

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ON THE IMPACT OF THE UTILITY IN SEMIVALEUE-BASED DATA VALUATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Semivalue-based data valuation uses cooperative-game theory intuitions to assign each data point a *value* reflecting its contribution to a downstream task. Still, those values depend on the practitioner’s choice of utility, raising the question: *How robust is semivalue-based data valuation to changes in the utility?* This issue is critical when the utility is set as a trade-off between several criteria and when practitioners must select among multiple equally valid utilities. We address it by introducing the notion of a dataset’s *spatial signature*: given a semivalue, we embed each data point into a lower-dimensional space where any utility becomes a linear functional, making the data valuation framework amenable to a simpler geometric picture. Building on this, we propose a practical methodology centered on an explicit robustness metric that informs practitioners whether and by how much their data valuation results will shift as the utility changes. We validate this approach across diverse datasets and semivalues, demonstrating strong agreement with rank-correlation analyses and offering analytical insight into how choosing a semivalue can amplify or diminish robustness.

1 INTRODUCTION

Supervised machine learning (ML) relies on data, but real-world datasets often suffer from noise and biases as they are collected from multiple sources and are subject to measurement and annotation errors (Northcutt et al., 2021). Such variability can impact learning outcomes, highlighting the need for systematic methods to evaluate data quality. In response, *data valuation* has emerged as a growing research field that aims to quantify individual data points’ contribution to a downstream ML task, helping to identify informative samples and mitigate the impact of low-quality data. A popular way to tackle the data valuation problem is to adopt a cooperative game-theoretic viewpoint, where each data point is modeled as a player in a coalitional game, and the usefulness of any data subset is measured by a *utility function*. This approach leverages game theory solution concepts called *semivalues* (Dubey et al., 1981), which input data and utility to assign an importance score to each data point, thereby inducing a ranking of points in the order of their contribution to the ML task (Ghorbani & Zou, 2019; Kwon & Zou, 2022; Wang & Jia, 2023; Jia et al., 2019; Wang et al., 2024a).

Motivation. When computing semivalues, the utility is typically selected by the practitioner to reflect the downstream task. In some contexts, this choice is obvious. For example, when fine-tuning a large language model (LLM), one might balance two competing objectives: helpfulness (how well the model follows user instructions) and harmlessness (its tendency to refuse or safely complete unsafe requests) (Bai et al., 2022a;b). If the practitioner then asks, “Which training examples most contributed to my desired helpfulness–harmlessness balance?”, the only sensible utility for semivalue-based data valuation is this composite trade-off itself. By contrast, in more open-ended tasks, the utility can be genuinely ambiguous. Imagine training a dog vs. cat image classifier and asking, “Which data points contributed most to overall performance?” Then, accuracy, precision, recall, F1, AUROC, balanced accuracy, and many others are all defensible choices. However, none is uniquely dictated by the task.

These two example settings respectively motivate two general scenarios: (1) the *utility trade-off* scenario, where the utility is a convex combination of fixed criteria, with a tunable weight ν , and (2) the *multiple-valid-utility* scenario, where the utility must be chosen among several equally defensible

054 metrics, none of which being uniquely dictated by the task. In both cases, we argue that data valuation
 055 practitioners are well advised to ask themselves:
 056

057 *How robust are my data valuation results to the utility choice?*

058 In what follows, we explain why.
 059

060 **Utility trade-off scenario: Anticipating costly re-training.** In scenarios where the utility itself
 061 is a trade-off, e.g., when fine-tuning an LLM by combining helpfulness and harmlessness into a
 062 single objective parameterized by ν , practitioners often rely on data values to identify the k most
 063 valuable training examples and train next models on this smaller subset to reduce computational
 064 cost as is common practice when using data valuation (Ghorbani & Zou, 2019; Jiang et al., 2023).
 065 However, if the top- k set shifts dramatically with changes in ν , as priorities between harmlessness
 066 and helpfulness evolve, practitioners risk repeated, costly re-training. Quantifying robustness to
 067 utility choice makes this risk explicit, alerting practitioners up front to whether data valuation is a
 068 safe, one-time investment or if they must plan for ongoing computational overhead as their utility
 069 trade-off evolves.

070 **Multiple-valid-utility scenario: Detecting when data valuation fails as a heuristic.** In many
 071 real-world tasks, like the earlier dog vs. cat classifier example, practitioners must select a utility from
 072 several valid options, none uniquely dictated by the problem. Now, one would "morally" expect their
 073 induced orderings of points to be consistent. After all, each utility is a valid measure for the same task.
 074 It may be hard to think that a data point deemed highly important under accuracy would suddenly
 075 vanish from the top tier under F1-score, or vice versa. In practice, however, we observe precisely
 076 such discrepancies, depending on both the training dataset and the semivalue. We compute data
 077 values under both accuracy and F1-score on several public datasets, using three popular semivalues:
 078 Shapley (Ghorbani & Zou, 2019), (4, 1)-Beta Shapley (Kwon & Zou, 2022), and Banzhaf (Wang &
 079 Jia, 2023) (see Appendix A.1 for experimental details). Table 1 reports the Kendall rank correlation
 080 between the two score sets for each combination of dataset and semivalue. Low correlations reveal
 081 cases where rankings change substantially depending on whether accuracy or F1-score is used as
 082 the utility¹. And because no utility is inherently better, a practitioner has no principled way to
 083 choose between the data values ranking produced under accuracy versus F1-score (or any other valid
 084 utility). In such settings, arbitrary utility choices can drive the ordering of data points in entirely
 085 different directions: the context (dataset + semivalue) is therefore not "data-valuationable", and
 086 semivalue-based data valuation *fails* as a reliable heuristic. By contrast, if rankings remain consistent
 087 across all valid utilities for the task, data values truly capture the underlying importance ordering of
 088 points. Therefore, knowing how robust the scores ranking is to the utility choice enables a practitioner
 089 to tell if semivalue-based data valuation can be trusted as a meaningful heuristic in that context, or if
 090 it is too sensitive to utility to provide reliable guidance.

090 Table 1: Mean Kendall rank correlation (\pm standard error) between data values computed with
 091 accuracy versus F1-score. For each semivalue and dataset, we approximate data values 5 times via
 092 Monte Carlo sampling. Standard errors reflect the variability across these 5 trials.

Dataset	Semivalue		
	Shapley	(4, 1)-Beta Shapley	Banzhaf
BREAST	0.95 (0.003)	0.95 (0.003)	0.97 (0.008)
TITANIC	-0.19 (0.007)	-0.17 (0.01)	0.94 (0.003)
CREDIT	-0.47 (0.01)	-0.44 (0.02)	0.87 (0.01)
HEART	0.64 (0.006)	0.68 (0.004)	0.96 (0.003)
WIND	0.81 (0.008)	0.82 (0.008)	0.99 (0.002)
CPU	0.59 (0.02)	0.62 (0.02)	0.86 (0.007)
2DPLANES	0.38 (0.01)	0.44 (0.01)	0.75 (0.03)
POL	0.67 (0.02)	0.77 (0.01)	0.40 (0.04)

103 In this paper, we propose a methodology that enables data valuation practitioners to assess how robust
 104 their semivalue-based data valuation results are to the utility choice, in both scenarios. We summarize
 105 our main contributions as follows.

106
 107 ¹We extend these experiments to additional classification utilities and rank correlation metrics for completeness (see Appendices A.2 and A.3), and observe variability as well.

108

109 1. **Unified geometric modeling of the two scenarios.** We observe that the same geometric
110 representation can capture both scenarios. In this representation, we can, given a semivalue,
111 embed each training data point into a lower-dimensional space (we call the set of embedded
112 points the dataset’s *spatial signature*) where any utility becomes a linear functional, making
113 the data valuation framework amenable to a simpler geometric interpretation.

114 2. **A robustness metric derived from the geometric representation.** Building on the notion
115 of *spatial signature*, we introduce a metric that practitioners can compute to quantify how
116 robust the data values’ orderings are to the utility choice, providing a practical methodology
117 for assessing the robustness of data valuation results.

118 3. **Empirical evaluation of robustness and insights.** We compute the robustness metric across
119 multiple public datasets and semivalues and find results consistent with our rank-correlation
120 experiments: contexts with low rank correlation exhibit a low robustness score, and vice
121 versa. Moreover, we observe that Banzhaf consistently achieves higher robustness scores
122 than other semivalues, a phenomenon for which we provide analytical insights.

123

124 **Related works.** Our focus on the robustness of semivalue-based data valuation to the utility choice
125 differs from most prior work, which has concentrated on *defining* and *efficiently computing* data
126 valuation scores. The Shapley value (Shapley, 1953; Ghorbani & Zou, 2019), in particular, has been
127 widely studied as a data valuation method because it uniquely satisfies four key axioms: linearity,
128 dummy player, symmetry, and efficiency. Alternative approaches have emerged by relaxing some
129 of these axioms. Relaxing efficiency gives rise to the semivalue family (Dubey et al., 1981), which
130 encompasses Leave-One-Out (Koh & Liang, 2017), Beta Shapley (Kwon & Zou, 2022), and Data
131 Banzhaf (Wang & Jia, 2023), while relaxing linearity leads to the Least Core (Yan & Procaccia, 2021).
132 Extensions such as Distributional Shapley (Ghorbani et al., 2020; Kwon et al., 2021) further adapt
133 the framework to handle underlying data distributions instead of a fixed dataset. On the algorithmic
134 front, exact semivalue computation is often intractable as each semivalue requires training models
135 over all possible data subsets, which grows exponentially with the size of the dataset. Consequently,
136 a rich literature on approximation methods has emerged to make data valuation practical at scale
137 (Mann & Shapley, 1960; Maleki, 2015; Jia et al., 2019; Ghorbani & Zou, 2019; Wang et al., 2024a;
138 Garrido-Lucero et al., 2024). By contrast, when and why data valuation scores remain consistent
139 across different utilities has received far less attention. Prior work has explored related robustness
140 questions in special cases: (Wang & Jia, 2023) examines how semivalue-based valuations fluctuate
141 when the utility function is corrupted by inherent randomness in the learning algorithm, and (Wang
142 et al., 2024b) studies how different choices of utility affect the reliability of Data Shapley for data-
143 subset selection. Our proposed methodology broadens this scope by quantifying when data valuation
144 is robust to shifts in the utility function.

145 **Notations.** We set $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$. For $n \in \mathbb{N}^*$, we denote $[n] := \{1, \dots, n\}$. For a dataset \mathcal{D} , we
146 denote as $2^{\mathcal{D}}$ its powerset, i.e., the set of all possible subsets of \mathcal{D} , including the empty set \emptyset and \mathcal{D}
147 itself. For $d \in \mathbb{N}^*$, we denote $\mathcal{X} \subseteq \mathbb{R}^d$ and $\mathcal{Y} \subseteq \mathbb{R}$ as an input space and an output space, respectively.

148 2 BACKGROUND

151 The data valuation problem involves a dataset of interest $\mathcal{D} = \{z_i = (x_i, y_i)\}_{i \in [n]}$, where for any
152 $i \in [n]$ each $x_i \in \mathcal{X}$ is a feature vector and $y_i \in \mathcal{Y}$ is the corresponding label. Data valuation aims to
153 assign a scalar score to each data point in \mathcal{D} , quantifying its contribution to a downstream ML task.
154 These scores will be referred to as *data values*.

155 **Utility functions.** Most data valuation methods rely on *utility functions* to compute data values.
156 A utility is a set function $u : 2^{\mathcal{D}} \rightarrow \mathbb{R}$ that maps any subset S of the training set \mathcal{D} to a score
157 indicating its usefulness for performing the considered task. Formally, this can be expressed as
158 $u(S) = \text{perf}(\mathcal{A}(S))$, where \mathcal{A} is a learning algorithm that takes a subset S as input and returns
159 a trained model, and perf is a metric used to evaluate the model’s ability to perform the task on
160 a hold-out test set. For convenience, we interchangeably refer to the utility u and the performance
161 metric perf as u inherently depends on perf .

Semivalues. The most popular data valuation methods assign a value score to each data point in \mathcal{D} using solution concepts from cooperative game theory, known as semivalues (Dubey et al., 1981). The collection of methods that fall under this category is referred to as *semivalue-based data valuation*. They rely on the notion of *marginal contribution*. Formally, for any $i, j \in [n]$, let $\mathcal{D}_j^{\setminus z_i}$ denote the set of all subsets of \mathcal{D} of size $j - 1$ that exclude z_i . Then, the marginal contribution of z_i with respect to samples of size $j - 1$ is defined as

$$\Delta_j(z_i; u) := \frac{1}{\binom{n-1}{j-1}} \sum_{S \subseteq \mathcal{D}_j^{\setminus z_i}} u(S \cup \{z_i\}) - u(S).$$

The marginal contribution $\Delta_j(z_i; u)$ considers all possible subsets $S \in \mathcal{D}_j^{\setminus z_i}$ with the same cardinality $j - 1$ and measures the average changes of u when datum of interest z_i is removed from $S \cup \{z_i\}$.

Each semivalue-based method is characterized by a weight vector $\omega := (\omega_1, \dots, \omega_n)$ and assigns a score $\phi(z_i; \omega, u)$ to each data point $z_i \in \mathcal{D}$ by computing a weighted average of its marginal contributions $\{\Delta_j(z_i; u)\}_{j \in [n]}$. Specifically,

$$\phi(z_i; \omega, u) := \sum_{j=1}^n \omega_j \Delta_j(z_i; u). \quad (1)$$

Below, we define the weights for three commonly used semivalue-based methods. Their differences in weighting schemes have geometric implications discussed in Section 4.1.

Definition 2.1. *Data Shapley* (Ghorbani & Zou, 2019) is derived from the *Shapley value* (Shapley, 1953), a solution concept from cooperative game theory that fairly allocates the total gains generated by a coalition of players based on their contributions. In the context of data valuation, Data Shapley takes a simple average of all the contributions so that its corresponding weight vector $\omega_{\text{shap}} = (\omega_{\text{beta},j})_{j \in [n]}$ is such that for all $j \in [n]$, $\omega_{\text{shap},j} = \frac{1}{n}$.

Definition 2.2. (α, β) -*Beta Shapley* (Kwon & Zou, 2022) extends Data Shapley by introducing tunable parameters $(\alpha, \beta) \in \mathbb{R}^2$, which control the emphasis placed on marginal contributions from smaller or larger subsets. The corresponding weight vector $\omega_{\text{beta}} = (\omega_{\text{beta},j})_{j \in [n]}$ is such that for all $j \in [n]$, $\omega_{\text{beta},j} = \binom{n-1}{j-1} \cdot \frac{\text{Beta}(j+\beta-1, n-j+\alpha)}{\text{Beta}(\alpha, \beta)}$, where $\text{Beta}(\alpha, \beta) = \Gamma(\alpha)\Gamma(\beta)/\Gamma(\alpha + \beta)$ and Γ is the Gamma function.

Definition 2.3. *Data Banzhaf* (Wang & Jia, 2023) is derived from the *Banzhaf value* (Banzhaf, 1965), a cooperative game theory concept originally introduced to measure a player's influence in weighted voting systems. Data Banzhaf weight's vector $\omega_{\text{banzhaf}} = (\omega_{\text{banzhaf},j})_{j \in [n]}$ is such that for all $j \in [n]$, $\omega_{\text{banzhaf},j} = \binom{n-1}{j-1} \cdot \frac{1}{2^{n-1}}$.

These semivalue-based methods satisfy fundamental axioms (Dubey et al., 1981) that ensure desirable properties in data valuation. In particular, any semivalue $\phi(\cdot; \omega, \cdot)$ satisfy the *linearity* axiom which states that for any $\alpha_1, \alpha_2 \in \mathbb{R}$, and any utility u, v , $\phi(z_i; \omega, \alpha_1 u + \alpha_2 v) = \alpha_1 \phi(z_i; \omega, u) + \alpha_2 \phi(z_i; \omega, v)$.

3 A METHODOLOGY TO ASSESS DATA VALUATION ROBUSTNESS TO THE UTILITY CHOICE

We now turn to the two scenarios introduced in Section 1, namely the *utility trade-off* scenario and the *multiple-valid-utility* scenario, and show how both admit a common geometric formalization. In what follows, we let $\mathcal{D} = \{z_i\}_{i \in [n]}$ be the dataset that the practitioner seeks to score and rank by order of importance, and we let ω be the chosen semivalue weight vector, so that each datum score is given by $\phi(z_i; \omega, u)$ as defined in (1). We start by giving a formal definition of each scenario.

Utility trade-off scenario. In this scenario, the practitioner defines utility as a convex combination of multiple fixed criteria. In the simplest case where one considers only two fixed criteria u^A and u^B (e.g. helpfulness vs. harmlessness when fine-tuning an LLM), the utility is

$$u_\nu = \nu u^A + (1 - \nu) u^B, \quad \nu \in [0, 1],$$

216 where the scalar ν is explicitly chosen by the practitioner (based on operational priorities) to set the
 217 desired trade-off between u^A and u^B . Note that this choice naturally extends to K fixed criteria
 218 u^1, \dots, u^K by taking $u_\nu = \sum_{k=1}^K \nu_k u^k$.
 219

220 By semivalue linearity, each data point's score under u_ν is

$$221 \quad \phi(z_i; \omega, u_\nu) = \nu \phi(z_i; \omega, u^A) + (1 - \nu) \phi(z_i; \omega, u^B). \\ 222$$

223 **Multiple-valid-utility scenario.** In this scenario, there is no single *correct* utility: practitioners
 224 must choose among several equally defensible performance metrics. In the common case of binary
 225 classification, one might measure model quality with accuracy, F1-score, or negative log-loss: each of
 226 which is valid but potentially yields different data valuation results; see Table 1. Almost all of these
 227 utilities admit a *linear-fractional* form (Koyejo et al., 2014) in two test-set statistics: the empirical
 228 true-positive rate $\lambda(S) = \frac{1}{m} \sum_{j=1}^m \mathbf{1}[g_S(x_j) = 1, y_j = 1]$ and the empirical positive-prediction rate
 229 $\gamma(S) = \frac{1}{m} \sum_{j=1}^m \mathbf{1}[g_S(x_j) = 1]$, where $g_S = \mathcal{A}(S)$ is the classifier trained on S . Specifically, they
 230 can be written as

$$231 \quad u(S) = \frac{c_0 + c_1 \lambda(S) + c_2 \gamma(S)}{d_0 + d_1 \lambda(S) + d_2 \gamma(S)}, \quad (2) \\ 232 \\ 233$$

234 with coefficients (c_0, d_0) determined by the chosen utility (see Table 22). Any linear-fractional utility
 235 of the form (2) with $d_0 \neq 0$ admits the first-order expansion at $(\lambda, \gamma) = (0, 0)$:

$$236 \quad u(S) = \frac{c_0}{d_0} + \frac{c_1 d_0 - c_0 d_1}{d_0^2} \lambda(S) + \frac{c_2 d_0 - c_0 d_2}{d_0^2} \gamma(S) + o(\|(\lambda(S), \gamma(S))\|). \\ 237 \\ 238$$

239 Thus, to first order, u is affine in (λ, γ) and we validate this surrogate empirically (see Appendix B.1).
 240 Thus, by linearity of the semivalue and the fact that constants vanish, for each z_i , it is reasonable to
 241 consider that

$$242 \quad \phi(z_i; \omega, u) = \frac{c_1 d_0 - c_0 d_1}{d_0^2} \phi(z_i; \omega, \lambda) + \frac{c_2 d_0 - c_0 d_2}{d_0^2} \phi(z_i; \omega, \gamma). \\ 243 \\ 244$$

245 **Remark.** The *multiple-valid utility* scenario also extends to multiclass classification metrics with
 246 $u = \sum_{k=1}^K \alpha_k u_k$ for $K > 2$ (see Appendix C.5 for details).

247 3.1 A UNIFIED GEOMETRIC MODELING OF THE TWO SCENARIOS

248 Both scenarios can be unified by observing that the practitioner's utility lives in a two-dimensional
 249 family spanned by two fixed base utilities u_1 and u_2 . Concretely, we consider

$$250 \quad u_\alpha(S) = \alpha_1 u_1(S) + \alpha_2 u_2(S), \quad \alpha = (\alpha_1, \alpha_2) \in \mathbb{R}^2, \\ 251$$

252 so that varying the utility means moving α in this two-dimensional parameter space. In the *utility*
 253 *trade-off* scenario restricted to two fixed criteria, $(u_1, u_2) = (u^A, u^B)$, and $(\alpha_1, \alpha_2) = (\nu, 1 - \nu)$
 254 ranges over $[0, 1]^2$. In the *multiple-valid-utility* scenario for binary classification, $(u_1, u_2) = (\lambda, \gamma)$,
 255 and $(\alpha_1, \alpha_2) \in \mathbb{R}^2$. In either case, the objective is the same: to quantify robustness, i.e., how stable
 256 the ranking of semivalue scores $\{\phi(z_i; \omega, u_\alpha)\}$ is as we change α .
 257

258 With this unified view in hand, we have the following proposition, which can be extended to the
 259 general case $u_\alpha = \sum_{k=1}^K \alpha_k u_k$. A detailed extension is provided in Appendix B.2.

