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Abstract

Linear and quadratic optimization are crucial in numerous real-world applications,
ranging from training machine learning models to solving integer linear programs.
Recently, learning-to-optimize methods (L2O) for linear (LPs) or quadratic programs
(QPs) using message-passing graph neural networks (MPNNs) have gained traction,
promising lightweight, data-driven proxies for solving such optimization problems.
For example, they replace the costly computation of strong branching scores in
branch-and-bound solvers, thereby reducing the need to solve many such optimization
problems. However, robust L2O MPNNs remain challenging in data-scarce settings,
especially when addressing complex optimization problems such as QPs. This
work introduces a principled approach to data augmentation tailored for QPs via
MPNNs. Our method leverages theoretically justified data augmentation techniques
to generate diverse yet optimality-preserving instances. Furthermore, we integrate
these augmentations into a self-supervised contrastive learning framework, thereby
pretraining MPNNs for improved performance on L2O tasks. Extensive experiments
demonstrate that our approach improves generalization in supervised scenarios and
facilitates effective transfer learning to related optimization problems.

1 Introduction

Linear and quadratic optimization problems are fundamental problems in machine learning, operations
research, and scientific computing [Boyd and Vandenberghe, 2004, Nocedal and Wright, 1999]. Many
real-world applications, such as resource allocation, logistics, and training machine learning models,
rely on efficiently solving large-scale linear programming (LPs) and quadratic programming (QPs).
In addition, they play a key role in state-of-the-art integer-linear optimization solvers, allowing the
computation of lower bounds, and are the basis for crucial heuristics such as strong branching for
variable selection [Achterberg et al., 2005].

Recently, machine learning techniques, particularly message-passing graph neural networks
(MPNNs) [Gilmer et al., 2017, Scarselli et al., 2008] have been explored for learning-to-optimize
(L2O) approaches, aiming to learn to solve LPs and QPs in a data-driven fashion [Bengio et al., 2021,
Cappart et al., 2023], enhancing solver efficiency and improving generalization across different problem
instances. For example, Gasse et al. [2019] used MPNNs to imitate the costly strong branching score
for variable selection in integer-linear optimization solvers, which requires solving many LPs during
the solving process. However, training robust models for L2O remains challenging due to the scarcity
of labeled data, especially for complex optimization formulations such as QPs.

In response to this challenge, self-supervised learning (SSL) has emerged as a powerful paradigm for
pretraining models on large, unlabeled datasets [Liu et al., 2021]. Contrastive learning, a key approach
in SSL, has demonstrated significant success in graph-based tasks by leveraging data augmentation
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techniques to create diverse training examples You et al. [2020]. Despite advances in contrastive
learning and L2O with MPNNs, a gap exists in integrating these two paradigms for LPs and QPs.
Additionally, designing effective and principled data augmentation strategies for LPs and QPs remains
non-trivial due to the structural constraints and optimality conditions inherent in these problems.

Present work In this work, we propose a principled approach to data augmentation for LPs and QPs,
specifically designed to enhance the performance of MPNN-based L2O methods for such problems;
see Fig. 1 for a high-level overview. Concretely, our contributions are as follows:

1. We introduce a set of novel and theoretically grounded augmentation techniques for LPs and
QPs that preserve optimality while generating diverse training instances;

2. We apply these augmentations in both supervised and self-supervised settings, including
contrastive pretraining of MPNNs to enhance downstream performance;

3. We empirically evaluate our approach on synthetic and benchmark datasets, showing that
pretraining with our augmentations improves generalization and transferability across problem
classes.

By bridging the gap between data augmentation and L2O for LPs and QPs, our work offers a new
perspective on enhancing neural solvers through supervised learning and self-supervised pretraining.
The proposed augmentations improve generalization in data-scarce settings, enabling more efficient
and robust learning-based optimization methods.

1.1 Related work

This section reviews relevant literature on L2O, graph data augmentation, graph contrastive learning,
and synthetic instance generation for LP and MILP problems.

MPNN and L2O Message Passing Neural Networks (MPNNs) [Gilmer et al., 2017, Scarselli et al.,
2008] have been extensively studied and are broadly categorized into spatial and spectral variants.
Spatial MPNNs [Bresson and Laurent, 2017, Duvenaud et al., 2015, Hamilton et al., 2017, Veličković
et al., 2017, Xu et al., 2018] follow the message-passing paradigm introduced by Gilmer et al. [2017].
MPNNs have shown strong potential in learning to optimize (L2O). A widely adopted approach
represents MILPs using constraint-variable bipartite graphs [Chen et al., 2022, Ding et al., 2020, Gasse
et al., 2019, Khalil et al., 2022, Qian et al., 2024a]. Recent work has also aligned MPNNs with various
optimization algorithms, including interior-point methods (IPMs) [Qian et al., 2024a, Qian and Morris,
2025], primal-dual hybrid gradient (PDHG) [Li et al., 2024a], and distributed algorithms [Li et al.,
2024b, 2025]. From a theoretical perspective, several studies have analyzed the expressiveness of
MPNNs in approximating solutions to linear and quadratic programming [Chen et al., 2022, 2023,
2024b,a, Wu et al., 2024].

Graph data augmentation Graph data augmentation is central to learning-based optimization,
especially under data scarcity. Common strategies include feature-wise perturbations [You et al.,
2020, Zhu et al., 2020, Suresh et al., 2021, Zhu et al., 2021, Thakoor et al., 2021, Bielak et al., 2022,
Hu et al., 2023], structure-wise modifications such as node dropping and edge perturbation [Rong
et al., 2019, Hassani and Khasahmadi, 2020, Zhu et al., 2020, Qiu et al., 2020, Papp et al., 2021, Zhu
et al., 2021, Bielak et al., 2022, Hu et al., 2023], and spectral-domain augmentations [Yang et al.,
2024a, Liu et al., 2022a, Lin et al., 2022, Wan et al., 2024], the latter aligning with recent works like
S3GCL. Learning-based approaches [Yang et al., 2020, Zhao et al., 2021, Liu et al., 2022b, Yin et al.,
2022, You et al., 2021, Wu et al., 2023] further enable adaptive augmentation via trainable modules.
Complementary perspectives include graph rewiring [Topping et al., 2021, Karhadkar et al., 2022,
Arnaiz-Rodríguez et al., 2022, Qian et al., 2023, Gutteridge et al., 2023, Barbero et al., 2023, Qian
et al., 2024b] and structure learning [Jin et al., 2020, Liu et al., 2022c, Zou et al., 2023, Zhou et al.,
2023, Fatemi et al., 2023], both of which can be viewed as task-specific augmentation techniques. For a
broader overview, including robustness and self-supervised settings, see [Zhao et al., 2022, Ding et al.,
2022].

Graph contrastive learning Graph augmentations also play a central role in graph self-supervised
learning (SSL), which aims to learn transferable representations without labeled supervision. Graph
SSL methods are categorized into contrastive, generative, and predictive approaches [Wu et al., 2021].
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Figure 1: Overview of our framework for principled data augmentation for quadratic optimization
problems. Given a QP instance, we apply transformations (e.g., adding/removing/scaling variables or
constraints; see Section 2.2) to generate new instances, thereby augmenting the training dataset. We
then use standard supervised learning or contrastive learning to train an MPNN.

We focus on contrastive ones, which operate at three levels: global-to-global (G2G), local-to-local
(L2L), and local-to-global (L2G). G2G methods generate contrasting views of entire graphs, as in
GraphCL [You et al., 2020] with structural perturbations, extended by CSSL [Zeng and Xie, 2021],
GCC [Qiu et al., 2020] using random walks, AutoGCL [Yin et al., 2022] with learned augmentations,
and AD-GCL [Suresh et al., 2021] with an adversarial objective. The only contrastive method
targeting LPs is Li et al. [2024c], which adopts a CLIP-style [Radford et al., 2021] formulation. L2L
methods contrast node-level views, e.g., GRACE [Zhu et al., 2020], GCA [Zhu et al., 2021], Graph
Barlow Twins [Bielak et al., 2022], BGRL [Thakoor et al., 2021], and REGCL [Ji et al., 2024], with
S3GCL [Wan et al., 2024] introducing spectral views. L2G methods such as DGI [Veličković et al.,
2018], MVGRL [Hassani and Khasahmadi, 2020], and InfoGraph [Sun et al., 2019] contrast local and
global representations to maximize mutual information.

While general-purpose augmentations are well-studied, few works target L2O problems. Duan et al.
[2022] designs satisfiability-preserving augmentations for SAT problems, and Huang et al. [2023]
samples neighborhoods around expert solutions. A concurrent work [Zeng et al., 2025] explores
constraint permutations in MILPs. Compared with these works, we propose efficient, principled
transformations, tailored for supervised and contrastive learning in linear and quadratic programming.

