and generalize 053

this measure to other NLP tasks. Fig. 1 illustrates 054

how different text classification datasets are ranked 055

(the bottom one) based on measures devised in 056

this work (a smaller value suggests lower discrim- 057

ination) and the corresponding citations of these 058

datasets (the upper one). One can observe that: (i) 059

The highly-cited dataset DBpedia (Zhang et al., 060

2015) (more than 3,000 times since 2015) shows 061

the worst discriminative power. (ii) By contrast, 062

dataset like ADE (Gurulingappa et al., 2012) (less 063

than 200 times since 2012) does better in distin- 064

guishing top-scoring systems. This phenomenon 065

shows the significance of quantifying the discrim- 066
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inative ability of datasets: it can not only help us067

to eliminate those with lower discrimination from068

commonly-used datasets (e.g., DBpedia), but also069

help us to recognize the missing pearl in seldom070

used datasets (e.g., ADE and ATIS (Hemphill et al.,071

1990)).072

RQ2: Can we try to predict the discriminative073

power of the model? Given a dataset, we investi-074

gate if we can judge its ability to distinguish models075

based on its characteristics (e.g., average sentence076

length), which is motivated by the scenario where077

a new dataset has just been constructed without078

sufficient top-scoring systems to calculate discrim-079

ination defined in RQ1. To answer this question,080

inspired by recent literature on performance pre-081

diction (Domhan et al., 2015; Turchi et al., 2008;082

Birch et al., 2008; Xia et al., 2020; Ye et al., 2021),083

we conceptualize this problem as a discrimination084

regression task. We define 11 diverse features to085

characterize a text classification dataset and regress086

its discrimination scores using different parame-087

terized models. Preliminary experiments (§5.4)088

indicate that a meaningful regressor can be learned089

to estimate the discrimination of unseen datasets090

without actual training using top-scoring systems.091

We brief takeaways in this work based on our092

observations:093

(1) In regard to multitask benchmark datasets,094

empirical results show that following datasets095

struggle at discriminating current top-scoring sys-096

tems: STS-B and SST-2 from GLUE (Wang097

et al., 2019b); BUCC and PAWX-X from XTREME,098

which is consistent with the concurrent work099

(Ruder et al., 2021) (§4.3.2).100

(2) In regard to single-task benchmark datasets,101

for Chinese Word Segmentation task, there are102

multiple datasets (MSR, CityU, CTB) (Tseng103

et al., 2005; Jin and Chen, 2008) that exhibit much104

worse discriminative ability, suggesting that: fu-105

ture works on this task are encouraged to either106

(i) adopt other datasets to evaluate their systems107

or (ii) at least make significant test 2 if using these108

datasets. Similar observations happen in the dataset109

CoNLL-2003 (Sang and De Meulder, 2003) from110

Named Entity Recognition task and MultiNLI111

(Williams et al., 2017) from natural language infer-112

ence task (§4.3.2).113

(3) Some seldom used datasets such as ADE from114

text classification are actually better at distinguish-115

2We randomly select 10 recently published papers (from
ACL/EMNLP) that utilized these datasets and found only 2 of
them perform significant test.

