
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ON THE IMPACT OF THE UTILITY IN SEMIVALUE-BASED
DATA VALUATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Semivalue–based data valuation uses cooperative-game theory intuitions to assign
each data point a value reflecting its contribution to a downstream task. Still, those
values depend on the practitioner’s choice of utility, raising the question: How
robust is semivalue-based data valuation to changes in the utility? This issue is
critical when the utility is set as a trade-off between several criteria and when
practitioners must select among multiple equally valid utilities. We address it
by introducing the notion of a dataset’s spatial signature: given a semivalue, we
embed each data point into a lower-dimensional space where any utility becomes
a linear functional, making the data valuation framework amenable to a simpler
geometric picture. Building on this, we propose a practical methodology centered
on an explicit robustness metric that informs practitioners whether and by how
much their data valuation results will shift as the utility changes. We validate this
approach across diverse datasets and semivalues, demonstrating strong agreement
with rank-correlation analyses and offering analytical insight into how choosing a
semivalue can amplify or diminish robustness.

1 INTRODUCTION

Supervised machine learning (ML) relies on data, but real-world datasets often suffer from noise and
biases as they are collected from multiple sources and are subject to measurement and annotation
errors (Northcutt et al., 2021). Such variability can impact learning outcomes, highlighting the need
for systematic methods to evaluate data quality. In response, data valuation has emerged as a growing
research field that aims to quantify individual data points’ contribution to a downstream ML task,
helping to identify informative samples and mitigate the impact of low-quality data. A popular
way to tackle the data valuation problem is to adopt a cooperative game-theoretic viewpoint, where
each data point is modeled as a player in a coalitional game, and the usefulness of any data subset
is measured by a utility function. This approach leverages game theory solution concepts called
semivalues (Dubey et al., 1981), which input data and utility to assign an importance score to each
data point, thereby inducing a ranking of points in the order of their contribution to the ML task
(Ghorbani & Zou, 2019; Kwon & Zou, 2022; Wang & Jia, 2023; Jia et al., 2023; 2020).

Motivation. When computing semivalues, the utility is typically selected by the practitioner to
reflect the downstream task. In some contexts, this choice is obvious. For example, when fine-tuning
a large language model (LLM), one might balance two competing objectives: helpfulness (how well
the model follows user instructions) and harmlessness (its tendency to refuse or safely complete
unsafe requests) (Bai et al., 2022a;b). If the practitioner then asks, “Which training examples most
contributed to my desired helpfulness–harmlessness balance?”, the only sensible utility for semivalue-
based data valuation is this composite trade-off itself. By contrast, in more open-ended tasks, the
utility can be genuinely ambiguous. Imagine training a dog vs. cat image classifier and asking,
“Which data points contributed most to overall performance?” Then, accuracy, precision, recall, F1,
AUROC, balanced accuracy, and many others are all defensible choices. However, none is uniquely
dictated by the task.

These two example settings respectively motivate two general scenarios: (1) the utility trade-off
scenario, where the utility is a convex combination of fixed criteria, with a tunable weight ν, and (2)
the multiple-valid-utility scenario, where the utility must be chosen among several equally defensible
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metrics, none of which being uniquely dictated by the task. In both cases, we argue that data valuation
practitioners are well advised to ask themselves:

How robust are my data valuation results to the utility choice?

In what follows, we explain why.

Utility trade-off scenario: Anticipating costly re-training. In scenarios where the utility itself
is a trade-off, e.g., when fine-tuning an LLM by combining helpfulness and harmlessness into a
single objective parameterized by ν, practitioners often rely on data values to identify the k most
valuable training examples and train next models on this smaller subset to reduce computational
cost as is common practice when using data valuation (Ghorbani & Zou, 2019; Jiang et al., 2023).
However, if the top-k set shifts dramatically with changes in ν, as priorities between harmlessness
and helpfulness evolve, practitioners risk repeated, costly re-training. Quantifying robustness to
utility choice makes this risk explicit, alerting practitioners up front to whether data valuation is a
safe, one-time investment or if they must plan for ongoing computational overhead as their utility
trade-off evolves.

Multiple-valid-utility scenario: Detecting when data valuation fails as a heuristic. In many
real-world tasks, like the earlier dog vs. cat classifier example, practitioners must select a utility from
several valid options, none uniquely dictated by the problem. Now, one would "morally" expect their
induced orderings of points to be consistent. After all, each utility is a valid measure for the same task.
It may be hard to think that a data point deemed highly important under accuracy would suddenly
vanish from the top tier under F1-score, or vice versa. In practice, however, we observe precisely
such discrepancies, depending on both the training dataset and the semivalue. We compute data
values under both accuracy and F1-score on several public datasets, using three popular semivalues:
Shapley (Ghorbani & Zou, 2019), (4, 1)-Beta Shapley (Kwon & Zou, 2022), and Banzhaf (Wang &
Jia, 2023) (see Appendix A.1 for experimental details). Table 1 reports the Kendall rank correlation
between the two score sets for each combination of dataset and semivalue. Low correlations reveal
cases where rankings change substantially depending on whether accuracy or F1-score is used as
the utility 1. And because no utility is inherently better, a practitioner has no principled way to
choose between the data values ranking produced under accuracy versus F1-score (or any other valid
utility). In such settings, arbitrary utility choices can drive the ordering of data points in entirely
different directions: the context (dataset + semivalue) is therefore not "data-valuationable", and
semivalue-based data valuation fails as a reliable heuristic. By contrast, if rankings remain consistent
across all valid utilities for the task, data values truly capture the underlying importance ordering of
points. Therefore, knowing how robust the scores ranking is to the utility choice enables a practitioner
to tell if semivalue-based data valuation can be trusted as a meaningful heuristic in that context, or if
it is too sensitive to utility to provide reliable guidance.

Table 1: Mean Kendall rank correlation (± standard error) between data values computed with
accuracy versus F1-score. For each semivalue and dataset, we approximate data values 5 times via
Monte Carlo sampling. Standard errors reflect the variability across these 5 trials.

Dataset Semivalue

Shapley (4, 1)-Beta Shapley Banzhaf

BREAST 0.95 (0.003) 0.95 (0.003) 0.97 (0.008)
TITANIC −0.19 (0.007) −0.17 (0.01) 0.94 (0.003)
CREDIT −0.47 (0.01) −0.44 (0.02) 0.87 (0.01)
HEART 0.64 (0.006) 0.68 (0.004) 0.96 (0.003)
WIND 0.81 (0.008) 0.82 (0.008) 0.99 (0.002)
CPU 0.59 (0.02) 0.62 (0.02) 0.86 (0.007)
2DPLANES 0.38 (0.01) 0.44 (0.01) 0.75 (0.03)
POL 0.67 (0.02) 0.77 (0.01) 0.40 (0.04)

In this paper, we propose a methodology that enables data valuation practitioners to assess how robust
their semivalue-based data valuation results are to the utility choice, in both scenarios. We summarize
our main contributions as follows.

1We extend these experiments to additional classification utilities and rank correlation metrics for complete-
ness (see Appendices A.2 and A.3), and observe variability as well.
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1. Unified geometric modeling of the two scenarios. We observe that the same geometric
representation can capture both scenarios. In this representation, we can, given a semivalue,
embed each training data point into a lower-dimensional space (we call the set of embedded
points the dataset’s spatial signature) where any utility becomes a linear functional, making
the data valuation framework amenable to a simpler geometric interpretation.

2. A robustness metric derived from the geometric representation. Building on the notion
of spatial signature, we introduce a metric that practitioners can compute to quantify how
robust the data values’ orderings are to the utility choice, providing a practical methodology
for assessing the robustness of data valuation results.

3. Empirical evaluation of robustness and insights. We compute the robustness metric across
multiple public datasets and semivalues and find results consistent with our rank-correlation
experiments: contexts with low rank correlation exhibit a low robustness score, and vice
versa. Moreover, we observe that Banzhaf consistently achieves higher robustness scores
than other semivalues, a phenomenon for which we provide analytical insights.

Related works. Our focus on the robustness of semivalue-based data valuation to the utility choice
differs from most prior work, which has concentrated on defining and efficiently computing data
valuation scores. The Shapley value (Shapley, 1953; Ghorbani & Zou, 2019), in particular, has been
widely studied as a data valuation method because it uniquely satisfies four key axioms: linearity,
dummy player, symmetry, and efficiency. Alternative approaches have emerged by relaxing some
of these axioms. Relaxing efficiency gives rise to the semivalue family (Dubey et al., 1981), which
encompasses Leave-One-Out (Koh & Liang, 2020), Beta Shapley (Kwon & Zou, 2022), and Data
Banzhaf (Wang & Jia, 2023), while relaxing linearity leads to the Least Core (Yan & Procaccia, 2021).
Extensions such as Distributional Shapley (Ghorbani et al., 2020; Kwon et al., 2021) further adapt the
framework to handle underlying data distributions instead of a fixed dataset. On the algorithmic front,
exact semivalue computation is often intractable as each semivalue requires training models over all
possible data subsets, which grows exponentially with the size of the dataset. Consequently, a rich
literature on approximation methods has emerged to make data valuation practical at scale (Mann &
Shapley, 1960; Maleki, 2015; Jia et al., 2023; Ghorbani & Zou, 2019; Jia et al., 2020; Garrido-Lucero
et al., 2024). By contrast, when and why data valuation scores remain consistent across different
utilities has received far less attention. Prior work has explored related robustness questions in special
cases: (Wang & Jia, 2023) examines how semivalue–based valuations fluctuate when the utility
function is corrupted by inherent randomness in the learning algorithm, and (Wang et al., 2024)
studies how different choices of utility affect the reliability of Data Shapley for data-subset selection.
Our proposed methodology broadens this scope by quantifying when data valuation is robust to shifts
in the utility function.

Notations. We set N∗ = N \ {0}. For n ∈ N∗, we denote [n] := {1, .., n}. For a dataset D, we
denote as 2D its powerset, i.e., the set of all possible subsets of D, including the empty set ∅ and D
itself. For d ∈ N∗, we denote X ⊆ Rd and Y ⊆ R as an input space and an output space, respectively.

2 BACKGROUND

The data valuation problem involves a dataset of interest D = {zi = (xi, yi)}i∈[n], where for any
i ∈ [n] each xi ∈ X is a feature vector and yi ∈ Y is the corresponding label. Data valuation aims to
assign a scalar score to each data point in D, quantifying its contribution to a downstream ML task.
These scores will be referred to as data values.

Utility functions. Most data valuation methods rely on utility functions to compute data values.
A utility is a set function u : 2D → R that maps any subset S of the training set D to a score
indicating its usefulness for performing the considered task. Formally, this can be expressed as
u(S) = perf(A(S)), where A is a learning algorithm that takes a subset S as input and returns
a trained model, and perf is a metric used to evaluate the model’s ability to perform the task on
a hold-out test set. For convenience, we interchangeably refer to the utility u and the performance
metric perf as u inherently depends on perf.

3
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Semivalues. The most popular data valuation methods assign a value score to each data point in D
using solution concepts from cooperative game theory, known as semivalues (Dubey et al., 1981). The
collection of methods that fall under this category is referred to as semivalue-based data valuation.
They rely on the notion of marginal contribution. Formally, for any i, j ∈ [n], let D\zi

j denote the set
of all subsets of D of size j − 1 that exclude zi. Then, the marginal contribution of zi with respect to
samples of size j − 1 is defined as

∆j(zi;u) :=
1(

n−1
j−1

) ∑
S⊆D\zi

j

u (S ∪ {zi})− u(S) .

The marginal contribution ∆j(zi;u) considers all possible subsets S ∈ D\zi
j with the same cardinality

j − 1 and measures the average changes of u when datum of interest zi is removed from S ∪ {zi}.

Each semivalue-based method is characterized by a weight vector ω := (ω1, . . . , ωn) and assigns
a score ϕ(zi;ω, u) to each data point zi ∈ D by computing a weighted average of its marginal
contributions {∆j(zi;u)}j∈[n]. Specifically,

ϕ(zi;ω, u) :=

n∑
j=1

ωj∆j(zi;u). (1)

Below, we define the weights for three commonly used semivalue-based methods. Their differences
in weighting schemes have geometric implications discussed in Section 4.1.
Definition 2.1. Data Shapley (Ghorbani & Zou, 2019) is derived from the Shapley value (Shapley,
1953), a solution concept from cooperative game theory that fairly allocates the total gains generated
by a coalition of players based on their contributions. In the context of data valuation, Data Shapley
takes a simple average of all the contributions so that its corresponding weight vector ωshap =
(ωbeta,j)j∈[n] is such that for all j ∈ [n], ωshap,j =

1
n .

Definition 2.2. (α, β)-Beta Shapley (Kwon & Zou, 2022) extends Data Shapley by introducing
tunable parameters (α, β) ∈ R2, which control the emphasis placed on marginal contributions from
smaller or larger subsets. The corresponding weight vector ωbeta = (ωbeta,j)j∈[n] is such that for all
j ∈ [n], ωbeta,j =

(
n−1
j−1

)
· Beta(j+β−1,n−j+α)

Beta(α,β) , where Beta(α, β) = Γ(α)Γ(β)/Γ(α+ β) and Γ is
the Gamma function.

Definition 2.3. Data Banzhaf (Wang & Jia, 2023) is derived from the Banzhaf value (Banzhaf, 1965),
a cooperative game theory concept originally introduced to measure a player’s influence in weighted
voting systems. Data Banzhaf weight’s vector ωbanzhaf = (ωbanzhaf,j)j∈[n] is such that for all j ∈ [n],
ωbanzhaf,j =

(
n−1
j−1

)
· 1
2n−1 .