Instance generation While random instance generators exist for LPs and MILPs [Gasse et al.,
2019, 2022], data scarcity has driven model-based approaches, including stress testing [Bowly, 2019],
VAEs [Geng et al., 2023], and diffusion models [Zhang et al., 2024]. Other works reconstruct or adapt
instances [Wang et al., 2023, Guo et al., 2024, Yang et al., 2024c], or generate them from code or
substructures [Li et al., 2024c, Liu et al., 2024]. In contrast, our approach is model-free, mathematically
principled, and generates new instances through transformations with analytically tractable solutions.

1.2 Background

We introduce notations and define MPNNs, LPs, and QPs in the following.

Notations Let N := {0, 1, 2, . . . }. For n ≥ 1, let [n] := {1, . . . , n} ⊂ N. We use {{. . . }}
to denote multisets, i.e., the generalization of sets allowing for multiple instances of each of its
elements. A graph G is a pair (V (G), E(G)) with finite sets of vertices or nodes V (G) and edges
E(G) ⊆ {{u, v} ⊆ V (G)×V (G) | u ̸= v}. For ease of notation, we denote the edge {u, v} in E(G)
by (u, v) or (v, u). The neighborhood of a node v is denoted by N(v) = {u ∈ V | (v, u) ∈ E}, and
its degree is |N(v)|. An attributed graph augments each node v ∈ V with a feature vector σ(v) ∈ Rd,
yielding a node feature matrix H ∈ Rn×d where Hv = σ(v). The adjacency matrix of G is denoted
A ∈ {0, 1}n×n, with Aij = 1 if and only if (i, j) ∈ E. Vectors x ∈ Rd are column vectors by default.

LCQP In this work, we focus on special QPs, namely linearly-constrained quadratic programming
(LCQP), of the following form,

min
x∈Rn

1
2x

⊺Qx+ c⊺x s.t. Ax ≤ b. (1)

Here, an LCQP instance I is a tuple (Q,A, b, c), where Q ∈ Rn×n and c ∈ Rn are the quadratic
and linear coefficients of the objective, A ∈ Rm×n, and b ∈ Rm form the inequality constraints.
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Note that the bounds of variables, e.g., x ≥ 0, can also be merged into the constraints. We assume
that the smmetric and quadratic matrix Q is positive definite (PD), denoted as Q ≻ 0, so that the
problem is convex and has a unique solution. The optimal solution x∗ is a feasible solution such that
1
2x

⊺Qx+ c⊺x ≥ 1
2x

∗⊺Qx∗ + c⊺x∗, for any feasible x. The corresponding dual variables for the
constraints are denoted as λ∗.1 By setting the matrix Q to a zero matrix, we arrive at LPs,

min
x∈Rn

c⊺x s.t. Ax ≤ b. (2)

Considering the QP of Eq. (1), the optimal primal-dual solutions must satisfy the Karush–Kuhn–Tucker
(KKT) conditions [Nocedal and Wright, 1999, p. 321],

Qx∗ +A⊺λ∗ + c = 0 (3a)
Ax∗ ≤ b (3b)
λ∗ ≥ 0 (3c)

λ∗
i (Aix

∗ − bi) = 0. (3d)

Define slack variables s∗ := b−Ax∗, the inequality constraints become equalities Ax∗ = b− s∗.
The KKT conditions can then be compactly written as,[

Q A⊺

A 0

] [
x∗

λ∗

]
=

[
−c

b− s∗

]
, (4)

where the inequality and complementarity conditions Eqs. (3c) and (3d) are implicitly encoded via
s∗ ≥ 0 and s∗i λ

∗
i = 0. In practice, we can partition the inequality constraints into active ones

Aax
∗ = ba and inactive ones Aāx

∗ < bā, where the slack variables satisfy s∗a = 0 and s∗ā > 0.

MPNNs for LCQPs Representing LPs and QPs with MPNNs has been explored in prior work. For
example, Chen et al. [2022] models LPs using a bipartite constraint-variable graph, and Chen et al.
[2024a] extends this to QPs by adding edges between variable nodes. We adopt the setting of Chen
et al. [2024a]. Given an LCQP instance I , we construct a graph G(I) with constraint nodes C(I) and
variable nodes V (I). Edges between C(I) and V (I) are defined by nonzero entries of A with weights
Acv , for v ∈ V (I), c ∈ C(I); and edges between variables are defined by nonzero Qvu, v, u ∈ V (I).
Node features are Hc := reshape(b) ∈ Rm×1 for constraint nodes and Hv := reshape(c) ∈ Rn×1

for variable nodes. MPNNs learn a vectorial representation of each node in a graph by aggregating
information from its neighbors, i.e.,

h(t)
c := UPD(t)

c

(
h(t−1)
c ,

∑
v∈N(c)∩V (I)

Acvh
(t−1)
v

)
h(t)
v := UPD(t)

v

(
h(t−1)
v ,

∑
u∈N(v)∩V (I)

Quvh
(t−1)
u ,

∑
c∈N(v)∩C(I)

Acvh
(t)
c

)
,

(5)

followed by a pooling function and a readout function to predict the objective,

zI := POOL
( ∑

v∈V (I)

h(T )
v ,

∑
c∈C(I)

h(T )
c

)
; obj(I) := READOUT

(
zI

)
. (6)

2 Principled data augmentation for LCQPs

We propose a set of principled transformations for LCQPs as data augmentation. Let I denote a set of
LCQP instances. We consider transformations T : I → I that perturb the problem structure while
allowing efficient computation of optimal solutions through simple linear-algebraic operations, without
requiring a solver. Our core idea is to construct affine transformations of the KKT system Eq. (4) that
yield valid KKT conditions for a new problem. We notice that applying a linear mapping M on Eq. (4)
does not change the equality, i.e.,

M

[
Q A⊺

A 0

] [
x∗

λ∗

]
= M

[
−c

b− s∗

]
1We consider only feasible and bounded problems where x∗ and λ∗ are not both zeros. If they are, then c = 0

and b ≥ 0, reducing the problem to an unconstrained QP with Q ≻ 0 and trivial solution x∗ = 0, which we
exclude.
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holds for all choices of transformation matrix M . To make the transformed problem valid, we need a
M⊺ on the right and further require a right (pseudo) inverse (M⊺)

† with M⊺ (M⊺)
†
= I . To ensure

(M⊺)
† exists, the matrix M needs to be full column rank. Now we have

M

[
Q A⊺

A 0

]
M⊺ (M⊺)

†
[
x∗

λ∗

]
= M

[
−c

b− s∗

]
.

Finally, we could add a bias term B on both sides, and arrive at the general form,(
M

[
Q A⊺

A 0

]
M⊺ +B

)
(M⊺)

†
[
x∗

λ∗

]
= M

[
−c

b− s∗

]
+ β. (7)

Here, the matrices M and B define the transformation on the problem parameters (Q,A, b, c), with

B chosen to satisfy B (M⊺)
†
[
x∗

λ∗

]
= β. The quantity (M⊺)

†
[
x∗

λ∗

]
, if it exists, recovers the optimal

solution of the transformed problem. Thus, we can compute the new solutions using only matrix
operations, without solving the transformed LCQP.

2.1 A framework for valid transformations

An ideal transformation should be expressive, valid, and computationally efficient. Here, expressivity
refers to its ability to generate a wide range of problem instances from a given one, while validity
ensures the transformed system remains a valid KKT system. We discuss these properties in detail
below.

Expressivity Intuitively, a transformation T is more expressive than another T ′ if it maps an initial
problem to a superset of the targets T ′ can reach. We observe that the transformation in Eq. (7) has
maximal expressivity. For example, setting M = 0, with proper B and β it can recover any target
instance I ′ = (Q′,A′, b, c′) from any source I , regardless of dimensions. This flexibility relies on the
bias term, without which the transformations are limited. For instance, a low-rank A cannot map to a
higher-rank A′. In practice, full expressivity is unnecessary, as our practical objective is not to span the
entire space of QP instances, but to generate meaningful, diverse variants for data augmentation.

Validity Transformation following Eq. (7), under some conditions, can ensure that the transformed
system remains a valid KKT system, which we explore below. We can write the matrices in block

matrix form M :=

[
M11 M12

M21 M22

]
and B :=

[
B11 B12

B21 B22

]
, such that dimensions for A and Q are

matched. Using straightforward calculations, we have[
T11 T12

T21 T22

]
=

[
M11 M12

M21 M22

] [
Q A⊺

A 0

] [
M⊺

11 M⊺
21

M⊺
12 M⊺

22

]
+

[
B11 B12

B21 B22,

]
T11 = M11QM⊺

11 +M12AM⊺
11 +M11A

⊺M⊺
12 +B11

T12 = M11QM⊺
21 +M12AM⊺

21 +M11A
⊺M⊺

22 +B12

T21 = M21QM⊺
11 +M22AM⊺

11 +M21A
⊺M⊺

12 +B21

T22 = M21QM⊺
21 +M22AM⊺

21 +M21A
⊺M22 +B22.