260 **Proposition 3.1.** *Let \mathcal{D} be any dataset of size n and let $\omega \in \mathbb{R}^n$ be a semivalue weight vector. Then
 261 there exists a map $\psi_{\omega, \mathcal{D}} : \mathcal{D} \rightarrow \mathbb{R}^2$ such that for every utility $u_\alpha = \alpha_1 u_1 + \alpha_2 u_2$, $\phi(z; \omega, u_\alpha) =$
 262 $\langle \psi_{\omega, \mathcal{D}}(z), \alpha \rangle$, for any $z \in \mathcal{D}$. We call $\mathcal{S}_{\omega, \mathcal{D}} = \{\psi_{\omega, \mathcal{D}}(z) \mid z \in \mathcal{D}\}$ the spatial signature of \mathcal{D} under
 263 semivalue ω .*

264 Consequently, ranking the data points in \mathcal{D} by u_α is equivalent to sorting their projections onto the
 265 vector α :

$$266 \quad \phi(z_i; \omega, u_\alpha) > \phi(z_j; \omega, u_\alpha) \iff \langle \psi_{\omega, \mathcal{D}}(z_i), \alpha \rangle > \langle \psi_{\omega, \mathcal{D}}(z_j), \alpha \rangle. \\ 267$$

268 Moreover, since scaling α by any positive constant does not change the sign of $\langle \psi_{\omega, \mathcal{D}}(z_i), \alpha \rangle -$
 269 $\langle \psi_{\omega, \mathcal{D}}(z_j), \alpha \rangle$, any two utilities u_α and $u_{\alpha'}$ whose coefficient vectors point in the same direction

270 induce identical rankings. Thus, each utility in the parametric family can be uniquely identified by
 271 its normalized vector $\bar{\alpha} = \frac{\alpha}{\|\alpha\|} \in \mathcal{S}^1$, with $\bar{\alpha}$ ranging over the unit circle \mathcal{S}^1 . Consequently, ranking
 272 stability to the utility choice reduces to analyzing how the projections order of $\{\langle \psi_{\omega, \mathcal{D}}(z), \alpha \rangle \mid z \in \mathcal{D}\} \subset \mathbb{R}^2$ changes as we rotate the unit-vector $\bar{\alpha}$ around \mathcal{S}^1 . Figure 1 illustrate the geometric mapping
 273 at hand.
 274

277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 Figure 1: Spatial signature of the WIND dataset for three semivalues (a) Shapley, (b) (4, 1)-Beta Shapley, and (c) Banzhaf. Each cross marks the embedding $\psi_{\omega, \mathcal{D}}(z)$ of a data point (with $u_1 = \lambda$, $u_2 = \gamma$), the dashed circle is the unit circle \mathcal{S}^1 , and the filled dot indicates one utility direction $\bar{\alpha}$.

Figure 1 shows that, under Banzhaf, the points lie almost exactly on a single line through the origin, much more so than under Shapley or (4, 1)-Beta Shapley. This near-collinearity persists across all the datasets used for experiments (see Appendix D.1). In Proposition 3.3 and Section 4.1, we give insight into how this geometric property directly leads to Banzhaf’s higher robustness.

3.2 A ROBUSTNESS METRIC DERIVED FROM THE GEOMETRIC REPRESENTATION

Building on the geometric mapping of semivalue-based data valuation proposed in Section 3.1, a natural way to quantify how robust a semivalue scores ranking is to changes in the utility is to ask *how far on the unit circle one must rotate from a given utility direction before the induced ordering undergoes a significant change?*

Formally, let $\bar{\alpha}_0$ be the starting utility direction, whose semivalue scores induce a reference ranking of the data points. We say that two points z_i and z_j experience a *pairwise swap* when their order under a new direction $\bar{\alpha}$ is opposite to their order under $\bar{\alpha}_0$. We then aim to define robustness based on the smallest geodesic distance on \mathcal{S}^1 one must travel from $\bar{\alpha}_0$ before p such pairwise swaps have occurred.

To make this concrete, we express the required geodesic distance in closed form by characterizing the critical angles on \mathcal{S}^1 at which pairwise swaps occur. For each unordered pair (i, j) , let $v_{ij} = \psi_{\omega, \mathcal{D}}(z_i) - \psi_{\omega, \mathcal{D}}(z_j)$ and observe that the condition $\langle \alpha, v_{ij} \rangle = 0$ defines two antipodal “cut” points on the unit circle: $H_{ij} = \{\alpha \in \mathcal{S}^1 : \langle \alpha, v_{ij} \rangle = 0\}$. Across all $\binom{n}{2} = N$ pairs, these give $2N$ cuts, whose polar angles we list in ascending order as

$$0 \leq \theta_1 \leq \theta_2 \leq \dots \leq \theta_{2N} < 2\pi,$$

and then wrap around by setting $\theta_{2N+1} = \theta_1 + 2\pi$. The open arcs between successive cuts are $A_k = (\theta_k, \theta_{k+1})$ of length $\lambda_k = \theta_{k+1} - \theta_k$, $k = 1, \dots, 2N$ so that $\sum_{k=1}^{2N} \lambda_k = 2\pi$. These open arcs partition \mathcal{S}^1 into ranking regions, meaning that the induced semivalue ordering is identical for every utility direction $\bar{\alpha} \in A_k$. Figure 2 illustrates two example spatial signatures and their induced ranking regions. We view these arcs cyclically by taking indices modulo $2N$. Now let our reference direction $\bar{\alpha}_0$ have polar angle $\varphi_0 \in (\theta_k, \theta_{k+1})$. To induce p swaps, one must cross p distinct arcs: counterclockwise this is $S_k^+(p) = \sum_{i=1}^p \lambda_{(k+i) \bmod 2N}$ while clockwise it is $S_k^-(p) = \sum_{i=1}^p \lambda_{(k-i) \bmod 2N}$. Writing $t = \varphi_0 - \theta_k \in (0, \lambda_k)$, the minimal geodesic distance from $\bar{\alpha}_0$ to

324 achieve p swaps is²

$$\rho_p(\bar{\alpha}_0) = \min\{S_k^+(p) - t, S_k^-(p) + t\}.$$

327 We now define our robustness metric based on ρ_p .

330
331
332
333
334
335
336
337
338
339
340
Figure 2: Ranking regions induced by utilities on the unit circle S^1 for two example spatial signatures. Each colored arc on the unit circle corresponds to one of the open arcs A_k . Within any single arc, the projection order (and hence the data-point ranking) remains unchanged.

341 **Definition 3.2** (Robustness metric R_p). Let $\mathcal{S}_{\omega,D} = \{\psi_{\omega,D}(z_i)\}_{i \in [n]}$ be the spatial signature for
342 dataset \mathcal{D} under semivalue weights ω . For $\bar{\alpha} \in S^1$, let $\rho_p(\bar{\alpha})$ denote the minimal geodesic distance on S^1 one must travel from $\bar{\alpha}$ to incur $p < \binom{n}{2}$ pairwise swaps in the induced ranking. Define
343 the average p -swaps distance $\mathbb{E}_{\bar{\alpha} \sim \text{Unif}(S^1)}[\rho_p(\bar{\alpha})] = \frac{1}{2\pi} \int_0^{2\pi} \rho_p(t) dt$. Then the *robustness metric*
344 $R_p \in [0, 1]$ is
345

$$346 R_p(S_{\omega,D}) = \frac{\mathbb{E}_{\bar{\alpha} \sim \text{Unif}(S^1)}[\rho_p(\bar{\alpha})]}{\max_{S_{\omega,D}} \mathbb{E}_{\bar{\alpha} \sim \text{Unif}(S^1)}[\rho_p(\bar{\alpha})]} = \frac{\mathbb{E}_{\bar{\alpha} \sim \text{Unif}(S^1)}[\rho_p(\bar{\alpha})]}{\pi/4},$$

350 where the denominator $\pi/4$ is the maximum possible value of $\mathbb{E}_{\bar{\alpha}}[\rho_p(\bar{\alpha})]$ which occurs precisely
351 when all embedded points $\psi_{\omega,D}(z_i)$ are collinear³.

352 Concretely, given a spatial signature, the p -robustness metric R_p of this signature is the normalized
353 average minimal angular distance one must rotate on the unit circle to force exactly p pairs of points
354 to swap in order in the induced ranking.

355 **Interpretation.** R_p close to 1 means that one can rotate $\bar{\alpha}$ significantly without flipping more than
356 p pairs, so the ranking is stable. R_p close to 0 means that even a tiny rotation will likely flip p pairs.
357 Moreover, if there are no tied ranks, R_p captures how far in expectation one must move from a utility
358 direction before the Kendall rank correlation degrades by $2p/\binom{n}{2}$ (see Appendix B.4 for details).

359 **Computation.** We derive a closed-form expression for $\mathbb{E}_{\bar{\alpha} \sim \text{Unif}(S^1)}[\rho_p(\bar{\alpha})]$ that computes exactly
360 in $\mathcal{O}(n^2 \log n)$ time (see Appendix B.5). In contrast, semivalue approximation methods based on
361 Monte Carlo sampling require $\mathcal{O}(n^2 \log n)$ *model trainings* to estimate the data values (Jia et al.,
362 2019). Therefore, in practice, once the semivalue scores are in hand, the additional cost of computing
363 R_p is negligible compared to the heavy model-training overhead, making this robustness metric an
364 affordable add-on to any data valuation pipeline.

365 **Extension to $K > 2$.** The robustness metric R_p extends naturally to $K > 2$ base utilities, where
366 utility directions $\bar{\alpha}$ lie on the unit sphere S^{K-1} . While no closed-form exists for $\mathbb{E}[\rho_p]$ in this case,
367 it can be efficiently approximated via Monte Carlo sampling. Appendix B.5 provides convergence
368 guarantees.

371 3.3 SPATIAL ALIGNMENT AND THE ROBUSTNESS OF SEMIVALUES

372 The robustness metric R_p (Definition 3.2) measures the stability of the data-value ranking as the utility
373 varies. It increases with the *collinearity* of the spatial signature $S_{\omega,D} = \{\psi_{\omega,D}(z) : z \in \mathcal{D}\} \subset \mathbb{R}^2$,

374
375
376²All cut-angles, arc-lengths, and resulting geodesic distance ρ_p are entirely determined by the spatial signature
377 $S_{\omega,D}$. For brevity, we omit the explicit dependence on it from our notations.

³Proof of this claim is given in Appendix B.6.

378 which is captured by the Pearson correlation between the two coordinate score vectors for base
 379 utilities u_1 and u_2 . In Proposition 3.3, we express this correlation directly in terms of marginal
 380 contributions, and we characterize how it depends on semivalue weights under mild assumptions.
 381

382 Let $\phi(u_a) = (\phi(z_1; \omega, u_a), \dots, \phi(z_n; \omega, u_a)) \in \mathbb{R}^n$ for $a \in \{1, 2\}$. For $v, w \in \mathbb{R}^n$, write $\bar{v} =$
 383 $\frac{1}{n} \sum_i v_i$, $\text{Var}(v) = \frac{1}{n} \sum_i (v_i - \bar{v})^2$, and $\text{Cov}(v, w) = \frac{1}{n} \sum_i (v_i - \bar{v})(w_i - \bar{w})$. We study

$$384 \text{Corr}(\phi(u_1), \phi(u_2)) = \frac{\text{Cov}(\phi(u_1), \phi(u_2))}{\sqrt{\text{Var}(\phi(u_1))\text{Var}(\phi(u_2))}}.$$

385 **Proposition 3.3** (Utility alignment and semivalue weights). *Let u_1, u_2 be two base utilities and
 386 $\phi(u_1), \phi(u_2) \in \mathbb{R}^n$ their semivalue score vectors. If for all $j \neq k$ the marginal-contribution
 387 vectors $\Delta_j(u_1) := (\Delta_j(z_1, u_1), \dots, \Delta_j(z_n, u_1))$ and $\Delta_k(u_2) := (\Delta_k(z_1, u_2), \dots, \Delta_k(z_n, u_2))$
 388 are uncorrelated across points, then*

$$389 \text{Corr}(\phi(u_1), \phi(u_2)) = \frac{\sum_{j=1}^n \omega_j^2 \text{Cov}(\Delta_j(u_1), \Delta_j(u_2))}{\sqrt{\sum_{j=1}^n \omega_j^2 \text{Var}(\Delta_j(u_1))} \sqrt{\sum_{j=1}^n \omega_j^2 \text{Var}(\Delta_j(u_2))}}.$$

390 *Defining the size- j alignment factor*

$$391 r_j := \text{Cov}(\Delta_j(u_1), \Delta_j(u_2)) = \text{Corr}(\Delta_j(u_1), \Delta_j(u_2)) \sqrt{\text{Var}(\Delta_j(u_1))\text{Var}(\Delta_j(u_2))},$$

392 *then the correlation increases as the semivalue weights $\{\omega_j\}$ concentrate on sizes j where r_j is large.*

393 The proof is given in Appendix B.7.

4 EMPIRICAL EVALUATION OF ROBUSTNESS AND DISCUSSION

4.1 MULTIPLE-VALID UTILITY SCENARIO

401 In this section, we empirically validate the p -robustness metric R_p in the *multiple-valid-utility*
 402 scenario. We evaluate R_p for three semivalues, Shapley, (4, 1)-Beta Shapley, and Banzhaf, on several
 403 public binary classification datasets. The results in Figure 3 (detailed in Table 7) closely track
 404 Section 1’s correlation experiments reported in Table 1: datasets and semivalues that exhibit low rank
 405 correlations between different utilities also show low R_p , and vice versa.

423 Figure 3: Mean p -robustness R_p (error bars = standard errors over 5 Monte Carlo approximations)
 424 plotted against $p \in \{500, 1000, 1500\}$ for each dataset and semivalue. Each plot corresponds to one
 425 dataset, with Shapley (blue), (4, 1)-Beta Shapley (pink), and Banzhaf (green) curves. Higher R_p
 426 indicates greater ranking stability under utility shifts.

427 We also observe that across practically every dataset and choice of p , using the Banzhaf weights
 428 achieves the highest R_p . This makes sense geometrically: Figure 1 and the analogous plots for
 429 the other datasets in Appendix D.1 show that the Banzhaf weighting scheme tends to *collinearize*
 430 the spatial signature, i.e., push the points closer to a common line through the origin. And since
 431 the maximum possible average swap-distance occurs when all embedded points are collinear, this

near-collinearity explains why Banzhaf yields the greatest robustness to utility shifts. This observation aligns with prior empirical findings (Wang & Jia, 2023; Li & Yu, 2023), which reported that Banzhaf scores tend to vary less than other semivalues under changing conditions.

These geometric insights are made rigorous by Proposition 3.3, applied to the correlation between the semivalue vectors for λ and γ , i.e., $\text{Corr}(\phi(\lambda), \phi(\gamma))$. It says that under a mild assumption on cross-size correlations of marginal contributions (empirically verified on BREAST and TITANIC notably; see Appendix A.5), this correlation decomposes into a weighted average of size-specific alignment factors r_j , with weights ω_j^2 . Figure 4 plots the normalized r_j versus coalition size j and overlays the Shapley, (4, 1)-Beta, and Banzhaf weight profiles. On BREAST, r_j is uniformly high across j , so all three semivalues yield similar collinearity, which is consistent with the overlapping robustness curves in Figure 3. On TITANIC, r_j peaks at intermediate j and decays at the extremes; because Banzhaf concentrates weight in this middle region, it attains a larger weighted average (hence higher overall correlation), explaining why its robustness curve sits well above Shapley and (4, 1)-Beta in Figure 3.

Figure 4: Mean (normalized) r_j (error bars = standard errors over 5 semivalue approximations) for BREAST (blue) and TITANIC (red) vs. coalition size j , with semivalue weights ω overlaid.

Additional robustness experiments, including comparison to top- k stability metrics and extensions to $K > 2$ base utilities are reported in Appendices A.7 and A.9 and are discussed in Appendix A.10.

4.2 UTILITY TRADE-OFF SCENARIO

We also evaluate R_p in the *utility trade-off* scenario, where utility is defined as a convex combination of competing criteria. Specifically, we consider utilities of the form $u_\nu = \nu u_1 + (1 - \nu)u_2$ with $\nu \in [0, 1]$, and analyze how semivalue-based rankings (using Shapley, (4, 1)-Beta Shapley, and Banzhaf) evolve as ν varies. We run this on *regression* datasets (DIABETES, CALIFORNIA HOUSING, AMES) for utility pairs MSE/MAE, MSE/R², and MAE/R², and on *multiclass classification* datasets (DIGITS, WINE, IRIS) for utility pairs Accuracy/macro-F1, Accuracy/macro-Recall, and macro-F1/macro-Recall. Across all settings, Banzhaf achieves the highest R_p , indicating more stable rankings. These results are consistent with the ones obtained in *multiple-valid utility* scenario (see Section 4.1). The data sources are given in Appendix A.1 while full results with experimental settings are reported in Tables 9, 10, 11, 12, 13, and 14. Additional experiments for the case $K > 2$ base utilities are detailed in Appendix A.6.2 and are discussed in Appendix A.10.

5 CONCLUSION

This work studies the robustness of semivalue-based data valuation methods under utility shifts in two scenarios where it matters, by introducing a unified geometric view via the *spatial signature* and a parametric robustness measure R_p . This yields a practical way to quantify how stable data-value rankings remain as the utility varies. **Limitation.** While the framework is general, our analysis of the *multiple-valid-utility* scenario focuses on binary classification metrics in the linear-fractional family and on a subset of multiclass metrics. Non-linear-fractional binary metrics (e.g., negative log-loss) and regression utilities fall outside our scope in this scenario. **Future works.** By revealing cases where semivalue-based data valuation fails to produce reliable scores, we aim to encourage future research to assess whether these methods genuinely solve the problem they promise to address.

486 REPRODUCIBILITY STATEMENT
487

488 An anonymized code package is provided in the supplementary material. It reproduces all tables and
489 figures in the paper (with scripts to generate them). Full experimental protocols, including datasets,
490 pre-processing, hyperparameters, and compute settings, are documented in Appendix A and are
491 cross-referenced at the relevant points in the main text. All missing proofs and supporting theoretical
492 results are given in Appendix B, where assumptions are stated and derivations are provided.

494 REFERENCES
495

496 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
497 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
498 Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
499 Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario
500 Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan.
501 Training a helpful and harmless assistant with reinforcement learning from human feedback, 2022a.
502 URL <https://arxiv.org/abs/2204.05862>.

503 Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
504 Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson,
505 Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson,
506 Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile
507 Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado,
508 Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec,
509 Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom
510 Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei,
511 Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional ai: Harmlessness
512 from ai feedback, 2022b. URL <https://arxiv.org/abs/2212.08073>.

513 J.F. Banzhaf. Weighted voting doesn't work: A mathematical analysis. *Rutgers Law Review*, 19(2):
514 317–343, 1965.

515 Louise Bloch and Christoph Friedrich. Data analysis with shapley values for automatic subject
516 selection in alzheimer's disease data sets using interpretable machine learning. *Alzheimer's
517 Research & Therapy*, 13, 09 2021. doi: 10.1186/s13195-021-00879-4.

518 SHC Choi, Sung-Hyuk Cha, and Charles Tappert. A survey of binary similarity and distance measures.
519 *J. Syst. Cybern. Inf.*, 8, 11 2009.

521 Dean De Cock. Ames, iowa: Alternative to the boston housing data set. *Journal of Statistics
522 Education*, 19(3):1–12, 2011. doi: 10.1080/10691898.2011.11889627.

523 Dheeru Dua and Casey Graff. Uci machine learning repository. [http://archive.ics.uci.
524 edu/ml](http://archive.ics.uci.edu/ml), 2019.

526 Pradeep Dubey, Abraham Neyman, and Robert James Weber. Value theory without efficiency.
527 *Mathematics of Operations Research*, 6(1):122–128, 1981. ISSN 0364765X, 15265471. URL
528 <http://www.jstor.org/stable/3689271>.

529 Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression. *The
530 Annals of Statistics*, 32(2), April 2004. ISSN 0090-5364. doi: 10.1214/009053604000000067.
531 URL <http://dx.doi.org/10.1214/009053604000000067>.

532 R. A. Fisher. The use of multiple measurements in taxonomic problems. *Annals of Eugenics*, 7(2):
533 179–188, 1936. doi: 10.1111/j.1469-1809.1936.tb02137.x.

535 Felipe Garrido-Lucero, Benjamin Heymann, Maxime Vono, Patrick Loiseau, and Vianney Perchet.
536 Du-shapley: A shapley value proxy for efficient dataset valuation. In A. Globerson, L. Mackey,
537 D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information
538 Processing Systems*, volume 37, pp. 1973–2000. Curran Associates, Inc., 2024. doi: 10.52202/
539 079017-0063. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/03cd3cf3f74d4f9ce5958de269960884-Paper-Conference.pdf.

540 Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
 541 In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International*
 542 *Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*,
 543 pp. 2242–2251. PMLR, 09–15 Jun 2019. URL <https://proceedings.mlr.press/v97/ghorbani19c.html>.

544

545 Amirata Ghorbani, Michael Kim, and James Zou. A distributional framework for data valuation. In
 546 Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th International Conference on Machine*
 547 *Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 3535–3544. PMLR, 13–
 548 18 Jul 2020. URL <https://proceedings.mlr.press/v119/ghorbani20a.html>.

549

550 Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel, Bo Li,
 551 Ce Zhang, Dawn Song, and Costas J. Spanos. Towards efficient data valuation based on the shapley
 552 value. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), *Proceedings of the Twenty-Second*
 553 *International Conference on Artificial Intelligence and Statistics*, volume 89 of *Proceedings*
 554 *of Machine Learning Research*, pp. 1167–1176. PMLR, 16–18 Apr 2019. URL <https://proceedings.mlr.press/v89/jia19a.html>.

555

556 Kevin Jiang, Weixin Liang, James Y Zou, and Yongchan Kwon. Opendataval: a unified benchmark
 557 for data valuation. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
 558 (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 28624–28647. Curran
 559 Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/5b047c7d862059a5df623c1ce2982fca-Paper-Datasets_and_Benchmarks.pdf.

560

561

562 R. Kelley Pace and Ronald Barry. Sparse spatial autoregressions. *Statistics & Probability Letters*, 33(3):291–297, 1997. ISSN 0167-7152. doi: [https://doi.org/10.1016/S0167-7152\(96\)00140-X](https://doi.org/10.1016/S0167-7152(96)00140-X). URL <https://www.sciencedirect.com/science/article/pii/S016771529600140X>.

563

564

565

566

567 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
 568 In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International Conference*
 569 *on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pp. 1885–
 570 1894. PMLR, 06–11 Aug 2017. URL <https://proceedings.mlr.press/v70/koh17a.html>.

571

572

573 Oluwasanmi O Koyejo, Nagarajan Natarajan, Pradeep K Ravikumar, and Inderjit S
 574 Dhillon. Consistent binary classification with generalized performance metrics. In
 575 Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.), *Advances in Neural*
 576 *Information Processing Systems*, volume 27. Curran Associates, Inc., 2014. URL https://proceedings.neurips.cc/paper_files/paper/2014/file/30c8e1ca872524fbf7ea5c519ca397ee-Paper.pdf.

