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Abstract— Traditional Imitation Learning (IL) approaches
often rely on teleoperation to collect training data, which
ensures consistency between training and deployment action
and observation spaces. However, teleoperation slows data
acquisition, distorts expert behavior and data can be affected
by the lack of teleoperation skills. To overcome these limita-
tions, IL training on human demonstrations requires visual
representations that are agnostic to both embodiment and en-
vironment. Recent advancements in Vision Foundation Models,
such as Grounded-Segment-Anything (Grounded-SAM), offer
a solution by extracting meaningful scene information while
filtering out irrelevant details without manual annotation. In
this work, we collected 50 human video demonstrations of a
manipulation task from the RLBench benchmark. We evaluated
Grounded-SAM’s ability to automatically annotate objects of
interest and proposed a 3D visual representation using depth
maps. This representation was used to train a diffusion policy,
which successfully generalized to simulated robot deployment
in RLBench, despite being trained exclusively on real-world
human demonstrations. Our results demonstrate that efficient
training can be achieved with just 50 demonstrations and half-
an-hour training time.

I. INTRODUCTION

Robotic manipulation learning is essential for equipping
robots with complex skills without extensive programming
effort. Two common training paradigms are Reinforcement
Learning (RL) and Imitation Learning (IL). RL needs many
interactions with the environment, which isn’t always prac-
tical in real-world settings, and designing rewards can be
more labor-intensive than programming the task directly. IL,
particularly Behavior Cloning, offers a simpler alternative
by training a policy from expert demonstration data without
requiring interaction with the environment.

Most behavior cloning approaches collect their datasets by
recording teleoperated demonstrations [13]. This is a prac-
tical scenario for the policy training, since the observation
and action spaces are the same for the expert and the learner.
However, this is not ideal for real-life scenarios for several
reasons. Firstly, Mandlekar et al. [12] showed that the lack
of skill of the expert in teleoperation can negatively impact
the performance of the learner. Secondly, a policy trained
on a dataset specific to one robot might not generalize well
to other robots. The teleoperation process is also intrusive
and time-consuming, especially for those unfamiliar with the
technology, limiting real-world adoption.

Several studies have addressed the human-to-robot imi-
tation learning (IL) problem, mostly by focusing on affor-
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Fig. 1: Our visual representation uses open-vocabulary object
detection and segmentation (Grounded-SAM) to represent a
scene, focusing only on objects of interest and the hand/tool
position, regardless of the operator or the environment.

dances. For instance, Bahl et al. [1] detect the first hand-
object contact in the human demonstrations, and treat the
corresponding hand position as an affordance, that a robot
should also reach to perform the same task. They train
a model to predict such affordance for the first image of
the demonstrations, when the human is not visible in the
video yet, to prevent the model from being biased an human
operators. However, this restricts their approach to specific
camera angles where the human is not visible initially and to
tasks that can be resolved with one hand-object interaction
only. Training a model from image further bias it to the
background environment visible in the demonstrations.

Two main limitations are therefore hindering the devel-
opment of human-to-robot IL. First, the lack of visual
representations that are agnostic to the embodiment
and to background environment, which would allow to
train a policy on human demonstrations from a given
background environment, and deploy it on a robot in
new environments. Second, the lack of public benchmarks
that can provide both human demonstrations of manipulation
tasks along with a publicly available simulation featuring the
same tasks.

In this work, we selected one task from the publicly avail-
able simulated benchmark RLBench [6], and we collected a
dataset of human demonstrations for this task. We collected



50 demonstrations of the task ”put rubbish in bin”, recorded
using an iPhone 14 pro.

We leveraged recent advancements in open-vocabulary
object detection [9] and segmentation [8], [16] to build
a scene representation focused on relevant objects, filter-
ing out background and operator embodiment. Specifically,
Grounded-SAM [9] was used to segment target objects based
on their textual descriptions. These segmentations were then
projected onto a 3D point cloud using iPhone depth maps,
as shown in Fig. 1.

Using our data, we evaluated 2 things. 1) The ability of
the Grounded-SAM to find the right objects, with different
prompting strategies. 2) The ability of a diffusion policy
equipped with our representation to deploy on a simulated
robot while being trained on real human demonstrations. Our
representation allowed to achieve a promising 20% success
rate from those 50 demonstrations only, and in a less than
30 minutes of training.

Overall, this work showcases the potential of Vision
Foundation Models to extract meaningfull information
from the scene, enabling 0-shot transfert to new envi-
ronments or new embodiments and paves the way for the
development of new benchmarks, visual representations, and
learning paradigms around these problems.