So that the transformed equation Eq. (7) is a valid KKT form
[
Q′ A′⊺

A′ 0

] [
x′∗

λ′∗

]
=

[
−c′

b′ − s′∗

]
, it

requires T12 = T ⊺
21, and we further require T11 be another positive definite matrix, and T22 = 0 must

hold.

For inequality constraints, the transformation matrix M22 must satisfy certain conditions to enable
efficient computation of the new solution. These conditions are not required for feasibility or optimality
but reflect our goal of avoiding QP solving. To isolate M22, we simplify the system by discarding the
bias terms B,β, setting M12,M21 to zero, and fixing M11 = I . The resulting transformed KKT
system is, [

Q A⊺M⊺
22

M22A 0

] [
I 0

0 (M⊺
22)

†

] [
x∗

λ∗

]
=

[
I 0
0 M22

] [
−c

b− s∗

]
. (8)
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This system indicates that the primal solution x∗ remains unchanged, while the dual solution is mapped
to (M⊺

22)
†
λ∗. The following proposition establishes the conditions under which this transformation

preserves the solution and avoids re-solving the LCQPs; see Appendix D.1 for a proof.

Proposition 2.1. Let I := (Q,A, b, c) be a LCQP instance with optimal primal-dual solution x∗,λ∗.
Consider a transformation defined by T (I) := (Q,M22A,M22b, c). Then the transformed problem

preserves the primal solution x∗ if and only if M22 takes the block form
[
N11 N12

N21 N22

]
to match the

dimensions of active and inactive constraints, where N11 has full row rank equal to the number of
active constraints, N12s

∗
ā = 0, N22s

∗
ā ≥ 0.

In summary, the conditions on M ,B,β for the validity of the new problem is as follows,

M11QM⊺
11 +M12AM⊺

11 +M11A
⊺M⊺

12 +B11 ≻ 0

M21QM⊺
21 +M22AM⊺

21 +M21A
⊺M22 +B22 = 0

B12 = B⊺
21

B (M⊺)
†
[
x∗

λ∗

]
= β, and

M22 satisfies Proposition 2.1.

(9)

Computational efficiency In general, satisfying the full transformation structure in Eq. (9) is chal-
lenging, particularly when arbitrary M ,B and β are involved. However, we notice the multiplicative
term M and bias terms B,β can be decoupled. That is, we can design transformations with the bias
terms B,β, e.g. Appendix C.2, but we mainly focus on dropping them, setting M12 and M21 to zero
matrices, and investigate the design space of M11 and M22. We will abbreviate the subscripts of Mii,
and we target at designing transformations of the form[

M1 0
0 M2

] [
Q A⊺

A 0

] [
M⊺

1 0
0 M⊺

2

] [
(M⊺

1 )
†

0

0 (M⊺
2 )

†

] [
x∗

λ∗

]
=

[
M1 0
0 M2

] [
−c

b− s∗

]
. (10)

We notice the commutativity and the decoupled nature,[
M1 0
0 M2

]
=

[
I 0
0 M2

] [
M1 0
0 I

]
=

[
M1 0
0 I

] [
I 0
0 M2

]
,

which enables us to design M1,M2 separately, and merge them later.

The design space in Eq. (10) is flexible but constrained by the need to compute pseudo-inverses.
For M1 ∈ Rn′×n, there are three cases: (i) n′ = n linear reparameterization, (ii) n′ < n, dropping
variables, and (iii) n′ > n adding variables. While (ii) is often ill-posed since M⊺

1 does not have full
column rank and lacks a right inverse, some special cases are still feasible, as we will show. More
broadly, computing (M⊺

1 )
†
= M1 (M

⊺
1 M1)

−1 requires full column rank and typically costs O(n3).
To improve efficiency, we focus on structured matrices, for example, diagonal matrices, as a particular
case, enable both efficient inverse calculation and generation in O(n) time. These considerations
motivate the use of diagonal or structured M1 and M2 for scalable data augmentation. To formalize
efficiency, we introduce two notions of efficiently computable transformations. The first covers
transformations whose solutions can be computed in linear time.

Definition 2.2 (Efficiently recoverable transformation). For an LCQP instance I := (Q,A, b, c) ∈ I
and its primal-dual solutions x∗,λ∗, a transform T ∈ T is efficiently recoverable, if the new solutions
of the transformed instance I ′ = T (I) can be obtained within linear time O(n).

The second one, motivated by unsupervised settings, tightens this by requiring that the transformation
be independent of the original solution and focuses on generating structurally consistent instances
rather than solving them.

Definition 2.3 (Solution-independent transformation). Given a LCQP instance I := (Q,A, b, c) ∈ I ,
a transformation T ∈ T is solution-independent if the solution of the transformed problem can be
obtained without a solver, and the transformation parameters do not depend on the original optimal
solutions x∗,λ∗.
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2.2 Example transformations

In the following, we discuss various transformations that fit into the above framework.

Removing idle variables As discussed above, when M1 does not have full column rank, the pseudo
inverse (M⊺

1 )
† typically does not exist, making such transformations ill-posed. However, there is a

special case in which we can safely remove a variable, specifically, when it is idle because its optimal
value is zero, resulting in the following proposition.
Proposition 2.4. Let I := (Q,A, b, c) be an LCQP instance with primal-dual solution x∗,λ∗. Then
a variable x′ can be removed from the problem without affecting the optimal values of the remaining
variables if and only if x′∗ = 0.

Removing inactive constraints Like the variable removal case above, a constraint can be removed
under certain conditions by introducing a wide identity matrix M2 that selectively excludes the
corresponding row.
Proposition 2.5. Let I := (Q,A, b, c) be an LCQP instance with optimal primal-dual solution x∗,λ∗.
Then a constraint of the form a′⊺x∗ ≤ b′ can be removed from the problem without affecting the
optimal solution if and only if it is strictly inactive, i.e., a′⊺x∗ < b′.

The variable and constraint removal transformations are efficiently recoverable, as the remaining
solutions are unchanged and need no recomputation. However, they are not solution-independent,
since identifying removable components requires access to the primal solution. Moreover, we apply a
heuristic on problem instances to select inactive constraints, as described in Appendix C.3.

Scaling variable coefficients A natural class of transformations involves scaling the coefficients
associated with individual variables. Specifically, scaling the j-th column of A and the j-th entry of c
by a nonzero scalar αj , while updating Qij by αiαj , i.e., T (I) := (M1QM1,AM⊺

1 , b,M1c) with
a diagonal M1 preserves the structure of the QP. Under this transformation, the optimal value remains
unchanged, and the solution x∗

j is rescaled by 1/αj . This transformation is efficiently recoverable,
as the new solution can be obtained directly from the original in O(n) time. Moreover, it is also
solution-independent, as it does not require access to the original solution, but only knowledge of how
to compute the new one.

Adding variables When n′ > n, the transformation effectively adds new variables to the problem and
linearly combines existing ones. Without loss of generality, we consider adding a single new variable

by choosing a transformation matrix of the form M1 :=

[
I
q⊺

]
, with q ∈ Rn being an arbitrary vector.

This yields a new positive definite quadratic matrix
[

Q Qq
q⊺Q q⊺Qq

]
. We can find the pseudo inverse

(M⊺
1 )

† := M1 (M
⊺
1 M1)

−1
=

[
I
q⊺

]
(I + qq⊺)

−1, which can be computed with Sherman-Morrison

formula [Shermen and Morrison, 1949]. In this case, the primal solution of the original variables
does not remain the same. Interestingly, due to the structure of M1, another valid pseudo-inverse is

(M⊺
1 )

†
=

[
I
0⊺

]
, which is a special case indicating that the added variable has zero contribution to the

solution. This corresponds to the reverse of the variable removal transformation discussed above.
Proposition 2.6. Let I = (Q,A, b, c) be an LCQP instance with optimal solution x∗,λ∗. Define

the transformation T (I) := (M1QM1,AM⊺
1 , b,M1c), where M1 :=

[
I
q⊺

]
. Then the transformed

problem has optimal primal solution (x∗, x′∗) if and only if the new variable x′∗ = 0.

This transformation is both efficiently recoverable and solution-independent. Moreover, there also exist
other implementations of variable addition in the form of Eq. (7), with a bias term. Please refer to
Appendix C.4.

Scaling constraints Similar to the variable scaling transformation above, we can scale the constraint
coefficients by fixing M1 = I and letting M2 be a square diagonal matrix. We assume all diagonal
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entries of M2 are positive. If any entry is zero, the transformation reduces to inactive constraint
removal above, or an active constraint is removed, and the problem will be relaxed. If any entry is
negative, the corresponding inequality direction will be flipped, and the problem’s solution may change.
Specifically, the transformation would be T (I) := (Q,M2A,M2b, c).