577

578

579 Yongchan Kwon and James Zou. Beta shapley: a unified and noise-reduced data valuation framework
 580 for machine learning. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera (eds.),
 581 *Proceedings of The 25th International Conference on Artificial Intelligence and Statistics*, volume
 582 151 of *Proceedings of Machine Learning Research*, pp. 8780–8802. PMLR, 28–30 Mar 2022. URL
 583 <https://proceedings.mlr.press/v151/kwon22a.html>.

584

585 Yongchan Kwon, Manuel A. Rivas, and James Zou. Efficient computation and analysis of dis-
 586 tributional shapley values. In Arindam Banerjee and Kenji Fukumizu (eds.), *Proceedings*
 587 *of The 24th International Conference on Artificial Intelligence and Statistics*, volume 130 of
 588 *Proceedings of Machine Learning Research*, pp. 793–801. PMLR, 13–15 Apr 2021. URL
 589 <https://proceedings.mlr.press/v130/kwon21a.html>.

590

591 Weida Li and Yaoliang Yu. Robust data valuation with weighted banzhaf values. In A. Oh,
 592 T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neu-*
 593 *ral Information Processing Systems*, volume 36, pp. 60349–60383. Curran Associates, Inc.,
 594 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/bdb0596d13cfccf2db6f0cc5280d2a3f-Paper-Conference.pdf.

594 Sasan Maleki. Addressing the computational issues of the shapley value with applications in the
 595 smart grid. In *University of Southampton, Physical Sciences and Engineering, Doctoral Thesis*,
 596 115pp, 2015. URL <https://api.semanticscholar.org/CorpusID:21080388>.
 597

598 Irwin Mann and Lloyd S. Shapley. *Values of Large Games, IV: Evaluating the Electoral College by*
 599 *Montecarlo Techniques*. Rand Corporation, 1960.

600 Curtis Northcutt, Anish Athalye, and Jonas Mueller. Pervasive label errors in test sets destabilize
 601 machine learning benchmarks. In J. Vanschoren and S. Yeung (eds.), *Proceedings of the Neural In-*
 602 *formation Processing Systems Track on Datasets and Benchmarks*, volume 1, 2021. URL https:////datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/f2217062e9a397a1dca429e7d70bc6ca-Paper-round1.pdf.
 603

604 Konstantin D. Pandl, Fabian Feiland, Scott Thiebes, and Ali Sunyaev. Trustworthy machine learning
 605 for health care: scalable data valuation with the shapley value. In *Proceedings of the Conference*
 606 *on Health, Inference, and Learning*, CHIL '21, pp. 47–57, New York, NY, USA, 2021. Association
 607 for Computing Machinery. ISBN 9781450383592. doi: 10.1145/3450439.3451861. URL
 608 <https://doi.org/10.1145/3450439.3451861>.
 609

610 Andrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson, and Gianluca Bontempi. Calibrating prob-
 611 ability with undersampling for unbalanced classification. In *2015 IEEE Symposium Series on*
 612 *Computational Intelligence*, pp. 159–166, 2015. doi: 10.1109/SSCI.2015.33.
 613

614 Lloyd S Shapley. A value for n-person games. In Harold W. Kuhn and Albert W. Tucker (eds.),
 615 *Contributions to the Theory of Games II*, pp. 307–317. Princeton University Press, Princeton, 1953.
 616

617 Richard Stanley. *An introduction to hyperplane arrangements*, pp. 389–496. MIT, 10 2007. ISBN
 618 9780821837368. doi: 10.1090/pcms/013/08.
 619

620 Siyi Tang, Amirata Ghorbani, Rikiya Yamashita, Sameer Rehman, Jared A. Dunnmon, James Zou, and
 621 Daniel L. Rubin. Data valuation for medical imaging using shapley value and application to a large-
 622 scale chest x-ray dataset. *Scientific Reports*, 11(1), April 2021. ISSN 2045-2322. doi: 10.1038/s41598-021-87762-2. URL <http://dx.doi.org/10.1038/s41598-021-87762-2>.
 623

624 Dootika Vats and Christina Knudson. Revisiting the Gelman–Rubin Diagnostic. *Statistical Science*,
 625 36(4):518 – 529, 2021. doi: 10.1214/20-STS812. URL <https://doi.org/10.1214/20-STS812>.
 626

627 Jiachen T. Wang and Ruoxi Jia. Data banzhaf: A robust data valuation framework for machine
 628 learning. In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent (eds.), *Proceedings*
 629 *of The 26th International Conference on Artificial Intelligence and Statistics*, volume 206 of
 630 *Proceedings of Machine Learning Research*, pp. 6388–6421. PMLR, 25–27 Apr 2023. URL
 631 <https://proceedings.mlr.press/v206/wang23e.html>.
 632

633 Jiachen T. Wang, Prateek Mittal, and Ruoxi Jia. Efficient data Shapley for weighted nearest neighbor
 634 algorithms. In Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li (eds.), *Proceedings of The*
 635 *27th International Conference on Artificial Intelligence and Statistics*, volume 238 of *Proceedings*
 636 *of Machine Learning Research*, pp. 2557–2565. PMLR, 02–04 May 2024a. URL <https://proceedings.mlr.press/v238/wang24e.html>.
 637

638 Jiachen T. Wang, Tianji Yang, James Zou, Yongchan Kwon, and Ruoxi Jia. Rethinking data
 639 shapley for data selection tasks: Misleads and merits. In Ruslan Salakhutdinov, Zico Kolter,
 640 Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.),
 641 *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings*
 642 *of Machine Learning Research*, pp. 52033–52063. PMLR, 21–27 Jul 2024b. URL <https://proceedings.mlr.press/v235/wang24cg.html>.
 643

644 Tom Yan and Ariel D. Procaccia. If you like shapley then you'll love the core. In *AAAI Conference on*
 645 *Artificial Intelligence*, 2021. URL <https://api.semanticscholar.org/CorpusID:211108182>.
 646

648 T. Zaslavsky. *Facing up to Arrangements: Face-Count Formulas for Partitions of Space by Hyper-*
649 *planes: Face-count Formulas for Partitions of Space by Hyperplanes*. American Mathematical Soci-
650 ety: Memoirs of the American Mathematical Society. American Mathematical Society, 1975. ISBN
651 978-0-8218-1854-1. URL <https://books.google.fr/books?id=K-nTCQAAQBAJ>.

652 Kaiping Zheng, Horng-Ruey Chua, Melanie Herschel, H. V. Jagadish, Beng Chin Ooi, and James
653 Wei Luen Yip. Exploiting negative samples: a catalyst for cohort discovery in healthcare analytics.
654 In *Proceedings of the 41st International Conference on Machine Learning*, ICML'24. JMLR.org,
655 2024.

656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703 A ADDITIONAL SETTINGS & EXPERIMENTS704 For the reader’s convenience, we first outline the main points covered in this section.
705

- 706 – Appendix A.1: Experiment settings for empirical results in the main text.
- 707 – Appendix A.2: Additional results on rank correlation for more binary classification metrics.
- 708 – Appendix A.3: Additional results on rank correlation using the Spearman rank correlation.
- 709 – Appendix A.4: Table for R_p results in Figure 3.
- 710 – Appendix A.5: Empirical verification of the assumption of Proposition 3.3.
- 711 – Appendix A.6: Results for the *utility-trade-off* scenario summarized in Section 4.2 and
712 extension to $K > 2$ base utilities.
- 713 – Appendix A.7: Results for the *multiple-valid utility* scenario extended to $K > 2$ base
714 utilities.
- 715 – Appendix A.8: What if we \mathcal{A} varies instead of perf ?
- 716 – Appendix A.9: Empirical link between the robustness metric R_p and top- k stability metrics
717 (overlap@ k and Jaccard@ k).
- 718 – Appendix A.10: Overall discussion about empirical robustness results.

721 A.1 EXPERIMENT SETTINGS FOR EMPIRICAL RESULTS IN THE MAIN TEXT
722723 In this section, we describe our experimental protocol for estimating semivalue scores, which serve
724 to obtain all the tables and figures included in this paper.
725726 **Datasets.** Table 2 summarizes the datasets used in our experiments, all of which are standard
727 benchmarks in the data valuation literature Ghorbani & Zou (2019); Kwon & Zou (2022); Jia et al.
728 (2019); Wang & Jia (2023); Jiang et al. (2023). Due to the computational cost of repeated model
729 retraining in our experiments, we select a subset of 100 instances for training and 50 instances for
730 testing from each classification dataset and 300 instances for training and 100 instances for testing
731 from regression datasets.732 Table 2: A summary of datasets used in experiments.
733

734 Dataset	735 Source
BREAST	https://www.openml.org/d/13
TITANIC	https://www.openml.org/d/40945
CREDIT	Pozzolo et al. (2015)
HEART	https://www.openml.org/d/43398
WIND	https://www.openml.org/d/847
CPU	https://www.openml.org/d/761
2DPLANES	https://www.openml.org/d/727
POL	https://www.openml.org/d/722
DIABETES	Efron et al. (2004)
CALIFORNIA HOUSING	Kelley Pace & Barry (1997)
AMES	De Cock (2011)
IRIS	Fisher (1936)
WINE	https://archive.ics.uci.edu/ml/datasets/Wine
DIGITS	Dua & Graff (2019)

749 Because our primary objective is to measure how changing the utility alone affects semivalue rankings,
750 we must eliminate any other sources of variation, such as different train/test splits, model initialization,
751 or Monte Carlo sampling noise, that could confound our results. To this end, we enforce two strict
752 controls for semivalue scores computation across utilities:
753

- 754 1. A *fixed learning context* ($\mathcal{A}, \mathcal{D}_{\text{test}}$),
755 2. *Aligned sampling* for semivalue approximations.

756 FIXED LEARNING CONTEXT. As outlined in Section 2, a utility function u is defined as:
 757

$$758 \quad u(S) = \text{perf}(\mathcal{A}(S), \mathcal{D}_{\text{test}}),$$

759 where \mathcal{A} is a learning algorithm that outputs a model trained on a dataset S , and perf evaluates
 760 the model on a test set $\mathcal{D}_{\text{test}}$. The learning algorithm \mathcal{A} specifies the model class, objective function,
 761 optimization procedure, and hyperparameters (e.g., learning rate, weight initialization).

762 By fixing $(\mathcal{A}, \mathcal{D}_{\text{test}})$, we ensure that swapping between two utilities, say, accuracy versus F1-score,
 763 amounts solely to changing the performance metric perf . Consequently, any shift in the semivalue
 764 scores’ ranking (measured by rank correlation metrics) can only be attributed to the utility choice.
 765

766 **Controlling for sampling noise in semivalue estimates.** The above discussion assumes access to
 767 exact semivalue scores, but in practice, we approximate them via Monte Carlo permutation sampling,
 768 which injects random noise into each run. Without accounting for this sampling variability, differences
 769 in semivalue scores’ rankings could reflect estimator noise rather than genuine sensitivity to the
 770 utility.

771 To enforce this, we introduce *aligned sampling* alongside the fixed learning context $(\mathcal{A}, \mathcal{D}_{\text{test}})$.
 772 Aligned sampling consists of pre-generating a single pool of random permutations (or sampling
 773 seeds) and reusing those same permutations when estimating semivalue scores for each utility. By sharing
 774 both the model-training environment and the permutation draws, we ensure that any differences in
 775 resulting rankings are driven solely by the change in utility.

776 **Fixed set of permutations.** Let $\mathcal{P} = \{\pi_1, \pi_2, \dots, \pi_m\}$ denote a fixed set of m random permutations
 777 of the data points in \mathcal{D} . We apply this exact set of permutations across multiple utilities
 778 $\{u_1, u_2, \dots, u_K\}$ such that $u_k(\cdot) = \text{perf}_k[(\mathcal{A})(\cdot), \mathcal{D}_{\text{test}}]$ with fixed $(\mathcal{A}, \mathcal{D}_{\text{test}})$ for all $k \in [K]$.

780 For a given performance metric perf_k and the set of permutations \mathcal{P} , we estimate the marginal
 781 contributions $\{\hat{\Delta}_j(z_i; u_k)\}_{j=1}^n$ for each data point $z_i \in \mathcal{D}$ with respect to the utility u_k such as
 782

$$783 \quad \hat{\Delta}_j(z_i; u_k) := \frac{1}{m} \sum_{s=1}^m (u_k(S_j^{\pi_s} \cup \{z_i\}) - u_k(S_j^{\pi_s})),$$

785 where m is the number of permutations used, π_s denotes the s -th permutation and $S_j^{\pi_s}$ represents the
 786 subset of data points of size $j - 1$ that precedes z_i in the order defined by permutation π_s .
 787

788 **Determining the number of permutations m .** The number of permutations m used in the marginal
 789 contribution estimator is determined based on a maximum limit and a convergence criterion applied
 790 across all utilities u_1, \dots, u_K . Formally,

$$792 \quad m = \max(m_{\min}, \min(m_{\max}, m_{\text{conv}})),$$

793 where m_{\min} is a predefined minimum number of permutations to avoid starting convergence checks
 794 prematurely, m_{\max} is a predefined maximum number of permutations set to control computational
 795 feasibility, m_{conv} is the smallest number of permutations required for the Gelman-Rubin (GR) Vats &
 796 Knudson (2021) statistic to converge across all utility functions u_1, \dots, u_K . Using the Gelman-Rubin
 797 statistic as a convergence criterion follows established practices in the literature Jiang et al. (2023);
 798 Kwon & Zou (2022).

799 For each data point z_i , the GR statistic R_i is computed for every 100 permutations across all utilities.
 800 The sampling process halts when the maximum GR statistic across all data points and all utilities
 801 falls below a threshold, indicating convergence. We adopt the conventional threshold of 1.05 for GR
 802 convergence, consistent with prior studies in data valuation Jiang et al. (2023).

803 In this framework, the GR statistic, R_i^k , is used to assess the convergence of marginal contribution
 804 estimates for each data point z_i across C independent chains of s sampled permutations under each
 805 utility u_k . The GR statistic evaluates the agreement between chains by comparing the variability
 806 within each chain to the variability across the chains, with convergence indicated when R_i^k approaches
 807 1. Specifically, to compute the GR statistic for each data point z_i under utility u_k , we determine

808 1. The within-chain variance W_i^k which captures the variability of marginal contributions for
 809 z_i within each chain. Specifically, if there are c independent chains, W_i^k is calculated as the

810 average of the sample variances within each chain
 811

$$812 \quad 813 \quad W_i^k = \frac{1}{C} \sum_{c=1}^C s_{i,c}^2,$$

814 where $s_{i,c}^2$ is the sample variance of marginal contributions for z_i within chain c . This term
 815 reflects the dispersion of estimates within each chain,
 816

817 2. And the between-chain variance B_i^k , which measures the variability between the mean
 818 marginal contributions across the chains. It indicates how much the chains differ from each
 819 other. The between-chain variance is defined as

$$820 \quad 821 \quad B_i^k = \frac{s}{C-1} \sum_{c=1}^C (\bar{\Delta}_c(z_i; u_k) - \bar{\Delta}(z_i; u_k))^2,$$

822 where $\bar{\Delta}_c(z_i; u_k)$ is the mean marginal contribution for z_i in chain c , and $\bar{\Delta}(z_i; u_k)$ is the
 823 overall mean across all chains

$$824 \quad 825 \quad \bar{\Delta}(z_i; u_k) = \frac{1}{C} \sum_{c=1}^C \bar{\Delta}_c(z_i; u_k).$$

826 The term B_i^k quantifies the extent of disagreement among the chain means.
 827

828 Combining both W_i^k and B_i^k , the GR statistic R_i^k for data point z_i under utility u_k is defined as:
 829

$$830 \quad 831 \quad R_i^k = \sqrt{\frac{(s-1)}{s} + \frac{B_i^k}{W_i^k \cdot s}}.$$

832 **Intra-permutation truncation.** Building on existing literature Ghorbani & Zou (2019); Jiang et al.
 833 (2023), we further improve computational efficiency by implementing an intra-permutation truncation
 834 criterion that restricts coalition growth once contributions stabilize. Given a random permutation
 835 $\pi_s \in \mathcal{P}$, the marginal contribution for each data point $z_{\pi_{s,j}}$ (the j -th point in the permutation π_s)
 836 is calculated incrementally as the coalition size j increases from 1 up to n . However, instead of
 837 expanding the coalition size through all n elements, the algorithm stops increasing j when the
 838 marginal contributions become stable based on a relative change threshold.
 839

840 For each step $l \in [n]$ within a permutation, the relative change V_l^k in the utility u_k is calculated as:
 841

$$842 \quad V_l^k := \frac{|u_k(\{z_{\pi_{s,j}}\}_{j=1}^l \cup \{z_{\pi_{s,l+1}}\}) - u_k(\{z_{\pi_{s,j}}\}_{j=1}^l)|}{u_k(\{z_{\pi_{s,j}}\}_{j=1}^l)}.$$

843 where $\{z_{\pi_{s,j}}\}_{j=1}^l$ represents the coalition formed by the first l data points in π_s . This measures the
 844 relative change in the utility u_k when adding the next data point to the coalition. The truncation
 845 criterion stops increasing the coalition size at the smallest value j satisfying the following condition:
 846

$$847 \quad j^* = \arg \min \{j \in [n] : |\{l \leq j : V_l \leq 10^{-8}\}| \geq 10\}.$$

848 This means that the coalition size j^* is fixed at the smallest j for which there are at least 10 prior values
 849 of V_l (for $l \leq j$) that are smaller than a threshold of 10^{-8} . This condition ensures that the utility u_k has
 850 stabilized, indicating convergence within the permutation. This intra-permutation truncation reduces
 851 computational cost by avoiding unnecessary calculations once marginal contributions stabilize.
 852

853 **Aggregating marginal contributions for semivalues estimation.** Once the marginal contributions
 854 have been estimated consistently across all permutations and utilities, they are aggregated to compute
 855 various semivalues, such as the Shapley, Banzhaf, and (4, 1)-Beta Shapley values. Each semivalue
 856 method applies a specific weighting scheme (see Definition 2.1, 2.2, 2.3) to the marginal contributions
 857 to reflect the intended measure of data point importance.
 858

859 For a data point z_i under utility u_k , its approximated data value $\hat{\phi}(z_i; \omega, u_k)$ is computed by applying
 860 a weighting scheme ω to the marginal contributions across coalition sizes
 861

$$862 \quad 863 \quad \hat{\phi}(z_i; \omega, u_k) = \sum_{j=1}^n \omega_j \hat{\Delta}_j(z_i; u_k),$$

864 where $\hat{\Delta}_j(z_i; u_k)$ is the estimated marginal contribution for coalition size $j-1$, and ω_j is the weight
 865 assigned to coalition size $j-1$.
 866

864 **Learning algorithm \mathcal{A} .** For binary classification experiments, \mathcal{A} is a logistic-regression classifier
 865 (binary cross-entropy loss) trained via L-BFGS with ℓ_2 regularization ($\lambda = 1.0$). For multiclass
 866 classification experiments, \mathcal{A} is a feed-forward MLP (ReLU hidden layers, softmax output) trained
 867 with cross-entropy via L-BFGS and ℓ_2 regularization ($\lambda = 1.0$). For regression experiments, \mathcal{A} is a
 868 linear ridge model (squared-error loss, ℓ_2 regularization $\lambda = 1.0$) trained with L-BFGS. We initialize
 869 all weights from $\mathcal{N}(0, 1)$ with a fixed random seed, disable early stopping, and fix the maximum
 870 number of training epochs to 100. The optimizer’s step size is 1.0.

871

872 **Decision-threshold calibration for binary classification.** Because we compare multiple binary
 873 classification utilities (accuracy, F1-score, etc.), using a fixed probability cutoff (e.g., 0.5) can unfairly
 874 favor some metrics over others, especially under class imbalance. To ensure that differences in
 875 semivalue scores’ rankings arise from the utility definition (and not an arbitrary threshold), we
 876 calibrate the decision boundary to the empirical class prevalence. Concretely, if p is the fraction of
 877 positive labels in the training set, we set the cutoff at the $(1 - p)$ -quantile of the model’s predicted
 878 probabilities. This way, each trained model makes exactly $p\%$ positive predictions, aligning base-rate
 879 assumptions across utilities and isolating the effect of the performance metric itself.

880

881 **Computational resources and runtime.** All experiments ran on a single machine (Apple M1
 882 (8-core CPU) with 16 GB RAM) without parallelization. A full semivalue estimation, consisting of 5
 883 independent Monte Carlo approximations, for one dataset of 100 data points takes approximately 15
 884 minutes.

885

886 A.2 ADDITIONAL RESULTS ON RANK CORRELATION FOR MORE BINARY CLASSIFICATION 887 METRICS

888

889 In Table 1, we compare semivalue score rankings under accuracy versus F1-score. Here, we broaden
 890 this analysis to include other widely used binary classification utilities (recall, negative log-loss, and
 891 arithmetic mean). Tables 3 and 4 show that ranking variability persists across datasets and semivalue
 892 choices when using these additional metrics.

893

894 Table 3: Mean Kendall rank correlations (standard error in parentheses rounded to one significant
 895 figure for clarity) between accuracy (acc) and negative log-loss (nll), and between F1-score (f1)
 896 and negative log loss, for three semivalues (Shapley, Beta (4,1), Banzhaf). Values are averaged over 5
 897 estimations.

898

899 Dataset	Shapley		(4,1)-Beta Shapley		Banzhaf	
	900 acc-nll	f1-nll	901 acc-nll	f1-nll	902 acc-nll	f1-nll
BREAST	-0.59 (0.02)	-0.60 (0.02)	-0.65 (0.01)	-0.66 (0.01)	0.18 (0.01)	0.18 (0.01)
TITANIC	-0.53 (0.01)	0.54 (0.01)	-0.60 (0.01)	-0.61 (0.01)	0.14 (0.02)	-0.07 (0.01)
CREDIT	-0.59 (0.02)	-0.43 (0.01)	-0.66 (0.01)	-0.49 (0.01)	0.38 (0.01)	0.28 (0.03)
HEART	-0.04 (0.02)	0.01 (0.02)	-0.20 (0.02)	-0.17 (0.03)	-0.07 (0.01)	-0.05 (0.01)
WIND	0.67 (0.02)	0.69 (0.01)	0.74 (0.02)	0.73 (0.01)	0.26 (0.01)	0.44 (0.01)
CPU	0.55 (0.01)	0.68 (0.01)	0.59 (0.01)	0.69 (0.01)	-0.53 (0.01)	0.52 (0.01)
2DPLANES	0.22 (0.02)	0.98 (0.01)	0.41 (0.01)	0.98 (0.01)	-0.03 (0.01)	0.18 (0.01)
POL	0.58 (0.01)	0.79 (0.01)	0.74 (0.01)	0.81 (0.01)	-0.01 (0.02)	0.13 (0.02)

909

910

911

912 A.3 ADDITIONAL RESULTS ON RANK CORRELATION USING THE SPEARMAN RANK 913 CORRELATION

914

915 For completeness, we re-evaluate all of our pairwise semivalue ranking comparisons using Spearman
 916 rank correlation instead of Kendall rank correlation. As shown in Tables 5 and 6, datasets and
 917 semivalues that exhibit low Kendall correlations between different utilities also yield low Spearman
 918 correlations, and vice versa.