These semivalue-based methods satisfy fundamental axioms (Dubey et al., 1981) that ensure
desirable properties in data valuation. In particular, any semivalue ϕ(.;ω, .) satisfy the linear-
ity axiom which states that for any α1, α2 ∈ R, and any utility u, v, ϕ(zi;ω, α1u + α2v) =
α1ϕ(zi;ω, u) + α2ϕ(zi;ω, v).

3 A METHODOLOGY TO ASSESS DATA VALUATION ROBUSTNESS TO THE
UTILITY CHOICE

We now turn to the two scenarios introduced in Section 1, namely the utility trade-off scenario and
the multiple-valid-utility scenario, and show how both admit a common geometric formalization. In
what follows, we let D = {zi}i∈[n] be the dataset that the practitioner seeks to score and rank by
order of importance, and we let ω be the chosen semivalue weight vector, so that each datum score is
given by ϕ(zi;ω, u) as defined in (1). We start by giving a formal definition of each scenario.

Utility trade-off scenario. In this scenario, the practitioner defines utility as a convex combination
of multiple fixed criteria. In the simplest case where one considers only two fixed criteria uA and uB
(e.g. helpfulness vs. harmlessness when fine-tuning an LLM), the utility is

uν = νuA + (1− ν)uB , ν ∈ [0, 1],

4
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where the scalar ν is explicitly chosen by the practitioner (based on operational priorities) to set the
desired trade-off between uA and uB . Note that this choice naturally extends to K fixed criteria
u1, . . . , uK by taking uν =

∑K
k=1 νku

k.

By semivalue linearity, each data point’s score under uν is

ϕ(zi;ω, uν) = νϕ(zi;ω, u
A) + (1− ν)ϕ(zi;ω, u

B) .

Multiple-valid-utility scenario. In this scenario, there is no single correct utility: practitioners
must choose among several equally defensible performance metrics. In the common case of binary
classification, one might measure model quality with accuracy, F1-score, or negative log-loss: each of
which is valid but potentially yields different data valuation results; see Table 1. Almost all of these
utilities admit a linear-fractional form (Koyejo et al., 2014) in two test-set statistics: the empirical
true-positive rate λ(S) = 1

m

∑m
j=1 1[gS(xj) = 1, yj = 1] and the empirical positive-prediction rate

γ(S) = 1
m

∑m
j=1 1[gS(xj) = 1], where gS = A(S) is the classifier trained on S. Specifically, they

can be written as

u(S) =
c0 + c1λ(S) + c2γ(S)

d0 + d1λ(S) + d2γ(S)
, (2)

with coefficients (c•, d•) determined by the chosen utility (see Table 17). Any linear–fractional utility
of the form (2) with d0 ̸=0 admits the first–order expansion at (λ, γ) = (0, 0):

u(S) =
c0
d0

+
c1d0 − c0d1

d20
λ(S) +

c2d0 − c0d2
d20

γ(S) + o
(
∥(λ(S), γ(S))∥

)
.

Thus, to first order, u is affine in (λ, γ) and we validate this surrogate empirically (see Appendix B.1).
Thus, by linearity of the semivalue and the fact that constants vanish, for each zi, it is reasonable to
consider that

ϕ(zi;ω, u) =
c1d0 − c0d1

d20
ϕ(zi;ω, λ) +

c2d0 − c0d2
d20

, ϕ(zi;ω, γ).

Remark. The multiple-valid utility scenario also extends to multiclass classification metrics with
u =

∑K
k=1 αkuk for K > 2 (see Appendix C.5 for details).

3.1 A UNIFIED GEOMETRIC MODELING OF THE TWO SCENARIOS

Both scenarios can be unified by observing that the practitioner’s utility lives in a two-dimensional
family spanned by two fixed base utilities u1 and u2. Concretely, we consider

uα(S) = α1 u1(S) + α2 u2(S), α = (α1, α2) ∈ R2,

so that varying the utility means moving α in this two-dimensional parameter space. In the utility
trade-off scenario restricted to two fixed criteria, (u1, u2) = (uA, uB), and (α1, α2) = (ν, 1 − ν)
ranges over [0, 1]2. In the multiple-valid-utility scenario for binary classification, (u1, u2) = (λ, γ),
and (α1, α2) ∈ R2. In either case, the objective is the same: to quantify robustness, i.e., how stable
the ranking of semivalue scores {ϕ

(
zi;ω, uα

)
} is as we change α.

With this unified view in hand, we have the following proposition, which can be extended to the
general case uα =

∑K
k=1 αkuk. A detailed extension is provided in Appendix B.2.

Proposition 3.1. Let D be any dataset of size n and let ω ∈ Rn be a semivalue weight vector. Then
there exists a map ψω,D : D −→ R2 such that for every utility uα = α1u1 + α2u2, ϕ

(
z;ω, uα

)
=〈

ψω,D(z), α
〉
, for any z ∈ D. We call Sω,D = {ψω,D(z) | z ∈ D} the spatial signature of D under

semivalue ω.

Consequently, ranking the data points in D by uα is equivalent to sorting their projections onto the
vector α:

ϕ(zi;ω, uα) > ϕ(zj ;ω, uα) ⇐⇒ ⟨ψω,D(zi), α⟩ > ⟨ψω,D(zj), α⟩.
Moreover, since scaling α by any positive constant does not change the sign of ⟨ψω,D(zi), α⟩ −
⟨ψω,D(zj), α⟩, any two utilities uα and uα′ whose coefficient vectors point in the same direction

5
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induce identical rankings. Thus, each utility in the parametric family can be uniquely identified by
its normalized vector ᾱ = α

∥α∥ ∈ S1, with ᾱ ranging over the unit circle S1. Consequently, ranking
stability to the utility choice reduces to analyzing how the projections order of {⟨ψω,D(z), α⟩ | z ∈
D} ⊂ R2 changes as we rotate the unit-vector ᾱ around S1. Figure 1 illustrate the geometric mapping
at hand.

(a) Shapley (b) (4, 1)-Beta Shapley (c) Banzhaf

Figure 1: Spatial signature of the WIND dataset for three semivalues (a) Shapley, (b) (4, 1)-Beta
Shapley, and (c) Banzhaf. Each cross marks the embedding ψω,D(z) of a data point (with u1 = λ,
u2 = γ), the dashed circle is the unit circle S1, and the filled dot indicates one utility direction ᾱ.

Figure 1 shows that, under Banzhaf, the points lie almost exactly on a single line through the origin,
much more so than under Shapley or (4, 1)-Beta Shapley. This near-collinearity persists across all the
datasets used for experiments (see Appendix D). In Proposition 3.3 and Section 4.1, we give insight
into how this geometric property directly leads to Banzhaf’s higher robustness.

3.2 A ROBUSTNESS METRIC DERIVED FROM THE GEOMETRIC REPRESENTATION

Building on the geometric mapping of semivalue-based data valuation proposed in Section 3.1, a
natural way to quantify how robust a semivalue scores ranking is to changes in the utility is to ask
how far on the unit circle one must rotate from a given utility direction before the induced ordering
undergoes a significant change?

Formally, let ᾱ0 be the starting utility direction, whose semivalue scores induce a reference ranking
of the data points. We say that two points zi and zj experience a pairwise swap when their order
under a new direction ᾱ is opposite to their order under ᾱ0. We then aim to define robustness based
on the smallest geodesic distance on S1 one must travel from ᾱ0 before p such pairwise swaps have
occurred.

To make this concrete, we express the required geodesic distance in closed form by characterizing
the critical angles on S1 at which pairwise swaps occur. For each unordered pair (i, j), let vij =
ψω,D(zi)− ψω,D(zj) and observe that the condition ⟨α, vij⟩ = 0 defines two antipodal “cut” points
on the unit circle: Hij =

{
α ∈ S1 : ⟨α, vij⟩ = 0

}
. Across all

(
n
2

)
= N pairs, these give 2N cuts,

whose polar angles we list in ascending order as

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θ2N < 2π,

and then wrap around by setting θ2N+1 = θ1 + 2π. The open arcs between successive cuts are
Ak = (θk, θk+1) of length λk = θk+1 − θk, k = 1, . . . , 2N so that

∑2N
k=1 λk = 2π. These open

arcs partition S1 into ranking regions, meaning that the induced semivalue ordering is identical
for every utility direction ᾱ ∈ Ak. Figure 2 illustrates two example spatial signatures and their
induced ranking regions. We view these arcs cyclically by taking indices modulo 2N . Now let
our reference direction ᾱ0 have polar angle φ0 ∈ (θk, θk+1). To induce p swaps, one must cross p
distinct arcs: counterclockwise this is S+

k (p) =
∑p

i=1 λ(k+i) mod 2N while clockwise it is S−
k (p) =∑p

i=1 λ(k−i) mod 2N . Writing t = φ0 − θk ∈ (0, λk), the minimal geodesic distance from ᾱ0 to

6
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achieve p swaps is2

ρp(ᾱ0) = min
{
S+
k (p)− t, S−

k (p) + t
}
.

We now define our robustness metric based on ρp.

Figure 2: Ranking regions induced by utilities on the unit circle S1 for two example spatial signatures.
Each colored arc on the unit circle corresponds to one of the open arcs Ak. Within any single arc, the
projection order (and hence the data-point ranking) remains unchanged.

Definition 3.2 (Robustness metric Rp). Let Sω,D = {ψω,D(zi)}i∈[n] be the spatial signature for
dataset D under semivalue weights ω. For ᾱ ∈ S1, let ρp(ᾱ) denote the minimal geodesic distance
on S1 one must travel from ᾱ to incur p <

(
n
2

)
pairwise swaps in the induced ranking. Define

the average p–swaps distance Eᾱ∼Unif(S1)[ρp(ᾱ)] =
1
2π

∫ 2π

0
ρp(t)dt. Then the robustness metric

Rp ∈ [0, 1] is

Rp(Sω,D) =
Eᾱ∼Unif(S1)[ρp(ᾱ)]

max
Sω,D

Eᾱ∼Unif(S1)[ρp(ᾱ)]
=

Eᾱ∼Unif(S1)[ρp(ᾱ)]

π/4
,

where the denominator π/4 is the maximum possible value of Eᾱ[ρp(ᾱ)] which occurs precisely
when all embedded points ψω,D(zi) are collinear 3.

Concretely, given a spatial signature, the p-robustness metric Rp of this signature is the normalized
average minimal angular distance one must rotate on the unit circle to force exactly p pairs of points
to swap in order in the induced ranking.

Interpretation. Rp close to 1 means that one can rotate ᾱ significantly without flipping more than
p pairs, so the ranking is stable. Rp close to 0 means that even a tiny rotation will likely flip p pairs.
Moreover, if there are no tied ranks, Rp captures how far in expectation one must move from a utility
direction before the Kendall rank correlation degrades by 2p/

(
n
2

)
(see Appendix B.4 for details).

Computation. We derive a closed-form expression for Eᾱ∼Unif(S1)[ρp(ᾱ)] that computes exactly
in O(n2 log n) time (see Appendix B.5). In contrast, semivalue approximation methods based on
Monte Carlo sampling require O(n2 log n) model trainings to estimate the data values (Jia et al.,
2023). Therefore, in practice, once the semivalue scores are in hand, the additional cost of computing
Rp is negligible compared to the heavy model-training overhead, making this robustness metric an
affordable add-on to any data valuation pipeline.

Extension to K > 2. The robustness metric Rp extends naturally to K > 2 base utilities, where
utility directions ᾱ lie on the unit sphere SK−1. While no closed-form exists for E[ρp] in this case,
it can be efficiently approximated via Monte Carlo sampling. Appendix B.5 provides convergence
guarantees.

3.3 SPATIAL ALIGNMENT AND THE ROBUSTNESS OF SEMIVALUES

The robustness metricRp (Definition 3.2) measures the stability of the data-value ranking as the utility
varies. It increases with the collinearity of the spatial signature Sω,D = {ψω,D(z) : z ∈ D} ⊂ R2,

2All cut-angles, arc-lengths, and resulting geodesic distance ρp are entirely determined by the spatial signature
Sω,D . For brevity, we omit the explicit dependence on it from our notations.

3Proof of this claim is given in Appendix B.6.
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which is captured by the Pearson correlation between the two coordinate score vectors for base
utilities u1 and u2. In Proposition 3.3, we express this correlation directly in terms of marginal
contributions, and we characterize how it depends on semivalue weights under mild assumptions.

Let ϕ(ua) = (ϕ(z1;ω, ua), . . . , ϕ(zn;ω, ua)) ∈ Rn for a ∈ {1, 2}. For v, w ∈ Rn, write v̄ =
1
n

∑
i vi, Var(v) =

1
n

∑
i(vi − v̄)2, and Cov(v, w) = 1

n

∑
i(vi − v̄)(wi − w̄). We study

Corr
(
ϕ(u1), ϕ(u2)

)
=

Cov(ϕ(u1), ϕ(u2))√
Var(ϕ(u1))Var(ϕ(u2))

.