II. DATASET AND ANNOTATION STRATEGY

A. Content

50 demonstrations of the task ”put rubbish in bin” were
collected using a moving iPhone 14 pro (carried by an
external operator), providing RGB images and depth maps
of the scene from various viewpoints. In the RLBench task,
the robot is required to pick up a piece of rubbish from
the table and place it in a trash bin. The rubbish is a small
crumpled piece of paper, and is always accompanied by two
distractors, which are other objects that the robot should not
interact with. In the demonstrations that we collected, we
included various distractors, but also several distinct trash-
bins and pieces of crumpled paper as trashes. The set of
objects present in the scene in the human demonstrations is
shown in Fig. 2.

The intuition behind using a moving camera is to provide
data for training viewpoint-agnostic deep-learning policies.
If all data are recorded from a fixed viewpoint, the trained
policy will be biased toward that perspective. In contrast,
using a moving camera captures images from different view-
points, forcing the policy to generalize across a variety of
perspectives.

B. Action annotations

An IL dataset is composed of pairs of observations and
corresponding actions. The first step in the annotation pro-
cess is to extract actions from the human demonstrations.
On the robot side, the actions should correspond to the
position and orientation that the gripper should reach, from a
given state of the scene. Additionally, the action encompasses
whether the gripper should be opened or closed after reaching
the target position. Therefore, the actions from the human
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Fig. 2: Visualization of the objects present in the scene in
the human demonstrations.

demonstrations should similarly correspond to the position
and orientation that the human hand reaches next from a
given state of the scene.

We therefore annotated the hand poses in the collected hu-
man demonstrations using the Keypoint-Fusion [10] model,
that was trained to extract the 3D position of 21 keypoints of
the human hand from RGB images and depth maps. Since the
hand pose estimation model provided quite noisy predictions
on our data, we defined the tool position as the average of
the two furthest keypoints of all fingers to mitigate prediction
errors. However, defining the orientation of the hand would
require to rely on individual keypoints to define a frame in
the hand. Since the hand pose estimation used is too noisy
for that purpose, the tool’s orientation was kept orthogonal
to the table, which is reasonable for the task considered in
this study, since objects are always grasped from the top.

At that point, we have extracted dense sequences of hand
poses followed by the human operators during the demon-
strations. However, training a robot control policy to mimic
human trajectories is suboptimal due to the morphological
differences between humans and robots. Nevertheless, both
humans and robots share similar action primitives, such
as ’reaching a grasping position’ and ’reaching a releasing
position.’ To address this, we annotated the start and end
timestamps of these two primitives in the human demonstra-
tions. Additionnally, as depicted on Fig. 3, when sending
the trash to the bin, the operator was systematically passing
through a highest point before moving down to the releasing
point, in order to avoid a collision with the bin. We annotated
the trajectory from the preceding grasp to the highest point as
an ”avoid collision” primitive. In section III, these primitives
will allow us to train policies that predict these embodiment-
agnostic primitives, rather than dense, embodiment-specific
action sequences. Finally, the gripper is initially annotated as
”open” at the start of each demonstration. It is then marked as
”closed” once the ”reach and grasp” primitive is completed.
Similarly, the gripper remains annotated as ”closed” until the
”reach and release” primitive is completed.

C. Observation annotations

The second step in the annotation process is to extract
a visual representation from the observations of the human
demonstrations. We annotated the objects of interest in the
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Fig. 3: Comparing robot primitives obtained from the RL-
Bench demontration generator and human primitives anno-
tated from the human demonstrations.

scene using the Grounded-SAM framework [16]. It combines
two models. The Grounded-Dino [9], an open-vocabulary
object detection model, allows to detect objects of interest in
the images by specifying their names with an input prompt.
The Segment-Anything (SAM) model [8] further segments
the objects detected by the Grounded-Dino model. We only
segmented the first image of the video, and subsequently
tracked the segmented objects using the Cutie tracker [2].
Initially, we prompted Grounded-SAM with the names of
the target objects, ”crumpled paper” and ”trashbin,”. We
evaluated the model’s detection performance using precision,
which measures how many of the detected objects are
actually of interest, and recall, which measures the number
of the actual objects of interest that were correctly detected.
We focused the evaluation of Grounded-Dino on detection
performance, measured by precision and recall, since seg-
mentation was nearly perfect when the correct objects were
detected.

However, as shown in Table I, the initial naive prompt
resulted in numerous false positives for ”crumpled paper,”
with objects like a white wind-up toy being misclassified,
leading to low precision. Additionally, the trashbin was
occasionally missed, also causing poor recall. To improve
detection, we enhanced the prompt by including the names
of all objects in the scene and subsequently filtering the
results by name. This allowed Grounded-SAM to correctly
dissociate similar objects, such as the white wind-up toy and
the ”crumpled paper”, under different labels. We also added
”pot” to the prompt to increase the likelihood of detecting
the trashbin. This refinement improved detection accuracy,
with 76% of the demonstrations having all target objects
correctly detected without the need for human annotation
(Table I). For the remaining 24%, we used the interactive
segmentation feature of SAM [8].