ing top-performing systems, which highlights an 116

interesting and necessary future direction: how to 117

identify infrequently-used but valuable (better dis- 118

crimination) datasets for NLP tasks, especially in 119

the age of dataset’s proliferation?3 (§4.2) 120

(4) Quantifying a dataset’s discrimination (w.r.t 121

top-scoring systems) by calculating the statistical 122

measures (defined in §4.1.2) from leaderboard’s 123

results is a straightforward and effective way. But 124

for those datasets without rich leaderboard results,4 125

predicting the discrimination based on datasets’ 126

characteristics would be an promising direction 127

(§4.3.1). 128

Our contributions can be summarized as: 129

(1) We try to quantify the discrimination abil- 130

ity for datasets by designing two variance-based 131

measures. (2) We systematically investigate 4 text 132

classification models on 9 datasets, providing the 133

newest baseline performance for those seldom used 134

datasets. We released the code and all the uni- 135

formly formatted datasets at https://github. 136

com/annonnlp-demo/acl-V2 (3) We study 137

several popular NLP benchmarks, including GLUE, 138

XTREME, NLI, and so on. Some valuable sugges- 139

tions and observations will make research easier. 140

2 Related Work 141

Benchmarks for NLP In order to conveniently 142

keep themselves updated with the research 143

progress, researchers recently are actively build- 144

ing evaluation benchmarks for diverse tasks so 145

that they could make a comprehensive compari- 146

son of systems, and use a leaderboard to record the 147

evolving process of the systems of different NLP 148

tasks, such as SQuAD (Rajpurkar et al., 2016), 149

GLUE (Wang et al., 2018), XTREME (Hu et al., 150

2020a), GEM (Gehrmann et al., 2021) and GE- 151

NIE (Khashabi et al., 2021). Despite their utility, 152

more recently, Bowman and Dahl (2021) highlight 153

that unreliable and biased systems score so highly 154

on standard benchmarks that there is little room for 155

researchers who develop better systems to demon- 156

strate their improvements. In this paper, we make 157

a pilot study on meta-evaluating benchmark evalu- 158

ation datasets and quantitatively characterize their 159

discrimination in different top-scoring systems. 160

3https://paperswithcode.com/datasets
4The measure can keeps updated as the top-scoring sys-

tems of the leaderboard evolves, which can broaden its practi-
cal applicability
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Performance Prediction Performance predic-161

tion is the task of estimating a system’s perfor-162

mance without the actual training process. With163

the recent booming of the number of machine learn-164

ing models (Goodfellow et al., 2016) and datasets,165

the technique of performance prediction become166

rather important when applied to different scenar-167

ios ranging from early stopping training iteration168

(Kolachina et al., 2012), architecture searching169

(Domhan et al., 2015), and attribution analysis170

(Birch et al., 2008; Turchi et al., 2008). In this171

work, we aim to calculate a dataset’s discrimina-172

tion without actual training top-scoring systems173

on it, which can be formulated as a performance174

prediction problem.175

3 Preliminaries176

3.1 Task and Dataset177

Text classification aims to assign a label defined178

beforehand to a given input document. In the exper-179

iment, we choose nine datasets, and their statistics180

can be found in the Appendix A.181

• IMDB (Maas et al., 2011) consists of movie re-182

views with binary classes.183

• Yelp (Zhang et al., 2015) is a part of the Yelp184

Dataset Challenge 2015 data, which is collected185

from Yelp.186

• CR (Hu and Liu, 2004) is a product review187

dataset with binary classes.188

• MR (Pang and Lee, 2005) is a movie review189

dataset collected from Rotten Tomatoes.190

• SST1 (Socher et al., 2013) is collected from191

HTML files of Rotten Tomatoes reviews with192

fully labeled parse trees.193

• DBpedia14 (Zhang et al., 2015) is a dataset for194

ontology classification that is collected from DB-195

pedia 2014.196

• ATIS (Hemphill et al., 1990) is an intent detec-197

tion dataset that contains audio recordings of198

flight reservations.199

• QC (Li and Roth, 2002) is a question classifica-200

tion dataset.201

• ADE (Gurulingappa et al., 2012) is a subset of202

“Adverse Drug Reaction Data”.203

3.2 Model204

We re-implement 4 top-scoring systems with typ-205

ical neural architectures for each dataset. 5 The206

5We mainly focus on neural network-based models, since
most top-scoring systems in the leaderboard are based on deep
learning.