Proposition 3.3 (Utility alignment and semivalue weights). Let u1, u2 be two base utilities and
ϕ(u1), ϕ(u2) ∈ Rn their semivalue score vectors. If for all j ̸= k the marginal-contribution
vectors ∆j(u1) := (∆j(z1, u1), . . . ,∆j(zn, u1)) and ∆k(u2) := (∆k(z1, u2), . . . ,∆k(zn, u2))
are uncorrelated across points, then

Corr(ϕ(u1), ϕ(u2)) =

∑n
j=1 ω

2
jCov

(
∆j(u1),∆j(u2)

)√∑n
j=1 ω

2
jVar

(
∆j(u1)

)√∑n
j=1 ω

2
jVar

(
∆j(u2)

) .
Defining the size-j alignment factor

rj := Cov
(
∆j(u1),∆j(u2)

)
= Corr

(
∆j(u1),∆j(u2)

)√
Var(∆j(u1))Var(∆j(u2)),

then the correlation increases as the semivalue weights {ωj} concentrate on sizes j where rj is large.

The proof is given in Appendix B.7.

4 EMPIRICAL EVALUATION OF ROBUSTNESS AND DISCUSSION

4.1 MULTIPLE-VALID UTILITY SCENARIO

In this section, we empirically validate the p-robustness metric Rp in the multiple-valid-utility
scenario. We evaluate Rp for three semivalues, Shapley, (4, 1)-Beta Shapley, and Banzhaf, on several
public binary classification datasets. The results in Figure 3 (detailed in Table 7) closely track
Section 1’s correlation experiments reported in Table 1: datasets and semivalues that exhibit low rank
correlations between different utilities also show low Rp, and vice versa.

Figure 3: Mean p-robustness Rp (error bars = standard errors over 5 Monte Carlo approximations)
plotted against p ∈ {500, 1000, 1500} for each dataset and semivalue. Each plot corresponds to one
dataset, with Shapley (blue), (4, 1)-Beta Shapley (pink), and Banzhaf (green) curves. Higher Rp

indicates greater ranking stability under utility shifts.

We also observe that across practically every dataset and choice of p, using the Banzhaf weights
achieves the highest Rp. This makes sense geometrically: Figure 1 and the analogous plots for the
other datasets in Appendix D show that the Banzhaf weighting scheme tends to collinearize the spatial

8
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signature, i.e., push the points closer to a common line through the origin. And since the maximum
possible average swap-distance occurs when all embedded points are collinear, this near-collinearity
explains why Banzhaf yields the greatest robustness to utility shifts. This observation aligns with
prior empirical findings (Wang & Jia, 2023; Li & Yu, 2023), which reported that Banzhaf scores tend
to vary less than other semivalues under changing conditions.

These geometric insights are made rigorous by Proposition 3.3, applied to the correlation between
the semivalue vectors for λ and γ, i.e., Corr(ϕ(λ), ϕ(γ)). It says that under a mild assumption
on cross–size correlations of marginal contributions (empirically verified on BREAST and TITANIC
notably; see Appendix A.5), this correlation decomposes into a weighted average of size–specific
alignment factors rj , with weights ω2

j . Figure 4 plots the normalized rj versus coalition size j and
overlays the Shapley, (4, 1)-Beta, and Banzhaf weight profiles. On BREAST, rj is uniformly high
across j, so all three semivalues yield similar collinearity, which is consistent with the overlapping
robustness curves in Figure 3. On TITANIC, rj peaks at intermediate j and decays at the extremes;
because Banzhaf concentrates weight in this middle region, it attains a larger weighted average
(hence higher overall correlation), explaining why its robustness curve sits well above Shapley and
(4, 1)-Beta in Figure 3.

Figure 4: Mean (normalized) rj (error bars = standard errors over 5 semivalue approximations) for
BREAST (blue) and TITANIC (red) vs. coalition size j, with semivalue weights ω overlaid.

4.2 UTILITY TRADE-OFF SCENARIO

We also evaluate Rp in the utility trade-off scenario, where utility is defined as a convex combination
of competing criteria. Specifically, we consider utilities of the form uν = νu1 + (1 − ν)u2 with
ν ∈ [0, 1], and analyze how semivalue-based rankings (using Shapley, (4, 1)-Beta Shapley, and
Banzhaf) evolve as ν varies. We run this on regression datasets (DIABETES, CALIFORNIA HOUSING,
AMES) for utility pairs MSE/MAE, MSE/R2, and MAE/R2, and on multiclass classification datasets
(DIGITS, WINE, IRIS) for utility pairs Accuracy/macro-F1, Accuracy/macro-Recall, and macro-
F1/macro-Recall. Across all settings, Banzhaf achieves the highest Rp, indicating more stable
rankings. These results are consistent with the ones obtained in multiple-valid utility scenario (see
Section 4.1). The data sources are given in Appendix A.1 while full results with experimental settings
are reported in Tables 9, 10, 11, 12, 13, and 14.

5 CONCLUSION

This work studies the robustness of semivalue-based data valuation methods under utility shifts in
two scenarios where it matters, by introducing a unified geometric view via the spatial signature and
a parametric robustness measure Rp. This yields a practical way to quantify how stable data-value
rankings remain as the utility varies. Limitation. While the framework is general, our analysis of the
multiple-valid-utility scenario focuses on binary classification metrics in the linear–fractional family
and on a subset of multiclass metrics. Non-linear-fractional binary metrics (e.g., negative log–loss)
and regression utilities fall outside our scope in this scenario. Future works. By revealing cases
where semivalue-based data valuation fails to produce reliable scores, we aim to encourage future
research to assess whether these methods genuinely solve the problem they promise to address.
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REPRODUCIBILITY STATEMENT

An anonymized code package is provided in the supplementary material. It reproduces all tables and
figures in the paper (with scripts to generate them). Full experimental protocols, including datasets,
pre-processing, hyperparameters, and compute settings, are documented in Appendix A and are
cross-referenced at the relevant points in the main text. All missing proofs and supporting theoretical
results are given in Appendix B, where assumptions are stated and derivations are provided.
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A ADDITIONAL SETTINGS & EXPERIMENTS

For the reader’s convenience, we first outline the main points covered in this section.

– Appendix A.1: Experiment settings for empirical results in the main text.

– Appendix A.2: Additional results on rank correlation for more binary classification metrics.

– Appendix A.3: Additional results on rank correlation using the Spearman rank correlation.

– Appendix A.4: Table for Rp results in Figure 3.

– Appendix A.5: Empirical verification of the assumption of Proposition 3.3.

– Appendix A.6: Results for the utility-trade-off scenario summarized in Section 4.2.

– Appendix A.7: What if we A varies instead of perf?

A.1 EXPERIMENT SETTINGS FOR EMPIRICAL RESULTS IN THE MAIN TEXT

In this section, we describe our experimental protocol for estimating semivalue scores, which serve
to obtain all the tables and figures included in this paper.

Datasets. Table 2 summarizes the datasets used in our experiments, all of which are standard
benchmarks in the data valuation literature Ghorbani & Zou (2019); Kwon & Zou (2022); Jia et al.
(2023); Wang & Jia (2023); Jiang et al. (2023). Due to the computational cost of repeated model
retraining in our experiments, we select a subset of 100 instances for training and 50 instances for
testing from each classification dataset and 300 instances for training and 100 instances for testing
from regression datasets.

Table 2: A summary of datasets used in experiments.

Dataset Source
BREAST https://www.openml.org/d/13
TITANIC https://www.openml.org/d/40945
CREDIT Pozzolo et al. (2015)
HEART https://www.openml.org/d/43398
WIND https://www.openml.org/d/847
CPU https://www.openml.org/d/761

2DPLANES https://www.openml.org/d/727
POL https://www.openml.org/d/722

DIABETES Efron et al. (2004)
CALIFORNIA HOUSING Kelley Pace & Barry (1997)

AMES De Cock (2011)
IRIS Fisher (1936)

WINE https://archive.ics.uci.edu/ml/datasets/Wine
DIGITS Dua & Graff (2019)

Because our primary objective is to measure how changing the utility alone affects semivalue rankings,
we must eliminate any other sources of variation, such as different train/test splits, model initialization,
or Monte Carlo sampling noise, that could confound our results. To this end, we enforce two strict
controls for semivalue scores computation across utilities:

1. A fixed learning context (A,Dtest),

2. Aligned sampling for semivalue approximations.

FIXED LEARNING CONTEXT. As outlined in Section 2, a utility function u is defined as:

u(S) = perf(A(S),Dtest),
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where A is a learning algorithm that outputs a model trained on a dataset S, and perf evaluates
the model on a test set Dtest. The learning algorithm A specifies the model class, objective function,
optimization procedure, and hyperparameters (e.g., learning rate, weight initialization).

By fixing (A,Dtest), we ensure that swapping between two utilities, say, accuracy versus F1-score,
amounts solely to changing the performance metric perf. Consequently, any shift in the semivalue
scores’ ranking (measured by rank correlation metrics) can only be attributed to the utility choice.

Controlling for sampling noise in semivalue estimates. The above discussion assumes access to
exact semivalue scores, but in practice, we approximate them via Monte Carlo permutation sampling,
which injects random noise into each run. Without accounting for this sampling variability, differences
in semivalue scores’ rankings could reflect estimator noise rather than genuine sensitivity to the
utility.

To enforce this, we introduce aligned sampling alongside the fixed learning context (A,Dtest).
Aligned sampling consists of pre-generating a single pool of random permutations (or sampling
seeds) and reusing those same permutations when estimating semivalues for each utility. By sharing
both the model-training environment and the permutation draws, we ensure that any differences in
resulting rankings are driven solely by the change in utility.

Fixed set of permutations. Let P = {π1, π2, . . . , πm} denote a fixed set of m random permu-
tations of the data points in D. We apply this exact set of permutations across multiple utilities
{u1, u2, . . . , uK} such that uk(·) = perfk[(A)(·),Dtest] with fixed (A,Dtest) for all k ∈ [K].

For a given performance metric perfk and the set of permutations P , we estimate the marginal
contributions {∆̂j (zi;uk)}nj=1 for each data point zi ∈ D with respect to the utility uk such as

∆̂j (zi;uk) :=
1

m

m∑
s=1

(
uk

(
Sπs
j ∪ {zi}

)
− uk

(
Sπs
j

))
,

where m is the number of permutations used, πs denotes the s-th permutation and Sπs
j represents the

subset of data points of size j − 1 that precedes zi in the order defined by permutation πs.

Determining the number of permutationsm. The number of permutationsm used in the marginal
contribution estimator is determined based on a maximum limit and a convergence criterion applied
across all utilities u1, . . . , uK . Formally,

m = max (mmin,min (mmax,mconv)) ,

where mmin is a predefined minimum number of permutations to avoid starting convergence checks
prematurely, mmax is a predefined maximum number of permutations set to control computational
feasibility, mconv is the smallest number of permutations required for the Gelman-Rubin (GR) Vats &
Knudson (2020) statistic to converge across all utility functions u1, . . . , uK . Using the Gelman-Rubin
statistic as a convergence criterion follows established practices in the literature Jiang et al. (2023);
Kwon & Zou (2022).

For each data point zi, the GR statistic Ri is computed for every 100 permutations across all utilities.
The sampling process halts when the maximum GR statistic across all data points and all utilities
falls below a threshold, indicating convergence. We adopt the conventional threshold of 1.05 for GR
convergence, consistent with prior studies in data valuation Jiang et al. (2023).

In this framework, the GR statistic, Rk
i , is used to assess the convergence of marginal contribution

estimates for each data point zi across C independent chains of s sampled permutations under each
utility uk. The GR statistic evaluates the agreement between chains by comparing the variability
within each chain to the variability across the chains, with convergence indicated whenRk

i approaches
1. Specifically, to compute the GR statistic for each data point zi under utility uk, we determine

1. The within-chain variance W k
i which captures the variability of marginal contributions for

zi within each chain. Specifically, if there are c independent chains, W k
i is calculated as the

average of the sample variances within each chain

W k
i =

1

C

C∑
c=1

s2i,c,
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where s2i,c is the sample variance of marginal contributions for zi within chain c. This term
reflects the dispersion of estimates within each chain,

2. And the between-chain variance Bk
i , which measures the variability between the mean

marginal contributions across the chains. It indicates how much the chains differ from each
other. The between-chain variance is defined as

Bk
i =

s

C − 1

C∑
c=1

(
∆̄c(zi;uk)− ∆̄(zi;uk)

)2
,

where ∆̄c(zi;uk) is the mean marginal contribution for zi in chain c, and ∆̄(zi;uk) is the
overall mean across all chains

∆̄(zi;uk) =
1

C

C∑
c=1

∆̄c(zi;uk).

The term Bk
i quantifies the extent of disagreement among the chain means.

Combining both W k
i and Bk

i , the GR statistic Rk
i for data point zi under utility uk is defined as:

Rk
i =

√
(s− 1)

s
+

Bk
i

W k
i · s

.

Intra-permutation truncation. Building on existing literature Ghorbani & Zou (2019); Jiang et al.
(2023), we further improve computational efficiency by implementing an intra-permutation truncation
criterion that restricts coalition growth once contributions stabilize. Given a random permutation
πs ∈ P , the marginal contribution for each data point zπs,j

(the j-th point in the permutation πs)
is calculated incrementally as the coalition size j increases from 1 up to n. However, instead of
expanding the coalition size through all n elements, the algorithm stops increasing j when the
marginal contributions become stable based on a relative change threshold.

