
How do humans and machine learning models track
multiple objects through occlusion?

Benjamin Peters
Zuckerman Mind Brain Behavior Institute

Columbia University
New York, NY 10027

benjamin.peters@columbia.edu

Eivinas Butkus
Department of Psychology

Columbia University
New York, NY 10027

eivinas.butkus@columbia.edu

Nikolaus Kriegeskorte
Zuckerman Mind Brain Behavior Institute

and Departments of Psychology, Neuroscience, and Electrical Engineering
Columbia University
New York, NY 10027

n.kriegeskorte@columbia.edu

Abstract

Interacting with a complex environment often requires us to track multiple task-
relevant objects, not all of which are continually visible. The cognitive literature
has focused on tracking a subset of visible identical abstract objects (e.g., circles),
isolating the tracking component from its context in real-world experience. In
the real world, object tracking is harder in that objects may not be continually
visible and easier in that objects differ in appearance and so their recognition can
rely on both remembered position and current appearance. Here we introduce
a generalized task that combines tracking and recognition of valued objects that
move in complex trajectories and frequently disappear behind occluders. Humans
and models (from the computer vision literature on object tracking) performed
tasks varying widely in terms of the number of objects to be tracked, the number
of distractors, the presence of an occluder, and the appearance similarity between
targets and distractors. We replicated results from the human literature, including
a deterioration of tracking performance with the number and similarity of targets
and distractors. In addition, we find that increasing levels of occlusion reduce
performance. All models tested here behaved in qualitatively different ways from
human observers, showing superhuman performance for large numbers of targets,
and subhuman performance under conditions of occlusion. Our framework will
enable future studies to connect the human behavioral and engineering literatures,
so as to test image-computable multiple-object-tracking models as models of human
performance and to investigate how tracking and recognition interact under natural
conditions of dynamic motion and occlusion.

1 Introduction

Human vision parses the visual scene into objects. Task-relevant objects are tracked and represented
in a persistent fashion that enables us to mind them even when they are out of our field of view or
hidden behind an occluding object. This ability liberates our visual cognition from its tethers in
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the sensory input and enables us to see the world in terms of its physical constituent components,
providing a basis for prediction and causal insight (Peters & Kriegeskorte, 2021; Greff et al., 2020).

An influential class of behavioral tasks that has enabled cognitive scientists to probe this ability is
multiple object tracking (MOT) (Pylyshyn & Storm, 1988; Scholl & Pylyshyn, 1999). MOT tasks are
typically highly abstracted. Subjects are presented with a set of identical abstract objects (e.g., circles)
in motion and cued to track a subset of them. At the end of each trial, the scene freezes and the subject
indicates the cued objects. MOT is challenging for humans and computational models (Linsley et al.,
2021; Vul et al., 2009). Humans can track up to three or four objects successfully even through
brief occlusions (Intriligator & Cavanagh, 2001; Pylyshyn & Storm, 1988; Scholl & Pylyshyn, 1999;
Yantis, 1992). Using abstract identical objects has enabled cognitive scientists to study the function of
tracking in isolation from the broader process of real-world dynamic scene perception, where objects
are diverse and tracking interacts with visual recognition to maintain persistent representations of
the task-relevant objects. In the real world, object tracking is harder in that objects may be out of
sight or hidden for longer periods. Real-world object tracking might also be easier in that diverse
objects tend to be visually distinct enough to track them by their appearance. The visual system might
therefore employ a mixture of strategies, tracking objects not only by maintaining and updating (even
for currently occluded objects) their spatial positions and velocities but also by recognizing them by
their appearance (Papenmeier et al., 2014; Zhou et al., 2010; Li et al., 2019).