brief introduction of the four models is as follows. 207

• LSTM (Hochreiter and Schmidhuber, 1997) is 208

a widely used sentence encoder. To get left-to- 209

right and right-to-left features, here, we adopt 210

the bidirectional LSTM. 211

• LSTMAtt is proposed by Lin et al. (2017) that 212

designed the self-attention mechanism to extract 213

different aspects of features for a sentence. 214

• BERT (Devlin et al., 2018) utilizes the LSTM 215

as the sentence encoder and gets word represen- 216

tation by BERT. 217

• CNN (LeCun and Bengio, 1995) extracts the 218

sentence representation on the sequence of word 219

representations. 220

Except for BERT, the other three models (e.g. 221

LSTM) are initialized by GloVe (Pennington et al., 222

2014) or Word2Vec (Mikolov et al., 2013) pre- 223

trained word embeddings. When the performance 224

of the model on the dev set doesn’t improve within 225

20 epochs, the training will be stopped, and the 226

best performing model will be kept. More detailed 227

model parameter settings can be found in the Ap- 228

pendix B. 229

4 How to Characterize Discrimination? 230

To achieve this goal, we design measures based on 231

the performance of different models for a dataset. 232

4.1 Measures 233

The general idea of the measure designing is to 234

judge dataset’s distinguishing ability based on the 235

performances that top-performing systems have 236

achieved on it.6 Specifically, given a dataset D 237

together with k top-scoring model performance list 238

v = [v1, · · · , vk], we define the following mea- 239

sures. 240

4.1.1 Performance Variance 241

We use the standard deviation to quantify the de- 242

gree of variation or dispersion of a set of perfor- 243

mance values. A larger value of λvar suggests that 244

the discrimination of the given dataset is more sig- 245

nificant. λvar can be defined as: 246

λvar = Std(v), (1) 247

where Std(·) is the function to compute the stan- 248

dard deviation. Assume that the performance list 249

(k = 3) on dataset D is v = [88, 92, 93], we can 250

get λvar = 2.65. 251

6A dataset’s discrimination is defined w.r.t top-scoring
models from a leaderboard, keeping itself updated with sys-
tems’ evolution.
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4.1.2 Scaled Performance Variance252