For each step l ∈ [n] within a permutation, the relative change V k
l in the utility uk is calculated as:

V k
l :=

∣∣uk ({zπs,j
}lj=1 ∪ {zπs,l+1

}
)
− uk

(
{zπs,j

}lj=1

)∣∣
uk

(
{zπs,j

}lj=1

) .

where {zπs,j}lj=1 represents the coalition formed by the first l data points in πs. This measures the
relative change in the utility uk when adding the next data point to the coalition. The truncation
criterion stops increasing the coalition size at the smallest value j satisfying the following condition:

j∗ = argmin
{
j ∈ [n] :

∣∣{l ≤ j : Vl ≤ 10−8}
∣∣ ≥ 10

}
.

This means that the coalition size j∗ is fixed at the smallest j for which there are at least 10 prior values
of Vl (for l ≤ j) that are smaller than a threshold of 10−8. This condition ensures that the utility uk has
stabilized, indicating convergence within the permutation. This intra-permutation truncation reduces
computational cost by avoiding unnecessary calculations once marginal contributions stabilize.

Aggregating marginal contributions for semivalues estimation. Once the marginal contributions
have been estimated consistently across all permutations and utilities, they are aggregated to compute
various semivalues, such as the Shapley, Banzhaf, and (4, 1)-Beta Shapley values. Each semivalue
method applies a specific weighting scheme (see Definition 2.1, 2.2, 2.3) to the marginal contributions
to reflect the intended measure of data point importance.

For a data point zi under utility uk, its approximated data value ϕ̂(zi;ω, uk) is computed by applying
a weighting scheme ω to the marginal contributions across coalition sizes

ϕ̂(zi;ω, uk) =

n∑
j=1

ωj ∆̂j(zi;uk),

where ∆̂j(zi;uk) is the estimated marginal contribution for coalition size j − 1, and ωj is the weight
assigned to coalition size j − 1.
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Learning algorithm A. For binary classification experiments, A is a logistic-regression classifier
(binary cross-entropy loss) trained via L-BFGS with ℓ2 regularization (λ = 1.0). For multiclass
classification experiments, A is a feed-forward MLP (ReLU hidden layers, softmax output) trained
with cross-entropy via L-BFGS and ℓ2 regularization (λ = 1.0). For regression experiments, A is a
linear ridge model (squared-error loss, ℓ2 regularization λ = 1.0) trained with L-BFGS. We initialize
all weights from N (0, 1) with a fixed random seed, disable early stopping, and fix the maximum
number of training epochs to 100. The optimizer’s step size is 1.0.

Decision-threshold calibration for binary classification. Because we compare multiple binary
classification utilities (accuracy, F1-score, etc.), using a fixed probability cutoff (e.g., 0.5) can unfairly
favor some metrics over others, especially under class imbalance. To ensure that differences in
semivalue scores’ rankings arise from the utility definition (and not an arbitrary threshold), we
calibrate the decision boundary to the empirical class prevalence. Concretely, if p is the fraction of
positive labels in the training set, we set the cutoff at the (1− p)-quantile of the model’s predicted
probabilities. This way, each trained model makes exactly p% positive predictions, aligning base-rate
assumptions across utilities and isolating the effect of the performance metric itself.

Computational resources and runtime. All experiments ran on a single machine (Apple M1
(8-core CPU) with 16 GB RAM) without parallelization. A full semivalue estimation, consisting of 5
independent Monte Carlo approximations, for one dataset of 100 data points takes approximately 15
minutes.

A.2 ADDITIONAL RESULTS ON RANK CORRELATION FOR MORE BINARY CLASSIFICATION
METRICS

In Table 1, we compare semivalue score rankings under accuracy versus F1-score. Here, we broaden
this analysis to include other widely used binary classification utilities (recall, negative log-loss, and
arithmetic mean). Tables 3 and 4 show that ranking variability persists across datasets and semivalue
choices when using these additional metrics.

Table 3: Mean Kendall rank correlations (standard error in parentheses rounded to one significant
figure for clarity) between accuracy (acc) and negative log-loss (nll), and between F1-score (f1)
and negative log loss, for three semivalues (Shapley, Beta (4,1), Banzhaf). Values are averaged over 5
estimations.

Dataset Shapley (4,1)-Beta Shapley Banzhaf

acc-nll f1-nll acc-nll f1-nll acc-nll f1-nll

BREAST -0.59 (0.02) -0.60 (0.02) -0.65 (0.01) -0.66 (0.01) 0.18 (0.01) 0.18 (0.01)
TITANIC -0.53 (0.01) 0.54 (0.01) -0.60 (0.01) -0.61 (0.01) 0.14 (0.02) -0.07 (0.01)
CREDIT -0.59 (0.02) -0.43 (0.01) -0.66 (0.01) -0.49 (0.01) 0.38 (0.01) 0.28 (0.03)
HEART -0.04 (0.02) 0.01 (0.02) -0.20 (0.02) -0.17 (0.03) -0.07 (0.01) -0.05 (0.01)
WIND 0.67 (0.02) 0.69 (0.01) 0.74 (0.02) 0.73 (0.01) 0.26 (0.01) 0.44 (0.01)
CPU 0.55 (0.01) 0.68 (0.01) 0.59 (0.01) 0.69 (0.01) -0.53 (0.01) 0.52 (0.01)
2DPLANES 0.22 (0.02) 0.98 (0.01) 0.41 (0.01) 0.98 (0.01) -0.03 (0.01) 0.18 (0.01)
POL 0.58 (0.01) 0.79 (0.01) 0.74 (0.01) 0.81 (0.01) -0.01 (0.02) 0.13 (0.02)

A.3 ADDITIONAL RESULTS ON RANK CORRELATION USING THE SPEARMAN RANK
CORRELATION

For completeness, we re-evaluate all of our pairwise semivalue ranking comparisons using Spearman
rank correlation instead of Kendall rank correlation. As shown in Tables 5 and 6, datasets and
semivalues that exhibit low Kendall correlations between different utilities also yield low Spearman
correlations, and vice versa.
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Table 4: Mean Kendall rank correlations (standard error in parentheses rounded to one significant
figure for clarity) between recall (rec) and accuracy (acc) for three semivalues (Shapley, Beta (4,1),
Banzhaf). Values are averaged over 5 estimations.

Dataset Shapley (4,1)-Beta Shapley Banzhaf

acc-am acc-rec am-rec acc-am acc-rec am-rec acc-am acc-rec am-rec

BREAST 0.93 (0.01) 0.98 (0.01) 0.92 (0.01) 0.94 (0.01) 0.98 (0.01) 0.92 (0.01) 0.82 (0.03) 0.99 (0.01) 0.81 (0.03)
TITANIC -0.25 (0.04) 0.77 (0.02) -0.05 (0.05) -0.27 (0.03) 0.62 (0.04) 0.08 (0.05) 0.46 (0.02) 0.81 (0.01) 0.65 (0.01)
CREDIT -0.31 (0.01) 0.07 (0.01) 0.60 (0.02) -0.31 (0.02) 0.12 (0.04) 0.62 (0.01) 0.35 (0.01) 0.58 (0.01) 0.76 (0.01)
HEART 0.19 (0.02) 0.98 (0.01) 0.18 (0.02) 0.22 (0.01) 0.98 (0.01) 0.19 (0.01) 0.61 (0.01) 0.98 (0.01) 0.59 (0.02)
WIND 0.08 (0.03) 0.98 (0.01) 0.07 (0.03) 0.10 (0.02) 0.98 (0.01) 0.08 (0.04) 0.77 (0.01) 0.98 (0.01) 0.75 (0.01)
CPU 0.19 (0.04) 0.75 (0.02) 0.18 (0.01) 0.22 (0.03) 0.78 (0.02) 0.22 (0.02) 0.79 (0.01) 0.93 (0.01) 0.86 (0.01)
2DPLANES 0.31 (0.02) 0.99 (0.01) 0.31 (0.02) 0.33 (0.02) 0.99 (0.01) 0.33 (0.02) 0.037 (0.01) 0.99 (0.01) 0.37 (0.01)
POL 0.56 (0.01) 0.73 (0.01) 0.29 (0.01) 0.56 (0.01) 0.79 (0.01) 0.34 (0.01) 0.67 (0.01) 0.69 (0.01) 0.36 (0.01)

Table 5: Mean Spearman rank correlations (standard error in parentheses rounded to one significant
figure for clarity) between accuracy (acc) and negative log-loss (nll), and between F1-score (f1)
and negative log loss, for three semivalues (Shapley, Beta (4,1), Banzhaf). Values are averaged over 5
estimations.

Dataset Shapley (4,1)-Beta Shapley Banzhaf

acc-f1 acc-nll f1-nll acc-f1 acc-nll f1-nll acc-f1 acc-nll f1-nll

BREAST 0.99 (0.01) -0.76 (0.02) -0.78 (0.02) 0.99 (0.01) -0.82 (0.01) -0.83 (0.01) 0.98 (0.01) 0.22 (0.01) 0.23 (0.01)
TITANIC -0.20 (0.01) -0.71 (0.01) 0.74 (0.01) -0.18 (0.01) -0.79 (0.01) -0.80 (0.01) 0.95 (0.01) 0.18 (0.02) -0.20 (0.01)
CREDIT -0.50 (0.02) -0.76 (0.02) -0.61 (0.02) -0.52 (0.01) -0.83 (0.01) -0.68 (0.02) 0.90 (0.01) 0.53 (0.01) 0.40 (0.03)
HEART 0.71 (0.01) -0.04 (0.02) 0.03 (0.03) 0.67 (0.01) -0.28 (0.04) -0.23 (0.04) 0.96 (0.01) -0.10 (0.02) -0.08 (0.02)
WIND 0.85 (0.01) 0.84 (0.01) 0.86 (0.01) 0.85 (0.01) 0.90 (0.01) 0.89 (0.01) 0.97 (0.01) 0.34 (0.01) 0.62 (0.01)
CPU 0.47 (0.02) 0.73 (0.01) 0.85 (0.01) 0.45 (0.01) 0.77 (0.01) 0.86 (0.01) 0.87 (0.01) -0.71 (0.01) 0.70 (0.01)
2DPLANES 0.24 (0.01) 0.33 (0.02) 0.99 (0.01) 0.28 (0.02) 0.58 (0.01) 0.99 (0.01) 0.75 (0.01) -0.04 (0.02) 0.24 (0.05)
POL 0.70 (0.01) 0.77 (0.01) 0.92 (0.01) 0.69 (0.01) 0.90 (0.01) 0.93 (0.01) 0.53 (0.01) -0.01 (0.03) 0.21 (0.02)

Table 6: Mean Spearman rank correlations (standard error in parentheses rounded to one significant
figure for clarity) between recall (rec) and accuracy (acc) for three semivalues (Shapley, Beta (4,1),
Banzhaf). Values are averaged over 5 estimations.

Dataset Shapley (4,1)-Beta Shapley Banzhaf

acc-am acc-rec am-rec acc-am acc-rec am-rec acc-am acc-rec am-rec

BREAST 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 0.90 (0.02) 0.99 (0.01) 0.89 (0.03)
TITANIC -0.37 (0.05) 0.91 (0.02) -0.08 (0.08) -0.37 (0.04) 0.89 (0.02) 0.10 (0.08) 0.62 (0.03) 0.93 (0.01) 0.84 (0.01)
CREDIT -0.45 (0.01) 0.09 (0.02) 0.79 (0.01) -0.40 (0.03) 0.11 (0.02) 0.83 (0.01) 0.5 (0.01) 0.75 (0.01) 0.92 (0.01)
HEART 0.29 (0.02) 0.99 (0.01) 0.27 (0.02) 0.28 (0.02) 0.89 (0.02) 0.27 (0.01) 0.80 (0.02) 0.99 (0.01) 0.78 (0.02)
WIND 0.12 (0.04) 0.99 (0.01) 0.11 (0.04) 0.12 (0.03) 0.97 (0.02) 0.10 (0.01) 0.92 (0.01) 0.99 (0.01) 0.92 (0.01)
CPU 0.27 (0.01) 0.90 (0.01) 0.27 (0.01) 0.27 (0.02) 0.92 (0.03) 0.31 (0.03) 0.93 (0.01) 0.99 (0.01) 0.97 (0.01)
2DPLANES 0.44 (0.03) 0.99 (0.01) 0.44 (0.03) 0.47 (0.03) 0.99 (0.01) 0.47 (0.03) 0.52 (0.01) 0.99 (0.01) 0.52 (0.01)
POL 0.75 (0.01) 0.90 (0.01) 0.42 (0.01) 0.74 (0.01) 0.93 (0.01) 0.48 (0.02) 0.85 (0.01) 0.87 (0.01) 0.52 (0.01)

A.4 TABLE FOR Rp RESULTS IN FIGURE 3

In support of Figure 3 displayed in Section 4, Table 7 below reports the mean and standard error of
the p-robustness metric Rp for p ∈ {500, 1000, 1500} on each dataset and semivalue.

A.5 EMPIRICAL VERIFICATION OF THE ASSUMPTION OF PROPOSITION 3.3

In this section, we verify empirically that the assumption of Proposition 3.3 holds for the two datasets
we take as examples in Figure 4, namely BREAST and TITANIC. For (u1, u2) = (λ, γ) we compute
the cross–size covariance matrix

Σ̂u1u2

jk := Cov
(
∆j(u1),∆k(u2)

)
, j, k ∈ {1, . . . , n},

using the same Monte Carlo runs as for the semivalues. We then check that off–diagonal terms are
negligible compared to the diagonal by computing two metrics:

ε̂ := max
j

∑
k ̸=j

∣∣Σ̂u1u2

jk

∣∣
Σ̂u1u2

jj

and δ̂ :=

∣∣Corr(ϕ(u1), ϕ(u2))− Corrdiag(ϕ(u1), ϕ(u2))
∣∣∣∣Corr(ϕ(u1), ϕ(u2))∣∣ ,
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Table 7: Mean p-robustness Rp (standard error in parentheses) for p ∈ {500, 1000, 1500} estimated
over 5 Monte Carlo trials (each trial corresponding to approximating the semivalue scores). Boldface
marks the semivalue with the highest Rp for each dataset and p. Higher Rp indicates greater stability
of the induced ranking under utility shifts.