918
919 Table 4: Mean Kendall rank correlations (standard error in parentheses rounded to one significant
920 figure for clarity) between recall (rec) and accuracy (acc) for three semivalues (Shapley, Beta (4,1),
921 Banzhaf). Values are averaged over 5 estimations.

Dataset	Shapley			(4,1)-Beta Shapley			Banzhaf		
	acc-am	acc-rec	am-rec	acc-am	acc-rec	am-rec	acc-am	acc-rec	am-rec
BREAST	0.93 (0.01)	0.98 (0.01)	0.92 (0.01)	0.94 (0.01)	0.98 (0.01)	0.92 (0.01)	0.82 (0.03)	0.99 (0.01)	0.81 (0.03)
TITANIC	-0.25 (0.04)	0.77 (0.02)	-0.05 (0.05)	-0.27 (0.03)	0.62 (0.04)	0.08 (0.05)	0.46 (0.02)	0.81 (0.01)	0.65 (0.01)
CREDIT	-0.31 (0.01)	0.07 (0.01)	0.60 (0.02)	-0.31 (0.02)	0.12 (0.04)	0.62 (0.01)	0.35 (0.01)	0.58 (0.01)	0.76 (0.01)
HEART	0.19 (0.02)	0.98 (0.01)	0.18 (0.02)	0.22 (0.01)	0.98 (0.01)	0.19 (0.01)	0.61 (0.01)	0.98 (0.01)	0.59 (0.02)
WIND	0.08 (0.03)	0.98 (0.01)	0.07 (0.03)	0.10 (0.02)	0.98 (0.01)	0.08 (0.04)	0.77 (0.01)	0.98 (0.01)	0.75 (0.01)
CPU	0.19 (0.04)	0.75 (0.02)	0.18 (0.01)	0.22 (0.03)	0.78 (0.02)	0.22 (0.02)	0.79 (0.01)	0.93 (0.01)	0.86 (0.01)
2DPLANES	0.31 (0.02)	0.99 (0.01)	0.31 (0.02)	0.33 (0.02)	0.99 (0.01)	0.33 (0.02)	0.037 (0.01)	0.99 (0.01)	0.37 (0.01)
POL	0.56 (0.01)	0.73 (0.01)	0.29 (0.01)	0.56 (0.01)	0.79 (0.01)	0.34 (0.01)	0.67 (0.01)	0.69 (0.01)	0.36 (0.01)

930
931 Table 5: Mean Spearman rank correlations (standard error in parentheses rounded to one significant
932 figure for clarity) between accuracy (acc) and negative log-loss (nll), and between F1-score (f1)
933 and negative log loss, for three semivalues (Shapley, Beta (4,1), Banzhaf). Values are averaged over 5
934 estimations.

Dataset	Shapley			(4,1)-Beta Shapley			Banzhaf		
	acc-f1	acc-nll	f1-nll	acc-f1	acc-nll	f1-nll	acc-f1	acc-nll	f1-nll
BREAST	0.99 (0.01)	-0.76 (0.02)	-0.78 (0.02)	0.99 (0.01)	-0.82 (0.01)	-0.83 (0.01)	0.98 (0.01)	0.22 (0.01)	0.23 (0.01)
TITANIC	-0.20 (0.01)	-0.71 (0.01)	0.74 (0.01)	-0.18 (0.01)	-0.79 (0.01)	-0.80 (0.01)	0.95 (0.01)	0.18 (0.02)	-0.20 (0.01)
CREDIT	-0.50 (0.02)	-0.76 (0.02)	-0.61 (0.02)	-0.52 (0.01)	-0.83 (0.01)	-0.68 (0.02)	0.90 (0.01)	0.53 (0.01)	0.40 (0.03)
HEART	0.71 (0.01)	-0.04 (0.02)	0.03 (0.03)	0.67 (0.01)	-0.28 (0.04)	-0.23 (0.04)	0.96 (0.01)	-0.10 (0.02)	-0.08 (0.02)
WIND	0.85 (0.01)	0.84 (0.01)	0.86 (0.01)	0.85 (0.01)	0.90 (0.01)	0.89 (0.01)	0.97 (0.01)	0.34 (0.01)	0.62 (0.01)
CPU	0.47 (0.02)	0.73 (0.01)	0.85 (0.01)	0.45 (0.01)	0.77 (0.01)	0.86 (0.01)	0.87 (0.01)	-0.71 (0.01)	0.70 (0.01)
2DPLANES	0.24 (0.01)	0.33 (0.02)	0.99 (0.01)	0.28 (0.02)	0.58 (0.01)	0.99 (0.01)	0.75 (0.01)	-0.04 (0.02)	0.24 (0.05)
POL	0.70 (0.01)	0.77 (0.01)	0.92 (0.01)	0.69 (0.01)	0.90 (0.01)	0.93 (0.01)	0.53 (0.01)	-0.01 (0.03)	0.21 (0.02)

943
944 Table 6: Mean Spearman rank correlations (standard error in parentheses rounded to one significant
945 figure for clarity) between recall (rec) and accuracy (acc) for three semivalues (Shapley, Beta (4,1),
946 Banzhaf). Values are averaged over 5 estimations.

Dataset	Shapley			(4,1)-Beta Shapley			Banzhaf		
	acc-am	acc-rec	am-rec	acc-am	acc-rec	am-rec	acc-am	acc-rec	am-rec
BREAST	0.99 (0.01)	0.99 (0.01)	0.99 (0.01)	0.99 (0.01)	0.99 (0.01)	0.99 (0.01)	0.90 (0.02)	0.99 (0.01)	0.89 (0.03)
TITANIC	-0.37 (0.05)	0.91 (0.02)	-0.08 (0.08)	-0.37 (0.04)	0.89 (0.02)	0.10 (0.08)	0.62 (0.03)	0.93 (0.01)	0.84 (0.01)
CREDIT	-0.45 (0.01)	0.09 (0.02)	0.79 (0.01)	-0.40 (0.03)	0.11 (0.02)	0.83 (0.01)	0.5 (0.01)	0.75 (0.01)	0.92 (0.01)
HEART	0.29 (0.02)	0.99 (0.01)	0.27 (0.02)	0.28 (0.02)	0.89 (0.02)	0.27 (0.01)	0.80 (0.02)	0.99 (0.01)	0.78 (0.02)
WIND	0.12 (0.04)	0.99 (0.01)	0.11 (0.04)	0.12 (0.03)	0.97 (0.02)	0.10 (0.01)	0.92 (0.01)	0.99 (0.01)	0.92 (0.01)
CPU	0.27 (0.01)	0.90 (0.01)	0.27 (0.01)	0.27 (0.02)	0.92 (0.03)	0.31 (0.03)	0.93 (0.01)	0.99 (0.01)	0.97 (0.01)
2DPLANES	0.44 (0.03)	0.99 (0.01)	0.44 (0.03)	0.47 (0.03)	0.99 (0.01)	0.47 (0.03)	0.52 (0.01)	0.99 (0.01)	0.52 (0.01)
POL	0.75 (0.01)	0.90 (0.01)	0.42 (0.01)	0.74 (0.01)	0.93 (0.01)	0.48 (0.02)	0.85 (0.01)	0.87 (0.01)	0.52 (0.01)

A.4 TABLE FOR R_p RESULTS IN FIGURE 3

956
957 In support of Figure 3 displayed in Section 4, Table 7 below reports the mean and standard error of
958 the p -robustness metric R_p for $p \in \{500, 1000, 1500\}$ on each dataset and semivalue.

A.5 EMPIRICAL VERIFICATION OF THE ASSUMPTION OF PROPOSITION 3.3

963
964 In this section, we verify empirically that the assumption of Proposition 3.3 holds for the two datasets
965 we take as examples in Figure 4, namely BREAST and TITANIC. For $(u_1, u_2) = (\lambda, \gamma)$ we compute
966 the cross-size covariance matrix

$$\hat{\Sigma}_{jk}^{u_1 u_2} := \text{Cov}(\Delta_j(u_1), \Delta_k(u_2)), \quad j, k \in \{1, \dots, n\},$$

967 using the same Monte Carlo runs as for the semivalues. We then check that off-diagonal terms are
968 negligible compared to the diagonal by computing two metrics:

$$\hat{\varepsilon} := \max_j \frac{\sum_{k \neq j} |\hat{\Sigma}_{jk}^{u_1 u_2}|}{\hat{\Sigma}_{jj}^{u_1 u_2}} \quad \text{and} \quad \hat{\delta} := \frac{|\text{Corr}(\phi(u_1), \phi(u_2)) - \text{Corr}_{\text{diag}}(\phi(u_1), \phi(u_2))|}{|\text{Corr}(\phi(u_1), \phi(u_2))|},$$

972 Table 7: Mean p -robustness R_p (standard error in parentheses) for $p \in \{500, 1000, 1500\}$ estimated
 973 over 5 Monte Carlo trials (each trial corresponding to approximating the semivalue scores). Boldface
 974 marks the semivalue with the highest R_p for each dataset and p . Higher R_p indicates greater stability
 975 of the induced ranking under utility shifts.

Dataset	R_{500}			R_{1000}			R_{1500}		
	Shapley	(4,1)-Beta Shapley	Banzhaf	Shapley	(4,1)-Beta Shapley	Banzhaf	Shapley	(4,1)-Beta Shapley	Banzhaf
BREAST	0.22 (0.004)	0.23 (0.004)	0.34 (0.06)	0.63 (0.004)	0.64 (0.003)	0.59 (0.02)	0.79 (0.003)	0.80 (0.002)	0.71 (0.06)
TITANIC	0.058 (0.001)	0.058 (0.001)	0.44 (0.03)	0.27 (0.004)	0.28 (0.004)	0.81 (0.01)	0.48 (0.004)	0.48 (0.004)	0.89 (0.007)
CREDIT	0.084 (0.005)	0.091 (0.005)	0.82 (0.07)	0.36 (0.01)	0.38 (0.01)	0.97 (0.01)	0.58 (0.01)	0.60 (0.01)	0.99 (0.002)
HEART	0.16 (0.003)	0.16 (0.003)	0.53 (0.01)	0.54 (0.008)	0.54 (0.009)	0.87 (0.007)	0.73 (0.006)	0.73 (0.006)	0.93 (0.003)
WIND	0.23 (0.009)	0.21 (0.01)	0.58 (0.01)	0.64 (0.01)	0.62 (0.009)	0.88 (0.005)	0.79 (0.005)	0.77 (0.007)	0.94 (0.004)
CPU	0.11 (0.003)	0.12 (0.003)	0.38 (0.02)	0.45 (0.009)	0.45 (0.009)	0.77 (0.009)	0.66 (0.009)	0.67 (0.009)	0.88 (0.004)
2DPLANES	0.090 (0.001)	0.084 (0.002)	0.19 (0.012)	0.38 (0.004)	0.36 (0.006)	0.59 (0.02)	0.59 (0.004)	0.57 (0.006)	0.75 (0.01)
POL	0.090 (0.003)	0.09 (0.003)	0.19 (0.01)	0.39 (0.008)	0.42 (0.007)	0.50 (0.01)	0.60 (0.006)	0.62 (0.006)	0.70 (0.01)

984 where $\text{Corr}_{\text{diag}}$ keeps only the diagonal entries $\widehat{\Sigma}_{jj}^{u_1 u_2}$. On BREAST and TITANIC, we find $\hat{\varepsilon} < 0.12$
 985 meaning that, row-wise, the total magnitude of off-diagonal covariances $\sum_{k \neq j} |\widehat{\Sigma}_{jk}^{u_1 u_2}|$ is at most
 986 12% of the corresponding diagonal term $\widehat{\Sigma}_{jj}^{u_1 u_2}$, i.e., off-diagonal cross-size effects are negligible.
 987 Moreover, we find that $\hat{\delta} \leq 7\%$ showing that using only the diagonal of $\widehat{\Sigma}_{jj}^{u_1 u_2}$ reproduces the full
 988 correlation within a few percent, which is exactly what one would expect if $\text{Cov}(\Delta_j(u_1), \Delta_k(u_2)) \approx 0$ for $j \neq k$. Exact means $\pm 95\%$ CIs are reported in Table 8.

989 Table 8: Verification of the cross-size independence assumption (Proposition 3.3):
 990 $\hat{\varepsilon} := \max_j \sum_{k \neq j} |\widehat{\Sigma}_{jk}^{u_1 u_2}| / \widehat{\Sigma}_{jj}^{u_1 u_2}$ (smaller is better) and $\hat{\delta} := |\text{Corr}(\phi(u_1), \phi(u_2)) -$
 991 $\text{Corr}_{\text{diag}}(\phi(u_1), \phi(u_2))| / |\text{Corr}(\phi(u_1), \phi(u_2))|$ (smaller is better). Mean $\pm 95\%$ CI over $R=5$
 992 seeds.

Dataset	$\hat{\varepsilon}$ (mean $\pm 95\%$ CI)	$\hat{\delta}$ (mean $\pm 95\%$ CI)
BREAST	0.08 ± 0.03	0.03 ± 0.01
TITANIC	0.10 ± 0.02	0.05 ± 0.02

1001 1002 A.6 RESULTS FOR THE *utility-trade-off* SCENARIO SUMMARIZED IN SECTION 4.2 AND 1003 EXTENSION TO $K > 2$ BASE UTILITIES

1004 In this section, we evaluate robustness in the *utility trade-off* setting for both regression, [binary](#), and
 1005 multiclass classification.

1006 A.6.1 CASE WHERE $K = 2$ BASE UTILITIES

1007 In this setting, the utility is a convex combination of two task-relevant metrics,

$$1008 u_\nu = \nu u_1 + (1 - \nu)u_2, \quad \nu \in [0, 1].$$

1009 We consider the following utility pairs:

- 1010 – *Regression*. MSE/MAE (Table 9), MSE/R² (Table 10), and MAE/R² (Table 11).
- 1011 – *Multiclass classification*. Accuracy/macro-F1 (Table 12), Accuracy/macro-Recall (Table
 1012 13), and macro-F1/macro-Recall (Table 14).

1013 For each pair, we compute semivalue-based rankings (Shapley, (4, 1)-Beta Shapley, Banzhaf) and
 1014 evaluate robustness along the convex path using R_{500} .

1015 A.6.2 CASE WHERE $K > 2$ BASE UTILITIES

1016 To study trade-offs beyond pairs of utilities, we consider $K = 3$ base utilities simultaneously, which
 1017 allows us to visualize corresponding spatial signatures in 3D (see Figures 12-19 in Appendix D.2). In
 1018 this setting, the utility is therefore a convex combination of three task-relevant metrics,

$$1019 u_\nu = \nu_1 u_1 + \nu_2 u_2 + \nu_3 u_3, \quad (\nu_1, \nu_2, \nu_3) \in \Delta^2,$$

Table 9: **Regression.** Robustness scores R_{500} along the MSE-MAE convex path. Semivalues are approximated over 5 runs using a linear regression model trained with L-BFGS. Datasets: DIABETES ($n = 442, d = 10$), CALIFORNIA HOUSING ($n = 20,640, d = 8$), AMES HOUSING ($n = 2,930, d = 10$); each subsampled to 300 training points. R_{500} is reported as mean \pm standard error across the 5 semivalue approximations.

Dataset	Semivalue	R_{500} (mean \pm SE)
DIABETES	Shapley	0.99 ± 0.01
	(4,1)-Beta Shapley	0.99 ± 0.01
	Banzhaf	0.99 ± 0.01
CALIFORNIA	Shapley	0.72 ± 0.01
	(4,1)-Beta Shapley	0.71 ± 0.01
	Banzhaf	0.75 ± 0.01
AMES	Shapley	0.99 ± 0.01
	(4,1)-Beta Shapley	0.99 ± 0.01
	Banzhaf	0.99 ± 0.01

Table 10: **Regression.** Robustness scores R_{500} along the MSE- R^2 convex path, reported as mean \pm standard error across 5 semivalue approximations.

Dataset	Semivalue	R_{500} (mean \pm SE)
DIABETES	Shapley	0.89 ± 0.01
	(4,1)-Beta Shapley	0.89 ± 0.02
	Banzhaf	0.91 ± 0.01
CALIFORNIA	Shapley	0.70 ± 0.01
	(4,1)-Beta Shapley	0.67 ± 0.01
	Banzhaf	0.81 ± 0.01
AMES	Shapley	0.99 ± 0.01
	(4,1)-Beta Shapley	0.99 ± 0.01
	Banzhaf	0.99 ± 0.01

Table 11: **Regression.** Robustness scores R_{500} along the MAE- R^2 convex path. Mean \pm standard error over the 5 approximations.

Dataset	Semivalue	R_{500} (mean \pm se)
DIABETES	Shapley	0.90 ± 0.02
	(4,1)-Beta Shapley	0.89 ± 0.02
	Banzhaf	0.94 ± 0.01
CALIFORNIA	Shapley	0.66 ± 0.01
	(4,1)-Beta Shapley	0.65 ± 0.01
	Banzhaf	0.72 ± 0.02
AMES	Shapley	0.98 ± 0.01
	(4,1)-Beta Shapley	0.98 ± 0.01
	Banzhaf	0.98 ± 0.01

where Δ^2 denotes the standard 2-simplex. Specifically, we consider the following utility triplets:

- *Binary classification.* Accuracy, F1, and Recall (Table 15)
- *Regression.* MSE, MAE, and R^2 (Table 16)
- *Multiclass classification.* macro-F1, macro-Recall, and Accuracy (Table 17)

For each task, we compute the 3D spatial signatures $S_{\omega, \mathcal{D}} \in \mathbb{R}^3$ and then approximate R_{500} using the sampling scheme of Remark B.6 with $m = 1000$ Monte Carlo sampling. Examples of 3D spatial signatures are given in Appendix D.2.

1080 Table 12: **Multiclass**. Robustness scores R_{500} along the Accuracy-macro-F1 convex path. Semi-
 1081 values are approximated over 5 runs using an MLP (SGD, fixed seeds). Datasets: DIGITS ($n =$
 1082 1,797, $d = 64$, 10 classes), WINE ($n = 178$, $d = 13$, 3 classes), IRIS ($n = 150$, $d = 4$, 3 classes);
 1083 each subsampled to 100 training points. Mean \pm standard error over the 5 approximations.

1084

1085	Dataset	Semivalue	R_{500} (mean \pm se)
1086	DIGITS	Shapley	0.78 ± 0.03
		(4,1)-Beta Shapley	0.75 ± 0.04
		Banzhaf	0.82 ± 0.04
1089	WINE	Shapley	0.64 ± 0.05
		(4,1)-Beta Shapley	0.61 ± 0.05
		Banzhaf	0.68 ± 0.04
1092	IRIS	Shapley	0.56 ± 0.06
		(4,1)-Beta Shapley	0.53 ± 0.05
		Banzhaf	0.60 ± 0.06

1095

1096 Table 13: **Multiclass**. Mean robustness R_{500} along the Accuracy-macro Recall convex path (mean \pm
 1097 SE over 5 semivalue approximations).

1098

1099	Dataset	Semivalue	R_{500} (mean \pm SE)
1100	DIGITS	Shapley	0.70 ± 0.01
		(4,1)-Beta Shapley	0.68 ± 0.01
		Banzhaf	0.76 ± 0.03
1103	WINE	Shapley	0.60 ± 0.01
		(4,1)-Beta Shapley	0.57 ± 0.01
		Banzhaf	0.63 ± 0.04
1106	IRIS	Shapley	0.52 ± 0.02
		(4,1)-Beta Shapley	0.50 ± 0.03
		Banzhaf	0.56 ± 0.03

1109

1110

1111 A.7 RESULTS FOR THE MULTIPLE-VALID UTILITY SCENARIO EXTENDED TO $K > 2$ BASE 1112 UTILITIES

1113

1114 We extend the multiple valid scenario to $K > 2$ base utilities in the multiclass classification setting
 1115 by using the analytical decomposition derived in Appendix C.5. In fact, each multiclass utility
 1116 can be written as $u_\alpha = \sum_{c=1}^C a_c u_c$, where u_c is a class-wise utility for class c . Particularly, in
 1117 our experiment, we consider the per-class precision for u_c that is defined in Appendix C.5. Hence
 1118 $K = C$, the number of classes. We evaluate this setting on the three multiclass datasets used for
 1119 the *utility trade-off scenario* experiments (namely DIGITS, WINE, and IRIS) and approximate R_{500}
 1120 by sampling directions $\alpha \in \mathcal{S}^{C-1}$ and applying the approximation scheme of Remark B.6 with
 1121 $m = 1000$ Monte Carlo sampling. The results are given in Table 18.

1122

1123 A.8 WHAT IF WE \mathcal{A} VARIES INSTEAD OF perf ?

1124

1125 Since $u = \text{perf} \circ \mathcal{A}$, one can alter the utility either by changing the algorithm \mathcal{A} or by changing the
 1126 performance metric perf . Our main study held \mathcal{A} fixed and varied perf . To illustrate the effect of
 1127 \mathcal{A} , we run an additional experiment with a fixed metric (Accuracy) and two learning algorithms: (i)
 1128 logistic regression trained with L-BFGS and (ii) a multilayer perceptron (MLP) trained with SGD
 1129 (introducing randomness via initialization and optimization). Table 19 reports the mean Spearman
 1130 rank correlation (with standard error) between semivalue-based rankings obtained across multiple
 1131 runs with the two algorithms, for each semivalue and dataset.