For the above measure, it can only reflect the vari-253

ances of the performance of different models, with-254

out considering whether the model’s performance255

is close to the upper limit (e.g., 100% accuracy)256

on a given data set. To address this problem, we257

defined a modified variance by scaling λvar with258

the difference between the upper limit performance259

u and average performance Avg(v) of v.260

λsva = λvar(u−Avg(v)). (2)261

In practice, u can be defined flexibly based on tasks’262

metrics. For example, in text classification task, u263

could be 100% (w.r.t F1 or accuracy), while in264

summarization task, u could be the results of or-265

acle sentences (w.r.t ROUGE). Intuitively, given266

a performance list on text classification dataset:267

v = [88, 92, 93], we can obtain the λsva = 23.81.268

4.1.3 Hit Rate269

The previous two measures quantify dataset’s dis-270

criminative ability w.r.t k top-performing systems271

in an indirect way (i.g, solely based on the overall272

results of different models). However, sometimes,273

small variance does not necessarily mean that the274

dataset fail to distinguish models, as long as the dif-275

ference between models is statistically significant.276

To overcome this problem, we borrow the idea of277

bootstrap-based significant test (Koehn, 2004) and278

define the measure hit rate, which quantify the de-279

gree to which a given dataset could successfully280

differentiate k top-scoring systems.281

Specifically, we take all
(
k
2

)
pairs of systems282

(mi and mj) and compare their performances on283

a subset of test samples Dt that is generated using284

paired bootstrap re-sampling. Let vi(D) > vj(D)285

be the performance of m1 and m2 on the full286

test set, we define P (mi,mj) as the frequency of287

vi(Dt) > vj(Dt) over all T times of re-sampling288

(t = 1, · · · , T ) Then we have289

λhit =
1(
k
2

)∑P (mi,mj) (3)290

Metric Comparison The first two metrics, per-291

formance variance and scaled performance vari-292

ance, are relative easily to obtain since they only re-293

quire holistic performances of different top-scoring294

models on a given dataset, which can be conve-295

niently collected from existing leaderboards. By296

contrast, although the metric hit rate can directly297

reflect dataset’s ability in discriminating diverse298

systems, its calculation not only require more fine- 299

grained information of system prediction but also 300

complicated bootstrap re-sampling process. 301

4.2 Exp-I: Exploring Correlation Between 302

Variance and Hit Rate 303

The goal of this experiment is to investigate the re- 304

liability of the variance-based discrimination mea- 305

sures (e.g., λsva), which are easier to obtain, by cal- 306

culating its correlation with significant test-based 307

measure λhit, which is costly to get. Since the im- 308

plementation of λhit relies on the bootstrap-based 309

significant test, we choose text classification as 310

the tested and re-implement 4 classification mod- 311

els (defined in Sec. 3.2) on 9 datasets. The per- 312

formance and the distinction degree on the 9 text 313

classification dataset are shown in Tab. 1. λvar and 314

λsva measures are designed based on performance 315

variance, even if BERT always achieves the best 316

performance on the same dataset, it will not affect 317

the observed results from our experiments. 318

Correlation measure Here, we adopt the Spear- 319

man rank correlation coefficient (Zar, 1972) to de- 320

scribe the correlation between our variance-based 321

measures and the hit rate measure λhit. 322

Sλ = Spearman(q, λhit), (4) 323

where the q can be λvar or λsva. 324

Result (1) λvar and λsva are strong correlative 325

(Sλ>0.6) with λhit respectively, which suggests that 326

variance-based metrics could be a considerably re- 327

liable alternatives of significant test-based metric. 328

(2) Spearman(λvar, λhit) > Spearman(λsva, λhit), 329

which indicate that comparing with λsva, dataset 330

discrimination characterized by λvar is more accept- 331

able for λhit. The reason can be attributed to that 332

the designing of the measure λhit does not consider 333

the upper limit of the model’s performance. 334

(3) DPdedia and Yelp are commonly used text 335

classification datasets, while they have the worst 336

ability to discriminate the top-scoring models since 337

they get the lowest value of λvar and λsva. By 338

contrast, these two seldom used datasets ADE and 339

ATIS show the better discriminative ability. 340

4.3 Exp-II: Evaluation of Other Benchmarks 341

4.3.1 Popular Benchmark Datasets 342

We also investigate how benchmark datasets from 343

other NLP task perform using two devised mea- 344

sures. Specifically, we collected three single-task 345

4



Method BERT LSTMAttr LSTM CNN λhit λvar λsva

SST1 54.12 43.80 47.60 44.80 0.88 4.65 243.56
CR 91.75 83.25 82.50 84.25 0.91 4.27 62.17
MR 85.55 79.92 79.80 82.00 0.86 2.69 48.83
QC 97.19 90.36 89.96 92.17 0.92 3.32 25.18
IMDB 93.34 89.45 89.65 87.81 0.87 2.33 23.18
ADE 93.48 92.90 92.65 89.54 0.78 1.77 13.90
ATIS 97.64 97.42 97.31 94.62 0.78 1.42 4.63
Yelp 97.52 96.60 96.60 95.46 0.81 0.84 2.91
DPedia 99.27 99.01 99.05 98.75 0.68 0.22 0.21

Spearman 0.83 0.73

Table 1: Illustration the 4 models’ performance and discrimination degree (characterized by λhit, λvar, and λsva) on
9 text classification datasets. The two correlation coefficients pass the significance test (p < 0.05 ). λvar and λsva
measures are designed based on performance variance.

and two multitask benchmarks. For the single-task346

benchmarks, we collect the top-performing models347

in a specific period for each dataset, provided by348

Paperswithcode 7. For the multitask benchmarks,349

here, the GLUE 8 and XTREME 9 are considered350

in this work. Since Paperswithcode provided 5351

models for each dataset in most case, for fairness352

and uniformity, we keep top-5 models for both353

single-task and multitask benchmark datasets.354

Named Entity Recognition (NER) aims to iden-355

tify named entities of an input text, for which we356

choose 5 top-scoring systems on 6 datasets and357

collect results from Paperswithcode.358

Chinese Word Segmentation (CWS) aims to de-359

tect the boundaries of Chinese words in a sentence.360

We select 5 top-scoring systems on 8 datasets and361

collect results from Paperswithcode.362

Natural Language Inference (NLI) targets at pre-363

dicting whether a premise sentence can infer the364

hypothesis sentence. We select 5 top-performing365

models on 4 datasets from Paperswithcode.366

GLUE (Wang et al., 2019b) covers 9 sentence- or367

sentence-pair tasks with different dataset sizes, text368

genres, and degrees of difficulty. Fig. 2-(a) shows369

the tasks/datasets that are considered in GLUE.370

XTREME (Hu et al., 2020b) is the first bench-371

mark that evaluates models across a wide variety372

of languages and tasks. The tasks/datasets that are373

covered by XTREME are shown in Fig. 2-(b).374

4.3.2 Results and Analysis375

Fig. 2 shows the results of dataset quality measure376

by λvar and λsva. We detail several main observa-377

tions:378

7https://paperswithcode.com/
8https://gluebenchmark.com/
9https://sites.research.google/xtreme