Dataset R500 R1000 R1500

Shapley (4,1)-Beta Shapley Banzhaf Shapley (4,1)-Beta Shapley Banzhaf Shapley (4,1)-Beta Shapley Banzhaf

BREAST 0.22 (0.004) 0.23 (0.004) 0.34 (0.06) 0.63 (0.004) 0.64 (0.003) 0.59 (0.02) 0.79 (0.003) 0.80 (0.002) 0.71 (0.06)
TITANIC 0.058 (0.001) 0.058 (0.001) 0.44 (0.03) 0.27 (0.004) 0.28 (0.004) 0.81 (0.01) 0.48 (0.004) 0.48 (0.004) 0.89 (0.007)
CREDIT 0.084 (0.005) 0.091 (0.005) 0.82 (0.07) 0.36 (0.01) 0.38 (0.01) 0.97 (0.01) 0.58 (0.01) 0.60 (0.01) 0.99 (0.002)
HEART 0.16 (0.003) 0.16 (0.003) 0.53 (0.01) 0.54 (0.008) 0.54 (0.009) 0.87 (0.007) 0.73 (0.006) 0.73 (0.006) 0.93 (0.003)
WIND 0.23 (0.009) 0.21 (0.01) 0.58 (0.01) 0.64 (0.01) 0.62 (0.009) 0.88 (0.005) 0.79 (0.005) 0.77 (0.007) 0.94 (0.004)
CPU 0.11 (0.003) 0.12 (0.003) 0.38 (0.02) 0.45 (0.009) 0.45 (0.009) 0.77 (0.009) 0.66 (0.009) 0.67 (0.009) 0.88 (0.004)
2DPLANES 0.090 (0.001) 0.084 (0.002) 0.19 (0.012) 0.38 (0.004) 0.36 (0.006) 0.59 (0.02) 0.59 (0.004) 0.57 (0.006) 0.75 (0.01)
POL 0.090 (0.003) 0.09 (0.003) 0.19 (0.01) 0.39 (0.008) 0.42 (0.007) 0.50 (0.01) 0.60 (0.006) 0.62 (0.006) 0.70 (0.01)

where Corrdiag keeps only the diagonal entries Σ̂u1u2
jj . On BREAST and TITANIC, we find ε̂ < 0.12

meaning that, row-wise, the total magnitude of off–diagonal covariances
∑

k ̸=j |Σ̂
u1u2

jk | is at most

12% of the corresponding diagonal term Σ̂u1u2
jj , i.e., off–diagonal cross–size effects are negligible.

Moreover, we find that δ̂ ≤ 7% showing that using only the diagonal of Σ̂u1u2 reproduces the full
correlation within a few percent, which is exactly what one would expect if Cov(∆j(u1),∆k(u2)) ≈
0 for j ̸= k. Exact means ± 95% CIs are reported in Table 8.

Table 8: Verification of the cross–size independence assumption (Proposition 3.3):
ε̂ := maxj

∑
k ̸=j |Σ̂

u1u2

jk |/Σ̂u1u2
jj (smaller is better) and δ̂ :=

∣∣Corr(ϕ(u1), ϕ(u2)) −
Corrdiag(ϕ(u1), ϕ(u2))

∣∣/∣∣Corr(ϕ(u1), ϕ(u2))∣∣ (smaller is better). Mean ± 95% CI over R=5
seeds.

Dataset ε̂ (mean ± 95% CI) δ̂ (mean ± 95% CI)

BREAST 0.08± 0.03 0.03± 0.01
TITANIC 0.10± 0.02 0.05± 0.02

A.6 RESULTS FOR THE utility-trade-off SCENARIO SUMMARIZED IN SECTION 4.2

In this section, we evaluate robustness in the utility trade-off setting for both regression and multiclass
classification. In this setting, the utility is a convex combination of two task-relevant metrics,

uν = ν u1 + (1− ν)u2, ν ∈ [0, 1].

We consider the following utility pairs:

– Regression. MSE/MAE (Table 9), MSE/R2 (Table 10), and MAE/R2 (Table 11).

– Multiclass classification. Accuracy/macro-F1 (Table 12), Accuracy/macro-Recall (Table
13), and macro-F1/macro-Recall (Table 14).

For each pair, we compute semivalue-based rankings (Shapley, (4, 1)-Beta Shapley, Banzhaf) and
evaluate robustness along the convex path using R500.

A.7 WHAT IF WE A VARIES INSTEAD OF PERF?

Since u = perf ◦ A, one can alter the utility either by changing the algorithm A or by changing the
performance metric perf. Our main study held A fixed and varied perf. To illustrate the effect of
A, we run an additional experiment with a fixed metric (Accuracy) and two learning algorithms: (i)
logistic regression trained with L-BFGS and (ii) a multilayer perceptron (MLP) trained with SGD
(introducing randomness via initialization and optimization). Table 15 reports the mean Spearman
rank correlation (with standard error) between semivalue-based rankings obtained across multiple
runs with the two algorithms, for each semivalue and dataset.
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Table 9: Regression. Robustness scores R500 along the MSE-MAE convex path. Semivalues
are approximated over 5 runs using a linear regression model trained with L-BFGS. Datasets:
DIABETES (n = 442, d = 10), CALIFORNIA HOUSING (n = 20,640, d = 8), AMES HOUSING
(n = 2,930, d = 10); each subsampled to 300 training points. R500 is reported as mean ± standard
error across the 5 semivalue approximations.

Dataset Semivalue R500 (mean ± SE)

DIABETES Shapley 0.99± 0.01
(4,1)-Beta Shapley 0.99± 0.01
Banzhaf 0.99± 0.01

CALIFORNIA Shapley 0.72± 0.01
(4,1)-Beta Shapley 0.71± 0.01
Banzhaf 0.75± 0.01

AMES Shapley 0.99± 0.01
(4,1)-Beta Shapley 0.99± 0.01
Banzhaf 0.99± 0.01

Table 10: Regression. Robustness scores R500 along the MSE-R2 convex path, reported as mean ±
standard error across 5 semivalue approximations.

Dataset Semivalue R500 (mean ± SE)

DIABETES Shapley 0.89± 0.01
(4,1)-Beta Shapley 0.89± 0.02
Banzhaf 0.91± 0.01

CALIFORNIA Shapley 0.70± 0.01
(4,1)-Beta Shapley 0.67± 0.01
Banzhaf 0.81± 0.01

AMES Shapley 0.99± 0.01
(4,1)-Beta Shapley 0.99± 0.01
Banzhaf 0.99± 0.01

Table 11: Regression. Robustness scores R500 along the MAE-R2 convex path. Mean ± standard
error over the 5 approximations.

Dataset Semivalue R500 (mean ± se)

DIABETES Shapley 0.90± 0.02
(4,1)-Beta Shapley 0.89± 0.02
Banzhaf 0.94± 0.01

CALIFORNIA Shapley 0.66± 0.01
(4,1)-Beta Shapley 0.65± 0.01
Banzhaf 0.72± 0.02

AMES Shapley 0.98± 0.01
(4,1)-Beta Shapley 0.98± 0.01
Banzhaf 0.98± 0.01

These results show that rankings can vary with the learning algorithm, though not as strongly as when
changing the performance metric (cf. Table 1 in the main paper). We also observe smaller standard
errors for Banzhaf than for Shapley or (4,1)-Beta, suggesting Banzhaf rankings are less sensitive to
the randomness in the MLP, which aligns with prior analytical and empirical findings (Wang & Jia,
2023; Li & Yu, 2023).
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Table 12: Multiclass. Robustness scores R500 along the Accuracy-macro-F1 convex path. Semi-
values are approximated over 5 runs using an MLP (SGD, fixed seeds). Datasets: DIGITS
(n = 1,797, d = 64, 10classes), WINE (n = 178, d = 13, 3classes), IRIS (n = 150, d = 4, 3classes);
each subsampled to 100 training points. Mean ± standard error over the 5 approximations.

Dataset Semivalue R500 (mean ± se)

DIGITS Shapley 0.78± 0.03
(4,1)-Beta Shapley 0.75± 0.04
Banzhaf 0.82± 0.04

WINE Shapley 0.64± 0.05
(4,1)-Beta Shapley 0.61± 0.05
Banzhaf 0.68± 0.04

IRIS Shapley 0.56± 0.06
(4,1)-Beta Shapley 0.53± 0.05
Banzhaf 0.60± 0.06

Table 13: Multiclass. Mean robustness R500 along the Accuracy-macro Recall convex path (mean ±
SE over 5 semivalue approximations).

Dataset Semivalue R500 (mean ± SE)

DIGITS Shapley 0.70± 0.01
(4,1)-Beta Shapley 0.68± 0.01
Banzhaf 0.76± 0.03

WINE Shapley 0.60± 0.01
(4,1)-Beta Shapley 0.57± 0.01
Banzhaf 0.63± 0.04

IRIS Shapley 0.52± 0.02
(4,1)-Beta Shapley 0.50± 0.03
Banzhaf 0.56± 0.03

Table 14: Multiclass. Mean robustness R500 along the macro F1-macro Recall convex path (mean ±
SE over 5 semivalue approximations).

Dataset Semivalue R500 (mean ± SE)

DIGITS Shapley 0.71± 0.01
(4,1)-Beta Shapley 0.71± 0.01
Banzhaf 0.75± 0.03

WINE Shapley 0.67± 0.02
(4,1)-Beta Shapley 0.68± 0.01
Banzhaf 0.77± 0.04

IRIS Shapley 0.80± 0.02
(4,1)-Beta Shapley 0.78± 0.02
Banzhaf 0.83± 0.05
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Table 15: Spearman rank correlation (mean ± standard error) between semivalue rankings computed
with a logistic regression model and an MLP, using accuracy as the metric. Results are averaged over
5 runs (varying both the MLP initialization/optimization and the semivalue approximation).

Dataset Semivalue Spearman (mean ± se)

BREAST Shapley 0.62± 0.21
(4,1)-Beta Shapley 0.67± 0.18
Banzhaf 0.67± 0.05

TITANIC Shapley 0.71± 0.13
(4,1)-Beta Shapley 0.71± 0.07
Banzhaf 0.80± 0.03

HEART Shapley 0.65± 0.21
(4,1)-Beta Shapley 0.62± 0.22
Banzhaf 0.93± 0.07

WIND Shapley 0.82± 0.11
(4,1)-Beta Shapley 0.87± 0.10
Banzhaf 0.85± 0.03
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B ADDITIONAL PROOFS & DERIVATIONS

For the reader’s convenience, we first outline the main points covered in this section.

– Appendix B.1: First-order approximation of the utility in the multiple-valid-utility scenario
for binary classification and empirical validation.

– Appendix B.2: Proof of Proposition 3.1 and its extension to K ≥ 2 base utilities.

– Appendix B.3: Ranking region counts for specific cases of spatial signature.

– Appendix B.4: Link between the robustness metric Rp and the Kendall rank correlation.

– Appendix B.5: Closed-form for Eᾱ[ρp(ᾱ)].

– Appendix B.6: Maximum average p-swaps distance occurs under collinearity of the spatial
signature.

– Appendix B.7: Proof of proposition 3.3.

B.1 FIRST-ORDER APPROXIMATION OF THE UTILITY IN THE multiple-valid-utility SCENARIO
FOR BINARY CLASSIFICATION AND EMPIRICAL VALIDATION

This section justifies the approximation used in Section 3, where a linear-fractional utility function u
is replaced by its affine surrogate.

Formally, we state in Section 3 that any linear-fractional utility u of the form equation 2 with d0 ̸= 0,
admits a first-order (Taylor–Young) expansion around (λ, γ) = (0, 0) of the form

u(S) =
c0
d0

+
c1d0 − c0d1

d20
λ(S) +

c2 d0 − c0 d2
d20

γ(S) + o
(
max{|λ(S)|, |γ(S)|}

)
.

where {c0, c1, c2, d0, d1, d2} are real coefficients which specify the particular utility.

The proof is a direct Taylor expansion of u at (λ, γ) = (0, 0), followed by an empirical validation of
the affine surrogate by inspecting discordance rates.

Proof. Define N(λ, γ) = c0 + c1 λ + c2 γ and D(λ, γ) = d0 + d1 λ + d2 γ so that u(S) =
f
(
λ(S), γ(S)

)
with

f(λ, γ) =
N(λ, γ)

D(λ, γ)
.

Assuming d0 ̸= 0 (i.e., the denominator does not vanish at (0, 0)), the first-order Taylor expansion of
f around (0, 0) is

f(λ, γ) = f(0, 0) +
∂f

∂λ

∣∣∣∣
(0,0)

λ+
∂f

∂γ

∣∣∣∣
(0,0)

γ + o(∥(λ, γ)∥).

Concretely,

f(0, 0) =
c0
d0
,

∂f

∂λ

∣∣∣∣
(0,0)

=
c1d0 − c0d1

d20
,

∂f

∂γ

∣∣∣∣
(0,0)

=
c2d0 − c0d2

d20
.