1132

1133 These results show that rankings can vary with the learning algorithm, though not as strongly as when
 1134 changing the performance metric (cf. Table 1 in the main paper). We also observe smaller standard
 1135 errors for Banzhaf than for Shapley or (4,1)-Beta, suggesting Banzhaf rankings are less sensitive to

1134 Table 14: **Multiclass**. Mean robustness R_{500} along the macro F1-macro Recall convex path (mean \pm
 1135 SE over 5 semivalue approximations).

1137	1138	1139	1140	1141	1142	1143	1144	1145	1146	1147	1148	1149	1150	1151	1152	1153	1154	1155	1156	1157	1158	1159	1160	1161	1162	1163	1164	1165	1166	1167	1168	1169	1170	1171	1172	1173	1174	1175	1176	1177	1178	1179	1180	1181	1182	1183	1184	1185	1186	1187	1188	1189	1190	1191	1192	1193	1194	1195	1196	1197	1198	1199	1200	1201	1202	1203	1204	1205	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215	1216	1217	1218	1219	1220	1221	1222	1223	1224	1225	1226	1227	1228	1229	1230	1231	1232	1233	1234	1235	1236	1237	1238	1239	1240	1241	1242	1243	1244	1245	1246	1247	1248	1249	1250	1251	1252	1253	1254	1255	1256	1257	1258	1259	1260	1261	1262	1263	1264	1265	1266	1267	1268	1269	1270	1271	1272	1273	1274	1275	1276	1277	1278	1279	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	1292	1293	1294	1295	1296	1297	1298	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	1312	1313	1314	1315	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343	1344	1345	1346	1347	1348	1349	1350	1351	1352	1353	1354	1355	1356	1357	1358	1359	1360	1361	1362	1363	1364	1365	1366	1367	1368	1369	1370	1371	1372	1373	1374	1375	1376	1377	1378	1379	1380	1381	1382	1383	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	1394	1395	1396	1397	1398	1399	1400	1401	1402	1403	1404	1405	1406	1407	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420	1421	1422	1423	1424	1425	1426	1427	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439	1440	1441	1442	1443	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454	1455	1456	1457	1458	1459	1460	1461	1462	1463	1464	1465	1466	1467	1468	1469	1470	1471	1472	1473	1474	1475	1476	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498	1499	1500	1501	1502	1503	1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	1516	1517	1518	1519	1520	1521	1522	1523	1524	1525	1526	1527	1528	1529	1530	1531	1532	1533	1534	1535	1536	1537	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551	1552	1553	1554	1555	1556	1557	1558	1559	1560	1561	1562	1563	1564	1565	1566	1567	1568	1569	1570	1571	1572	1573	1574	1575	1576	1577	1578	1579	1580	1581	1582	1583	1584	1585	1586	1587	1588	1589	1590	1591	1592	1593	1594	1595	1596	1597	1598	1599	1600	1601	1602	1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615	1616	1617	1618	1619	1620	1621	1622	1623	1624	1625	1626	1627	1628	1629	1630	1631	1632	1633	1634	1635	1636	1637	1638	1639	1640	1641	1642	1643	1644	1645	1646	1647	1648	1649	1650	1651	1652	1653	1654	1655	1656	1657	1658	1659	1660	1661	1662	1663	1664	1665	1666	1667	1668	1669	1670	1671	1672	1673	1674	1675	1676	1677	1678	1679	1680	1681	1682	1683	1684	1685	1686	1687	1688	1689	1690	1691	1692	1693	1694	1695	1696	1697	1698	1699	1700	1701	1702	1703	1704	1705	1706	1707	1708	1709	1710	1711	1712	1713	1714	1715	1716	1717	1718	1719	1720	1721	1722	1723	1724	1725	1726	1727	1728	1729	1730	1731	1732	1733	1734	1735	1736	1737	1738	1739	1740	1741	1742	1743	1744	1745	1746	1747	1748	1749	1750	1751	1752	1753	1754	1755	1756	1757	1758	1759	1760	1761	1762	1763	1764	1765	1766	1767	1768	1769	1770	1771	1772	1773	1774	1775	1776	1777	1778	1779	1780	1781	1782	1783	1784	1785	1786	1787	1788	1789	1790	1791	1792	1793	1794	1795	1796	1797	1798	1799	1800	1801	1802	1803	1804	1805	1806	1807	1808	1809	1810	1811	1812	1813	1814	1815	1816	1817	1818	1819	1820	1821	1822	1823	1824	1825	1826	1827	1828	1829	1830	1831	1832	1833	1834	1835	1836	1837	1838	1839	1840	1841	1842	1843	1844	1845	1846	1847	1848	1849	1850	1851	1852	1853	1854	1855	1856	1857	1858	1859	1860	1861	1862	1863	1864	1865	1866	1867	1868	1869	1870	1871	1872	1873	1874	1875	1876	1877	1878	1879	1880	1881	1882	1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895	1896	1897	1898	1899	1900	1901	1902	1903	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	1940	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058	2059	2060	2061	2062	2063	2064	2065	2066	2067	2068	2069	2070	2071	2072	2073	2074	2075	2076	2077	2078	2079	2080	2081	2082	2083	2084	2085	2086	2087	2088	2089	2090	2091	2092	2093	2094	2095	2096	2097	2098	2099	2100	2101	2102	2103	2104	2105	2106	2107	2108	2109	2110	2111	2112	2113	2114	2115	2116	2117	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2129	2130	2131	2132	2133	2134	2135	2136	2137	2138	2139	2140	2141	2142	2143	2144	2145	2146	2147	2148	2149	2150	2151	2152	2153	2154	2155	2156	2157	2158	2159	2160	2161	2162	2163	2164	2165	2166	2167	2168	2169	2170	2171	2172	2173	2174	2175	2176	2177	2178	2179	2180	2181	2182	2183	2184	2185	2186	2187	2188	2189	2190	2191	2192	2193	2194	2195	2196	2197	2198	2199	2200	2201	2202	2203	2204	2205	2206	2207	2208	2209	2210	2211	2212	2213	2214	2215	2216	2217	2218	2219	2220	2221	2222	2223	2224	2225	2226	2227	2228	2229	2230	2231	2232	2233	2234	2235	2236	2237	2238	2239	2240	2241	2242	2243	2244	2245	2246	2247	2248	2249	2250	2251	2252	2253	2254	2255	2256	2257	2258	2259	2260	2261	2262	2263	2264	2265	2266	2267	2268	2269	2270	2271	2272	2273	2274	2275	2276	2277	2278	2279	2280	2281	2282	2283	2284	2285	2286	2287	2288	2289	2290	2291	2292	2293	2294	2295	2296	2297	2298	2299	2300	2301	2302	2303	2304	2305	2306	2307	2308	2309	2310	2311	2312	2313	2314	2315	2316	2317	2318	2319	2320	2321	2322	2323	2324	2325	2326	2327	2328	2329	2330	2331	2332	2333	2334	2335	2336	2337	2338	2339	2340	2341	2342	2343	2344	2345	2346	2347	2348	2349	2350	2351	2352	2353	2354	2355	2356	2357	2358	2359	2360	2361	2362	2363	2364	2365	2366	2367	2368	2369	2370	2371	2372	2373	2374	2375	2376	2377	2378	2379	2380	2381	2382</th

1188 Table 16: **Regression.** Mean robustness scores R_{500} (\pm standard errors) along the MSE-MAE- R^2
 1189 convex path. Semivalues are approximated over 5 runs using a linear regression model trained with
 1190 L-BFGS. Datasets: DIABETES ($n = 442, d = 10$), CALIFORNIA HOUSING ($n = 20,640, d = 8$),
 1191 AMES HOUSING ($n = 2,930, d = 10$); each subsampled to 300 training points. R_{500} is reported as
 1192 mean \pm standard error across the 5 semivalue approximations.

Dataset	Semivalue	R_{500} (mean \pm SE)
DIABETES	Shapley	0.83 ± 0.01
	(4,1)-Beta Shapley	0.82 ± 0.02
	Banzhaf	0.85 ± 0.01
CALIFORNIA	Shapley	0.69 ± 0.01
	(4,1)-Beta Shapley	0.68 ± 0.01
	Banzhaf	0.86 ± 0.03
AMES	Shapley	0.89 ± 0.02
	(4,1)-Beta Shapley	0.89 ± 0.02
	Banzhaf	0.91 ± 0.03

1204
 1205 Table 17: **Multiclass.** Mean robustness scores R_{500} (\pm standard errors) along the Accuracy-macro-
 1206 F1-macro-Recall convex path. Semivalues are approximated over 5 runs using an MLP (SGD, fixed
 1207 seeds). Datasets: DIGITS ($n = 1,797, d = 64$, 10 classes), WINE ($n = 178, d = 13$, 3 classes), IRIS
 1208 ($n = 150, d = 4$, 3 classes); each subsampled to 100 training points. Mean \pm standard error over the
 1209 5 approximations.

Dataset	Semivalue	R_{500} (mean \pm SE)
DIGITS	Shapley	0.63 ± 0.03
	(4,1)-Beta Shapley	0.61 ± 0.03
	Banzhaf	0.78 ± 0.04
WINE	Shapley	0.44 ± 0.01
	(4,1)-Beta Shapley	0.42 ± 0.02
	Banzhaf	0.69 ± 0.03
IRIS	Shapley	0.63 ± 0.01
	(4,1)-Beta Shapley	0.60 ± 0.01
	Banzhaf	0.66 ± 0.02

1221
 1222 compute R_p in Section 4.1. For one pair of distinct metrics in this family, precisely Accuracy vs. F1
 1223 score, we compute the rankings induced by the corresponding semivalue and, for different values of
 1224 k , we evaluate the associated top- k overlap@ k and Jaccard@ k between the two rankings. This yields,
 1225 for each dataset and semivalue, a collection of top- k stability scores that summarize how sensitive
 1226 top- k selections are to switching between these utilities. We then compare these top- k stability
 1227 scores given in Table 20 with the robustness scores R_p plotted in Figure 3 and summarized in Table 7.
 1228

1229 Across most settings, we observe the same qualitative pattern as with Kendall and Spear-
 1230 man correlation metrics: semivalues that achieve larger R_p for a given utility family (typically
 1231 Banzhaf) also exhibit higher overlap@ k and Jaccard@ k when comparing the induced rankings under
 1232 different utilities in that family. In other words, methods that are more robust according to R_p are
 1233 also those whose top- k selections change the least when moving between these equally valid utility
 1234 choices.

1235 A.10 OVERALL DISCUSSION ABOUT EMPIRICAL ROBUSTNESS RESULTS

1236 The empirical study presented across the paper provides a comprehensive validation of the robustness
 1237 metric R_p introduced in Section 3.2. The empirical results consistently suggest that R_p captures
 1238 stability phenomena observed when varying the utility across the two scenarios studied: the *multiple-
 1239 valid-utility* scenario (Sections 4.1, A.9, A.7) and the *utility-trade-off* scenario (Sections 4.2, A.6).
 1240 We summarize the main conclusions below.

Table 18: Mean robustness scores R_{500} (\pm standard errors) for the *multiple-valid-utility* scenario with $K > 2$ base utilities in the multiclass classification setting, using the class-wise precision decomposition described in Appendix C.5. Semivalues are approximated over 5 runs using an MLP (SGD, fixed seeds). Datasets: DIGITS ($n = 1,797, d = 64, 10$ classes), WINE ($n = 178, d = 13, 3$ classes), IRIS ($n = 150, d = 4, 3$ classes); each subsampled to 100 training points. Mean \pm standard error over the 5 approximations.

Dataset	Semivalue	R_{500} (mean \pm SE)
DIGITS	Shapley	0.17 ± 0.03
	(4,1)-Beta Shapley	0.19 ± 0.02
	Banzhaf	0.57 ± 0.04
WINE	Shapley	0.21 ± 0.01
	(4,1)-Beta Shapley	0.20 ± 0.01
	Banzhaf	0.68 ± 0.02
IRIS	Shapley	0.65 ± 0.02
	(4,1)-Beta Shapley	0.64 ± 0.01
	Banzhaf	0.70 ± 0.03

Table 19: Spearman rank correlation (mean \pm standard error) between semivalue rankings computed with a logistic regression model and an MLP, using accuracy as the metric. Results are averaged over 5 runs (varying both the MLP initialization/optimization and the semivalue approximation).

Dataset	Semivalue	Spearman (mean \pm se)
BREAST	Shapley	0.62 ± 0.21
	(4,1)-Beta Shapley	0.67 ± 0.18
	Banzhaf	0.67 ± 0.05
TITANIC	Shapley	0.71 ± 0.13
	(4,1)-Beta Shapley	0.71 ± 0.07
	Banzhaf	0.80 ± 0.03
HEART	Shapley	0.65 ± 0.21
	(4,1)-Beta Shapley	0.62 ± 0.22
	Banzhaf	0.93 ± 0.07
WIND	Shapley	0.82 ± 0.11
	(4,1)-Beta Shapley	0.87 ± 0.10
	Banzhaf	0.85 ± 0.03

(1) **Agreement of R_p with rank-based stability metrics.** The robustness metric R_p demonstrates consistency with traditional rank correlation measures (Kendall and Spearman) across all experiments. In the *multiple-valid-utility* scenario for binary classification (Section 4.1, Tables 1 and 7), datasets exhibiting low rank correlations between accuracy and F1-score consistently show correspondingly low R_p values. This alignment extends to top- k stability metrics (Table 20), where higher R_p values correlate with greater overlap@ k and Jaccard@ k scores when switching between equally valid utilities. This suggests that R_p captures meaningful ranking stability that aligns with practitioner intuition while offering a geometric interpretation.

(2) **Banzhaf’s consistent robustness advantage.** In all binary classification experiments (Tables 7 and 15), multiclass experiments (Tables 12-14 and 17) and regression experiments (Tables 9-11 and 16), the same trend emerges: the Banzhaf value attains very often the highest robustness. The 2D spatial signatures in Appendix D.1 provide a geometric insight for this phenomenon: Banzhaf weights concentrate on intermediate coalition sizes, where the empirical alignment factors r_j are largest (Figure 4), yielding embeddings that are nearly collinear in \mathbb{R}^2 and thus achieve maximal R_p . In contrast, Shapley and (4, 1)-Beta Shapley, whose weights are either uniform or emphasize small coalition sizes, produce less aligned 2D signatures and therefore lower R_p .

(3) **Extension to $K > 2$ base utilities.** The robustness metric naturally extends to higher-dimensional utility families. Our *utility-trade-off* experiments for binary classification with three base

Table 20: Top- k stability metrics (Accuracy vs. F1). Mean \pm standard errors for $k \in \{10, 20, 50\}$. Higher values indicate greater robustness of top- k selections under utility shifts.

Dataset	Semivalue	Overlap@ k			Jaccard@ k		
		$k = 10$	$k = 20$	$k = 50$	$k = 10$	$k = 20$	$k = 50$
BREAST	Shapley	0.75 ± 0.04	0.62 ± 0.03	0.45 ± 0.03	0.61 ± 0.04	0.47 ± 0.03	0.32 ± 0.03
	Beta	0.76 ± 0.04	0.63 ± 0.03	0.46 ± 0.03	0.62 ± 0.04	0.48 ± 0.03	0.33 ± 0.03
	Banzhaf	0.82 ± 0.04	0.70 ± 0.04	0.52 ± 0.03	0.71 ± 0.04	0.57 ± 0.04	0.40 ± 0.03
TITANIC	Shapley	0.25 ± 0.03	0.18 ± 0.02	0.12 ± 0.02	0.15 ± 0.03	0.10 ± 0.02	0.07 ± 0.02
	Beta	0.28 ± 0.03	0.20 ± 0.02	0.14 ± 0.02	0.17 ± 0.03	0.12 ± 0.02	0.08 ± 0.02
	Banzhaf	0.88 ± 0.03	0.76 ± 0.04	0.59 ± 0.03	0.79 ± 0.03	0.64 ± 0.04	0.48 ± 0.03
CREDIT	Shapley	0.18 ± 0.03	0.13 ± 0.03	0.09 ± 0.02	0.10 ± 0.03	0.07 ± 0.02	0.05 ± 0.02
	Beta	0.22 ± 0.03	0.16 ± 0.03	0.11 ± 0.02	0.13 ± 0.03	0.09 ± 0.02	0.06 ± 0.02
	Banzhaf	0.94 ± 0.02	0.89 ± 0.03	0.76 ± 0.03	0.89 ± 0.02	0.80 ± 0.03	0.64 ± 0.03
HEART	Shapley	0.65 ± 0.03	0.56 ± 0.03	0.41 ± 0.02	0.50 ± 0.03	0.41 ± 0.02	0.29 ± 0.02
	Beta	0.68 ± 0.03	0.59 ± 0.03	0.43 ± 0.02	0.53 ± 0.03	0.44 ± 0.02	0.31 ± 0.02
	Banzhaf	0.91 ± 0.03	0.83 ± 0.03	0.65 ± 0.03	0.84 ± 0.03	0.72 ± 0.03	0.55 ± 0.03
WIND	Shapley	0.78 ± 0.03	0.68 ± 0.03	0.49 ± 0.03	0.65 ± 0.03	0.54 ± 0.03	0.37 ± 0.03
	Beta	0.79 ± 0.03	0.69 ± 0.03	0.50 ± 0.03	0.66 ± 0.03	0.55 ± 0.03	0.38 ± 0.03
	Banzhaf	0.92 ± 0.03	0.85 ± 0.03	0.70 ± 0.03	0.86 ± 0.03	0.75 ± 0.03	0.60 ± 0.03
CPU	Shapley	0.58 ± 0.03	0.46 ± 0.03	0.33 ± 0.03	0.42 ± 0.03	0.32 ± 0.03	0.22 ± 0.02
	Beta	0.61 ± 0.03	0.49 ± 0.03	0.35 ± 0.03	0.45 ± 0.03	0.34 ± 0.03	0.23 ± 0.02
	Banzhaf	0.85 ± 0.03	0.78 ± 0.04	0.61 ± 0.03	0.76 ± 0.03	0.65 ± 0.04	0.49 ± 0.03
2DPLANES	Shapley	0.52 ± 0.03	0.41 ± 0.03	0.29 ± 0.03	0.36 ± 0.03	0.27 ± 0.03	0.18 ± 0.02
	Beta	0.57 ± 0.03	0.46 ± 0.03	0.32 ± 0.03	0.41 ± 0.03	0.31 ± 0.03	0.20 ± 0.02
	Banzhaf	0.74 ± 0.04	0.64 ± 0.04	0.47 ± 0.04	0.60 ± 0.04	0.49 ± 0.04	0.35 ± 0.03
POL	Shapley	0.72 ± 0.03	0.61 ± 0.03	0.43 ± 0.02	0.57 ± 0.03	0.46 ± 0.03	0.31 ± 0.02
	Beta	0.78 ± 0.03	0.68 ± 0.03	0.49 ± 0.02	0.65 ± 0.03	0.53 ± 0.03	0.35 ± 0.02
	Banzhaf	0.48 ± 0.04	0.41 ± 0.04	0.29 ± 0.03	0.33 ± 0.04	0.27 ± 0.04	0.18 ± 0.03

utilities (Table 15) confirm that the geometric insights from \mathbb{R}^2 hold in \mathbb{R}^3 : semivalues with spatial signatures more concentrated along a dominant axis (Figures 12-19 achieve higher robustness, even when the utility varies over the simplex Δ^2 rather than a line segment. These findings align with the geometric interpretation of Proposition 3.1 (and its K -dimensional extension) and the ranking-region counts in Corollary B.4: when the spatial signature is *collinear* (has a dominant direction), the number of ranking regions is minimized, leading to the maximum average angular distance to a swap and, consequently, the highest robustness.

1350 **B ADDITIONAL PROOFS & DERIVATIONS**

1352 For the reader’s convenience, we first outline the main points covered in this section.

1354 – Appendix B.1: First-order approximation of the utility in the *multiple-valid-utility* scenario
1355 for binary classification and empirical validation.
1356 – Appendix B.2: Proof of Proposition 3.1 and its extension to $K \geq 2$ base utilities.
1357 – Appendix B.3: Ranking region counts for specific cases of spatial signature.
1358 – Appendix B.4: Link between the robustness metric R_p and the Kendall rank correlation.
1359 – Appendix B.5: Closed-form for $\mathbb{E}_{\bar{\alpha}}[\rho_p(\bar{\alpha})]$.
1360 – Appendix B.6: Maximum average p -swaps distance occurs under collinearity of the spatial
1361 signature.
1362 – Appendix B.7: Proof of proposition 3.3.
1363 – Appendix B.8: Link between the robustness metric R_p and top- k stability metrics
1364 (overlap@ k and Jaccard@ k).

1368 **B.1 FIRST-ORDER APPROXIMATION OF THE UTILITY IN THE *multiple-valid-utility* SCENARIO**
1369 **FOR BINARY CLASSIFICATION AND EMPIRICAL VALIDATION**

1370 This section justifies the approximation used in Section 3, where a linear-fractional utility function u
1371 is replaced by its affine surrogate.

1373 Formally, we state in Section 3 that any linear-fractional utility u of the form equation 2 with $d_0 \neq 0$,
1374 admits a first-order (Taylor–Young) expansion around $(\lambda, \gamma) = (0, 0)$ of the form

1375
$$u(S) = \frac{c_0}{d_0} + \frac{c_1 d_0 - c_0 d_1}{d_0^2} \lambda(S) + \frac{c_2 d_0 - c_0 d_2}{d_0^2} \gamma(S) + o(\max\{|\lambda(S)|, |\gamma(S)|\}).$$

1378 where $\{c_0, c_1, c_2, d_0, d_1, d_2\}$ are real coefficients which specify the particular utility.

1379 The proof is a direct Taylor expansion of u at $(\lambda, \gamma) = (0, 0)$, followed by an empirical validation of
1380 the affine surrogate by inspecting discordance rates.