• λvar and λsva have consistent evaluation results 379

for both single-task (CWS, NER, NLI) and mul- 380

titask (GLUE, XTREME) benchmarks. 381

• For the XTREME benchmark, BUCC and 382

PAWSX have lowest λvar and λsva, which sug- 383

gest that they are hardly to discriminate the top- 384

performing systems. Moreover, these two data 385

sets will be removed from the new version of 386

the XTREME leaderboard called XTREME-R 387

(Ruder et al., 2021). This consistent observation 388

also shows the effectiveness of our measure. 389

• For GLUE benchmark, CoLA, QQP, and RTE 390

datasets have the excellent ability to distinguish 391

different top-scoring models (with higher λvar 392

and λsva), while the SST-2 and STS-B datasets 393

have the opposite conclusions. 394

• For CWS benchmarks, there is a larger gap be- 395

tween the value of λvar and λsva, which indicate 396

that the performance of top-scoring models con- 397

sidered are close to 100%. Furthermore, MSR, 398

CityU and CTB are not suitable as benchmarks 399

since they have poor discrimination ability with 400

λsva < 0. So as MultiNLI for NLI task. 401

• CoNLL 2003 is a widely used NER dataset, but 402

it is the lowest quality dataset under our dataset 403

quality measure. The reason can be attributed to 404

contain much annotation errors (Fu et al., 2020) 405

in the CoNLL 2003 dataset, which makes its 406

performance reach the bottleneck. 407

5 Can we Predict Discrimination? 408

Although metrics λvar, λsva ease the burden for us 409

to calculate the datasets’ discrimination, one major 410

limitation is: given a new dataset without results 411

from leaderboards, we need to train multiple top- 412

scoring systems and calculate corresponding results 413

on it, which is computationally expensive. To alle- 414

5
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Figure 2: The dataset discrimination characterized by λvar (blue) and λsva (pink) on five popular NLP benchmarks.