Moreover, since all norms are equivalent in R2, the Euclidean norm ∥(λ, γ)∥ is equivalent to the
infinity norm max{λ, γ}. This concludes the proof.

To verify that the affine surrogate faithfully preserves the true utility’s induced ordering, we compare
rankings under u and under its first-order proxy û = c0

d0
+ c1d0−c0d1

d2
0

λ + c2d0−c0d2

d2
0

γ. For each of
the eight public binary-classification datasets introduced in Section A.1, and for each of the three
semivalues (Shapley, (4, 1)-Beta Shapley, and Banzhaf), we proceed as follows:

1. Exact ranking. Compute semivalue scores by using the exact linear-fractional utility u, then
sort the resulting scores to obtain a reference ranking r of the n data points.
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2. Affine surrogate ranking. Replace the utility u with its first-order affine approximation
around (λ, γ) = (0, 0) denoted as û, compute semivalue scores, and sort to obtain an
approximate ranking r̂.

3. Discordance measurement. For each pair of rankings (r, r̂), count the number d of discordant
pairs (i.e., pairs of points ordered differently between the two rankings), and record the
proportion d/N , where N =

(
n
2

)
.

4. Repetition and averaging Repeat steps 1–3 several times, each time using an independent
Monte Carlo approximation of the semivalue scores, to capture sampling variability.

Table 16 reports, for each dataset and semivalue, the average proportion of discordant pairs (±
standard error) between rankings obtained with the exact linear-fractional utility and its first-order
affine proxy, for both F1-score and Jaccard coefficient (see Table 17 for their definitions). In all
experiments, the sum of the mean discordance rate and its standard error never exceeds 2.3%.

These discordance rates, at most a few percent of all
(
n
2

)
pairs, confirm that, in practice, the omitted

higher-order terms of the utility have only a minor effect on the induced semivalue ranking. Conse-
quently, using the affine surrogate instead of the exact linear-fractional form is reasonably justified
whenever one’s primary interest lies in the ordering of data values rather than their precise numerical
magnitudes.

Table 16: Proportion of discordant pairs (± standard error) between rankings induced by the exact
linear-fractional utility u and its first-order affine surrogate û, for F1-score and Jaccard utilities.
Values are computed over N =

(
50
2

)
= 1225 pairs and averaged over 5 Monte Carlo trials.

Dataset F1-score Jaccard
Shapley (4,1)-Beta Shapley Banzhaf Shapley (4,1)-Beta Shapley Banzhaf

BREAST 0.8% (0.1%) 0.8% (0.2%) 0.9% (0.1%) 0.7% (0.1%) 0.9% (0.1%) 0.9% (0.2%)
TITANIC 1.3% (0.3%) 1.3% (0.3%) 0.8% (0.3%) 1.6% (0.4%) 1.3% (0.3%) 0.7% (0.1%)
CREDIT 1.5% (0.5%) 1.6% (0.2%) 1.0% (0.1%) 1.5% (0.3%) 1.7%(0.1%) 0.7% (0.3%)
HEART 1.0% (0.1%) 0.8% (0.1%) 0.8% (0.1%) 1.2% (0.2%) 1.1% (0.3%) 0.7% (0.2%)
WIND 1.0% (0.2%) 0.8% (0.1%) 0.8% (0.2%) 0.9%(0.1%) 1.2% (0.4%) 1.0% (0.4%)
CPU 1.6% (0.5%) 1.2% (0.2%) 0.7% (0.1%) 1.3% (0.2%) 1.3% (0.2%) 0.9% (0.1%)
2DPLANES 1.7% (0.1%) 1.9%(0.1%) 0.8% (0.1%) 1.3%(0.1%) 1.6%(0.2%) 1.1% (0.4%)
POL 1.8% (0.4%) 2.0% (0.2%) 1.5% (0.5%) 2.1% (0.2%) 2.0% (0.2%) 1.6% (0.5%)

B.2 PROOF OF PROPOSITION 3.1 AND ITS EXTENSION TO K ≥ 2 BASE UTILITIES

This section provides the formal proof of Proposition B.1, which generalizes Proposition 3.1. It
states that the semivalue score of any data point under a utility that is a linear combination of K base
utilities can be written as an inner product in RK . This result forms the backbone of the geometric
perspective developed in Section 3.

Proposition B.1 (Extension of Proposition 3.1 to K ≥ 2 base utilities). Let D be any dataset of
size n and let ω ∈ Rn be a semivalue weight vector. Then there exists a map ψω,D : D −→ RK

such that for every utility uα =
∑K

k=1 αkuk, ϕ
(
z;ω, uα

)
=

〈
ψω,D(z), α

〉
, for any z ∈ D. We call

Sω,D = {ψω,D(z) | z ∈ D} the spatial signature of D under semivalue ω.

The proof is a straightforward application of semivalue linearity. The main contribution is the
geometric interpretation of semivalue vectors as projections.

Proof. For each data point z ∈ D, let its semivalue characterized by ω be denoted by φ(z;ω, uα)
when the utility is uα. Under the standard linearity property of semivalues, the following linear
decomposition holds:

ϕ
(
z;ω, uα

)
= ϕ

(
z;ω,

K∑
k=1

αkuk

)
=

K∑
k=1

αkϕ(z;ω, uk).
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So if we define for each z,

ψω,D(z) =
(
ϕ(z;ω, u1), . . . , ϕ(z;ω, uK)

)
∈ RK ,

then by definition of the scalar (inner) product in RK ,
ϕ(z;ω, uα) = ⟨ψω,D(z), α⟩.

In the main text, we focus on the case where K = 2, i.e., utilities correspond to directions on
the unit circle S1. Proposition B.1 shows that the same reasoning carries over to any finite family
of K base utilities: data points embed as ψω,D(z) ∈ RK , and ranking by a convex combination
uα =

∑K
k=1 αkuk is equivalent to sorting the inner products ⟨ψω,D(z), α⟩. Since only the direction

of α matters, each utility is identified with a point ᾱ = α/∥α∥ on the unit sphere SK−1. Thus, for
general K, robustness to utility choice reduces to studying how the ordering of these projections
varies as ᾱ moves over SK−1.

B.3 RANKING REGIONS COUNTS FOR SPECIFIC CASES OF SPATIAL SIGNATURES

This section formalizes the notion of ranking regions, which play a central role in the robustness
analysis developed in Section 3. We begin by considering the hyperplane arrangement induced by
all pairwise differences between embedded data points in the spatial signature. This arrangement
partitions space into connected components, referred to as regions in the theory of hyperplane
arrangements (see Definition B.2). In our context, each such region corresponds to a set of utility
directions under which the ordering of data points remains constant. We refer to these as ranking
regions.
Definition B.2 (Region of a hyperplane arrangement). Let A ⊂ V be a finite arrangement of
hyperplanes in a real vector space V . The regions of A are the connected components of

V \
⋃

H∈A
H.

Each region is the interior of a (possibly unbounded) polyhedral cone and is homeomorphic to V .
We denote the number of such regions by r(A).

We now specialize Definition B.2 to our data valuation setting. Let D = {z1, . . . , zn} be a dataset
and let ψω,D(zi) ∈ RK denote the embedding of each point under semivalue weighting ω. For each
pair i < j, we define

Hij =
{
α ∈ RK : ⟨α,ψω,D(zi)− ψω,D(zj)⟩ = 0

}
.

Each set Hij is defined as the kernel of the linear functional α 7→ ⟨α,ψω,D(zi)− ψω,D(zj)⟩. Since
ψω,D(zi) ̸= ψω,D(zj) for i ̸= j (unless the data points are embedded identically), the difference
vector ψω,D(zi) − ψω,D(zj) ∈ RK is nonzero. Therefore, this kernel is a linear subspace of
codimension one in RK , which, by definition, is a hyperplane. Moreover, each Hij contains the
origin α = 0K ; it is thus a central hyperplane by definition.

Each hyperplane Hij is the set of utility directions that assign equal projection scores to points
zi and zj . The finite arrangement Aω,D = {Hij : 1 ≤ i < j ≤ n} then induces a collection of
regions in the sense of Definition B.2, partitioning RK into open cones such that, in each region,
the relative ordering of projected values ⟨α,ψω,D(zi)⟩ and ⟨α,ψω,D(zj)⟩ remains the same for all
i < j. Therefore, each region determines a unique ordering of the embedded points, corresponding to
a distinct way of ranking the data points of D based on utility direction. To study robustness with
respect to directional changes, we project this arrangement onto the unit sphere SK−1. Since all
hyperplanes are central, their intersection with the sphere produces great spheres, and the resulting
decomposition of SK−1 consists of spherical connected regions over which the ranking of the data
points remains invariant. We refer to these regions as ranking regions. Formally, a ranking region is a
connected component of SK−1 \

⋃
i<j

(
Hij

⋂
SK−1

)
.

We now study how the number of such ranking regions depends on the geometry of the spatial
signature. In particular, using Proposition B.3, we provide an explicit count of ranking regions in two
specific geometric configurations of the embedded points.
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Proposition B.3 (Regions counts). Let A = {H1, . . . ,Hm} be an arrangement of m central (i.e.,
origin-passing) hyperplanes in a real vector space V of dimension K.

1. If no K hyperplanes in the arrangement intersect in a common subspace of dimension
greater than zero (in particular, not in a line), then the number of regions into which A
partitions V is

r(A) = 2

K−1∑
k=0

(
m− 1

j

)
.

2. If all hyperplanes coincide (i.e., H1 = · · · = Hm), then the number of regions is:
r(A) = 2.

Proof. Let A = {H1, . . . ,Hm} be an arrangement of m hyperplanes in a real vector space V of
dimension K.

1. Suppose no K hyperplanes in the arrangement intersect in a common subspace of dimension
greater than zero (in particular, not in a line).

Choose any hyperplane H ∈ A, and define two affine hyperplanes H+and H−, parallel to
H and on opposite sides of the origin, such that the origin lies strictly between them.

Each of the remaining m− 1 hyperplanes of A intersects H+ in a hyperplane of dimension
K−2, and these intersections form an arrangement of m−1 hyperplanes in H+ (which is a
space of dimension K − 1). By Proposition 2.4 in Stanley (2007) (derived from Zaslavsky’s
work Zaslavsky (1975)), the number of regions induced by this non-central4 arrangement in
H+ is:

n−1∑
j=0

(
m− 1

j

)
These regions correspond exactly to the regions of V \

⋃
H∈AH that lie entirely on one

side of H . By symmetry, the same number of regions lies on the opposite side (on H−).
Therefore, the total number of regions for the whole arrangement is:

r(A) = 2

n−1∑
j=0

(
m− 1

j

)
2. Suppose that all hyperplanes in the arrangement coincide, i.e., H1 = · · · = Hm = H for

some hyperplane H ⊂ V . Then ⋃
H∈A

H = H,

and the complement V \
⋃

H∈AH consists of exactly two connected open sets: the two
half-spaces determined by H . Therefore, the number of regions is

r(A) = 2.

We now apply Proposition B.3 to the arrangement Aω,D formed by the hyperplanes Hij defined from
pairwise differences of embedded points in the spatial signature Sω,D. Since each Hij is a central
hyperplane in RK , the arrangement Aω,D partitions the space into open polyhedral cones, whose
connected components are the regions of the arrangement. Each of these cones intersects the unit
sphere SK−1 in a unique open subset, yielding a spherical partition of SK−1. Therefore, the number
of ranking regions on SK−1 is equal to the number of regions of the central hyperplane arrangement
in RK , and can be computed directly using Proposition B.3.

Corollary B.4 provides the number of ranking regions for two specific geometric configurations of
the spatial signature.

4Since the m− 1 hyperplanes do not all pass through a same point on H+.
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Corollary B.4 (Ranking regions counts). Let D = {z1, . . . , zn} be a dataset and let ψω,D(zi) ∈ RK

denote the spatial signature of point zi under semivalue weighting ω. For each pair i < j, define the
hyperplane

Hij =
{
α ∈ RK : ⟨α,ψω,D(zi)− ψω,D(zj)⟩ = 0

}
.

Since there are
(
n
2

)
pairs (i, j), the arrangement Aω,D = {Hij : 1 ≤ i < j ≤ n} consists of

N =
(
n
2

)
central hyperplanes in RK . Let r(Aω,D) denote the number of connected regions in the

complement of this arrangement. Then

1. If no K hyperplanes Hij intersect in a common subspace of dimension greater than zero,
the number of ranking regions is

r(Aω,D) = 2

K−1∑
k=0

(
N − 1

k

)
, where N =

(
n

2

)
.

2. If all embedded points ψω,D(zi) lie on a line in RK , then all hyperplanes Hij coincide and
r(Aω,D) = 2.

Figure 2 illustrates these two specific geometric configurations on the circle S1 (corresponding to the
case K = 2). In both cases, the observed number of ranking regions coincides with the counts given
by Corollary B.4.

B.4 LINK BETWEEN THE ROBUSTNESS METRIC Rp AND THE KENDALL RANK CORRELATION

If there are no tied ranks, the Kendall rank correlation between two orderings of n points is defined
as τ = 1− 2D

N , where D is the number of discordant pairs and N =
(
n
2

)
is the total number of pairs.

Since crossing one ranking region swaps exactly one pair, each such swap increases D by one and
thus decreases τ by 2/N . Consequently, p swaps lower the correlation from 1 to 1− 2p

N . Therefore,
Rp captures how far in expectation one must move from a utility direction before the Kendall rank
correlation degrades by at least 2p/N .