1382 *Proof.* Define $N(\lambda, \gamma) = c_0 + c_1 \lambda + c_2 \gamma$ and $D(\lambda, \gamma) = d_0 + d_1 \lambda + d_2 \gamma$ so that $u(S) =$
1383 $f(\lambda(S), \gamma(S))$ with

1385
$$f(\lambda, \gamma) = \frac{N(\lambda, \gamma)}{D(\lambda, \gamma)}.$$

1388 Assuming $d_0 \neq 0$ (i.e., the denominator does not vanish at $(0, 0)$), the first-order Taylor expansion of
1389 f around $(0, 0)$ is

1390
$$f(\lambda, \gamma) = f(0, 0) + \frac{\partial f}{\partial \lambda} \bigg|_{(0,0)} \lambda + \frac{\partial f}{\partial \gamma} \bigg|_{(0,0)} \gamma + o(\|(\lambda, \gamma)\|).$$

1393 Concretely,

1395
$$f(0, 0) = \frac{c_0}{d_0}, \quad \frac{\partial f}{\partial \lambda} \bigg|_{(0,0)} = \frac{c_1 d_0 - c_0 d_1}{d_0^2}, \quad \frac{\partial f}{\partial \gamma} \bigg|_{(0,0)} = \frac{c_2 d_0 - c_0 d_2}{d_0^2}.$$

1397 Moreover, since all norms are equivalent in \mathbb{R}^2 , the Euclidean norm $\|(\lambda, \gamma)\|$ is equivalent to the
1398 infinity norm $\max\{\lambda, \gamma\}$. This concludes the proof. \square

1400 To verify that the affine surrogate faithfully preserves the true utility’s induced ordering, we compare
1401 rankings under u and under its first-order proxy $\hat{u} = \frac{c_0}{d_0} + \frac{c_1 d_0 - c_0 d_1}{d_0^2} \lambda + \frac{c_2 d_0 - c_0 d_2}{d_0^2} \gamma$. For each of
1402 the eight public binary-classification datasets introduced in Section A.1, and for each of the three
1403 semivalues (Shapley, (4, 1)-Beta Shapley, and Banzhaf), we proceed as follows:

- 1404 1. *Exact ranking.* Compute semivalue scores by using the exact linear-fractional utility u , then
1405 sort the resulting scores to obtain a reference ranking r of the n data points.
- 1406 2. *Affine surrogate ranking.* Replace the utility u with its first-order affine approximation
1407 around $(\lambda, \gamma) = (0, 0)$ denoted as \hat{u} , compute semivalue scores, and sort to obtain an
1408 approximate ranking \hat{r} .
- 1409 3. *Discordance measurement.* For each pair of rankings (r, \hat{r}) , count the number d of discordant
1410 pairs (i.e., pairs of points ordered differently between the two rankings), and record the
1411 proportion d/N , where $N = \binom{n}{2}$.
- 1412 4. *Repetition and averaging* Repeat steps 1–3 several times, each time using an independent
1413 Monte Carlo approximation of the semivalue scores, to capture sampling variability.

1415 Table 21 reports, for each dataset and semivalue, the average proportion of discordant pairs (\pm
1416 standard error) between rankings obtained with the exact linear-fractional utility and its first-order
1417 affine proxy, for both F1-score and Jaccard coefficient (see Table 22 for their definitions). In all
1418 experiments, the sum of the mean discordance rate and its standard error never exceeds 2.3%.

1419 These discordance rates, at most a few percent of all $\binom{n}{2}$ pairs, confirm that, in practice, the omitted
1420 higher-order terms of the utility have only a minor effect on the induced semivalue ranking. Conse-
1421 quently, using the affine surrogate instead of the exact linear-fractional form is reasonably justified
1422 whenever one’s primary interest lies in the *ordering* of data values rather than their precise numerical
1423 magnitudes.

1424 Table 21: Proportion of discordant pairs (\pm standard error) between rankings induced by the exact
1425 linear-fractional utility u and its first-order affine surrogate \hat{u} , for F1-score and Jaccard utilities.
1426 Values are computed over $N = \binom{50}{2} = 1225$ pairs and averaged over 5 Monte Carlo trials.

Dataset	F1-score			Jaccard		
	Shapley	(4,1)-Beta Shapley	Banzhaf	Shapley	(4,1)-Beta Shapley	Banzhaf
BREAST	0.8% (0.1%)	0.8% (0.2%)	0.9% (0.1%)	0.7% (0.1%)	0.9% (0.1%)	0.9% (0.2%)
TITANIC	1.3% (0.3%)	1.3% (0.3%)	0.8% (0.3%)	1.6% (0.4%)	1.3% (0.3%)	0.7% (0.1%)
CREDIT	1.5% (0.5%)	1.6% (0.2%)	1.0% (0.1%)	1.5% (0.3%)	1.7% (0.1%)	0.7% (0.3%)
HEART	1.0% (0.1%)	0.8% (0.1%)	0.8% (0.1%)	1.2% (0.2%)	1.1% (0.3%)	0.7% (0.2%)
WIND	1.0% (0.2%)	0.8% (0.1%)	0.8% (0.2%)	0.9% (0.1%)	1.2% (0.4%)	1.0% (0.4%)
CPU	1.6% (0.5%)	1.2% (0.2%)	0.7% (0.1%)	1.3% (0.2%)	1.3% (0.2%)	0.9% (0.1%)
2DPLANES	1.7% (0.1%)	1.9% (0.1%)	0.8% (0.1%)	1.3% (0.1%)	1.6% (0.2%)	1.1% (0.4%)
POL	1.8% (0.4%)	2.0% (0.2%)	1.5% (0.5%)	2.1% (0.2%)	2.0% (0.2%)	1.6% (0.5%)

1439 B.2 PROOF OF PROPOSITION 3.1 AND ITS EXTENSION TO $K \geq 2$ BASE UTILITIES

1440 This section provides the formal proof of Proposition B.1, which generalizes Proposition 3.1. It
1441 states that the semivalue score of any data point under a utility that is a linear combination of K base
1442 utilities can be written as an inner product in \mathbb{R}^K . This result forms the backbone of the geometric
1443 perspective developed in Section 3.

1444 **Proposition B.1** (Extension of Proposition 3.1 to $K \geq 2$ base utilities). *Let \mathcal{D} be any dataset of
1445 size n and let $\omega \in \mathbb{R}^n$ be a semivalue weight vector. Then there exists a map $\psi_{\omega, \mathcal{D}} : \mathcal{D} \rightarrow \mathbb{R}^K$
1446 such that for every utility $u_\alpha = \sum_{k=1}^K \alpha_k u_k$, $\phi(z; \omega, u_\alpha) = \langle \psi_{\omega, \mathcal{D}}(z), \alpha \rangle$, for any $z \in \mathcal{D}$. We call
1447 $\mathcal{S}_{\omega, \mathcal{D}} = \{\psi_{\omega, \mathcal{D}}(z) \mid z \in \mathcal{D}\}$ the spatial signature of \mathcal{D} under semivalue ω .*

1448 The proof is a straightforward application of semivalue linearity. The main contribution is the
1449 geometric interpretation of semivalue vectors as projections.

1450 *Proof.* For each data point $z \in \mathcal{D}$, let its semivalue characterized by ω be denoted by $\varphi(z; \omega, u_\alpha)$
1451 when the utility is u_α . Under the standard linearity property of semivalues, the following linear
1452 decomposition holds:

$$1453 \phi(z; \omega, u_\alpha) = \phi(z; \omega, \sum_{k=1}^K \alpha_k u_k) = \sum_{k=1}^K \alpha_k \phi(z; \omega, u_k).$$

1458 So if we define for each z ,

1459

$$1460 \psi_{\omega, \mathcal{D}}(z) = (\phi(z; \omega, u_1), \dots, \phi(z; \omega, u_K)) \in \mathbb{R}^K,$$

1461 then by definition of the scalar (inner) product in \mathbb{R}^K ,

1462

$$1463 \phi(z; \omega, u_\alpha) = \langle \psi_{\omega, \mathcal{D}}(z), \alpha \rangle.$$

1464

1465

1466 In the main text, we focus on the case where $K = 2$, i.e., utilities correspond to directions on
 1467 the unit circle \mathcal{S}^1 . Proposition B.1 shows that the same reasoning carries over to any finite family
 1468 of K base utilities: data points embed as $\psi_{\omega, \mathcal{D}}(z) \in \mathbb{R}^K$, and ranking by a convex combination
 1469 $u_\alpha = \sum_{k=1}^K \alpha_k u_k$ is equivalent to sorting the inner products $\langle \psi_{\omega, \mathcal{D}}(z), \alpha \rangle$. Since only the direction
 1470 of α matters, each utility is identified with a point $\bar{\alpha} = \alpha / \|\alpha\|$ on the unit sphere \mathcal{S}^{K-1} . Thus, for
 1471 general K , robustness to utility choice reduces to studying how the ordering of these projections
 1472 varies as $\bar{\alpha}$ moves over \mathcal{S}^{K-1} .

1473

1474 B.3 RANKING REGIONS COUNTS FOR SPECIFIC CASES OF SPATIAL SIGNATURES

1475

1476 This section formalizes the notion of *ranking regions*, which play a central role in the robustness
 1477 analysis developed in Section 3. We begin by considering the hyperplane arrangement induced by
 1478 all pairwise differences between embedded data points in the spatial signature. This arrangement
 1479 partitions space into connected components, referred to as *regions* in the theory of hyperplane
 1480 arrangements (see Definition B.2). In our context, each such region corresponds to a set of utility
 1481 directions under which the ordering of data points remains constant. We refer to these as *ranking*
 1482 *regions*.

1483

1484 **Definition B.2** (Region of a hyperplane arrangement). Let $\mathcal{A} \subset V$ be a finite arrangement of
 1485 hyperplanes in a real vector space V . The *regions* of \mathcal{A} are the connected components of

1486

$$1487 V \setminus \bigcup_{H \in \mathcal{A}} H.$$

1488

1489 Each region is the interior of a (possibly unbounded) polyhedral cone and is homeomorphic to V .
 1490 We denote the number of such regions by $r(\mathcal{A})$.

1491

1492 We now specialize Definition B.2 to our data valuation setting. Let $\mathcal{D} = \{z_1, \dots, z_n\}$ be a dataset
 1493 and let $\psi_{\omega, \mathcal{D}}(z_i) \in \mathbb{R}^K$ denote the embedding of each point under semivalue weighting ω . For each
 1494 pair $i < j$, we define

1495

$$H_{ij} = \{\alpha \in \mathbb{R}^K : \langle \alpha, \psi_{\omega, \mathcal{D}}(z_i) - \psi_{\omega, \mathcal{D}}(z_j) \rangle = 0\}.$$

1496

1497 Each set H_{ij} is defined as the kernel of the linear functional $\alpha \mapsto \langle \alpha, \psi_{\omega, \mathcal{D}}(z_i) - \psi_{\omega, \mathcal{D}}(z_j) \rangle$. Since
 1498 $\psi_{\omega, \mathcal{D}}(z_i) \neq \psi_{\omega, \mathcal{D}}(z_j)$ for $i \neq j$ (unless the data points are embedded identically), the difference
 1499 vector $\psi_{\omega, \mathcal{D}}(z_i) - \psi_{\omega, \mathcal{D}}(z_j) \in \mathbb{R}^K$ is nonzero. Therefore, this kernel is a linear subspace of
 1500 codimension one in \mathbb{R}^K , which, by definition, is a hyperplane. Moreover, each H_{ij} contains the
 1501 origin $\alpha = 0_K$; it is thus a central hyperplane by definition.

1502

1503 Each hyperplane H_{ij} is the set of utility directions that assign equal projection scores to points
 1504 z_i and z_j . The finite arrangement $\mathcal{A}_{\omega, \mathcal{D}} = \{H_{ij} : 1 \leq i < j \leq n\}$ then induces a collection of
 1505 regions in the sense of Definition B.2, partitioning \mathbb{R}^K into open cones such that, in each region,
 1506 the relative ordering of projected values $\langle \alpha, \psi_{\omega, \mathcal{D}}(z_i) \rangle$ and $\langle \alpha, \psi_{\omega, \mathcal{D}}(z_j) \rangle$ remains the same for all
 1507 $i < j$. Therefore, each region determines a unique ordering of the embedded points, corresponding to
 1508 a distinct way of ranking the data points of \mathcal{D} based on utility direction. To study robustness with
 1509 respect to directional changes, we project this arrangement onto the unit sphere \mathcal{S}^{K-1} . Since all
 1510 hyperplanes are central, their intersection with the sphere produces great spheres, and the resulting
 1511 decomposition of \mathcal{S}^{K-1} consists of spherical connected regions over which the ranking of the data
 1512 points remains invariant. We refer to these regions as *ranking regions*. Formally, a *ranking region* is a
 1513 connected component of $\mathcal{S}^{K-1} \setminus \bigcup_{i < j} (H_{ij} \cap \mathcal{S}^{K-1})$.

1514

1515 We now study how the number of such ranking regions depends on the geometry of the spatial
 1516 signature. In particular, using Proposition B.3, we provide an explicit count of ranking regions in two
 1517 specific geometric configurations of the embedded points.

1512 **Proposition B.3** (Regions counts). *Let $\mathcal{A} = \{H_1, \dots, H_m\}$ be an arrangement of m central (i.e.,*
 1513 *origin-passing) hyperplanes in a real vector space V of dimension K .*

1515 *1. If no K hyperplanes in the arrangement intersect in a common subspace of dimension*
 1516 *greater than zero (in particular, not in a line), then the number of regions into which \mathcal{A}*
 1517 *partitions V is*

$$1518 \quad r(\mathcal{A}) = 2 \sum_{k=0}^{K-1} \binom{m-1}{j}.$$

1521 *2. If all hyperplanes coincide (i.e., $H_1 = \dots = H_m$), then the number of regions is:*

$$1522 \quad r(\mathcal{A}) = 2.$$

1524 *Proof.* Let $\mathcal{A} = \{H_1, \dots, H_m\}$ be an arrangement of m hyperplanes in a real vector space V of
 1525 dimension K .

1527 1. Suppose no K hyperplanes in the arrangement intersect in a common subspace of dimension
 1528 greater than zero (in particular, not in a line).

1530 Choose any hyperplane $H \in \mathcal{A}$, and define two affine hyperplanes H^+ and H^- , parallel to
 1531 H and on opposite sides of the origin, such that the origin lies strictly between them.

1532 Each of the remaining $m-1$ hyperplanes of \mathcal{A} intersects H^+ in a hyperplane of dimension
 1533 $K-2$, and these intersections form an arrangement of $m-1$ hyperplanes in H^+ (which is a
 1534 space of dimension $K-1$). By Proposition 2.4 in Stanley (2007) (derived from Zaslavsky's
 1535 work Zaslavsky (1975)), the number of regions induced by this non-central⁴ arrangement in
 1536 H^+ is:

$$1537 \quad \sum_{j=0}^{n-1} \binom{m-1}{j}$$

1540 These regions correspond exactly to the regions of $V \setminus \bigcup_{H \in \mathcal{A}} H$ that lie entirely on one
 1541 side of H . By symmetry, the same number of regions lies on the opposite side (on H^-).
 1542 Therefore, the total number of regions for the whole arrangement is:

$$1543 \quad r(\mathcal{A}) = 2 \sum_{j=0}^{n-1} \binom{m-1}{j}$$

1546 2. Suppose that all hyperplanes in the arrangement coincide, i.e., $H_1 = \dots = H_m = H$ for
 1547 some hyperplane $H \subset V$. Then

$$1548 \quad \bigcup_{H \in \mathcal{A}} H = H,$$

1550 and the complement $V \setminus \bigcup_{H \in \mathcal{A}} H$ consists of exactly two connected open sets: the two
 1551 half-spaces determined by H . Therefore, the number of regions is

$$1553 \quad r(\mathcal{A}) = 2.$$

1554 \square

1556 We now apply Proposition B.3 to the arrangement $\mathcal{A}_{\omega, \mathcal{D}}$ formed by the hyperplanes H_{ij} defined from
 1557 pairwise differences of embedded points in the spatial signature $S_{\omega, \mathcal{D}}$. Since each H_{ij} is a central
 1558 hyperplane in \mathbb{R}^K , the arrangement $\mathcal{A}_{\omega, \mathcal{D}}$ partitions the space into open polyhedral cones, whose
 1559 connected components are the regions of the arrangement. Each of these cones intersects the unit
 1560 sphere \mathcal{S}^{K-1} in a unique open subset, yielding a spherical partition of \mathcal{S}^{K-1} . Therefore, the number
 1561 of ranking regions on \mathcal{S}^{K-1} is equal to the number of regions of the central hyperplane arrangement
 1562 in \mathbb{R}^K , and can be computed directly using Proposition B.3.

1563 Corollary B.4 provides the number of ranking regions for two specific geometric configurations of
 1564 the spatial signature.

1565 ⁴Since the $m-1$ hyperplanes do not all pass through a same point on H^+ .

1566 **Corollary B.4** (Ranking regions counts). *Let $\mathcal{D} = \{z_1, \dots, z_n\}$ be a dataset and let $\psi_{\omega, \mathcal{D}}(z_i) \in \mathbb{R}^K$ 1567 denote the spatial signature of point z_i under semivalue weighting ω . For each pair $i < j$, define the 1568 hyperplane*

$$1569 \quad H_{ij} = \{\alpha \in \mathbb{R}^K : \langle \alpha, \psi_{\omega, \mathcal{D}}(z_i) - \psi_{\omega, \mathcal{D}}(z_j) \rangle = 0\}.$$

1570 *Since there are $\binom{n}{2}$ pairs (i, j) , the arrangement $\mathcal{A}_{\omega, \mathcal{D}} = \{H_{ij} : 1 \leq i < j \leq n\}$ consists of 1571 $N = \binom{n}{2}$ central hyperplanes in \mathbb{R}^K . Let $r(\mathcal{A}_{\omega, \mathcal{D}})$ denote the number of connected regions in the 1572 complement of this arrangement. Then*

1573 *1. If no K hyperplanes H_{ij} intersect in a common subspace of dimension greater than zero, 1574 the number of ranking regions is*

$$1575 \quad r(\mathcal{A}_{\omega, \mathcal{D}}) = 2 \sum_{k=0}^{K-1} \binom{N-1}{k}, \quad \text{where } N = \binom{n}{2}.$$

1576 *2. If all embedded points $\psi_{\omega, \mathcal{D}}(z_i)$ lie on a line in \mathbb{R}^K , then all hyperplanes H_{ij} coincide and*
 1577 *$r(\mathcal{A}_{\omega, \mathcal{D}}) = 2$.*

1578 Figure 2 illustrates these two specific geometric configurations on the circle \mathcal{S}^1 (corresponding to the 1579 case $K = 2$). In both cases, the observed number of ranking regions coincides with the counts given by Corollary B.4.

1580 B.4 LINK BETWEEN THE ROBUSTNESS METRIC R_p AND THE KENDALL RANK CORRELATION

1581 If there are no tied ranks, the Kendall rank correlation between two orderings of n points is defined 1582 as $\tau = 1 - \frac{2D}{N}$, where D is the number of discordant pairs and $N = \binom{n}{2}$ is the total number of pairs. 1583 Since crossing one ranking region swaps exactly one pair, each such swap increases D by one and 1584 thus decreases τ by $2/N$. Consequently, p swaps lower the correlation from 1 to $1 - \frac{2p}{N}$. Therefore, 1585 R_p captures how far in expectation one must move from a utility direction before the Kendall rank 1586 correlation degrades by at least $2p/N$.

1587 However, this statement only holds in the setting where no ties occur. In practical scenarios involving 1588 ties, the degradation in τ can be either smaller or larger than what R_p would suggest. The purpose of 1589 this subsection is to explain why *worse-than-expected degradation* is possible, which is the main risk 1590 when interpreting R_p through the lens of Kendall correlation in practice.

1591 The Kendall rank correlation between rankings A and B is defined as

$$1592 \quad \tau = \frac{c - d}{\sqrt{(N - t_A)(N - t_B)}},$$

1593 where c is the number of concordant pairs, d is the number of discordant pairs (c and d count only 1594 untied pairs), $N = \binom{n}{2}$ is the total number of pairs, t_A (resp. t_B) is the number of tied pairs in 1595 ranking A (resp. B).

1596 Performing p pairwise swaps among tied items can amplify the degradation of τ beyond the idealized 1597 $-2p/N$ amount (derived under the no-ties assumption) due to two effects:

- 1598 *– Resolving ties i.e., decreasing t_A or t_B , increases the factors $N - t_A$ or $N - t_B$ and thus 1599 the denominator. For a fixed numerator $c - d$, this directly reduces the magnitude of τ_b . 1600 Critically, even as $c - d$ decreases (due to increased discordance), the growing denominator 1601 further exacerbates the decline.*
- 1602 *– Swapping two items within a block of k tied points can order up to $\binom{k}{2}$ formerly tied pairs 1603 at once. If these newly ordered pairs are discordant, a single swap increases d by up to $\binom{k}{2}$, 1604 rather than just 1.*

1605 Consequently, when many tied groups exist, one might observe after p swaps,

$$1606 \quad \Delta\tau_b < -\frac{2p}{N},$$

1607 i.e., a larger drop in rank correlation than in the no-ties case.

1620 B.5 CLOSED-FORM FOR $\mathbb{E}_{\bar{\alpha}}[\rho_p(\bar{\alpha})]$
1621

1622 This section provides the derivation of a closed-form expression for $\mathbb{E}[\rho_p]$, introduced in Section 3,
1623 which quantifies how far, on average, one must rotate the utility direction on the sphere before p
1624 pairwise ranking swaps occur. In Section 3, we describe how this quantity captures the local stability
1625 of the ranking induced by the spatial signature. Here, we formally compute this quantity in the case
1626 where $K = 2$ (i.e., in the case where the utilities we consider can be written as a linear combination
1627 of two base-utilities). We also show that the closed-form expression derived in the $K = 2$ case can
1628 be computed in $\mathcal{O}(n^2 \log n)$ time. Finally, we briefly discuss the higher-dimensional case $K > 2$, for
1629 which no closed-form is available, and describe how $\mathbb{E}[\rho_p]$ can be approximated via Monte Carlo
1630 sampling.

1631 Recall that $\rho_p(\bar{\alpha})$ measures the minimal geodesic distance one must rotate a utility direction $\bar{\alpha} \in$
1632 \mathcal{S}^{K-1} before the ranking of points in $\mathcal{D} = \{z_i\}_{i \in [n]}$ changes by p pairwise swaps. Each pair of
1633 points (z_i, z_j) defines *cuts* on \mathcal{S}^{K-1} which are utility directions along which the scores of z_i and
1634 z_j are equal. These cuts partition \mathcal{S}^{K-1} into (ranking) regions where the ranking of points remains
1635 fixed. In what follows, we focus on the case $K = 2$, where utility directions lie on the unit circle \mathcal{S}^1 ,
1636 and $\rho_p(\bar{\alpha})$ can be treated as a function of the angle associated with $\bar{\alpha} \in \mathcal{S}^1$.