viate this problem, in this section, we focus on text415

classification task and investigate the possibility of416

estimating datasets’ discrimination solely based on417

their characteristics without actual training systems418

on them.419

5.1 Task Formulation420

5.1.1 Regression-based Task Formulation421

We formulate it as a performance prediction prob-422

lem (Birch et al., 2008; Xia et al., 2020; Ye et al.,423

2021). Formally, we refer to M, Dtr , Dte, S424

as the machine learning system, training data, test425

data and training strategy respectively. The goal of426

performance prediction is to estimate actual perfor-427

mance y without actual training by using features428

ofM, Dtr, Dte, and S .429

ŷ = f̂(ΦM,ΦDtr ,ΦDte ,ΦS ; Θ̂) (5)430

where ŷ denotes estimated prediction and Φ(·) is431

a feature extractor. Following Xia et al. 2020, we432

only use the features of the datasets as variables and433

adapt it to our discriminative prediction scenario,434

we can obtain:435

λ̂ = f̂(ΦDtr ,ΦDte ; Θ̂) (6)436

where λ̂ denotes predicted variance defined in437

§4.1.2 such as λvar or λsva.438

5.1.2 Ranking-based Task Formulation439

Instead of only regressing one dataset’s quality,440

we also care about the quality ranking of dif-441

ferent datasets w.r.t discriminating systems in a442

task. Therefore, we also formulate it as a listwise443

LTR(learning to rank) task where a model takes444

individual lists as instances, to predict the rank of 445

element among the list (Liu, 2011). Given a set 446

of n datasets d = {d1, d2, · · · , dn} (d ∈ D = 447

{Dtr, Dte}), different d construct the dataset of 448

LTR task, the target of the ranker is to predict the 449

dataset quality ranking for each dataset in d ac- 450

cording to the datasets’ features. The estimated 451

rankings λ = {λ1, λ2, · · · , λn} ∈ [1, n] for set d 452

can be defined as: 453

λ = f(Φ(d); Θ) (7) 454

where Φ(·) is the dataset feature extractor, f is the 455

ranking model. λ ∈ [1, n] is the estimated rankings 456

of the variance (e.g. λvar or λsva) for datasets in 457

set d. 458

5.2 Characterization of Datasets 459

In this section, we will introduce three aspects that 460

characterize datasets: Inherent Feature, Lexical 461

Feature, and Semantic Feature. Due to space limita- 462

tions, we move a more detailed feature introduction 463

to the Appendix C. 464

5.2.1 Inherent Feature 465

Average length (φlen): The average sentence 466

length on a dataset, where the number of tokens on 467

a sentence is considered as the sentence length. 468

Label number (φlab): The number of labeled 469

classes in a dataset. 470

Label balance (φbal): The label balance metric 471

measures the variance between the ideal and the 472

true label distribution. 473

5.2.2 Lexical Feature 474

Basic English Words Ratio (φbasic): The propor- 475

tion of words belonging to the 1000 basic English 476

6



10 words in the whole dataset.477

Type-Token Ratio (φttr): We measure the text478

lexical richness by the type-token ratio (Richards,479

1987) based on the lexical richness tool 11.480

Language Mixedness Ratio (φlmix): To detect the481

ratio of other languages mixed in the text, we utilize482

the models proposed by Joulin et al. (2016b) for483

language identification from fastText (Joulin et al.,484

2016a) which can recognize 176 languages.485

Pointwise Mutual Information (φpmi): PMI12 is486

a measurement to calculate the correlation between487

variables.488

5.2.3 Semantic Feature489

Perplexity (φppl): We calculate the perplexity 13490

based on GPT2 (Radford et al., 2019) to evaluate491

the quality of the text.492

Grammar Errors Ratio (φgerr): We adopt the de-493

tection tool 14 to recognize words with grammatical494

errors, and then calculate the ratio of grammatical495

errors.496

Flesch Reading Ease 15 (φfre): To describe the497

readability of a text, we introduce the φfre achiev-498

ing by textstat 16.499

For feature φlen, φttr,φlmix, φgerr, φpmi, φfre,500

and φrfre , we individually compute φ() on the train-501

ing, test set, as well as their interaction. Take aver-502

age length (φlen) as an example, we compute the503

average length on training set φtr,len, test set φte,len,504

and their interaction ((φtr,len − φte,len)/φtr,len)2.505

5.3 Parameterized Models506

The dataset discrimination prediction (ranking)507

model takes a series of dataset features as the in-508

put and then predicts discrimination(rank) based509

on f̂(·) (f(·)) defined in Eq. 6 (Eq. 7). We explore510

the effectiveness of four variations of regression511

methods and two ranking frameworks.512

Regression Models513

10https://simple.wikipedia.org/wiki/
Wikipedia:List_of_1000_basic_words

11https://github.com/LSYS/
lexicalrichness

12https://en.wikipedia.org/wiki/
Pointwise_mutual_information

13https://en.wikipedia.org/wiki/
Perplexity

14https://github.com/jxmorris12/
language_tool_python

15https://en.wikipedia.org/wiki/Flesch%
E2%80%93Kincaid_readability_tests

16https://github.com/shivam5992/
textstat

• LightGBM (Ke et al., 2017) is a gradient boost- 514

ing framework with faster training and better 515

performance than XGBoost. 516

• K-nearest Neighbor (KNN) (Peterson, 2009) is 517

a non-parametric model that makes the predic- 518

tion by exploring the k neighbors. 519

• Support Vector Machine (SVM) (Suykens and 520

Vandewalle, 1999) uses kernel trick to solve both 521

linear and non-linear problems. 522

• Decision Tree (DT) (Quinlan, 1990) is a tree- 523

based algorithm that gives an understandable in- 524

terpretation of predictions. 525

Ranking Frameworks 526

• LightGBM with Gradient Boosting Decision 527

Tree (Friedman, 2001) boosting strategy was se- 528

lected as our ranking model. 529

• XGBoost (Chen and Guestrin, 2016) with gb- 530

tree(Hastie et al., 2009) boosting strategy was 531

another ranking model. 532

5.4 Experiments 533

5.4.1 Data Construction 534

To construct a collection with large amount of 535

discriminative datasets, we randomly select three 536

dataset features (e.g. average sentence length φlen) 537

to divide the original dataset into several non- 538

overlapping sub-datasets. As a result, we collect 539

987 sub-datasets. Then, we train four text classifi- 540

cation models (CNN, LSTM, LSTMAtt, BERT) on 541

these sub-dastasets. Next, we calculate the dataset 542

features φ (defined in Sec. 5.2) and dataset discrim- 543

ination ability λsva and λvar on these sub-datasets. 544

Regression Task Settings φ and λsva (λvar) will 545

be the input and target of the regression models, as 546

defined by Eq. 6. For the experiment setting, we 547

randomly select 287 (φ, λsva (λvar)) pairs as the test 548

set and the rest as the training set (700). 549

Ranking Task Settings We construct datasets 550

for ranking task from the dataset used in regression 551

task. Here, we explored the value of n (defined in 552

§5.1.2) to be 5, 7 and 9 to randomly choose sam- 553

ples from Dtr (or Dte) to construct the datasets 554

for the ranking task, and kept 4, 200, 600, 1, 200 555

samples for training, development and testing set 556

respectively. 557

5.4.2 Evaluation Metric 558

Regression Task We use RMSE (Chai and 559

Draxler, 2014) and Spearman rank correlation co- 560
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efficient (Zar, 1972) to evaluate how well the re-561