Computer vision, with its focus on engineering applications, has engaged the MOT challenge in
real-world settings (Milan et al., 2016; Geiger et al., 2012; Müller et al., 2018), building systems
that can track objects in videos (e.g. pedestrians or cars in traffic). While tracking objects with
robustness to periods of occlusion poses the same computational challenge to humans and machines,
it is unclear to what extent current models employ computational strategies similar to those used
by humans. Recent ML challenges involve a large number of pedestrians (Dendorfer et al., 2020)
(up to ∼ 250 pedestrians at the same time) widely exceeding the tracking capabilities of humans.
On the other hand, supervised training on real-world images might bias the tracker towards less
general solutions that might not reach human performance when required to generalize to unexpected
challenges. In real-world scenarios, long stretches of occlusion of an object are rare compared to
periods of at least partial visibility. Most tracked objects are detected with high confidence throughout
their life-cycle (i.e., low noise regime), and objects are visually distinct enough to distinguish them
by their appearance. Supervised ML object trackers might therefore be biased towards strategies that
favor recognition in the current frame (spatial integration of evidence) over maintaining internal belief
states about positions and velocities (temporal integration of evidence, as in a Kalman or particle
filter). We might therefore expect these models to fail when similarity of appearance and/or longer
stretches of occlusion render the recognition-based strategy underconstrained.

We here compare object tracking performance of four state-of-the-art supervised multiple object
trackers with the performance of humans on the same task. We introduce a task combining object
recognition demands and tracking designed to take steps toward bridging the gap between the real-
world complexity of machine learning tasks and the abstraction of cognitive tasks. We replicated
results from the human literature: a deterioration of tracking performance with the number and
similarity of targets and distractors as well as the relatively unimpaired tracking performance through
brief occlusion. We find that models displayed qualitatively different behavior from humans: their
performance was independent of the number of objects, but deteriorated below human performance
in the context of occlusions.

2 Methods

2.1 Models

We evaluate four state-of-the-art multiple-object tracking algorithms. Simple online and real-time
tracking (SORT, Bewley et al. (2016)) uses a simple strategy for frame-by-frame tracking of multiple
objects. Bounding boxes of object detections in each frame, provided e.g., by a Faster Region CNN
(Ren et al., 2015), are the input to the tracker. On the first frame, the tracker initializes a series of
tracklets, one for each detection, representing the objects to be tracked. Each tracklet’s state (i.e.,
its bounding box center, height, aspect ratio, and their velocities) is tracked by a Kalman filter. In
a new frame, the matches between all predicted bounding-box positions and all new detections are
computed as intersection-over-union (IoU) to form an assignment cost matrix. The detections of
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Figure 1: (a) Sequence of events (objects enlarged for visualization). (b) Object sizes at the scale of
Experiment 1. Experimental factors occlusion level (c) and similarity (d).

the new frame are then associated with existing tracklets by minimizing the overall assignment cost
using the Hungarian algorithm. Albeit a fairly simple algorithm, SORT achieved high performance
on the MOT challenge (Milan et al., 2016; Lin et al., 2015) while enabling real-time application on
standard hardware. SORT performs well when state uncertainty is low. However, during occlusions,
SORT displays a high number of identity switches (i.e, multiple tracklets in turn track the same
object over time). This is partly due to the linear dynamics model assumed by the Kalman filter,
whose predictions are adequate for brief occlusions, but which become inaccurate for long occlusions
given non-linear motion. DeepSORT (Wojke et al., 2017) is an extension of the SORT algorithm
that also takes appearance information (an appearance descriptor from a CNN) into account during
the association stage, thereby compensating for the high state uncertainty of the Kalman filter
during occlusions. DeepSORT substantially reduced the number of tracklet switches. Tracking-by-
detection approaches typically only use high-confidence detections of the object detector, leading to
false negative detections for partially occluded objects, which in turn can lead to track termination
and subsequent tracklet switches once the object reappears. Instead of discarding low-confidence
detections, ByteTrack (Zhang et al., 2022) tracks almost every detection and uses similarity scores
to distinguish between false positives and true detections. This strategy reduces the number of
id switches compared to SORT and DeepSORT. OC-SORT (Cao et al., 2022) introduced several
improvements over SORT/DeepSORT to better handle longer stretches of occlusion. For instance,
one of the drawbacks of SORT is that the Kalman filter, which tracks the position and velocity of
the bounding box, accumulates errors during stretches of occlusion. When the object reappears
from occlusion it gets re-associated with its (memorized) track using appearance-based models. The
Kalman filter belief about the objects position and velocity then needs to be reconciled with the newly
detected position of the object. OC-SORT addresses this problem by implementing several strategies
that give detections a much larger weight compared to the Kalman state in the association stage.