However, this statement only holds in the setting where no ties occur. In practical scenarios involving
ties, the degradation in τ can be either smaller or larger than what Rp would suggest. The purpose of
this subsection is to explain why worse-than-expected degradation is possible, which is the main risk
when interpreting Rp through the lens of Kendall correlation in practice.

The Kendall rank correlation between rankings A and B is defined as

τ =
c− d√(

N − tA
) (
N − tB

) ,
where c is the number of concordant pairs, d is the number of discordant pairs (c and d count only
untied pairs), N =

(
n
2

)
is the total number of pairs, tA (resp. tB) is the number of tied pairs in

ranking A (resp. B).

Performing p pairwise swaps among tied items can amplify the degradation of τ beyond the idealized
−2p/N amount (derived under the no-ties assumption) due to two effects:

– Resolving ties i.e., decreasing tA or tB , increases the factors N − tA or N − tB and thus
the denominator. For a fixed numerator c − d, this directly reduces the magnitude of τb.
Critically, even as c− d decreases (due to increased discordance), the growing denominator
further exacerbates the decline.

– Swapping two items within a block of k tied points can order up to
(
k
2

)
formerly tied pairs

at once. If these newly ordered pairs are discordant, a single swap increases d by up to
(
k
2

)
,

rather than just 1.

Consequently, when many tied groups exist, one might observe after p swaps,

∆τb < −2p

N
,

i.e., a larger drop in rank correlation than in the no-ties case.
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B.5 CLOSED-FORM FOR Eᾱ[ρp(ᾱ)]

This section provides the derivation of a closed-form expression for E[ρp], introduced in Section 3,
which quantifies how far, on average, one must rotate the utility direction on the sphere before p
pairwise ranking swaps occur. In Section 3, we describe how this quantity captures the local stability
of the ranking induced by the spatial signature. Here, we formally compute this quantity in the case
where K = 2 (i.e., in the case where the utilities we consider can be written as a linear combination
of two base-utilities). We also show that the closed-form expression derived in the K = 2 case can
be computed in O(n2 log n) time. Finally, we briefly discuss the higher-dimensional case K > 2, for
which no closed-form is available, and describe how E[ρp] can be approximated via Monte Carlo
sampling.

Recall that ρp(ᾱ) measures the minimal geodesic distance one must rotate a utility direction ᾱ ∈
SK−1 before the ranking of points in D = {zi}i∈[n] changes by p pairwise swaps. Each pair of
points (zi, zj) defines cuts on SK−1 which are utility directions along which the scores of zi and
zj are equal. These cuts partition SK−1 into (ranking) regions where the ranking of points remains
fixed. In what follows, we focus on the case K = 2, where utility directions lie on the unit circle S1,
and ρp(ᾱ) can be treated as a function of the angle associated with ᾱ ∈ S1.

We parametrize the unit circle S1 by the angle φ ∈ [0, 2π[, writing ᾱ(φ) = (cosφ, sinφ) ∈ S1.
Since ρp depends only on this angle, we abbreviate ρp

(
ᾱ(φ)

)
by ρp(φ). Equivalently,

Eᾱ∼Unif(S1)[ρp(ᾱ)] = Eφ∼Unif[0,2π[[ρp(φ)] =
1

2π

∫ 2π

0

ρp(φ)dφ.

Recall from Section 3 that the 2N emphcut angles θ1 ≤ θ2 ≤ · · · < θ2N < 2π partition the interval
[0, 2π[ into arcs of lengths λk = θk+1 − θk (with θ2N+1 = θ1 + 2π). Within each arc, the ranking
remains fixed, and crossing into the next arc incurs exactly one additional swap.

For φ ∈ (θk, θk+1), the function ρp(φ) equals the minimum of the clockwise and counterclockwise
distances to the p-th next cut:

ρp(φ) = min
{
S+
k (p)− (φ− θk), S

−
k (p) + (φ− θk)

}
,

where the quantities S+
k (p) and S−

k (p), recalled from Section 3, are defined as

S+
k (p) =

p∑
i=1

λ(k+i) mod 2N , S−
k (p) =

p∑
i=1

λ(k−i) mod 2N .

Hence, the average value of ρp can be written as

Eᾱ[ρp(ᾱ)] =
1

2π

∫ 2π

0

ρp(φ)dφ =
1

2π

2N∑
k=1

∫ θk+1

θk

ρp(φ)dφ =
1

2π

2N∑
k=1

∫ λk

0

min{S+
k (p)− t, S−

k (p) + t}dt,

(3)

where we set t = φ− θk ∈ [0, λk] as a local coordinate that measures the angular distance from the
left endpoint of the k-th arc.

The expression inside the integral reflects the shortest of two angular paths along the circle from the
start of the k-th arc: one going clockwise (of length S+

k (p)− t) and one counterclockwise (of length
S−
k (p) + t). These two expressions intersect at

t∗k =
S+
k (p)− S−

k (p)

2
.

Intuitively,

• If t∗k ≤ 0, even at t = 0, the clockwise path is already shorter, so ρp(t) = S+
k (p)− t for all

t ∈ [0, λk].

• If t∗k ≥ λk, the counterclockwise path is shorter throughout the entire arc, ρp(t) = S−
k (p)+t

for all t ∈ [0, λk].
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• If 0 < t∗k < λk, then for t < t∗k the counterclockwise path is shorter, and for t > t∗k, the
clockwise path is shorter.

We therefore split
∫ λk

0
ρp(t)dt =

∫ λk

0
min{S+

k (p)− t, S−
k (p) + t}dt into the three cases:

1. If t⋆k ≤ 0, we have∫ λk

0

min{S+
k (p)− t, S−

k (p) + t}dt =
∫ λk

0

(S+
k (p)− t)dt = S+

k (p)λk − 1

2
λ2k

2. If t⋆k ≥ λk, we have∫ λk

0

min{S+
k (p)− t, S−

k (p) + t}dt =
∫ λk

0

(S−
k (p) + t)dt = S−

k (p)λk +
1

2
λ2k

3. If 0 < t⋆k < λk, we have∫ λk

0

min{S+
k (p)− t, S−

k (p) + t}dt =
∫ t⋆k

0

(S−
k (p) + t)dt+

∫ λk

t⋆k

(S+
k (p)− t)dt

= S−
k (p)t⋆k +

1

2
(t⋆k)

2 + S+
k (p)(λk − t⋆k)

− 1

2
(λ2k − (t⋆k)

2).

Putting these three cases together and summing over k yields a piecewise-defined expression for the
integral on each arc. Precisely, plugging these into the expression for Eᾱ[ρp(ᾱ)] in Eq. equation 3,
we finally obtain the closed-form

Eᾱ[ρp(ᾱ)] =
1

2π

2N∑
k=1

Ik,

where Ik denotes the value of the integral over the k-th arc, defined as

Ik :=

∫ λk

0

min{S+
k (p)− t, S−

k (p) + t}dt,

and can be computed using the following case distinction

Ik =


S+
k (p)λk − 1

2λ
2
k if t∗k ≤ 0,

S−
k (p)λk + 1

2λ
2
k if t∗k ≥ λk,

S−
k (p)t∗k + 1

2 (t
∗
k)

2 + S+
k (p)(λk − t∗k)− 1

2 (λ
2
k − (t∗k)

2) if 0 < t∗k < λk,

with t∗k =
S+
k (p)−S−

k (p)

2 as previously defined.
Remark B.5 (Computational cost). The closed-form expression for E[ρp] can be computed in
O(n2 log n) time. First, computing the 2N = O(n2) cut angles defined by all unordered pairs of
points (zi, zj) requires O(n2) time, since each involves a simple trigonometric operation in R2.
Sorting these angles to define the arc intervals costs O(n2 log n). Once sorted, the distances S+

k (p)

and S−
k (p) to the p-th next and previous cuts can be computed efficiently for all k using sliding

windows indexing in O(n2) time. The final step, i.e., evaluating the integral over each of the 2N arcs,
also takes O(n2) time. Thus, the total computational cost is O(n2 log n), dominated by the sorting
step.
Remark B.6 (Case K > 2). The above closed-form derivation relies on the fact that utilities
correspond to angles on S1 (i.e., K = 2). When K > 2, utilities lie on the higher-dimensional
sphere SK−1. In that setting, one can still define ρp(ᾱ) as the minimal geodesic distance on SK−1 to
incur p swaps, but the integral Eᾱ∼Unif(SK−1)

[
ρp(ᾱ)

]
admits no simple closed-form expression. In

practice, one must approximate it numerically by Monte Carlo sampling. Specifically, for any unit
vector ᾱ ∈ SK−1, each pair (i, j) defines a cut great–sphere

Hij = {β ∈ SK−1 : ⟨β, vij⟩ = 0} vij = ψ(zi)− ψ(zj).

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

The shortest geodesic distance from ᾱ to that cut is given in closed form by

dij(ᾱ) = arcsin
∣∣⟨ᾱ, vij/∥vij∥⟩∣∣.

Thus, by getting all N =
(
n
2

)
distances {dij}, sorting them, and picking the p-th smallest, we obtain

ρp(ᾱ). Repeating for many independent ᾱ ∼ Unif(SK−1) gives a Monte Carlo estimate of the
average.

Let µ̂m := 1
m

∑m
ℓ=1 ρp

(
ᾱ(ℓ)

)
with i.i.d. draws ᾱ(ℓ) ∼ Unif(SK−1), and let µ := Eᾱ[ρp(ᾱ)]. Since

0 ≤ ρp(ᾱ) ≤ π/2, Hoeffding’s inequality gives, for any δ ∈ (0, 1),

P
(∣∣µ̂m − µ

∣∣ ≥ π
2

√
log(2/δ)

2m

)
≤ δ.

Equivalently, to guarantee
∣∣µ̂m − µ

∣∣ ≤ ε with probability at least 1− δ, it suffices that

m ≥ π2

8 ε2
log

2

δ
.

B.6 MAXIMUM AVERAGE p-SWAPS DISTANCE OCCURS UNDER COLLINEARITY OF THE
SPATIAL SIGNATURE

This section provides the theoretical justification for the claim made in Section 3 that the average
distance Eᾱ[ρp(ᾱ)] is maximized when the spatial signature is collinear, and equals π/4 in this case.

Recall that the spatial signature is the set of embedded vectors

Sω,D = {ψω,D(z) ∈ RK : z ∈ D},
where ψω,D(z) reflects the contribution of each data point z ∈ D to a family of K base utilities,
weighted by the semivalue coefficients ω. This embedding allows utility directions ᾱ ∈ SK−1 to
induce rankings via projection. The quantity ρp(ᾱ) measures the minimal geodesic distance on the
sphere SK−1 one must rotate ᾱ before the ranking changes by p pairwise swaps. We focus here on
the case K = 2, where utility directions lie on the unit circle S1, and show that the maximum of
E[ρp] is achieved when all embedded points lie on a common line through the origin. This derivation
provides an upper bound for E[ρp] and motivates the normalization in the robustness metric Rp (see
Definition 3.2).

Each pair of points (zi, zj) induces a cut on the circle S1, namely the two antipodal points where
⟨α,ψω,D(zi)− ψω,D(zj)⟩ = 0. When all embedded points ψω,D(zi) lie on a single line through the
origin, Corollary B.4 states that there is exactly one cut (of multiplicity N =

(
n
2

)
) which splits S1

into two open arcs, each of length π. Within either arc, no swaps occur until one crosses that cut,
at which point all N pairs flip simultaneously. Concretely, for any direction angle θ ∈ [0, π[, ρp(θ)
corresponds to the shortest angular distance to this cut, either clockwise or counterclockwise, and is
thus given by

ρp(θ) = min{θ, π − θ},
Hence,

Eᾱ[ρp(ᾱ)] =
1

2π

∫ 2π

0

ρp(φ)dφ =
1

2π
· 2

∫ π

0

min{θ, π − θ}dθ = π

4
.

Now, any deviation from perfect collinearity introduces distinct cuts, which can only further subdivide
those two π-length arcs into shorter pieces. Shorter maximal arc-lengths imply a smaller average
distance to the nearest swap, so for every spatial signature and every 1 ≤ p < N ,

E[ρp] ≤
π

4
,

with equality if and only if the signature is exactly collinear.
Remark B.7 (Case K > 2). For K > 2, perfect collinearity of the spatial signature still maximizes
the average p-swap distance, but the value max

Sω,D
Eᾱ[ρp(ᾱ)] must be evaluated numerically since for

K > 2 the distribution of angular distances from a uniformly random point on the sphere to a fixed
great sub-sphere no longer admits a simple elementary integral like for K = 2.
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Remark B.8 (Lower bounds for Eᾱ[ρp(ᾱ)]). Trivially, since ρp(ᾱ) ≥ 0 for all ᾱ,

Eᾱ[ρp(ᾱ)] ≥ 0, ∀p <
(
n

2

)
.

If instead we assume the spatial signature to be such that all N =
(
n
2

)
cuts on S1 are distinct, then

Proposition B.3 states that there are exactly 2N positive-length arcs of total length 2π. In this case, it
is easy to see that considering all ways to choose {λk} summing to 2π, the configuration λk = π/N
for all k minimizes the average ρp. Concretely, for λk = π/N we find

E[ρp] =
1

2π

2N∑
k=1

∫ π/N

0

(
p
π

N
− t

)
dt = (p− 1

2 )
π

N
.