Under this transformation, the new dual variables are given by λ′∗ := M−1
2 λ∗, which can be

computed in linear time since M2 is a diagonal matrix. The primal solution remains unchanged. This
transformation is both efficiently recoverable and solution-independent.

In Appendix C, we outline additional transformations, including constraint addition Appendix C.1.

2.3 Using data augmentations

Having introduced efficient data augmentation methods for LCQPs and LPs, we now describe how they
can be integrated into different training pipelines. Our target task is graph regression to predict the
objective value from a graph representation. Depending on the setting, we can either (1) use solution
information to generate supervised labels for related problems or (2) apply solution-independent
augmentations for contrastive pretraining without solutions.

Supervised learning Given a training set and a set of augmentation methods, we dynamically
generate additional training instances during optimization. We randomly apply a selected augmentation
or a combination of augmentations at each iteration, and train the MPNN using the supervised loss on
the predicted objective value.

Contrastive pretraining We perform self-supervised contrastive learning on the entire dataset
without touching the solutions of the problems, using the NT-Xent loss [Chen et al., 2020]. Specifically,
for a mini-batch of N data instances, we generate two augmented views of each instance using
solution-independent transformations, resulting in 2N data instances. We consider the two views of the
same instance (i, j) as a positive pair, and the other 2(N − 1) samples as negative. The similarity
between embeddings is measured by 2-norm-normalized cosine similarity sim(u,v) := u⊺v

∥u∥∥v∥ . For
each instance i and its positive sample j, we have the NT-Xent loss on the pooled representations zi, zj
from Eq. (6) as

− 1

N

N∑
i=1

log
exp (sim(zi, zj)/τ)∑2N

k=1 I(k ̸= i) exp (sim(zi, zk)/τ)
, (11)

where τ > 0 is a temperature hyperparameter.

3 Experimental setup and results

To empirically validate the effectiveness of our data augmentations, we conduct a series of experiments,
answering the following research questions.2

Q1 Do our augmentations improve supervised learning, especially under data scarcity?
Q2 Are the augmentations effective in contrastive pretraining followed by supervised finetuning?
Q3 Does the pretrained model enhance generalization on out-of-distribution (OOD) or larger datasets?
Q4 What is the practical computational overhead of the augmentations?

As LPs are a special case of QPs, we evaluate them separately. We generate 10 000 instances for
each dataset, each with 100 variables and 100 inequality constraints, and split the data into training,
validation, and test sets with 8 : 1 : 1 ratio. To study performance under data scarcity, we partition the
training set into multiple disjoint subsets in each run, each containing either 10% or 20% of the full
training data. Models are trained independently on each subset, and results are aggregated across
all partitions. Hyperparameters are tuned using supervised training on the full training set and fixed
across all methods. Specifically, we use a 6-layer MPNN followed by a 3-layer MLP with 192 hidden
dimensions and GraphNorm [Cai et al., 2021]. All experiments are conducted on a single NVIDIA
L40S GPU. We evaluate performance using the mean relative objective error (in percentage) over
the test set, defined as 1/|D|

∑
I∈D |(obj(I)− obj∗(I))/obj∗(I)| · 100%, where D denotes the set of

2The repository of our source code can be accessed at https://github.com/chendiqian/
Data-Augmentation-for-Learning-to-Optimize.
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instances, obj∗(I) is the optimal objective value, and obj(I) is the predicted objective value. We repeat
the experiments five times with different seeds and report the mean and standard deviation.

Supervised learning To address Q1, we investigate the impact of data augmentation on LPs and QPs
in a supervised learning setting. We evaluate performance on synthetically generated datasets following
the procedure described in Appendix G. Models are trained with a batch size of 32 for up to 2000
epochs, with early stopping after 200 epochs of patience. We evaluate performance under data scarcity
by training models on subsets containing 10%, 20%, and 100% of the training data. As baselines, we
apply the augmentations proposed by You et al. [2020]: node dropping, edge perturbation, and feature
masking. In addition, we evaluate each of our proposed augmentations separately and in combination.
Hyperparameter details for all augmentations are provided in Appendix F. Results, shown in Table 1,
reveal that the augmentations from You et al. [2020] fail to improve performance consistently and
can even be detrimental compared to training without augmentation. In contrast, all of our proposed
methods consistently yield better performance, and combining augmentations further amplifies the
improvement up to 62.6% on LP with 20% of training data, aligning with empirical evidence observed
in You et al. [2020].

Table 1: Supervised learning performance on LP/QP datasets with and without data augmentation
under different levels of data scarcity. The best-performing method is colored in green, the second-best
in blue, and third in orange. Our proposed augmentations consistently improve performance.

LP QP
Augmentation 10% 20% 100% 10% 20% 100%

None 8.539±0.206 6.149±0.153 2.784±0.081 5.304±0.229 3.567±0.034 1.240±0.088

Drop node 8.618±0.152 7.131±0.072 4.654±0.047 6.355±0.254 4.867±0.126 2.594±0.087

Mask node 8.979±0.153 7.591±0.117 3.216±0.149 5.865±0.414 4.005±0.161 1.347±0.067

Flip edge 7.794±0.115 6.503±0.125 4.358±0.081 5.485±0.133 4.361±0.138 2.561±0.091

Drop vars. 4.996±0.094 3.484±0.014 1.484±0.070 4.232±0.195 2.374±0.085 0.835±0.042

Drop cons. 5.563±0.097 3.691±0.087 1.656±0.057 3.407±0.099 2.104±0.073 0.821±0.063

Scale cons. 5.491±0.093 3.872±0.136 1.612±0.121 3.909±0.142 2.448±0.033 0.722±0.058

Scale vars. 4.682±0.162 3.208±0.116 1.241±0.052 3.790±0.013 2.468±0.124 0.649±0.040

Add cons. 6.245±0.118 4.299±0.048 1.878±0.059 3.731±0.065 2.304±0.042 0.814±0.052

Add vars. 6.565±0.118 4.696±0.101 2.188±0.102 4.475±0.276 2.885±0.045 1.021±0.055

Combo 3.465±0.045 2.300±0.073 1.051±0.021 2.434±0.061 1.532±0.033 0.542±0.013

Contrastive pretraining To address Q2, we evaluate whether contrastive pretraining can improve
supervised fine-tuning, potentially under data scarcity. We adopt a semi-supervised setting: a small
subset (10%, 20%, 100%) of the training data is labeled, while the whole training set is available as
unlabeled data. During pretraining, we use the complete unlabeled training set and train only an MPNN
backbone without a prediction head, following the deployment described in Section 2.3. We pretrain
for 800 epochs with a batch size of 128, and set τ = 0.1. To assess pretraining quality and pick the
best set of hyperparameters, we use linear probing [Veličković et al., 2018], training only a linear
regression layer on top of a frozen MPNN to efficiently evaluate feature quality. For finetuning, we
follow Zeng and Xie [2021], attaching an MLP head and jointly training it with the MPNN using
supervised regression loss, essentially the same setup as supervised learning, but initialized from a
pretrained model.

As baselines, we consider several graph contrastive learning methods. GraphCL [You et al., 2020]
generates views via node dropping, edge perturbation, and feature masking. GCC [Qiu et al., 2020]
samples random walk subgraphs. IGSD [Zhang et al., 2023] uses graph diffusion [Gasteiger et al., 2019]
combined with model distillation. MVGRL [Hassani and Khasahmadi, 2020] also employs diffusion-
based views but performs contrastive learning at the graph-node level. Additionally, we include mutual
information maximization methods such as InfoGraph [Sun et al., 2019] and DGI [Veličković et al.,
2018]. Beyond contrastive methods, we evaluate the generative SSL method GAE [Kipf and Welling,
2016], which reconstructs graph edge weights.

As shown in Table 2, GraphCL and GCC pretraining can improve performance in some cases but
do not consistently yield better results. Other baselines even degrade performance. In contrast, our
pretraining methods substantially improve, reducing the objective gap by 59.4% on LP and 54.1% on
QP with only 10% of the training data. This highlights the effectiveness of our data augmentations,
which are specifically tailored for optimization problem instances and significantly enhance fine-tuning.
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Table 2: Pretrained-finetuned model performance on LP/QP datasets under different levels of data
scarcity. Our pretraining consistently improves performance and outperforms the baselines.