2.2 Task

The details of the object-tracking task were the same for humans and models unless stated otherwise
(Figure 1a). At the beginning of each trial N objects were presented. Phase 1 is the cueing period
(Experiment 1: 1s, Experiment 2: 2.5s) in which the objects are stationary. For human subjects the
target objects are highlighted in this period. Phase 2 is the motion period (five seconds here) in which
the objects move according to random trajectories. We deliberately used a complex non-linear motion
model rather than a linear motion model. In particular, angular motion direction perturbation were
sampled at random time-points and the new direction was smoothly interpolated across multiple
time-frames (intersection over union of an object’s bounding boxes in adjacent time frames: 0.691,
s.d.= 0.024 for Experiment 1 and 0.594, s.d.= 0.032 for Experiment 2). The objects then freeze
for phase 3, the response period, in which the target objects are reported. Human subjects reported
the targets by clicking on the objects. In occlusion trials, a large central opaque occluder covering
either 20% or 40% of the field was superimposed to the scene. Stimuli were isolated objects extracted
from the segmentation masks provided by the MS COCO challenge (Lin et al., 2015). For each
of the 80 object categories, we randomly extracted 50 different exemplars, excluding fragmented
objects. Object starting positions were sampled such that (1) all objects were unoccluded at the
start of the trial and (2) all objects ended up in positions such that no two were closer to each other
than a threshold distance. Objects which stopped their movement behind the occluder were revealed
by turning the occluder semi-transparent (for humans) or moving their depth plane in front of the
occluder (for models, which were not assumed to be familiar with semi-transparency) .
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Our goal was to compare how well humans and models track multiple objects through occlusion using
the appearance and spatiotemporal trajectory of objects. Human short-term memory for dynamic
bindings, e.g., the binding between a visual object and a label or id, is highly limited. Rather than
assigning labels or ids to objects in the cueing period and asking participants to reproduce those
labels/ids during the response period, we decided to denote a subset of T < N objects as "targets"
that need to be tracked throughout the motion period (Pylyshyn & Storm, 1988; Merkel et al., 2019).
To obtain tracking performance, we employed different strategies for humans and models.

2.3 Experiments

In Experiment 1, we presented 108 sequences with the following experimental factors: We varied
the number of objects (4, 6, or 8). Half of the objects were targets in each case. A third of the
trials contained no occluder, the remaining trials contained a rectangular occluder that extended over
the full vertical (horizontal) length of the screen and either covered 20% or 40% of the horizontal
(vertical) length (Figure 1c). We varied categorical similarity as a proxy for object similarity. Namely,
objects within a trial could either all come only from one of the 80 categories (high similarity) or from
different categories (low similarity) (Figure 1c). The factors, namely number of objects, occlusion
level, occluder orientation (horizontal or vertical), and similarity were counter-balanced across trials.
The maximum bounding box side length of an object (height or width) was 10% of the screen (Figure
1b).

Experiment 2 was identical to Experiment 1, with the following exceptions: First, there were four set
size conditions: 6 objects - 2 targets, 8 objects - 4 targets, 12 objects - 2 targets, 14 objects - 4 targets.
We also reduced the size of the objects to a maximum bounding box side length of 7%. Because
of the higher visual load, we extended the cueing period to 2.5s to provide human observers with a
sufficient amount of time to identify the cued objects.

2.4 Human behavior

For humans (N = 10 for each experiment), target objects were visually cued during the cueing period
via a glowing outline and by overlaying an icon of a coin on top of each target object. During the
response period, human participants clicked on T objects, which they believed to be the initially
cued target objects, after which the identity (i.e., target or non-target) of the selected objects was
revealed by an animation that displayed and "collected" the coins of the target objects. There was no
time-limit for human responses.

2.5 Model behavior

A major factor in object tracking performance is the quality of the object detector. We here focus
on the tracking task rather than the ability to detect objects. Therefore, instead of relying on each
model’s detector, we provide models with ground truth bounding boxes for unoccluded objects in the
current frame. This is akin to the public detections variant of the MOT challenge (Milan et al., 2016).
Note that all models still used image input for appearance-based associations. We also provide the
bounding box of the occluder as a detection, indicating to models that missing detections might be
due to object-by-object occlusion rather than signal dropout.