The pixels corresponding to the objects of interest in the
scene were then projected to the 3D space using the depth
maps and known intrinsic parameters of the iPhone 14 Pro
camera. This process generates a point cloud representation
of the scene, containing only points from objects of interest.
Each point is a 4D vector with its 3D position in the
camera coordinate system and a scalar indicating the object’s

TABLE I: Grounded-SAM performances on the first images
of our 50 demonstrations.

Trashbin Crumpled Paper Succ. Rate

Recall Precision Recall Precision

Naive Prompt 0.84 0.95 0.9 0.79 52

Enhanced Prompt 0.92 1.0 0.9 0.92 76

category. This representation filters out the background, the
operator, and distractors. The tool’s position (human hand)
is also provided to the policy to help locate the operator in
the scene.

Note that an observation and its corresponding action must
be defined within the same coordinate system. However, in
our case, the coordinate system —which is the camera’s
frame— is moving during demonstration acquisition. As a
result, an observation at time t and its corresponding action,
for e.g., the hand pose at time t+10, will not initially be in
the same coordinate system. By using the camera’s odometry,
we can recover the transformation between the action frame
and the observation frame, allowing us to project them into
the same coordinate system.

III. PRIMITIVE BASED BEHAVIOR CLONING

1) Behavior cloning in fixed horizon settings: We formal-
ize our dataset as a set of demonstration trajectories D =
{τi}Ni=1, where each trajectory τi is defined as a sequence of
observation-action pairs τ = {(ot, at)}Ti

t=1. Training a policy
π using behavior cloning on a fixed action horizon of 1 time
step, and equipped with a visual representation function ϕ
is equivalent to solving the optimization problem defined by
Equation 1.

θ∗ = argmin
θ

∑
i

∑
t

l (π (ϕ(ot); θ) , at) . (1)

In Equation 1, θ represents the learnable parameters of the
deep learning policy and l is the loss function that seeks
to minimize the difference between the predicted action
π (ϕ(ot); θ) and the ground truth action at. Here at can be
fully defined as the tuple

at = (xt+1
tcp , y

t+1
tcp , zt+1

tcp , Grip.Statet+1), (2)

where (xt+1
tcp , y

t+1
tcp , zt+1

tcp ) is the 3D position of the robot’s
tool center point (TCP) at timestep t+1. As mentioned earlier,
the orientation of the gripper will be fixed, orthogonal to the
table for the considered pick-and-place task. Grip.Statet+1

is the opening state of the robot’s gripper (open/closed).
The policy can be trained to predict not just the next

action, but the next ”h” actions, enhancing its planning ca-
pabilities. Chi et al. [2] extended this by training a diffusion
policy to predict the next ”h” actions but only executing
the first ”a” actions, balancing long-term planning with
reliable short-term execution. After a hyperparameter search,
they found that ”h=16” and ”a=8” worked best for tasks
using a transformer-based policy trained on teleoperated
demonstrations.



2) Behavior cloning in primitives based settings: In the
case of primitives based actions [5], [7], the trajectories can
be reformulated as τ ′ = {(ot, p(t))}Tt=1., where p(t) =
amin(k>t,∀k∈{k1,kM}) represents the 3D position and opening
state of the gripper at the end of the ongoing primitive that
is being performed in the scene at time t. {k1, kM} is the set
of timesteps that correspond to the end of the M primitives.
Equation 3 defines the primitive-based optimization problem.

θ∗ = argmin
θ

∑
i

∑
t

l (π (ϕ(ot); θ) , p(t)) . (3)

3) Two solutions for collision avoidance: In section II-B,
we detailed three annotated primitives from human demon-
strations: 1) ’reaching a grasping position’, 2) ’reaching a
releasing position’, and 3) ’reaching a point to avoid a
collision’. The third primitive can be treated either as a
separate action or as part of the reaching actions, where
the goal is to avoid collisions while reaching grasp/release
points. We implemented two solutions: 1) predicting the
’avoid collision’ primitive independently (1-step solution),
and 2) training the policy to predict collision-avoidance
points along with the grasp/release points of primitives 1
and 2 (2-step solution). For the second solution, if there is
no collision to avoid, the point is set midway between the
start and end of the reaching and grasp/release primitive.