gression model predicts the discriminative ability562

for datasets. The Spearman rank correlation coef-563

ficient is used to calculate the correlation between564

the output of a regression model and the ground565

truth.566

Ranking Task NDCG and MAP are the evalua-567

tion metric of our ranking task. MAP is a binary568

preference metric, which focuses on whether the569

relevant document has a higher ranking than the570

irrelevant document. Here, we set a threshold value571

of λvar = 3 (λsva = 28) for λvar (λsva) to distin-572

guish the dataset discrimination ability from good573

(relevant) to bad (irrelevant).574

Method

RMSE Spearman

λvar λsva
λvar λsva

corr p corr p

KNN 2.42 51.21 0.77 9.75E-40 0.87 1.62E-63
LightGBM 1.53 32.74 0.72 2.23E-33 0.87 7.01E-61
DT 1.73 43.33 0.64 9.25E-25 0.84 1.33E-53
SVM 2.83 62.44 0.68 1.14E-28 0.77 7.26E-40

Table 2: The performance of regressing dataset discrim-
ination for the text classification. “corr” denotes the
“correlation”.

Model n NDCG MAP

λvar λsvar λvar λsvar

LightGBM
9 98.20 98.85 97.50 98.27
7 97.76 98.73 97.01 99.05
5 96.73 97.08 96.56 98.15

XGBoost
9 96.66 97.13 92.91 93.62
7 96.74 97.65 94.77 96.11
5 95.93 97.10 95.49 98.25

Table 3: The performance of ranking dataset discrimi-
nation for the text classification task. n is the number
of datasets in d defined in §5.1.2

5.4.3 Results and Analysis575

Tab. 2 and Tab. 3 show the results of four regression576

models and two ranking models that characterize577

the dataset discrimination ability, respectively. We578

can observe that:579

(1) Both the regression models and the rank-580

ing models can well describe the discrimination581

ability of different datasets. For these four re-582

gression models, the prediction is highly correlated583

with the ground truth (with a correlation value584

larger than 0.6), passing the significance testing585

(p < 0.05). This suggests that the dataset discrimi-586

nation can be successfully predicted. For these two 587

ranking models, their performance on NDCG and 588

MAP is greater than 95%, which indicates that the 589

discriminative ability of the data set can be easily 590

ranked. 591

(2) λsva measure is better to characterize the 592

discrimination ability of different datasets com- 593

pared with λvar. For a regression model (e.g. 594

KNN), the performance of λsva is better than λvar 595

significantly (higher correlation on λsva), indicat- 596

ing that the dataset properties designed are more 597

suitable for characterizing λsva. This conclusion 598

can also be observed in the ranking models. 599

len bal lab avg
0

50

100

150

(a) Inherent
basic lmix pmi ttr avg

100

150

200

(b) Lexical
ppl fregerr avg

80

100

120

(c) Semantic

Figure 3: Feature importance for the text classification
measured by LGBoost with the target of λsva.

Feature Importance Analysis Fig. 3 illustrates 600

the feature importance characterized by LightGBM. 601

For a given feature, the number of times that is 602

chosen as the splitting feature in the node of the de- 603

cision trees is defined as its importance degree. We 604

observe that: (1) The most influential features are 605

φpmi, φlen, and φfre, which come from the lexical, 606

inherent, and semantic features, respectively. This 607

indicated that the LightGBM can extract features 608

from different aspects to make predictions. (2) In 609

the perspective of feature groups, the semantic fea- 610

tures are more influential than the inherent features 611

and lexical features. 612

6 Implications and Future Directions 613

This paper has attempted to provide a methodol- 614

ogy to characterize the discrimination ability (w.r.t 615

top-scoring models) of the dataset, which allows 616

to re-rank the value of the datasets. Some seldom 617

used datasets may distinguish top-scoring models 618

better than those frequently-used datasets. For the 619

dataset with lower discrimination ability, we sug- 620

gest proposing a more challenging dataset or make 621

significance testing on these datasets. The idea can 622

be applied to other NLP tasks. The suggestions and 623

observations provided by this paper will inspire the 624

future research. 625
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A Statistics of Datasets901