To obtain responses from models, we analyzed whether the model consistently tracked target objects.
First, we associated the ground-truth object positions with the model’s tracklet positions (i.e., the
model’s belief about object positions) using the Hungarian algorithm. Second, we identified the target
tracks as those tracks that the model assigned to the cued (target) objects on the first frame. A target
object was considered to be successfully tracked if its final detection was assigned to one of the target
tracks of the first frame. The model then "responded" to those final detections, that were assigned
to a target track. In case less than T detections were assigned to target tracks, the model randomly
selected from the remaining detections (i.e., guessing) until T responses were made. We report the
average accuracy over 10 independent model evaluation runs.
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Figure 2: Results of Experiment 1. Response accuracy main effects (a) and selected interactions (b)
for the factors of number of tracked objects, occlusion level, and object similarity. Error bar indicates
standard error of the mean across participants (humans) or across repeated evaluation runs (models).
See supplement for more interactions and model-specific plots (Figure 5).

3 Results1

In Experiment 1, we assessed the impact of set-size, occlusion, and object similarity on human
and model performance. First, we replicated the set-size effect in humans. Namely, tracking more
targets led to lower response accuracy for humans (Figure 2a, main effect set-size F (2, 18) = 52.6,
p < .001). Models, in contrast, showed a non-significant set-size effect (F (2, 6) = 3.5, p = .096)2.
Introducing occlusion, which renders parts of the object movements invisible to observers, led to lower
performance in both humans and models (Figure 2a, humans: F (2, 18) = 24.8, p < .001, models:
F (2, 6) = 142.9, p < .001). Humans and models however differed notably in their performance
pattern: Models showed super-human performance during trials without occlusion, even at a small
set size of four (i.e., two target objects) for which humans performed best. Strikingly, humans were
better able to track objects through occlusion (low and high levels of occlusion) than any of the SOTA
object trackers.

How do humans track multiple objects, in particular for complex non-linear object motion? A first
indication can be gleaned from the effect of object similarity. In particular, increased similarity
between objects reduced tracking performance for humans (F (1, 9) = 31.3, p < .001). This suggests
that humans at least partially used object appearance information for tracking. Models do use
appearance information for tracking per construction. However, the similarity manipulation we
chose did not affect their performance (F (1, 3) = 4.6, p = .121), suggesting more accurate internal
appearance representations for the tracking models compared to humans.

Experiment 1 showed a set-size effect for humans but not for models. However, it was unclear,
whether the set-size effect in humans was caused by the number of target objects or by the overall
number of objects (i.e., targets and distractors). We therefore varied the number of distractor objects
(4 or 10) independently from the number of target objects (2 or 4). First, we replicated all key
findings from experiment 1 (Figure 3a&b). Figure 3c shows that human tracking performance
was both a function of the number of target (F (1, 9) = 45.4, p < .001) and distractor (F (1, 9) =
66.7, p < .001) objects. Model performance in contrast was neither influenced by the number of
target (F (1, 3) = 3.0, p = .180) nor the number of distractor objects (F (1, 3) = 0.1, p = .822).

4 Discussion and Conclusion

We compared state of the art MOT models and humans in their ability to track multiple objects through
occlusion. We find that all models behaved in qualitatively different ways from human observers.

1Stimuli, data, and analysis code are available at https://github.com/Benjamin-Peters/mot-model-vs-human
and https://osf.io/n7mah

2While showing some differences in their performance, object tracking models perform comparably similar.
This is why we refrained from interpreting small differences between models. For the purpose of statistical
comparison, we therefore treat the models as a sample from the distribution of supervised trackers trained on
ML benchmarks.
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Figure 3: Results of Experiment 2. Main effects (a) and interactions (b) as in Experiment 1 (Figure
2). Main effect and interactions for the number of distractor objects (c). See supplement for more
interactions and model-specific plots (Figure 6).

Most notably, without occlusion, models do not display the same capacity limitations as humans,
showing superhuman performance for large numbers of targets. However, models show subhuman
performance when faced with longer stretches of occlusion. These findings raise several interesting
questions and future research directions suggesting combinations of normative and approximate
approaches.

The normative ideal to multiple object tracking is infeasible in face of real-world complexity. Humans
and models need to rely on approximate internal models of dynamics and appearance. Using
systematic manipulations of object dynamics and appearance, we can reveal these approximations.
For example, ML trackers were particularly challenged with the non-linear object motion under
occlusion for which the linear motion model of the Kalman filter was inappropriate3. Future studies
should vary appearance and motion models in a more principled way to reveal the approximate
internal models employed by humans and ML tracking models.