1637 We parametrize the unit circle \mathcal{S}^1 by the angle $\varphi \in [0, 2\pi[$, writing $\bar{\alpha}(\varphi) = (\cos \varphi, \sin \varphi) \in \mathcal{S}^1$.
1638 Since ρ_p depends only on this angle, we abbreviate $\rho_p(\bar{\alpha}(\varphi))$ by $\rho_p(\varphi)$. Equivalently,
1639

$$1640 \mathbb{E}_{\bar{\alpha} \sim \text{Unif}(\mathcal{S}^1)}[\rho_p(\bar{\alpha})] = \mathbb{E}_{\varphi \sim \text{Unif}[0, 2\pi]}[\rho_p(\varphi)] = \frac{1}{2\pi} \int_0^{2\pi} \rho_p(\varphi) d\varphi.$$

1642 Recall from Section 3 that the $2N$ emphcut angles $\theta_1 \leq \theta_2 \leq \dots < \theta_{2N} < 2\pi$ partition the interval
1643 $[0, 2\pi[$ into arcs of lengths $\lambda_k = \theta_{k+1} - \theta_k$ (with $\theta_{2N+1} = \theta_1 + 2\pi$). Within each arc, the ranking
1644 remains fixed, and crossing into the next arc incurs exactly one additional swap.

1645 For $\varphi \in (\theta_k, \theta_{k+1})$, the function $\rho_p(\varphi)$ equals the minimum of the clockwise and counterclockwise
1646 distances to the p -th next cut:

$$1648 \rho_p(\varphi) = \min\{S_k^+(p) - (\varphi - \theta_k), S_k^-(p) + (\varphi - \theta_k)\},$$

1649 where the quantities $S_k^+(p)$ and $S_k^-(p)$, recalled from Section 3, are defined as

$$1652 S_k^+(p) = \sum_{i=1}^p \lambda_{(k+i) \bmod 2N}, \quad S_k^-(p) = \sum_{i=1}^p \lambda_{(k-i) \bmod 2N}.$$

1654 Hence, the average value of ρ_p can be written as

$$1657 \mathbb{E}_{\bar{\alpha}}[\rho_p(\bar{\alpha})] = \frac{1}{2\pi} \int_0^{2\pi} \rho_p(\varphi) d\varphi = \frac{1}{2\pi} \sum_{k=1}^{2N} \int_{\theta_k}^{\theta_{k+1}} \rho_p(\varphi) d\varphi = \frac{1}{2\pi} \sum_{k=1}^{2N} \int_0^{\lambda_k} \min\{S_k^+(p) - t, S_k^-(p) + t\} dt, \quad (3)$$

1660 where we set $t = \varphi - \theta_k \in [0, \lambda_k]$ as a local coordinate that measures the angular distance from the
1661 left endpoint of the k -th arc.

1663 The expression inside the integral reflects the shortest of two angular paths along the circle from the
1664 start of the k -th arc: one going clockwise (of length $S_k^+(p) - t$) and one counterclockwise (of length
1665 $S_k^-(p) + t$). These two expressions intersect at

$$1667 t_k^* = \frac{S_k^+(p) - S_k^-(p)}{2}.$$

1669 Intuitively,

- 1670 • If $t_k^* \leq 0$, even at $t = 0$, the clockwise path is already shorter, so $\rho_p(t) = S_k^+(p) - t$ for all
1671 $t \in [0, \lambda_k]$.
- 1672 • If $t_k^* \geq \lambda_k$, the counterclockwise path is shorter throughout the entire arc, $\rho_p(t) = S_k^-(p) + t$
1673 for all $t \in [0, \lambda_k]$.

1674 • If $0 < t_k^* < \lambda_k$, then for $t < t_k^*$ the counterclockwise path is shorter, and for $t > t_k^*$, the
 1675 clockwise path is shorter.
 1676

1677 We therefore split $\int_0^{\lambda_k} \rho_p(t) dt = \int_0^{\lambda_k} \min\{S_k^+(p) - t, S_k^-(p) + t\} dt$ into the three cases:
 1678

1679 1. If $t_k^* \leq 0$, we have

1680
$$\int_0^{\lambda_k} \min\{S_k^+(p) - t, S_k^-(p) + t\} dt = \int_0^{\lambda_k} (S_k^+(p) - t) dt = S_k^+(p)\lambda_k - \frac{1}{2}\lambda_k^2$$

 1681

1683 2. If $t_k^* \geq \lambda_k$, we have

1685
$$\int_0^{\lambda_k} \min\{S_k^+(p) - t, S_k^-(p) + t\} dt = \int_0^{\lambda_k} (S_k^-(p) + t) dt = S_k^-(p)\lambda_k + \frac{1}{2}\lambda_k^2$$

 1686

1687 3. If $0 < t_k^* < \lambda_k$, we have

1689
$$\int_0^{\lambda_k} \min\{S_k^+(p) - t, S_k^-(p) + t\} dt = \int_0^{t_k^*} (S_k^-(p) + t) dt + \int_{t_k^*}^{\lambda_k} (S_k^+(p) - t) dt$$

 1690
$$= S_k^-(p)t_k^* + \frac{1}{2}(t_k^*)^2 + S_k^+(p)(\lambda_k - t_k^*)$$

 1691
$$- \frac{1}{2}(\lambda_k^2 - (t_k^*)^2).$$

 1692

1693 Putting these three cases together and summing over k yields a piecewise-defined expression for the
 1694 integral on each arc. Precisely, plugging these into the expression for $\mathbb{E}_{\bar{\alpha}}[\rho_p(\bar{\alpha})]$ in Eq. equation 3,
 1695 we finally obtain the closed-form

1696
$$\mathbb{E}_{\bar{\alpha}}[\rho_p(\bar{\alpha})] = \frac{1}{2\pi} \sum_{k=1}^{2N} I_k,$$

 1697

1702 where I_k denotes the value of the integral over the k -th arc, defined as
 1703

1704
$$I_k := \int_0^{\lambda_k} \min\{S_k^+(p) - t, S_k^-(p) + t\} dt,$$

 1705

1706 and can be computed using the following case distinction
 1707

1708
$$I_k = \begin{cases} S_k^+(p)\lambda_k - \frac{1}{2}\lambda_k^2 & \text{if } t_k^* \leq 0, \\ S_k^-(p)\lambda_k + \frac{1}{2}\lambda_k^2 & \text{if } t_k^* \geq \lambda_k, \\ S_k^-(p)t_k^* + \frac{1}{2}(t_k^*)^2 + S_k^+(p)(\lambda_k - t_k^*) - \frac{1}{2}(\lambda_k^2 - (t_k^*)^2) & \text{if } 0 < t_k^* < \lambda_k, \end{cases}$$

 1709

1710 with $t_k^* = \frac{S_k^+(p) - S_k^-(p)}{2}$ as previously defined.
 1711

1712 **Remark B.5** (Computational cost). The closed-form expression for $\mathbb{E}[\rho_p]$ can be computed in
 1713 $\mathcal{O}(n^2 \log n)$ time. First, computing the $2N = \mathcal{O}(n^2)$ cut angles defined by all unordered pairs of
 1714 points (z_i, z_j) requires $\mathcal{O}(n^2)$ time, since each involves a simple trigonometric operation in \mathbb{R}^2 .
 1715 Sorting these angles to define the arc intervals costs $\mathcal{O}(n^2 \log n)$. Once sorted, the distances $S_k^+(p)$
 1716 and $S_k^-(p)$ to the p -th next and previous cuts can be computed efficiently for all k using sliding
 1717 windows indexing in $\mathcal{O}(n^2)$ time. The final step, i.e., evaluating the integral over each of the $2N$ arcs,
 1718 also takes $\mathcal{O}(n^2)$ time. Thus, the total computational cost is $\mathcal{O}(n^2 \log n)$, dominated by the sorting
 1719 step.
 1720

1721 **Remark B.6** (Case $K > 2$). The above closed-form derivation relies on the fact that utilities
 1722 correspond to angles on \mathcal{S}^1 (i.e., $K = 2$). When $K > 2$, utilities lie on the higher-dimensional
 1723 sphere \mathcal{S}^{K-1} . In that setting, one can still define $\rho_p(\bar{\alpha})$ as the minimal geodesic distance on \mathcal{S}^{K-1} to
 1724 incur p swaps, but the integral $\mathbb{E}_{\bar{\alpha} \sim \text{Unif}(\mathcal{S}^{K-1})}[\rho_p(\bar{\alpha})]$ admits no simple closed-form expression. In
 1725 practice, one must approximate it numerically by Monte Carlo sampling. Specifically, for any unit
 1726 vector $\bar{\alpha} \in \mathcal{S}^{K-1}$, each pair (i, j) defines a *cut* great-sphere
 1727

1728
$$H_{ij} = \{\beta \in \mathcal{S}^{K-1} : \langle \beta, v_{ij} \rangle = 0\} \quad v_{ij} = \psi(z_i) - \psi(z_j).$$

1728 The shortest geodesic distance from $\bar{\alpha}$ to that cut is given in closed form by
 1729

$$1730 \quad d_{ij}(\bar{\alpha}) = \arcsin |\langle \bar{\alpha}, v_{ij} / \|v_{ij}\| \rangle|.$$

1731 Thus, by getting all $N = \binom{n}{2}$ distances $\{d_{ij}\}$, sorting them, and picking the p -th smallest, we obtain
 1732 $\rho_p(\bar{\alpha})$. Repeating for many independent $\bar{\alpha} \sim \text{Unif}(\mathcal{S}^{K-1})$ gives a Monte Carlo estimate of the
 1733 average.

1734 Let $\hat{\mu}_m := \frac{1}{m} \sum_{\ell=1}^m \rho_p(\bar{\alpha}^{(\ell)})$ with i.i.d. draws $\bar{\alpha}^{(\ell)} \sim \text{Unif}(\mathcal{S}^{K-1})$, and let $\mu := \mathbb{E}_{\bar{\alpha}}[\rho_p(\bar{\alpha})]$. Since
 1735 $0 \leq \rho_p(\bar{\alpha}) \leq \pi/2$, Hoeffding's inequality gives, for any $\delta \in (0, 1)$,

$$1737 \quad \mathbb{P} \left(|\hat{\mu}_m - \mu| \geq \frac{\pi}{2} \sqrt{\frac{\log(2/\delta)}{2m}} \right) \leq \delta.$$

1740 Equivalently, to guarantee $|\hat{\mu}_m - \mu| \leq \varepsilon$ with probability at least $1 - \delta$, it suffices that

$$1741 \quad m \geq \frac{\pi^2}{8\varepsilon^2} \log \frac{2}{\delta}.$$

1744 **B.6 MAXIMUM AVERAGE p -SWAPS DISTANCE OCCURS UNDER COLLINEARITY OF THE
 1745 SPATIAL SIGNATURE**

1747 This section provides the theoretical justification for the claim made in Section 3 that the average
 1748 distance $\mathbb{E}_{\bar{\alpha}}[\rho_p(\bar{\alpha})]$ is maximized when the spatial signature is collinear, and equals $\pi/4$ in this case.

1749 Recall that the spatial signature is the set of embedded vectors

$$1750 \quad \mathcal{S}_{\omega, \mathcal{D}} = \{\psi_{\omega, \mathcal{D}}(z) \in \mathbb{R}^K : z \in \mathcal{D}\},$$

1752 where $\psi_{\omega, \mathcal{D}}(z)$ reflects the contribution of each data point $z \in \mathcal{D}$ to a family of K base utilities,
 1753 weighted by the semivalue coefficients ω . This embedding allows utility directions $\bar{\alpha} \in \mathcal{S}^{K-1}$ to
 1754 induce rankings via projection. The quantity $\rho_p(\bar{\alpha})$ measures the minimal geodesic distance on the
 1755 sphere \mathcal{S}^{K-1} one must rotate $\bar{\alpha}$ before the ranking changes by p pairwise swaps. We focus here on
 1756 the case $K = 2$, where utility directions lie on the unit circle \mathcal{S}^1 , and show that the maximum of
 1757 $\mathbb{E}[\rho_p]$ is achieved when all embedded points lie on a common line through the origin. This derivation
 1758 provides an upper bound for $\mathbb{E}[\rho_p]$ and motivates the normalization in the robustness metric R_p (see
 1759 Definition 3.2).

1760 Each pair of points (z_i, z_j) induces a *cut* on the circle \mathcal{S}^1 , namely the two antipodal points where
 1761 $\langle \alpha, \psi_{\omega, \mathcal{D}}(z_i) - \psi_{\omega, \mathcal{D}}(z_j) \rangle = 0$. When all embedded points $\psi_{\omega, \mathcal{D}}(z_i)$ lie on a single line through the
 1762 origin, Corollary B.4 states that there is exactly one cut (of multiplicity $N = \binom{n}{2}$) which splits \mathcal{S}^1
 1763 into two open arcs, each of length π . Within either arc, no swaps occur until one crosses that cut,
 1764 at which point all N pairs flip simultaneously. Concretely, for any direction angle $\theta \in [0, \pi[$, $\rho_p(\theta)$
 1765 corresponds to the shortest angular distance to this cut, either clockwise or counterclockwise, and is
 1766 thus given by

$$1767 \quad \rho_p(\theta) = \min\{\theta, \pi - \theta\},$$

1768 Hence,

$$1770 \quad \mathbb{E}_{\bar{\alpha}}[\rho_p(\bar{\alpha})] = \frac{1}{2\pi} \int_0^{2\pi} \rho_p(\varphi) d\varphi = \frac{1}{2\pi} \cdot 2 \int_0^{\pi} \min\{\theta, \pi - \theta\} d\theta = \frac{\pi}{4}.$$

1772 Now, any deviation from perfect collinearity introduces distinct cuts, which can only further subdivide
 1773 those two π -length arcs into shorter pieces. Shorter maximal arc-lengths imply a smaller average
 1774 distance to the nearest swap, so for every spatial signature and every $1 \leq p < N$,

$$1775 \quad \mathbb{E}[\rho_p] \leq \frac{\pi}{4},$$

1777 with equality if and only if the signature is exactly collinear.

1778 **Remark B.7** (Case $K > 2$). For $K > 2$, perfect collinearity of the spatial signature still maximizes
 1779 the average p -swap distance, but the value $\max_{\mathcal{S}_{\omega, \mathcal{D}}} \mathbb{E}_{\bar{\alpha}}[\rho_p(\bar{\alpha})]$ must be evaluated numerically since for

1780 $K > 2$ the distribution of angular distances from a uniformly random point on the sphere to a fixed
 1781 great sub-sphere no longer admits a simple elementary integral like for $K = 2$.

1782 **Remark B.8** (Lower bounds for $\mathbb{E}_{\bar{\alpha}}[\rho_p(\bar{\alpha})]$). Trivially, since $\rho_p(\bar{\alpha}) \geq 0$ for all $\bar{\alpha}$,

$$1784 \quad 1785 \quad \mathbb{E}_{\bar{\alpha}}[\rho_p(\bar{\alpha})] \geq 0, \quad \forall p < \binom{n}{2}.$$

1786 If instead we assume the spatial signature to be such that all $N = \binom{n}{2}$ cuts on \mathcal{S}^1 are distinct, then
 1787 Proposition B.3 states that there are exactly $2N$ positive-length arcs of total length 2π . In this case, it
 1788 is easy to see that considering all ways to choose $\{\lambda_k\}$ summing to 2π , the configuration $\lambda_k = \pi/N$
 1789 for all k minimizes the average ρ_p . Concretely, for $\lambda_k = \pi/N$ we find
 1790

$$1791 \quad 1792 \quad \mathbb{E}[\rho_p] = \frac{1}{2\pi} \sum_{k=1}^{2N} \int_0^{\pi/N} \left(p \frac{\pi}{N} - t \right) dt = (p - \frac{1}{2}) \frac{\pi}{N}.$$

1794 Hence, under the distinct cuts assumption,

$$1795 \quad 1796 \quad \mathbb{E}[\rho_p(\varphi)] \geq \left(p - \frac{1}{2} \right) \frac{\pi}{N},$$

1797 with equality exactly when the $2N$ cuts are perfectly equally spaced.

1799 In this special setting, where all $\binom{n}{2}$ cuts on \mathcal{S}^1 are distinct, one could alternatively define the
 1800 robustness metric as

$$1801 \quad 1802 \quad R_p(S_{\omega, \mathcal{D}}) = \frac{\mathbb{E}_{\bar{\alpha}}[\rho_p(\bar{\alpha})] - (p - \frac{1}{2}) \frac{\pi}{N}}{\pi/4 - (p - \frac{1}{2}) \frac{\pi}{N}} \in [0, 1].$$

1804 However, since in practice we cannot detect a priori that this condition on cuts holds, we instead use
 1805 the general robustness metric R_p as given in Definition 3.2.

1807 B.7 PROOF OF PROPOSITION 3.3

1809 In this section, we provide the detailed proof of Proposition 3.3. Recall that for any utility u ,

$$1810 \quad 1811 \quad \phi(z_i; \omega, u) = \sum_{j=1}^n \omega_j \Delta_j(z_i, u),$$

1813 where $\Delta_j(z_i, u)$ is the marginal contribution of z_i with respect to coalitions of size $j - 1$. By
 1814 definition of the covariance,
 1815

$$1816 \quad 1817 \quad \text{Cov}(\phi(\lambda), \phi(\gamma)) = \frac{1}{n} \sum_{i=1}^n (\phi(z_i; \omega, \lambda) - \bar{\phi}(\lambda)) (\phi(z_i; \omega, \gamma) - \bar{\phi}(\gamma)),$$

1819 where $\bar{\phi}(\cdot)$ denotes the mean over i . Using bilinearity of covariance, we get

$$1821 \quad 1822 \quad \text{Cov}(\phi(\lambda), \phi(\gamma)) = \sum_{j=1}^n \sum_{k=1}^n \omega_j \omega_k \text{Cov}(\Delta_j(\lambda), \Delta_k(\gamma)).$$

1824 where

$$1825 \quad 1826 \quad \Delta_j(\lambda) = (\Delta_j(z_1; \omega, \lambda), \dots, \Delta_j(z_n; \omega, \lambda)) \quad \text{and} \quad \Delta_j(\gamma) = (\Delta_j(z_1; \omega, \gamma), \dots, \Delta_j(z_n; \omega, \gamma))$$

1827 Under the assumption $\text{Cov}(\Delta_j(\lambda), \Delta_k(\gamma)) = 0$ for all $j \neq k$, only the $j = k$ terms remain, giving
 1828

$$1829 \quad 1830 \quad \text{Cov}(\phi(\lambda), \phi(\gamma)) = \sum_{j=1}^n \omega_j^2 \text{Cov}(\Delta_j(\lambda), \Delta_j(\gamma)).$$

1832 Similarly,

$$1834 \quad 1835 \quad \text{Var}(\phi(\lambda)) = \sum_{j=1}^n \omega_j^2 \text{Var}(\Delta_j(\lambda)), \quad \text{Var}(\phi(\gamma)) = \sum_{j=1}^n \omega_j^2 \text{Var}(\Delta_j(\gamma)).$$

1836 By the definition of Pearson correlation,
 1837

$$1838 \quad 1839 \quad 1840 \quad \text{Corr}(\phi(\lambda), \phi(\gamma)) = \frac{\sum_{j=1}^n \omega_j^2 \text{Cov}(\Delta_j(\lambda), \Delta_j(\gamma))}{\sqrt{\sum_{j=1}^n \omega_j^2 \text{Var}(\Delta_j(\lambda))} \sqrt{\sum_{j=1}^n \omega_j^2 \text{Var}(\Delta_j(\gamma))}}.$$

$$1841 \quad 1842 \quad 1843$$

1844 with $\text{Cov}(\Delta_j(\lambda), \Delta_j(\gamma)) = \text{Corr}(\Delta_j(\lambda), \Delta_j(\gamma)) \sqrt{\text{Var}(\Delta_j(\lambda)) \text{Var}(\Delta_j(\gamma))}$. Then, the correlation
 1845 becomes

$$1846 \quad 1847 \quad 1848 \quad \text{Corr}(\phi(\lambda), \phi(\gamma)) = \sum_{j=1}^n \omega_j^2 \frac{\text{Corr}(\Delta_j(\lambda), \Delta_j(\gamma)) \sqrt{\text{Var}(\Delta_j(\lambda)) \text{Var}(\Delta_j(\gamma))}}{\sqrt{\sum_{j=1}^n \omega_j^2 \text{Var}(\Delta_j(\lambda))} \sqrt{\sum_{j=1}^n \omega_j^2 \text{Var}(\Delta_j(\gamma))}}.$$

$$1849 \quad 1850 \quad 1851$$

1852 Each term $r_j := \text{Corr}(\Delta_j(\lambda), \Delta_j(\gamma)) \sqrt{\text{Var}(\Delta_j(\lambda)) \text{Var}(\Delta_j(\gamma))}$ can be understood as the *effective*
 1853 *alignment* of marginal contributions at coalition size $j - 1$ across the two utilities λ and γ . Specifically,
 1854 $\text{Corr}(\Delta_j(\lambda), \Delta_j(\gamma))$ measures how similarly data points' marginal contributions at size $j - 1$ move
 1855 under λ compared to under γ and $\sqrt{\text{Var}(\Delta_j(\lambda)) \text{Var}(\Delta_j(\gamma))}$ down-weights sizes $j - 1$ where
 1856 marginal contributions are nearly constant (and thus uninformative) for either utility.

1857 **B.8 LINK BETWEEN THE ROBUSTNESS METRIC R_p AND TOP- k STABILITY METRICS**
 1858 **(OVERLAP@ k AND JACCARD@ k)**

1860 In this section, we give an analytical link between p and top- k overlap/Jaccard stability metrics which
 1861 definitions are provided in Appendix C.6.