4) Implementation details and evaluation metrics: The
demonstrations were split 80% for training and 20% for
validation. We trained the transformer-based diffusion pol-
icy from Chi et al. [3], with the configuration they used
for the ”low dim push-t task”, using either our 4D point
cloud (’4D Pt.Cl.’) or Value-Implicit Pre-training (’VIP’)
[11], which has shown superior performances for robotic
manipulation compared to prior pre-trained visual represen-
tations [14], [4], [15]. All policies are trained for 3000
epochs. Every 1000 epochs, they are evaluated on the training
and validation sets using Euclidean distance between pre-
dicted and ground-truth tool positions (Train/Val Pos. Err),
assessing performance on human data first. Note that the
errors arising from ”avoid collision” keypoints are reported
separately (Av. Pos. Err). Afterwards, the policy undergoes
50 simulated rollouts on a robot in RLBench, with front
and overhead cameras, and the corresponding success rates
(Suc. Rate Front/Overhead) are calculated. We report the
best success rate and corresponding position errors among
all evaluations.

IV. HUMAN TO ROBOT PERFORMANCES

In Table II, we observe that fixed-horizon action prediction
(”Dense”) results in significantly lower position accuracy
during training, compared to Keypoint-based actions (”Two-
Step Keypoints”), leading to a 0% success rate during
deployment. This may be due to high uncertainty in hand
pose estimation, possibly exceeding the distance between
successive hand positions.

Regarding the Two-Step Keypoints, while the VIP repre-
sentation achieves similar tool position accuracy to our 4D
Pt.Cl. representation during training, it fails to generalize to

simulated robot deployments. In contrast, the 4D Pt.Cl. rep-
resentation achieves a 20% success rate. Their is a significant
difference in terms of missing parts and noisy points in the
point-clouds obtained using the iPhone sensors and those
obtained directly from RLBench, which is probably leading
to this relatively low success rate. It would be interesting to
deploy the model on a real robot equipped with the iPhone
sensors to validate this hypothesis.

Train Train Av. Val Val Av. Suc.Rate Suc.Rate
Pos. Err. Pos. Err. Pos. Err. Pos. Err. Front Overhead

(mm) (mm) (mm) (mm) (%) (%)

Two-Step
Keypoints

VIP 8.4 10.5 283.0 263.0 0 0

4D Pt.Cl. 9.0 10.0 128.0 167.0 20 0

Dense
VIP 27.2 22.4 154.3 154.3 0 0

4D Pt.Cl., h=1, a=1 28.4 - 54.0 - 0 0

4D Pt.Cl., h=16, a=8 261.0 - 328.1 - 0 0

TABLE II: Results of policy training on human demonstra-
tions and deployment on simulated robot.

Table III demonstrates that using two-step primitives sig-
nificantly improves deployment performance. In contrast,
treating ”avoid collision” as an independent primitive often
led the policy to get stuck around the ”avoid collision”
keypoint, instead of switching to the ”reach and release”
primitive. Additionally, the choice of human pose estima-
tion method is crucial, improving the success rate by 4%
compared to simply projecting 2D poses with depth maps.
Adding a pre-positioning primitive before each grasp further
enhances deployment success. However, all models fail to
generalize to the overhead view, which contains strong self-
occlusions with the robot.

Kpts Pre-Grasp Pose est. Train Train Av. Val Val Av. Suc. Rate Suc. Rate
type Positions method Pos. Err. Pos. Err. Pos. Err. Pos. Err. Front Overhead

(mm) (mm) (mm) (mm) (%) (%)

1-step No 2D + depth 11.8 13.6 188.1 221.4 0 0

2-step No 2D + depth 13.8 18.0 128.3 171.0 14 0

2-step Yes 2D + depth 22.2 30.7 126.0 165.4 16 0

2-step Yes RGB-D model 9.0 10.0 128.0 167.0 20 0

TABLE III: Ablations with the 4D Pt.Cl. representation

V. CONCLUSION

The Grounded-SAM model successfully detected all ob-
jects of interest in 76% of the 50 demonstrations in our
dataset. While this performance is insufficient for direct
deployment, it could allow to fine-tune a lighter segmenta-
tion model in a few-shot manner [19], [17], [18]. The 4D
Pt.Cl. representation used as input for a diffusion policy
achieved a 20% success rate when trained on real-world
human videos and deployed on a simulated robot, despite
significant embodiment, environment and sensor shifts. It
would be valuable to explore the impact of incorporating
these successful examples into the training data to provide
the model with target domain samples, and assess the effects
on deployment performance. Data from alternative view-
points—a fixed camera and an egocentric perspective—were
also collected during the 50 demonstrations. Future work
should also explore these viewpoints. Lastly, a crucial area
for future research is evaluating the model’s ability to predict
tool orientations.
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