The present findings are a starting point for a cognitive computational understanding of human
multiple object tracking in a task space, that is situated between abstracted classical cognitive
tasks and the complexity of real-world vision (Peters & Kriegeskorte, 2021). The tracking models,
which we considered here, combine computationally powerful components with a conceptually low-
dimensional algorithm class, in which ’what’ (appearance embedding) and ’where’ (bounding boxes)
information is combined with internal beliefs. These models are therefore examples of "hybrid"
models (Ma & Peters, 2020), that enable us to relate cognitive concepts (e.g., working memory, visual
attention, or mental simulation) and phenomenology (Pylyshyn & Storm, 1988; Cavanagh & Alvarez,
2005; Oksama & Hyönä, 2004) to real-world vision and engineering.

The experimental framework introduced here promises to connect the engineering and the cognitive
science of MOT and to add elements missing from both literatures: namely longer occlusions and
complex motion trajectories as well as a continuum of controlled and naturalistic task variants that
probe how tracking and recognition cooperate to give us a persistent representation of the objects that
matter to us.
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Figure 4: Instruction screen

A Details on the models

We evaluated tracking performance for SORT (Bewley et al., 2016), DeepSORT (Wojke et al., 2017),
ByteTrack (Zhang et al., 2022), and OC-SORT (Cao et al., 2022) using the implementation and
pre-trained weights from the MMTracking toolbox (Contributors, 2020). We evaluated tracking
performance for all models using videos generated by the Unity framework (30 fps) (Peters et al.,
2022).

B Data crowdsourcing

B.1 Recruitment, procedure, and data

Participants were recruited via Prolific (ten new participants for each experiment) and the experiment
was delivered via a browser app implemented in Unity (Peters et al., 2022). The study was advertised
as a brief online study on Prolific (duration: 30 minutes). Upon acceptance of the experiment,
participants gave informed consent (screenshot will be included in the non-anonymized version of the
manuscript) and completed a brief demographic questionnaire in accordance following the procedure
approved by the appropriate local IRB. The experiment then started by presenting an instruction
screen (see Figure 4). After completing the experiment, participants were given a completion code
with which they could verify experiment completion with Prolific and obtain their compensation. The
collected data and responses on the task are non-identifiable in accordance with the IRB.

B.2 Human participant compensation

The estimated hourly wage paid to the participants was $12. The present data amounts to 13
participant hours, i.e. a total $156 for participant compensation.
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C Detailed view on the results
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Figure 5: More detailed view on the results of Experiment 1 (Figure 2).
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Figure 6: More detailed view on the results of Experiment 2 (Figure 3).
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D Additional model analysis

We suspected that low ML model tracking performance during occlusion was due to the linear motion
model of the Kalman filter, which is inaccurate when predicting position and velocity of an occluded
object with non-linear dynamics. To support this intuition, we took a closer look at DeepSORT.
DeepSORT incorporates spatiotemporal predictions of objects in form of a spatial gating mechanisms:
only detections, that are close enough to the position predicted by the Kalman filter are considered
for the association step. The gating mechanism might therefore incorrectly exclude a detection, that
emerges after a period of occlusion from behind the occluder, from the association step with the
correct object. We therefore removed the spatial gating from DeepSORT and reanalyzed model
behavior using the data of Experiment 1. This yielded tracking performance that was more similar
to humans (Figure 7). Note however, that the spatial gating mechanism in DeepSORT serves a
functional purpose (mainly reducing the computational complexity of computing distances between
all detections and all tracked objects). DeepSORT ’out-of-the-box’ with the spatial gating mechanism
will therefore perform better and more efficiently in crowded scenarios with many brief occlusions
for which the linearity assumption is "good enough" (i.e., the situation of many MOT benchmark
videos, Milan et al. (2016)). These additional results suggest that a tracker should weigh internal
models during the association step after occlusion according to the object-specific adequacy of these
models before occlusion.
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Figure 7: Removing the spatial gating from DeepSORT yields tracking performance that is closer to
human tracking performance under occlusion.
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