LP QP
Pretraining 10% 20% 100% 10% 20% 100%

None 8.539±0.206 6.149±0.153 2.784±0.081 5.304±0.229 3.567±0.034 1.240±0.088

GraphCL 9.694±1.656 6.033±0.653 2.613±0.266 6.024±0.859 3.865±0.296 1.253±0.114

GCC 8.248±0.916 5.761±0.186 2.686±0.201 11.344±0.198 6.356±0.964 1.472±0.076

IGSD 18.097±2.276 7.631±0.794 3.082±0.269 12.799±1.485 6.306±0.628 1.302±0.094

MVGRL 20.392±2.476 9.072±1.854 2.852±0.112 8.440±0.981 4.932±1.083 1.343±0.063

InfoGraph 18.338±3.285 7.464±0.818 2.956±0.179 10.306±0.189 6.246±0.180 1.409±0.132

DGI 19.661±4.468 9.671±2.764 3.156±0.188 10.014±0.528 7.223±0.142 1.425±0.109

GAE 9.082±0.901 6.032±0.241 3.434±0.255 5.848±0.181 3.759±0.158 1.381±0.027

Ours 3.472±0.086 2.794±0.049 1.588±0.056 3.791±0.097 2.427±0.083 0.926±0.031

Generalization To address Q3, we compare the performance of models trained from scratch versus
models initialized with contrastive pretraining and then finetuned. For LPs, we generate four types
of relaxed LP instances derived from MILPs: Set Cover (SC), Maximum Independent Set (MIS),
Combinatorial Auction (CA), and Capacitated Facility Location (CFL), following Gasse et al. [2019].
For QPs, we generate instances of soft-margin SVM, Markowitz portfolio optimization, and LASSO
regression following Jung et al. [2022]. If possible, problem sizes and densities are kept similar to the
pretraining datasets; see more details in Appendix G. As shown in Tables 3 and 4, pretrained models
outperform models trained from scratch in almost all cases, demonstrating strong transferability to
OOD tasks. The evaluation on larger datasets can be found in Appendix E.2.

Table 3: Generalization performance of con-
trastive pretrained MPNNs on OOD LP instances.

Ratio
Family Pretrained 10% 20% 100%

SC No 5.297±0.787 2.531±0.861 0.752±0.042

CL 1.965±0.206 1.349±0.161 0.662±0.055

MIS No 0.674±0.016 0.465±0.022 0.203±0.006

Yes 0.722±0.056 0.421±0.047 0.177±0.020

CA No 2.381±0.048 1.803±0.027 0.906±0.025

Yes 2.303±0.184 1.713±0.138 0.753±0.055

CFL No 0.401±0.011 0.255±0.024 0.059±0.006

CL 0.367±0.047 0.217±0.018 0.064±0.008

Table 4: Generalization performance of con-
trastive pretrained MPNNs on OOD QP instances.

Ratio
Family Pretrained 10% 20% 100%

SVM No 0.191±0.006 0.109±0.007 0.027±0.004

Yes 0.141±0.017 0.077±0.009 0.024±0.004

Portfolio No 3.766±0.198 1.841±0.162 0.402±0.005

Yes 3.331±0.376 1.637±0.013 0.353±0.014

LASSO No 5.405±0.018 4.083±0.025 2.159±0.493

Yes 5.169±0.171 3.726±0.267 1.178±0.097

Regarding Q4, see Appendix E.1 for results and discussion.

4 Conclusion

We introduced a principled framework for data augmentation in learning to optimize over linear and
quadratic programming. By leveraging affine transformations of the KKT system, we designed a
family of expressive, solution-preserving, and computationally efficient transformations. Our method
allows for augmentations that either admit exact solution recovery or preserve key structural properties
without requiring access to the original solutions, making them suitable for supervised and contrastive
learning. Extensive experiments show that these augmentations consistently improve performance
under data scarcity, generalize to larger and out-of-distribution problems, and outperform existing
graph augmentation baselines. This work highlights the benefits of optimization-aware augmentation
strategies and opens new directions for robust, scalable L2O under limited supervision.
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ensuring clarity and reproducibility.
Guidelines:
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material.
7. Experiment statistical significance
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information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the numbers in mean and standard deviation of the objective error over
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• The answer NA means that the paper does not include experiments.
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• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We specify the compute setup, including device type and per-epoch computation
time, in Section 3. This includes the use of an NVIDIA L40S GPU and detailed timing in
Table 6, sufficient for reproduction.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have thoroughly reviewed the NeurIPS Code of Ethics and confirm that our
research complies with its principles in all respects.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special considera-

tion due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: We discuss broader impacts in Appendix B, including potential benefits such as
improving solver efficiency and optimization-based decision-making, as well as potential risks
related to misuse in applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release any pretrained models or real-world datasets with
risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All existing assets used in the paper, such as graph contrastive learning baselines
and synthetic datasets generation, are open-source and properly cited. No scraped data is used,
all datasets are synthetically generated.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We introduce a new suite of synthetic LP and QP datasets along with data
augmentation tools for optimization learning tasks. These assets are well-documented and
will be released under an open-source license.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution)
were obtained?
Answer: [NA]
Justification: This work does not involve research with human subjects or crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This work does not use LLMs as part of the core methods or contributions. Any
LLM usage, if any, was limited to minor writing assistance and does not affect the scientific
rigor or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitations

While our proposed data augmentation framework for QP and LP instances is efficient and principled,
several limitations remain. First, some transformations, e.g., Appendix C.2 and Section 2.2, require
access to the optimal primal-dual solution of the original problem, which may not always be available
in practice. Second, our framework assumes convexity (i.e., Q ≻ 0) and problem feasibility, and does
not directly extend to non-convex or infeasible cases. Additionally, non-linear quadratic programming
is beyond our scope. Also, we train and evaluate solely on synthetic QP and LP instances because
real-world datasets are scarce and heterogeneous. Benchmarks such as MIPLIB [Gleixner et al.,
2021] and QPLIB [Furini et al., 2019] contain too few samples and exhibit significant variability
in problem size and structure, making them unsuitable for training deep models. Finally, while our
transformation framework is mathematically expressive, we restrict it to a small subset of efficient,
feasible augmentations in practice, leaving its full expressive power unexplored.

B Broader impact

This work introduces principled data augmentation methods for learning-based solvers in convex
optimization, focusing on predicting objective values and solutions for LP/QP problems. These
methods can also replace heuristics, such as strong branching in mixed-integer optimization. Our
approach may benefit logistics, finance, and scientific computing applications by enabling more
robust and data-efficient learning. As a foundational contribution, this work does not raise concerns
about privacy, security, or fairness. It does not involve sensitive data or end-user interaction, and the
proposed techniques are general-purpose and not tied to specific domains. Nevertheless, when applied
to real-world optimization systems, care should be taken to ensure reliability and fairness.

C Additional transformations

Here, we outline additional transformations, omitted from the main paper for space reasons.

C.1 Adding constraints

Analogous to adding variables (see Section 2.2), we can augment a problem instance by introducing
additional constraints. This is done by extending the constraint matrix using a transformation of

the form M2 :=

[
I
m⊺

]
, where m ∈ Rm

≥0 is a non-negative vector. This effectively appends a new

constraint that is a convex combination of the existing ones. Notably, this transformation, along with
the scaling constraints in Section 2.2, satisfies the condition derived in Eq. (13). In unsupervised
settings where neither the primal-dual solutions nor the active constraints are known, we store all
constraints and add a new one that is linearly combined with them and does not affect the solution. The
added constraint remains inactive, corresponding to a zero dual variable, transforming both efficiently
recoverable and solution-independent.

Proposition C.1. Let I = (Q,A, b, c) be an LCQP instance with optimal solution (x∗,λ∗). We define

our transformation as T (I) := (Q,M2A,M2b, c), where M2 :=

[
I
m⊺

]
. Then the transformed

instance has an optimal solution x∗, [λ∗, λ′∗] if and only if the new dual variable λ′∗ = 0.

C.2 Biasing the problem

We introduce a data augmentation strategy that leverages nontrivial bias terms while fixing M to the
identity. Specifically, ([

Q A⊺

A 0

]
+B

)[
x∗

λ∗

]
=

[
−c

b− s∗

]
+ β. (12)

Consider the transformation in Eq. (12), where we fix M := I and design a suitable bias matrix
B. To satisfy the conditions in Eq. (9), we construct B11 := RR⊺, where R ∈ Rn×k is a
random matrix, ensuring that the resulting Q remains positive definite. We then set B21 = B⊺

12 ∈

23



Rm×n as a random matrix, and B22 := 0. Accordingly, we must have β :=

[
B11 B12

B21 0

] [
x∗

λ∗

]
,

ensuring the transformed KKT system is satisfied. This yields the transformed instance T (I) :=
(Q+B11,A+B21, b+B21x

∗, c−B11x
∗ +A⊺λ∗) under which the original primal and dual

solutions remain valid; therefore, it is an efficiently recoverable transformation. However, this
transformation is not solution-independent, since it requires access to x∗,λ∗, which is an intrinsic
drawback of such biasing transformations.