Tab. 4 shows the statistical information of the nine902

datasets of text classification task used in our work.903

For those datasets without explicit the development904

set, we randomly selected 12.5% samples from the905

training set as the development set.906

Dataset Train Test Development

IMDB 25,000 25,000 -
Yelp 560,000 38,000 -
QC 5,452 500 -
DPedia 560,000 70,000 -
CR 3,594 400 -
ATIS 4,978 893 -
SST1 8,544 2,210 1,101
MR 9,596 1,066 -
ADE 23,516 - -

Table 4: Statistics of datasets.

B Parameter Settings for Text907

Classification Model908

In this section, we will introduce the parameter set-909

tings of the neural network-based models explored910

in Section 3.2. The optimizer is AdamW for the911

four mdoels. The settings of other parameters are912

shown in Tab. 5.913

Parameter BERT CNN LSTM LSTMAtt

learning rate 2*e-5 1*e-4 1*e-3 1*e-3
batch size 4 4 32 32
word emb - Word2vec GloVe GloVe
word emb size - 300 300 300
hidden size 768 120 256 256
max sent len 512 - - -
filter size - 1,3,5 - -

Table 5: the parameters of four models.

C Characterization of Datasets914

C.1 Inherent Feature915

Label balance (φbal): The label balance metric916

measures the variance between the ideal and the917

true label distribution: φbal = (ct − cs)/cs, where918

the ct and cs are the true and ideal label information919

entropy (Shannon, 1948), respectively.920

C.2 Lexical Feature921

Type-Token Ratio (φttr): TTR (Richards, 1987)922

is a way to measure the documents lexical richness:923

φttr = ntype/ntoken, where the ntype is the number924

of unique words, and ntoken is the number of to- 925

kens. We use lexical richness 17 to calculate the 926

TTR for each sentence and then average them. 927

Language Mixedness Ratio (φlmix): The propor- 928

tion of sentence that contains other languages in 929

the whole dataset. To detect the mixed other lan- 930

guages, we utilize the models proposed by Joulin 931

et al. (2016b) for language identification from fast- 932

Text (Joulin et al., 2016a) which can recognize 176 933

languages. 934

Pointwise Mutual Information (φpmi): is a mea- 935

surement to calculate the correlation between 936

variables. Specifically, for a word in one class 937

φpmi(c,w) = log( p(c,w)
p(c)p(w)), where p(c) is the pro- 938

portion of the tokens belonging to label c, p(w) is 939

the proportion of the word w, and p(c, w) is the 940

proportion of the word w which belongs to class 941

c. For every class, all the φpmi(c,w), larger than 942

zero, are added to get the sum, which serve as the 943

dataset’s pmi. Finally,φpmi is calculated by divid- 944

ing the sum by the numbers of pairs(c,w) of the 945

train dataset. We pick up the top-ten words sorted 946

by φpmi(c,w) in all classes, then the ration related to 947

the class-related word(φrpmi) is calculated by divid- 948

ing the number of samples who contain the top-ten 949

words by the total samples in the train set. 950

C.3 Semantic Feature 951

Grammar errors ratio (φgerr): The proportion 952

of words with grammatical errors in the whole 953

dataset. We adopt the detection tool 18 to recognize 954

words with grammatical errors. We first compute 955

the grammar errors ratio for each sentence: n/m, 956

where the n and m denote the number of words with 957

grammatical errors and the number of the token for 958

a sentence, averaging them. 959

Flesch Reading Ease (φfre): Flesch Reading Ease 960
19 calculated by textstat 20 is a way to describe the 961

simplicity of a reader who can read a text. First, 962

we calculate the φfre for each sample, and then 963

average them as the dataset’s feature. Then we 964

pick out the samples whose score below 60, then 965

the ration related to the low score samples(φrfre) 966

is calculated by dividing the number of the picked 967

samples by the total samples in the train set. 968

17https://github.com/LSYS/
lexicalrichness

18https://github.com/jxmorris12/
language_tool_python

19https://en.wikipedia.org/wiki/Flesch%
E2%80%93Kincaid_readability_tests

20https://github.com/shivam5992/
textstat
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