1863 Let \mathcal{D} be a training set of size n . Let u and u' be two utilities (linear combinations of base
 1864 utilities) that induce rankings π and π' on \mathcal{D} , and assume π and π' differ by at most p swaps. Let

$$1866 \quad 1867 \quad S_u^{(k)} := S_{\phi(u, \omega)}^{(k)}, \quad S_{u'}^{(k)} := S_{\phi(u', \omega)}^{(k)}$$

1868 denote the top- k sets under u and u' respectively. We then recall from Appendix C.6 the definitions
 1869 of top- k overlap@ k and Jaccard@ k :

1870 — Top- k overlap@ k :

$$1872 \quad 1873 \quad 1874 \quad \text{Overlap}@k(u, u') := \frac{|S_u^{(k)} \cap S_{u'}^{(k)}|}{k} \in [0, 1].$$

1875 — Jaccard@ k :

$$1876 \quad 1877 \quad 1878 \quad \text{Jaccard}@k(u, u') := \frac{|S_u^{(k)} \cap S_{u'}^{(k)}|}{|S_u^{(k)} \cup S_{u'}^{(k)}|} \in [0, 1].$$

1879 Since both sets have cardinality k , this simplifies to

$$1881 \quad 1882 \quad 1883 \quad \text{Jaccard}@k(u, u') = \frac{|S_u^{(k)} \cap S_{u'}^{(k)}|}{2k - |S_u^{(k)} \cap S_{u'}^{(k)}|}.$$

1884 Now let $A := S_u^{(k)}$ and $B := S_{u'}^{(k)}$. Let L be the number of points that leave the top- k set when
 1885 moving from A to B ; then $|A \cap B| = k - L$, and the symmetric difference has size $|A \Delta B| = 2L$.
 1886 Now, a data point can enter or leave the top- k set only if its rank crosses the boundary between
 1887 positions k and $k + 1$. This can happen only when we perform a swap involving the items currently at
 1888 ranks k and $k + 1$. Each such boundary swap can change the membership of at most the two swapped
 1889 items. Let b be the number of boundary swaps among the p swaps. Then at most $2b$ distinct items
 can change membership. Since $b \leq p$, at most $2p$ distinct items can change membership. Because

1890 $|A \Delta B| = 2L$, we get $2L \leq 2p$, hence $L \leq p$. Therefore, $|A \cap B| = k - L \geq k - p$. This yields the
 1891 following deterministic bounds (for $p \leq k$; otherwise they become vacuous):
 1892

$$1893 \text{Overlap@}k(u, u') = \frac{|A \cap B|}{k} \geq 1 - \frac{p}{k}, \\ 1894$$

1895 and since $|A \cup B| = |A| + |B| - |A \cap B| = 2k - |A \cap B|$, we have $|A \cup B| \leq 2k - (k - p) = k + p$,
 1896 so
 1897

$$1898 \text{Jaccard@}k(u, u') = \frac{|A \cap B|}{|A \cup B|} \geq \frac{k - p}{k + p}. \\ 1899$$

1900 Now, by Definition 3.2, for each utility direction $\bar{\alpha} \in \mathbb{S}^{K-1}$, $\rho_p(\bar{\alpha})$ is the minimal geodesic distance
 1901 such that moving by $\rho_p(\bar{\alpha})$ on the sphere produces exactly p swaps in the ranking induced by $\bar{\alpha}$. So,
 1902 for a fixed p and k , a larger $R_p \propto \mathbb{E}_{\bar{\alpha}}[\rho_p(\bar{\alpha})]$ means that one must move farther in average in the
 1903 utility space before reaching a regime where top- k overlap/Jaccard can be as low as these bounds.
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943

1944 **C ADDITIONAL DEFINITIONS**

1945 For the reader’s convenience, we first outline the main points covered in this section.

1946

- 1947 – Appendix C.1: Some definitions of linear fractional utilities.
- 1948 – Appendix C.2: Rank correlation metrics (Kendall & Spearman).
- 1949 – Appendix C.3: Axioms satisfied by semivalues.
- 1950 – Appendix C.4: Applications of semivalue-based data valuation methods.
- 1951 – Appendix C.5: Extension of the *multiple-valide utility* scenario to multiclass classification
- 1952 metrics.
- 1953 – [Appendix C.6: Top- \$k\$ stability metrics \(overlap@ \$k\$ & Jaccard@ \$k\$ \).](#)

1954 **C.1 SOME DEFINITIONS OF LINEAR FRACTIONAL UTILITIES**

1955 Below, we give the concrete coefficients (c_0, c_1, c_2) and (d_0, d_1, d_2) for several commonly used

1956 linear-fractional performance metrics. Each of these metrics can be expressed in the form

$$1961 \quad u(S) = \frac{c_0 + c_1 \lambda(S) + c_2 \gamma(S)}{d_0 + d_1 \lambda(S) + d_2 \gamma(S)}.$$

1962 as recalled from equation 2.

1963 **Table 22: Some examples of linear fractional utilities.** For more examples, see Choi et al. (2009).
 1964 We set $\pi = \frac{1}{m} \sum_{j=1}^m \mathbf{1}[y_j = 1]$, the proportion of positive labels in $\mathcal{D}_{\text{test}}$.

1968 Utility	(c_0, c_1, c_2)	(d_0, d_1, d_2)
1969 Accuracy	$(1 - \pi, 2, -1)$	$(1, 0, , 0)$
1970 F_β -score	$(0, 1 + \beta^2, 0)$	$(\beta^2 \pi, 0, 1)$
1971 Jaccard	$(0, 1, 0)$	$(\pi, -1, 1)$
1972 AM-measure	$(\frac{1}{2}, \frac{2}{\pi} + \frac{2}{1-\pi}, -\frac{2}{1\pi})$	$(1, 0, 0)$

1973 **C.2 RANK CORRELATION METRICS (KENDALL & SPEARMAN)**

1974 Let $X = (x_1, x_2, \dots, x_n)$ and $Y = (y_1, \dots, y_n)$ be two real-valued score vectors on the same

1975 n items. And let π_X and π_Y be their induced rankings. Rank correlations measure monotonic

1976 relationships between relative ordering π_X and π_Y .

1977 **Definition C.1** (Kendall rank correlation). Define the set of all pairs of distinct indices $\mathcal{P} = \{(i, j) : 1 \leq i < j \leq n\}$. For each $(i, j) \in \mathcal{P}$, call the pair *concordant* if $(x_i - x_j)(y_i - y_j) > 0$, *discordant* if $(x_i - x_j)(y_i - y_j) < 0$, and a *tie* in X (resp. Y) if $x_i = x_j$ (resp. $y_i = y_j$).

1978 Let c the number of concordant pairs, d the number of discordant pairs, and t_X (resp. t_Y) the number

1979 of ties in X (resp. Y). Then, the Kendall rank correlation τ is

$$1980 \quad \tau = \frac{c - d}{\sqrt{[(\frac{n}{2}) - t_X][(\frac{n}{2}) - t_Y]}},$$

1981 which simplify to $\tau = \frac{c - d}{(\frac{n}{2})}$ if there are no ties ($t_X = t_Y = 0$).

1982 **Definition C.2** (Spearman rank correlation). Let $\pi_X(i)$ be the rank of x_i in X and likewise $\pi_Y(i)$ for

1983 Y . Define the rank-differences $d_i = \pi_X(i) - \pi_Y(i)$. The Spearman rank correlation s is the Pearson

1984 correlation of the ranked vectors:

$$1985 \quad s = \frac{\sum_{i=1}^n (\pi_X(i) - \bar{\pi}_X)(\pi_Y(i) - \bar{\pi}_Y)}{\sqrt{\sum_{i=1}^n (\pi_X(i) - \bar{\pi}_X)^2} \sqrt{\sum_{i=1}^n (\pi_Y(i) - \bar{\pi}_Y)^2}}$$

1998 where $\bar{\pi}_X = \frac{1}{n} \sum_{i=1}^n \pi_X(i)$ and $\bar{\pi}_Y = \frac{1}{n} \sum_{i=1}^n \pi_Y(i)$. If there are no ties, it simplifies to

$$s = 1 - \frac{6 \sum_{i=1}^n d_i^2}{n(n^2 - 1)}.$$

Both metrics lie in $[-1, 1]$, with $+1$ indicating perfect agreement and -1 perfect reversal.

C.3 AXIOMS SATISFIED BY SEMIVALUES

Semivalues as defined in equation 1 satisfy fundamental axioms that ensure desirable properties in data valuation. We formally state these axioms in the following. Let $\phi(., \omega; .)$ be a semivalue-based data valuation method defined by a weight vector ω and let u and v be utility functions. Then, ϕ satisfies the following axioms:

1. *Dummy*. If $u(S \cup \{z_i\}) = u(S) + c$ for all $S \subseteq \mathcal{D} \setminus \{z_i\}$ and some $c \in \mathbb{R}$, then $\phi(z_i; \omega, u) = c$.
2. *Symmetry*. If $u(S \cup \{z_j\}) = u(S \cup \{z_i\})$ for all $S \subseteq \mathcal{D} \setminus \{z_i, z_j\}$, then $\phi(z_i; \omega, u) = \phi(z_j; \omega, u)$.
3. *Linearity*. For any $\alpha_1, \alpha_2 \in \mathbb{R}$, $\phi(z_i; \omega, \alpha_1 u + \alpha_2 v) = \alpha_1 \phi(z_i; \omega, u) + \alpha_2 \phi(z_i; \omega, v)$.

While all semivalues satisfy the above axioms, Data Shapley uniquely also guarantees *efficiency*: $\sum_{z \in \mathcal{D}} \phi(z, \omega, u) = u(\mathcal{D})$.

C.4 APPLICATIONS OF SEMIVALEU-Based DATA VALUATION METHODS

In practice, semivalue-based methods are mostly applied to perform *data cleaning* or *data subset selection* Tang et al. (2021); Pandl et al. (2021); Bloch & Friedrich (2021); Zheng et al. (2024). Both tasks involve ranking data points according to their assigned values.

Data cleaning. Data cleaning aims to improve dataset quality by identifying and removing noisy or low-quality data points. Since semivalue-based methods quantify each point's contribution to a downstream task, low-valued points are natural candidates for removal. Specifically, a common approach is to remove points that fall into the set \mathcal{N}_τ , defined as the subset of data points with the lowest values Ghorbani & Zou (2019). Formally, $\mathcal{N}_\tau = \{z_i \in \mathcal{D} \mid \phi(z_i; u, \omega) \leq \tau\}$, where τ is a threshold determined through domain knowledge or empirical evaluation.

Data subset selection. Data subset selection involves choosing the optimal training set from available samples to maximize final model performance. Since semivalues measure data quality, prioritizing data points with the highest values is a natural approach. Consequently, a common practice in the literature Wang & Jia (2023); Jiang et al. (2023); Wang et al. (2024b) is selecting, given a size budget k , the subset $\mathcal{S}_{\phi(u, \omega)}^{(k)}$ of data points with top- k data values, i.e., $\mathcal{S}_{\phi(u, \omega)}^{(k)} = \arg \max_{\mathcal{S} \subseteq \mathcal{D}, |\mathcal{S}|=k} \sum_{z_i \in \mathcal{S}} \phi(z_i; u, \omega)$.

C.5 EXTENSION OF THE *multiple-valid utility* SCENARIO TO MULTICLASS METRICS

Let $\mathcal{Y} = \{1, \dots, K\}$ be the class set and let g_S be the model trained on S . For each class k , define the one-vs-rest confusion counts on the test set:

$TP_k = \#\{y = k, g_S(x) = k\}, \quad FN_k = \#\{y = k, g_S(x) \neq k\}, \quad FP_k = \#\{y \neq k, g_S(x) = k\}$, and the class supports $n_k = TP_k + FN_k$ (true instances of class k) and $\hat{n}_k = TP_k + FP_k$ (predicted as class k).

Recall. The per-class recalls form the K -vector

$$r(S) := (r_1(S), \dots, r_K(S)) \in [0, 1]^K, \quad r_k(S) := \frac{TP_k}{TP_k + FN_k} = \frac{TP_k}{n_k}.$$

2052 Any average recall can be written as a dot product with a weight vector $w \in \Delta_K := \{w \in \mathbb{R}_{\geq 0}^K : 2053 \sum_k w_k = 1\}$:

$$2054 \quad \text{rec}_w(S) := \langle w, r(S) \rangle.$$

2055 Two common choices are immediate:

$$2056 \quad \text{macro-recall: } w^{\text{macro}} = \frac{1}{K} \mathbf{1}, \quad \text{weighted-recall: } w_k^{\text{wgt}} = \frac{n_k}{\sum_{\ell=1}^K n_\ell}.$$

2057 Thus macro- and weighted-recall are the *same linear functional* applied to the per-class recall basis
2058 $r(S)$ with different w .

2059 **Precision and F_1 .** Analogously, define the per-class precisions

$$2060 \quad p(S) := (p_1(S), \dots, p_K(S)), \quad p_k(S) := \frac{\text{TP}_k}{\text{TP}_k + \text{FP}_k} = \frac{\text{TP}_k}{\hat{n}_k},$$

2061 and per-class F_1 's

$$2062 \quad f_k(S) := \frac{2p_k(S)r_k(S)}{p_k(S) + r_k(S)} \quad (\text{with } f_k = 0 \text{ if } p_k + r_k = 0), \quad f(S) := (f_1, \dots, f_K).$$

2063 Macro/weighted versions are again linear averages over the same class-wise basis:

$$2064 \quad \text{prec}_w(S) = \langle w, p(S) \rangle, \quad F1_w(S) = \langle w, f(S) \rangle, \quad w \in \Delta_K,$$

2065 with w^{macro} and w^{wgt} defined as above.

2066 **Implication for our framework.** Let the *class-wise utilities* be $u_k^{\text{rec}}(S) := r_k(S)$ (or $u_k^{\text{prec}}(S) := 2067 p_k(S)$, $u_k^{\text{F1}}(S) := f_k(S)$). Then any macro/weighted multiclass metric is a convex combination

$$2068 \quad u_w(S) = \sum_{k=1}^K w_k u_k(S), \quad w \in \Delta_K.$$

2069 By linearity of semivalues,

$$2070 \quad \phi(z; \omega, u_w) = \sum_{k=1}^K w_k \phi(z; \omega, u_k),$$

2071 so the spatial signature lives in \mathbb{R}^K with coordinates given by the class-wise utilities. Robustness
2072 to *all* convex mixtures $w \in \Delta_K$ is therefore a K -utility instance and R_p is computed via the Monte
2073 Carlo procedure on \mathcal{S}^{K-1} described in Appendix B.5.

2074 C.6 TOP- k STABILITY METRICS (OVERLAP@ k & JACCARD@ k)

2075 Given two rankings π and π' over the same dataset $D = \{z_1, \dots, z_n\}$, we denote by $\text{Top}_k(\pi)$ the
2076 set of the k highest-ranked points under π . Two standard metrics are then commonly used.

2077 **Top- k overlap@ k .** The overlap@ k between π and π' is defined as

$$2078 \quad \text{Overlap}@k(\pi, \pi') := \frac{|\text{Top}_k(\pi) \cap \text{Top}_k(\pi')|}{k} \in [0, 1].$$

2079 It measures the fraction of items remaining in the top- k set when switching from one ranking to
2080 another.

2081 **Top- k Jaccard@ k .** The Jaccard@ k similarity normalizes the overlap by the size of the union of
2082 the two sets:

$$2083 \quad \text{Jaccard}@k(\pi, \pi') := \frac{|\text{Top}_k(\pi) \cap \text{Top}_k(\pi')|}{|\text{Top}_k(\pi) \cup \text{Top}_k(\pi')|} \in [0, 1].$$

2084 It provides a scale-free measure of agreement, where 1 indicates identical top- k selections.

2106 **D ADDITIONAL FIGURES**
21072108 **D.1 ADDITIONAL FIGURES FOR $K = 2$ BASE UTILITIES**
21092110 In Section 3, we plot the spatial signatures for the WIND dataset (Figure 1) to illustrate the geometric
2111 mapping at the heart of our framework. Figures 5, 6, 7, 8, 9, 10 and 11 present the analogous plots
2112 for the remaining binary datasets introduced in Table 2.

2124 (a) Shapley

2124 (b) (4, 1)-Beta Shapley

2124 (c) Banzhaf

2126 Figure 5: Spatial signature of the BREAST dataset for three semivalues (a) Shapley, (b) (4, 1)-Beta
2127 Shapley, and (c) Banzhaf. Each cross marks the embedding $\psi_{\omega, \mathcal{D}}(z)$ of a data point (with $u_1 = \lambda$,
2128 $u_2 = \gamma$), the dashed circle is the unit circle \mathcal{S}^1 , and the filled dot indicates one utility direction $\bar{\alpha}$.
2129

2141 (a) Shapley

2141 (b) (4, 1)-Beta Shapley

2141 (c) Banzhaf

2143 Figure 6: Spatial signature of the TITANIC dataset for three semivalues (a) Shapley, (b) (4, 1)-Beta
2144 Shapley, and (c) Banzhaf. Each cross marks the embedding $\psi_{\omega, \mathcal{D}}(z)$ of a data point (with $u_1 = \lambda$,
2145 $u_2 = \gamma$), the dashed circle is the unit circle \mathcal{S}^1 , and the filled dot indicates one utility direction $\bar{\alpha}$.
21462147 **D.2 ADDITIONAL FIGURES FOR $K > 2$ BASE UTILITIES**
21482149 In this section, we visualize, in three dimensions, the spatial signatures associated with the *utility*
2150 *trade-off experiments* for binary classification with $K = 3$ base utilities (Accuracy, F1, Recall)
2151 described in Appendix A.6.2. These plots (corresponding to Figures 12, 13, 14, 15, 16, 17, 18 and
2152 19) provide the geometric counterpart of the robustness scores reported in Table 15.
2153
2154
2155
2156
2157
2158
2159

2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190

Figure 7: Spatial signature of the CREDIT dataset for three semivalues (a) Shapley, (b) (4, 1)-Beta Shapley, and (c) Banzhaf. Each cross marks the embedding $\psi_{\omega, \mathcal{D}}(z)$ of a data point (with $u_1 = \lambda$, $u_2 = \gamma$), the dashed circle is the unit circle \mathcal{S}^1 , and the filled dot indicates one utility direction $\bar{\alpha}$.

2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210

Figure 8: Spatial signature of the HEART dataset for three semivalues (a) Shapley, (b) (4, 1)-Beta Shapley, and (c) Banzhaf. Each cross marks the embedding $\psi_{\omega, \mathcal{D}}(z)$ of a data point (with $u_1 = \lambda$, $u_2 = \gamma$), the dashed circle is the unit circle \mathcal{S}^1 , and the filled dot indicates one utility direction $\bar{\alpha}$.

2211
2212
2213

Figure 9: Spatial signature of the CPU dataset for three semivalues (a) Shapley, (b) (4, 1)-Beta Shapley, and (c) Banzhaf. Each cross marks the embedding $\psi_{\omega, \mathcal{D}}(z)$ of a data point (with $u_1 = \lambda$, $u_2 = \gamma$), the dashed circle is the unit circle \mathcal{S}^1 , and the filled dot indicates one utility direction $\bar{\alpha}$.

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

Figure 13: Spatial signature of the TITANIC dataset for three semivalues (a) Shapley, (b) (4, 1)-Beta Shapley, and (c) Banzhaf. Each blue points marks the embedding $\psi_{\omega, \mathcal{D}}(z)$ of a data point $z \in \mathcal{D}$ (with u_1 = accuracy, u_2 = f1, u_3 = recall). The represented sphere is S^2 .

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

Figure 13: Spatial signature of the TITANIC dataset for three semivalues (a) Shapley, (b) (4, 1)-Beta Shapley, and (c) Banzhaf. Each blue points marks the embedding $\psi_{\omega, \mathcal{D}}(z)$ of a data point $z \in \mathcal{D}$ (with u_1 = accuracy, u_2 = f1, u_3 = recall). The represented sphere is S^2 .

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

Figure 14: Spatial signature of the CREDIT dataset for three semivalues (a) Shapley, (b) (4, 1)-Beta Shapley, and (c) Banzhaf. Each blue points marks the embedding $\psi_{\omega, \mathcal{D}}(z)$ of a data point $z \in \mathcal{D}$ (with u_1 = accuracy, u_2 = f1, u_3 = recall). The represented sphere is S^2 .

Figure 15: Spatial signature of the HEART dataset for three semivalues (a) Shapley, (b) (4, 1)-Beta Shapley, and (c) Banzhaf. Each blue points marks the embedding $\psi_{\omega, \mathcal{D}}(z)$ of a data point $z \in \mathcal{D}$ (with u_1 = accuracy, u_2 = f1, u_3 = recall). The represented sphere is S^2 .

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

Figure 16: Spatial signature of the WIND dataset for three semivalues (a) Shapley, (b) (4, 1)-Beta Shapley, and (c) Banzhaf. Each blue points marks the embedding $\psi_{\omega, \mathcal{D}}(z)$ of a data point $z \in \mathcal{D}$ (with u_1 = accuracy, u_2 = f1, u_3 = recall). The represented sphere is S^2 .

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

Figure 17: Spatial signature of the CPU dataset for three semivalues (a) Shapley, (b) (4, 1)-Beta Shapley, and (c) Banzhaf. Each blue points marks the embedding $\psi_{\omega, \mathcal{D}}(z)$ of a data point $z \in \mathcal{D}$ (with u_1 = accuracy, u_2 = f1, u_3 = recall). The represented sphere is S^2 .

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

Figure 18: Spatial signature of the 2DPLANES dataset for three semivalues (a) Shapley, (b) (4, 1)-Beta Shapley, and (c) Banzhaf. Each blue points marks the embedding $\psi_{\omega, \mathcal{D}}(z)$ of a data point $z \in \mathcal{D}$ (with u_1 = accuracy, u_2 = f1, u_3 = recall). The represented sphere is S^2 .

2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406

2407
 2408
 2409
 2410
 2411
 Figure 19: Spatial signature of the POL dataset for three semivalues (a) Shapley, (b) (4, 1)-Beta Shapley, and (c) Banzhaf. Each blue points marks the embedding $\psi_{\omega, \mathcal{D}}(z)$ of a data point $z \in \mathcal{D}$ (with u_1 = accuracy, u_2 = f1, u_3 = recall). The represented sphere is \mathcal{S}^2 .

2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429