C.3 Finding inactive constraints

We introduce the following heuristics. For all inequality constraints in a given problem, including the
variable bounds, e.g., xi ≥ 0, we calculate a score hi := a⊺

i x+ bi. The constraints with lower scores
are more likely to be active. See Appendix C.3 for an illustration. Given the number of constraints m

a1

a2

a3

c

(a)

ax = b2

ax = b1

c

(b)

Figure 2: Illustration of our heuristics. (a). Smaller a⊺c is more likely to be inactive. (b). Lower b is
more likely to be inactive.

and the number of variables n, if m > n (due to variable bounds constraints) and the constraints are not
degenerate, n constraints will be active. Therefore, we pick the m− n constraints with the largest hi as
heuristic inactive constraints. Then this could be plugged into the removing constraint transformation.

We evaluate the effectiveness on our datasets, by calculating the accuracy given ground truth inactive
constraint set Āgt and heuristic one Āheu,

acc :=
|Āgt ∩ Āheu|

Āheu

over all the instances; see Table 5 for a summary of our results.

Table 5: Accuracy summary.

LP QP
Size 100 150 200 250 100 150 200 250

Acc. (%) 88.5±2.9 90.1±3.2 89.1±2.8 88.3±3.6 91.8±3.4 92.9±2.7 91.6±2.1 91.4±2.4

The heuristic’s performance is satisfactory, with a low false-positive rate. Although it is generally
designed for LPs, it is also effective for QPs.

C.4 Adding variable

Besides Proposition 2.6, we derive another efficient method to add a new variable.
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Proposition C.2. Given an LCQP instance I := (Q,A, b, c) and its optimal primal and dual solution

x∗,λ∗, the data augmentation T (I) :=

([
Q 0
0⊺ q

]
, [A a] , b,

[
c
c′

])
, where q > 0, a ∈ Rm is

arbitrary, c′ := −a⊺λ∗, allows for an extra variable x′ without affecting the original optimal solution,
if and only if the new variable x′∗ = 0.

Such data transformation construction is efficient and valid. The only drawback is that it is not solution-
independent. Therefore, we provide an improved augmentation that introduces a new constraint.

Corollary C.2.1. Given a QP instance I := (Q,A, b, c) and its optimal primal and dual solution

x∗,λ∗, the data augmentation T (I) :=

([
Q 0
0⊺ q

]
,

[
A a
0⊺ 1

]
,

[
b
0

]
,

[
c
c′

])
, where q > 0, a ∈ Rm,

c′ ∈ R is arbitrary, allows for an extra variable x′ an extra dual variable λ′ without affecting the
original optimal solution if and only if the new primal variable x′∗ = 0.
Proposition C.3. There exists a set of matrices {M ,B,β}, such that the design in Corollary C.2.1
can be realized in the form of Eq. (7).

D Omitted proofs

Here, we outline missing proofs from the main paper.

D.1 Proof for Proposition 2.1

Proof. The rank condition of N11 is straightforward. Calculating the (pseudo) inverse
[
N⊺

11 N⊺
21

N⊺
12 N⊺

22

]†
requires N11 or N22 being invertible. From the KKT condition Eq. (3d), we know λ∗

ā = 0. So we
don’t have to consider N⊺

22
−1 or its existence; however, N11 must be invertible, otherwise we cannot

solve the optimal solution of the transformed problem without a QP solver. Intuitively speaking, if N11

is not of full rank, we will drop some equality constraints, which might cause the solution to be relaxed,
thus requiring us to solve the transformed QP problem with a QP solver.

Let us consider N12. We rewrite the second equation of Eq. (8) as[
N11 N12

N21 N22

] [
Aa

Aā

]
x∗ =

[
N11 N12

N21 N22

] [
ba

bā − s∗ā

]
. (13)

The first equation leads to

N11Aax
∗ +N12Aāx

∗ = N11ba +N12bā −N12s
∗
ā, (14)

which is equivalent to constructing new equality constraints with a linear combination of current
constraints. We observe that x∗ remains for the transformed problem if and only if N12s

∗
ā = 0. A

special case is N12 = 0, which removes the effect of inactive constraints on active ones. Otherwise,
we must resolve this equation for x∗. Intuitively speaking, the margins of inactive constraints s∗ might
relax or tighten an existing equation constraint, and we will have to solve the linear equation Eq. (13)
rather than lazily copying the x∗ for the new problem.

The condition of N22 is from the fact that if we multiply a negative constant on an inequality a ≤ b,
the inequality direction will flip. Let us look at the second equation of Eq. (13). We shall have

N21Aax
∗ +N22Aāx

∗ = N21ba +N22 (bā − s∗ā) , (15)

given Aax
∗ = ba, we have

N22Aāx
∗ = N22 (bā − s∗ā) (16)

must hold. The matrix N22 gives us combinations for a set of new inequality constraints given the
existing constraints. Let us take out a row v⊺ from the N22,

v⊺Aāx
∗ = v⊺bā − v⊺s∗ā, (17)

yields a vector a⊺ = v⊺Aā on the LHS and a scalar b = v⊺bā on the RHS. We know that for a new
inequality constraint, we should guarantee a⊺x∗ ≤ b, so v⊺s∗ā ≥ 0 must be satisfied. Generalizing this
to all rows of N22, we should have N22s

∗
ā ≥ 0.
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D.2 Proof for Proposition 2.4

Lemma D.1. KKT conditions are sufficient and necessary for LCQPs.

See Boyd and Vandenberghe [2004, p. 244]. LCQPs satisfy the Slater conditions.

Proof. We extend the variable set by isolating the target variable x′ and rewriting the problem with

variables
[
x
x′

]
∈ Rn+1, and the corresponding coefficients as Q′ =

[
Q q
q⊺ q

]
∈ R(n+1)×(n+1),

A′ = [A a] ∈ Rm×(n+1), and c′ =

[
c
c

]
∈ Rn+1, b ∈ Rm.

(If direction) Suppose x′∗ = 0, we can drop it as well as its corresponding coefficients q, q,a, c. We

shall have the KKT conditions Eqs. (3a) and (3b) satisfied for the optimal solutions
[
x∗

x′∗

]
and λ∗,

Q′
[
x∗

0

]
+A′⊺λ∗ + c′ = 0

A′
[
x∗

0

]
≤ b.

We can introduce a row selection matrix M1 := [I 0] ∈ {0, 1}n×(n+1), which effectively drops the
last row, and projects the KKT conditions as

M1Q
′M⊺

1 M1

[
x∗

0

]
+M1A

′⊺λ∗ +M1c
′ = Qx∗ +A⊺λ∗ + c = 0

A′M⊺
1 M1

[
x∗

0

]
= Ax∗ ≤ b.

Thus, removing x′ along with its associated coefficients preserves primal and dual feasibility, and x∗

remains optimal for the reduced problem.

(Only if direction) Suppose we can remove x′ without affecting the optimality of x∗. Then the reduced
and full KKT conditions must be consistent for all possible coefficients associated with x′. That is,

Qx∗ +A⊺λ∗ + c = 0

Qx∗ + qx′∗ +A⊺λ∗ + c = 0

q⊺x∗ + qx′∗ + a⊺λ∗ + c′ = 0

Ax∗ ≤ b

Ax∗ + ax′∗ ≤ b.

For these conditions to hold for all choices of q, q,a, it must be that x′∗ = 0; otherwise, the residual
terms would depend on those coefficients and the solution would vary. Hence, x′∗ = 0 is necessary for
the removal to be valid without affecting the remaining solution.

D.3 Proof for Proposition 2.5

Proof. We rewrite the problem by appending the target constraint as an additional row. The constraint

matrix becomes A′ =

[
A
a′⊺

]
∈ R(m+1)×n and b′ =

[
b
b′

]
∈ R(m+1), and the corresponding dual

variables are λ′ =

[
λ
λ′

]
∈ R(m+1).

(If direction) Suppose the additional constraint is strictly inactive, i.e., λ′∗ = 0. We can introduce a
row selection matrix M2 := [I 0] ∈ {0, 1}m×(m+1). The KKT conditions for the full system are,

Qx∗ +A′⊺λ′∗ + c = Qx∗ +A⊺λ∗ + a′λ′∗ + c = 0[
A
a′⊺

]
x∗ ≤

[
b
b′

]
.
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Since λ′∗ = 0, we can write.

Qx∗ +A′⊺M⊺
2 M2λ

′∗ + c = Qx∗ +A⊺λ∗ + c = 0

M2A
′x∗ = Ax∗ ≤ b = M2b

′.

This corresponds to the KKT conditions of the original problem with the constraint removed. Thus,
removing the inactive constraint does not affect optimality.

(Only if direction) Suppose the constraint is removed and the optimal solution x∗,λ∗ remains valid
for all possible coefficients a′, b′. Then both of the following must hold,

Qx∗ +A′⊺λ′∗ + c = Qx+A⊺λ∗ + a′λ′∗ + c = 0

Qx+A⊺λ∗ + c = 0.

Subtracting the two equations yields a′λ′∗ = 0. For this to hold for arbitrary a′, it must be that
λ′∗ = 0. Hence, the constraint must have been inactive.

D.4 Proof for Proposition 2.6

Proof. (If direction) Let x′ =

[
x
x′

]
with x′∗ = 0, we can verify that

M1QM⊺
1 x

′∗ +M1A
⊺λ∗ +M1c = M1 (Qx∗ +A⊺λ∗ + c) = 0

AM⊺
1 x

′∗ = Ax∗ ≤ b.

Thus, (x′∗,λ∗) satisfies the KKT conditions for the transformed problem.

(Only if direction) The equation

AM⊺
1 x

′∗ = Ax∗ +Aqx′∗ ≤ b

must hold for all choices of q, therefore x′∗ = 0.

D.5 Proof for Proposition C.1

Proof. (If direction) Suppose λ′∗ = 0, and the transformed KKT conditions

Qx∗ + [A⊺ m]

[
λ∗

λ′∗

]
+ c = Qx∗ +A⊺λ∗ + c = 0

M2Ax∗ = M2b

hold.

(Only if direction) The equations of pre- and post-transformation KKT must hold

Qx∗ +A⊺λ∗ + c = 0

Qx∗ +A⊺M⊺
2

[
λ∗

λ′∗

]
+ c = 0

(18)

for all choices of m, therefore, λ′ = 0.

D.6 Proof for Section C

Proof for Appendix C.4:

Proof. (If direction) Given an LCQP instance I := (Q,A, b, c) and its optimal primal and dual
solution x∗,λ∗, new variable x′∗ = 0, the following holds,[

Q 0
0⊺ q

] [
x∗

x′∗

]
+

[
A⊺

a⊺

]
λ∗ = −

[
c
c′

]
[A a]

[
x∗

x′∗

]
= b− s∗.

(Only if direction) Similar to the proof of Proposition 2.6.
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Proof for Corollary C.2.1:

Proof. (If direction) Let x′ =

[
x
x′

]
with x′∗ = 0, we have

[
Q 0
0⊺ q

] [
x∗

x′∗

]
+

[
A⊺ 0
a⊺ 1

] [
λ∗

λ′∗

]
+

[
c
c′

]
= 0[

A a
0⊺ 1

] [
x∗

x′∗

]
≤

[
b
0

]
,

which is satisfiable for some λ′∗.

(Only if direction) The inequality,

[A a]

[
x∗

x′∗

]
≤ b

must hold for any choices of a, therefore x′∗ = 0.

Proof for Proposition C.3:

Proof. Prove by construction. We can have M := I , and B11,B2 := 0, B21 = B⊺
12 :=

[
0 a
0⊺ 1

]
,

β :=

 0
−c′

0
0

.

E Additional experiments

Here, we provide results for additional experiments.

E.1 Computational overhead

To address Q4, we compare the per-epoch training time for regular training, data augmentation, and
contrastive pretraining. Since data augmentation runs on CPU and model training on GPU, their
absolute computation times are not directly comparable. Instead, we report the training time (excluding
validation) with and without augmentation to evaluate practical overhead. Results in Table 6 show
the mean and standard deviation over 100 epochs, using batch size 32 (128 for pretraining) and
num_workers = 4.

Table 6: Per-epoch training time (in seconds) over 100 epochs. Data augmentation adds negligible
overhead. Pretraining uses a larger batch size and remains efficient.

LP QP
Aug. 10% 100% Pretrain 10% 100% Pretrain

No 1.005±0.097 7.752±0.143 N/A 1.244±0.076 10.374±0.158 N/A
Yes 0.975±0.061 7.822±0.197 7.699±0.151 1.235±0.069 10.247±0.343 9.648±0.139

E.2 Size generalization

For both LPs and QPs, we generate larger instances with increased numbers of variables and constraints
(proportional to the original sizes) while maintaining a fixed average graph degree. The exact parameters
are detailed in Appendix F. As shown in Table 7, increasing instance size improves performance across
all methods, suggesting some extent of size generalization. Importantly, models pre-trained consistently
outperform models trained from scratch across all problem sizes and levels of data scarcity.
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Table 7: Generalization performance of contrastive pretrained MPNNs on larger LP and QP instances.
Models pretrained with contrastive learning consistently outperform those trained from scratch.

LP QP
Size Pretrained 10% 20% 100% 10% 20% 100%

100% No 8.539±0.206 6.149±0.153 2.784±0.081 5.304±0.229 3.567±0.034 1.240±0.088

Yes 3.472±0.086 2.794±0.049 1.588±0.056 3.791±0.097 2.427±0.083 0.926±0.031

150% No 6.707±0.052 4.968±0.095 2.431±0.032 4.253±0.166 2.947±0.070 0.986±0.002

Yes 2.948±0.225 2.304±0.029 1.331±0.044 2.999±0.120 2.021±0.051 0.766±0.031

200% No 5.820±0.069 4.173±0.085 2.052±0.087 3.971±0.028 2.474±0.049 0.847±0.044

Yes 2.624±0.091 2.122±0.102 1.188±0.048 2.688±0.103 1.793±0.103 0.654±0.033

250% No 5.275±0.082 3.759±0.049 1.912±0.023 3.708±0.089 2.382±0.065 0.775±0.030

Yes 2.451±0.108 1.912±0.063 1.121±0.029 2.601±0.232 1.671±0.054 0.605±0.023

E.3 Other pretraining

Besides contrastive pretraining, we also pretrain with supervised learning with and without augmentation
on the random LP dataset, and test its OOD performance on the set cover dataset. As shown in Table 8,
supervised pretraining performs surprisingly well, especially with data augmentation.

Table 8: Generalization performance of supervised pretrained MPNNs on OOD set cover instances.

Ratio
Pretrained 10% 20% 100%

No 5.297±0.787 2.531±0.861 0.752±0.042

CL 1.965±0.206 1.349±0.161 0.662±0.055

Su. 1.994±0.115 1.521±0.085 0.778±0.006

Su.+aug. 1.034±0.055 0.848±0.045 0.545±0.026

E.4 Ablation on temperature parameter

We conduct experiments on the temperature parameter τ in the contrastive loss Eq. (11). We use the
same setting as in Table 2, pick τ ∈ {0.01, 0.1, 1}, and run it with our method on LP instances. The
results are summarized as in Table 9. As shown, τ = 0.1 is consistently the best option.

Table 9: Ablation on the temperature parameter τ .

Ratio
τ 10% 20% 100%

0.01 3.483±0.074 2.903±0.078 1.671±0.053

0.1 3.472±0.086 2.794±0.049 1.588±0.056
1 4.269±0.197 2.802±0.032 1.628±0.046

E.5 QPLIB

We evaluate QPLIB [Furini et al., 2019]. Due to the limited size, large scale, and extreme heterogeneity
of QPLIB instances, performing a standard train/validation/test split is infeasible. Existing works that
use QPLIB for evaluation typically rely on perturbing problem coefficients [Wu et al., 2024, Yang et al.,
2024b]. These approaches, however, have significant limitations:

1. The augmentations are not label-preserving and thus require solving each perturbed instance
from scratch;

2. Perturbations may break feasibility, which limits the perturbation strength;
3. As a result, weaker perturbations are often used, but they yield training instances that are

nearly identical to the test instances, making evaluation less meaningful.
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Our proposed method, on the other hand, includes both structural and feature perturbation and is
targeted at better generalization performance. For the current perturbation method and ours to work
well, one can reduce the perturbation rate to an arbitrarily small value to fit the test data perfectly,
which appears nonsensical. To study transferability and fitting efficiency on QPLIB, we conduct a
pre-training experiment.

1. We generate a foundation dataset of 10000 large-scale random QP instances with sizes
ranging from 1000 to 1500 variables and constraints, which are 100–200 times larger than
the problems used in Table 2. Since no labels are needed for contrastive pretraining, data
generation is efficient. Training takes around 30 seconds per epoch using 4 NVIDIA L40S
GPUs.

2. We select feasible LCQP instances from QPLIB, relax integer constraints, and train an MPNN
to fit these problems in a supervised setting. We compare models trained from scratch with
models initialized from the pretrained weights.

Here are the problem statistics and results:

Table 10: Statistics of selected QPLIB instances.

Name cons. vars. A density Q density
QPLIB_3694 3280 3240 0.001208 0.000313
QPLIB_3708 12917 12930 0.000171 0.000628
QPLIB_3861 4650 4530 0.000856 0.000222
QPLIB_3871 1040 1025 0.003772 0.001000
QPLIB_8559 5000 10000 0.000500 0.000700

We train each model for 100 epochs and compare predicted objectives to the actual optimal value.
Longer training will diminish the advantage of pretraining, since we are testing on the same data we
used for training. We repeat the training 3 times with random seeds and report the mean.

Table 11: Training performance on selected QPLIB instances. Pretraining substantially improves
convergence.

Name Pretrain Obj.(optimal) Obj.(predict)

QPLIB_3694 No 0.000 10.362
Yes 0.000 0.142

QPLIB_3708 No -42.469 -42.469
Yes -42.469 -42.469

QPLIB_3861 No 0.000 10.895
Yes 0.000 -0.193

QPLIB_3871 No 0.000 7.205
Yes 0.000 -0.193

QPLIB_8559 No 15.793 29.208
Yes 15.793 12.331

As shown in Table 11, pretrained models generally fit faster and more accurately within limited training
epochs. QPLIB_3708 is an exception, though both models converge very close to the actual objective.
These results support the scalability and transferability of our method.

F Hyperparameters

This section lists some crucial hyperparameters except those already described in Section 3.

In supervised learning, we generate augmented data on the fly and control the degree of perturbation
using an augmentation strength parameter α. For example, a node-dropping strength of α = 0.3
removes 30% of the graph’s nodes. We treat the variable-constraint graph as homogeneous for baselines
from You et al. [2020]. For scaling-based augmentations (e.g., variable or constraint coefficients),
we interpret strength α as multiplication by eα. For constraint addition, we add a fraction α of new
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constraints, each a convex combination of three existing constraints. To balance original and augmented
views, we sample a scaled strength α′ := αϵ, where ϵ ∼ U(0, 1), ensuring smooth interpolation
between unaltered and fully augmented data. The strengths used in our experiments are listed below.

Table 12: Augmentation strength of various augmentations in Table 1.

Augmentation LP QP
Drop node 0.10 0.05
Mask node 0.10 0.05
Flip edge 0.10 0.05

Drop vars. 0.99 0.99
Drop cons. 0.99 0.99
Scale cons. 1.00 1.00
Scale vars. 1.00 1.00
Add cons. 0.50 0.50
Add vars. 0.80 0.60

For the combined augmentations, we use the following combination for both LP and QP, and for each
instance, we sample two augmentations from the list below.

Table 13: Augmentation strength of combined augmentations in Table 1.

Augmentation Strength
Drop vars. 0.00
Drop cons. 0.50
Scale cons. 0.50
Scale vars. 0.50
Add cons. 0.60
Add vars. 0.00

For contrastive pretraining, we omit interpolation and apply fixed augmentation strengths. For
GraphCL [You et al., 2020], we tune the strengths of its three components: for LP, we use 0.2 node
dropping, 0.1 edge flipping, and 0.13 feature masking; for QP, 0.3, 0.17, and 0.15, respectively. For
GCC [Qiu et al., 2020], we use a random walk length of 50 for LP and 200 for QP. IGSD [Zhang et al.,
2023] and MVGRL [Hassani and Khasahmadi, 2020] apply graph diffusion with 10% edge addition.
InfoGraph [Sun et al., 2019], DGI [Veličković et al., 2018], and GAE [Kipf and Welling, 2016] require
no additional hyperparameters. For our method, we use the following configuration.

Table 14: Augmentation strength of combined augmentations in Table 2.

Augmentation LP QP
Drop cons. (heuristic) 0.05 0.07

Scale cons. 0.40 1.03
Scale vars. 1.07 0.65
Add cons. 0.36 0.33
Add vars. 0.46 0.26

G Data generation

We use the following pseudo code for random LP and QP generation; see Algorithms 1 and 2.

For the instances used in Tables 1 and 2 and Table 7, we generate the instances with sizes as described
in Table 15.

For the OOD LP instances in Table 3, we follow the generation procedure in Gasse et al. [2019]. The
idea is to keep the dimensions and the density of the matrix A similar to those of the problems we
pretrain on. Hence, we generate with 100 rows and columns and 5% A matrix density for SC; 100
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Algorithm 1 Generate a sparse feasible LP instance.

Require: Number of constraints m, number of variables n, constraint density ρA, random seed
Ensure: Matrices (c,A, b) defining an LP

1: Initialize random number generator rng with the given seed
2: Generate sparse random matrix A ∼ N (0, 1)m×n with density ρA
3: Sample xraw ∼ N (0, 1)n

4: Set x := |xraw| (elementwise absolute value)
5: Compute snoise ∼ N (0, 1)m (slack noise)
6: Set b := Ax+ |snoise|
7: Sample random linear term c ∼ N (0, 1)n

8: return (c,A, b)

Algorithm 2 Generate a sparse feasible QP instance.

Require: Number of constraints m, number of variables n, constraint density ρA, matrix density ρP ,
random seed

Ensure: Matrices (Q, c,A, b) defining a QP
1: Initialize random number generator rng with the given seed
2: Generate sparse random matrix A ∼ N (0, 1)m×n with density ρA
3: Sample xraw ∼ N (0, 1)n

4: Set x := |xraw| (elementwise absolute value)
5: Compute snoise ∼ N (0, 1)m (slack noise)
6: Set b := Ax+ |snoise|
7: Sample random linear term c ∼ N (0, 1)n

8: Generate sparse positive semi-definite matrix Q ∈ Rn×n using SciPy
make_sparse_spd_matrix with sparsity parameter α = 1− ρP

9: return (Q, c,A, b)

nodes and 0.02 edge probability for MIS; 100 items and 100 bids for CA; and 25 customers, three
facilities, 0.5 ratio for CFL problem.

For the OOD QP instances, we generate SVM problems with Algorithm 3 with 100 samples and 0.05
density.

Algorithm 3 Generate soft-margin SVM QP instance.

Require: Number of samples n, number of features d, regularization parameter λ, feature density ρ,
random number generator rng

Ensure: Matrices (Q, c,A, b) defining a QP

1: Generate positive samples matrix A1 ∼ N
(

1
dρ ,

1
dρ

)n
2 ×d

2: Generate negative samples matrix A2 ∼ N
(
− 1

dρ ,
1
dρ

)n
2 ×d

3: Stack data: A :=

[
A1

A2

]
4: Sparsify A with density ρ
5: Construct label vector y := [1, . . . , 1,−1, . . . ,−1] ∈ {−1, 1}n
6: Apply labels to data: A := A · y⊺

7: Form constraint matrix: A := − [A In]
8: Set right-hand side: b := −1n

9: Define quadratic matrix Q := diag([1, . . . , 1, 0, . . . , 0]) ∈ {0, 1}(d+n)×(d+n)

10: Define linear term: c := [0, . . . , 0, λ, . . . , λ] ∈ {0, λ}d+n

11: return (Q, c,A, b)

We generate portfolio problems as Algorithm 4, with 100 assets and 0.05 density.

We generate LASSO problems using Algorithm 5 with 50 samples, 50 features, and a density of 0.05.
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Table 15: Random instance generation hyperparameters.

LP QP
Size #Col #Row A density #Col #Row A density Q density

100% 100 100 0.05 100 100 0.05 0.05
150% 150 150 0.03 150 150 0.03 0.03
200% 200 200 0.025 200 200 0.025 0.025
250% 250 250 0.02 250 250 0.02 0.02

Algorithm 4 Generate mean-variance portfolio QP instance.

Require: Number of assets n, covariance matrix density ρ, random number generator rng
Ensure: Matrices (Q, c,A, b,Aeq, beq) defining a QP

1: Generate sparse positive definite covariance matrix Q ∈ Rn×n using make_sparse_spd_matrix
with α = 1− ρ, and eigenvalues in [0.1, 0.9]

2: Set linear cost vector c := 0n

3: Generate inequality constraint matrix A ∼ N (0, 0.01)
1×n

4: Generate equality constraint matrix Aeq := 0.01 · 1⊤
n

5: Set inequality right hand side: b := [−1]
6: Set equality right hand side: beq := [1]
7: return (Q, c,A, b,Aeq, beq)

Algorithm 5 Generate LASSO QP instance.

Require: Number of samples n, number of features d, feature density ρ, regularization parameter λ,
random number generator rng

Ensure: Matrices (Q, c,A, b) defining a QP
1: Generate sparse design matrix X ∼ N (0, 1)n×d with density ρ
2: Sample true weight vector wtrue ∼ N (0, 1)d

3: Generate noise vector ϵ ∼ N (0, 0.5)n

4: Compute target: y := Xwtrue + ϵ
5: Compute quadratic term: Q0 := 1

2X
⊤X

6: Compute linear term: c0 := −X⊤y

7: Form block matrix: Q :=

[
Q0 0
0 0

]
∈ R2d×2d

8: Form cost vector: c :=

[
c0

λ · 1d

]
9: Construct constraint matrix:

A :=

[
−Id −Id
Id −Id

]
10: Set constraint right-hand side: b := 02d

11: return (Q, c,A, b)
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