Hence, under the distinct cuts assumption,

E[ρp(φ)] ≥
(
p− 1

2

) π
N
,

with equality exactly when the 2N cuts are perfectly equally spaced.

In this special setting, where all
(
n
2

)
cuts on S1 are distinct, one could alternatively define the

robustness metric as

Rp(Sω,D) =
Eᾱ[ρp(ᾱ)]− (p− 1

2 )
π
N

π/4− (p− 1
2 )

π
N

∈ [0, 1].

However, since in practice we cannot detect a priori that this condition on cuts holds, we instead use
the general robustness metric Rp as given in Definition 3.2.

B.7 PROOF OF PROPOSITION 3.3

In this section, we provide the detailed proof of Proposition 3.3. Recall that for any utility u,

ϕ(zi;ω, u) =

n∑
j=1

ωj ∆j

(
zi, u

)
,

where ∆j(zi, u) is the marginal contribution of zi with respect to coalitions of size j − 1. By
definition of the covariance,

Cov
(
ϕ(λ), ϕ(γ)

)
=

1

n

n∑
i=1

(
ϕ(zi;ω, λ)− ϕ̄(λ)

)(
ϕ(zi;ω, γ)− ϕ̄(γ)

)
,

where ϕ̄(·) denotes the mean over i. Using billinearity of covariance, we get

Cov
(
ϕ(λ), ϕ(γ)

)
=

n∑
j=1

n∑
k=1

ωjωk Cov
(
∆j(λ), ∆k(γ)

)
.

where

∆j(λ) =
(
∆j(z1;ω, λ), . . . ,∆j(zn;ω, λ)

)
and ∆j(γ) =

(
∆j(z1;ω, γ), . . . ,∆j(zn;ω, γ)

)
Under the assumption Cov(∆j(λ),∆k(γ)) = 0 for all j ̸= k, only the j = k terms remain, giving

Cov
(
ϕ(λ), ϕ(γ)

)
=

n∑
j=1

ω2
j Cov

(
∆j(λ),∆j(γ)

)
.

Similarly,

Var
(
ϕ(λ)

)
=

n∑
j=1

ω2
j Var

(
∆j(λ)

)
, Var

(
ϕ(γ)

)
=

n∑
j=1

ω2
j Var

(
∆j(γ)

)
.
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By the definition of Pearson correlation,

Corr
(
ϕ(λ), ϕ(γ)

)
=

n∑
j=1

ω2
j Cov(∆j(λ),∆j(γ))√√√√ n∑

j=1

ω2
j Var(∆j(λ))

√√√√ n∑
j=1

ω2
j Var(∆j(γ))

.

with Cov(∆j(λ),∆j(γ)) = Corr(∆j(λ),∆j(γ))
√
Var(∆j(λ))Var(∆j(γ)). Then, the correlation

becomes

Corr
(
ϕ(λ), ϕ(γ)

)
=

n∑
j=1

ω2
j

Corr(∆j(λ),∆j(γ))
√

Var(∆j(λ))Var(∆j(γ))√√√√ n∑
j=1

ω2
j Var(∆j(λ))

√√√√ n∑
j=1

ω2
j Var(∆j(γ))

Each term rj := Corr
(
∆j(λ),∆j(γ)

)√
Var

(
∆j(λ)

)
Var

(
∆j(γ)

)
can be understood as the effective

alignment of marginal contributions at coalition size j−1 across the two utilities λ and γ. Specifically,
Corr(∆j(λ),∆j(γ)) measures how similarly data points’ marginal contributions at size j − 1 move
under λ compared to under γ and

√
Var(∆j(λ))Var(∆j(γ)) down-weights sizes j − 1 where

marginal contributions are nearly constant (and thus uninformative) for either utility.
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C ADDITIONAL DEFINITIONS

For the reader’s convenience, we first outline the main points covered in this section.

– Appendix C.1: Some definitions of linear fractional utilities.
– Appendix C.2: Rank correlation metrics (Kendall & Spearman).
– Appendix C.3: Axioms satisfied by semivalues.
– Appendix C.4: Applications of semivalue-based data valuation methods.
– Appendix C.5: Extension of the multiple-valide utility scenario to multiclass classification

metrics.

C.1 SOME DEFINITIONS OF LINEAR FRACTIONAL UTILITIES

Below, we give the concrete coefficients (c0, c1, c2) and (d0, d1, d2) for several commonly used
linear-fractional performance metrics. Each of these metrics can be expressed in the form

u(S) =
c0 + c1λ(S) + c2γ(S)

d0 + d1λ(S) + d2γ(S)
.

as recalled from Eq.equation 2.

Table 17: Some examples of linear fractional utilities. For more examples, see Choi et al. (2009).
We set π = 1

m

∑m
j=1 1[yj = 1], the proportion of positive labels in Dtest.

Utility (c0, c1, c2) (d0, d1, d2)

Accuracy
(
1− π, 2,−1

)
(1, 0, , 0)

Fβ-score
(
0, 1 + β2, 0

) (
β2π, 0, 1

)
Jaccard (0, 1, 0) (π, −1, 1)
AM-measure

(
1
2 ,

2
π + 2

1−π ,−
2
1π

)
(1, 0, 0)

C.2 RANK CORRELATION METRICS (KENDALL & SPEARMAN)

Let X = (x1, x2, . . . , xn) and Y = (y1, . . . , yn) be two real-valued score vectors on the same
n items. And let πX and πY be their induced rankings. Rank correlations measure monotonic
relationships between relative ordering πX and πY .
Definition C.1 (Kendall rank correlation). Define the set of all pairs of distinct indices P =

{
(i, j) :

1 ≤ i < j ≤ n
}

. For each (i, j) ∈ P , call the pair concordant if (xi − xj)(yi − yj) > 0, discordant
if (xi − xj)(yi − yj) < 0, and a tie in X (resp. Y ) if xi = xj (resp. yi = yj).

Let c the number of concordant pairs, d the number of discordant pairs, and tX (resp. tY ) the number
of ties in X (resp. Y ). Then, the Kendall rank correlation τ is

τ =
c− d√[(

n
2

)
− tX

][(
n
2

)
− tY

] ,
which simplify to τ = c−d

(n2)
if there are no ties (tX = tY = 0).

Definition C.2 (Spearman rank correlation). Let πX(i) be the rank of xi in X and likewise πY (i) for
Y . Define the rank-differences di = πX(i)− πY (i). The Spearman rank correlation s is the Pearson
correlation of the ranked vectors:

s =

n∑
i=1

(πX(i)− π̄X) (πY (i)− π̄Y )√∑n
i=1(πX(i)− π̄X)2

√∑n
i=1(πY (i)− π̄Y )2
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where π̄X = 1
n

n∑
i=1

πX(i) and π̄Y = 1
n

n∑
i=1

πY (i). If there are no ties, it simplifies to

s = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
.

Both metrics lie in [−1, 1], with +1 indicating perfect agreement and −1 perfect reversal.

C.3 AXIOMS SATISFIED BY SEMIVALUES

Semivalues as defined in equation 1 satisfy fundamental axioms that ensure desirable properties in
data valuation. We formally state these axioms in the following. Let ϕ(., ω; .) be a semivalue-based
data valuation method defined by a weight vector ω and let u and v be utility functions. Then, ϕ
satisfies the following axioms:

1. Dummy. If u(S∪{zi}) = u(S)+c for all S ⊆ D\{zi} and some c ∈ R, then ϕ(zi;ω, u) =
c.

2. Symmetry. If u(S ∪ {zj}) = u(S ∪ {zj}) for all S ⊆ D\{zi, zj}, then ϕ(zi;ω, u) =
ϕ(zj ;ω, u).

3. Linearity. For any α1, α2 ∈ R, ϕ(zi;ω, α1u+ α2v) = α1ϕ(zi;ω, u) + α2ϕ(zi;ω, v).

While all semivalues satisfy the above axioms, Data Shapley uniquely also guarantees efficiency:∑
z∈D ϕ(z, ω, u) = u(D).

C.4 APPLICATIONS OF SEMIVALUE-BASED DATA VALUATION METHODS

In practice, semivalue-based methods are mostly applied to perform data cleaning or data subset
selection Tang et al. (2021); Pandl et al. (2021); Bloch & Friedrich (2021); Zheng et al. (2024). Both
tasks involve ranking data points according to their assigned values.

Data cleaning. Data cleaning aims to improve dataset quality by identifying and removing noisy
or low-quality data points. Since semivalue-based methods quantify each point’s contribution to
a downstream task, low-valued points are natural candidates for removal. Specifically, a common
approach is to remove points that fall into the set Nτ , defined as the subset of data points with the
lowest values Ghorbani & Zou (2019). Formally, Nτ = {zi ∈ D | ϕ(zi;u, ω) ≤ τ}, where τ is a
threshold determined through domain knowledge or empirical evaluation.

Data subset selection. Data subset selection involves choosing the optimal training set from
available samples to maximize final model performance. Since semivalues measure data quality,
prioritizing data points with the highest values is a natural approach. Consequently, a common
practice in the literature Wang & Jia (2023); Jiang et al. (2023); Wang et al. (2024) is selecting,
given a size budget k, the subset S(k)

ϕ(u,ω) of data points with top-k data values, i.e., S(k)
ϕ(u,ω) =

argmaxS⊆D,|S|=k

∑
zi∈S ϕ(zi;u, ω).

C.5 EXTENSION OF THE multiple-valid utility SCENARIO TO MULTICLASS METRICS

Let Y = {1, . . . ,K} be the class set and let gS be the model trained on S. For each class k, define
the one-vs-rest confusion counts on the test set:

TPk = #{y = k, gS(x) = k}, FNk = #{y = k, gS(x) ̸= k}, FPk = #{y ̸= k, gS(x) = k},

and the class supports nk = TPk +FNk (true instances of class k) and n̂k = TPk +FPk (predicted
as class k).

Recall. The per-class recalls form the K-vector

r(S) :=
(
r1(S), . . . , rK(S)

)
∈ [0, 1]K , rk(S) :=

TPk

TPk + FNk
=

TPk

nk
.
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Any average recall can be written as a dot product with a weight vector w ∈ ∆K := {w ∈RK
≥0 :∑

k wk = 1}:

recw(S) := ⟨w, r(S)⟩.

Two common choices are immediate:

macro-recall: wmacro = 1
K1, weighted-recall: wwgt

k =
nk∑K
ℓ=1 nℓ

.

Thus macro- and weighted-recall are the same linear functional applied to the per-class recall basis
r(S) with different w.

Precision and F1. Analogously, define the per-class precisions

p(S) :=
(
p1(S), . . . , pK(S)

)
, pk(S) :=

TPk

TPk + FPk
=

TPk

n̂k
,

and per-class F1’s

fk(S) :=
2pk(S)rk(S)

pk(S) + rk(S)
(with fk = 0 if pk + rk = 0), f(S) := (f1, . . . , fK).

Macro/weighted versions are again linear averages over the same class-wise basis:

precw(S) = ⟨w, p(S)⟩, F1w(S) = ⟨w, f(S)⟩, w ∈ ∆K ,

with wmacro and wwgt defined as above.

Implication for our framework. Let the class-wise utilities be ureck (S) := rk(S) (or upreck (S) :=
pk(S), uF1k (S) := fk(S)). Then any macro/weighted multiclass metric is a convex combination

uw(S) =

K∑
k=1

wk uk(S), w ∈ ∆K .

By linearity of semivalues,

ϕ(z;ω, uw) =

K∑
k=1

wk ϕ
(
z;ω, uk

)
,

so the spatial signature lives in RK with coordinates given by the class-wise utilities. Robustness
to all convex mixtures w ∈ ∆K is therefore a K-utility instance and Rp is computed via the Monte
Carlo procedure on SK−1 described in Appendix B.5.
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D ADDITIONAL FIGURES

In Section 3, we plot the spatial signatures for the WIND dataset (Figure 1) to illustrate the geometric
mapping at the heart of our framework. Figures 5, 6, 7, 8, 9, 10 and 11 present the analogous plots
for the remaining binary datasets introduced in Table 2.

(a) Shapley (b) (4, 1)-Beta Shapley (c) Banzhaf

Figure 5: Spatial signature of the BREAST dataset for three semivalues (a) Shapley, (b) (4, 1)-Beta
Shapley, and (c) Banzhaf. Each cross marks the embedding ψω,D(z) of a data point (with u1 = λ,
u2 = γ), the dashed circle is the unit circle S1, and the filled dot indicates one utility direction ᾱ.

(a) Shapley (b) (4, 1)-Beta Shapley (c) Banzhaf

Figure 6: Spatial signature of the TITANIC dataset for three semivalues (a) Shapley, (b) (4, 1)-Beta
Shapley, and (c) Banzhaf. Each cross marks the embedding ψω,D(z) of a data point (with u1 = λ,
u2 = γ), the dashed circle is the unit circle S1, and the filled dot indicates one utility direction ᾱ.

(a) Shapley (b) (4, 1)-Beta Shapley (c) Banzhaf

Figure 7: Spatial signature of the CREDIT dataset for three semivalues (a) Shapley, (b) (4, 1)-Beta
Shapley, and (c) Banzhaf. Each cross marks the embedding ψω,D(z) of a data point (with u1 = λ,
u2 = γ), the dashed circle is the unit circle S1, and the filled dot indicates one utility direction ᾱ.
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(a) Shapley (b) (4, 1)-Beta Shapley (c) Banzhaf

Figure 8: Spatial signature of the HEART dataset for three semivalues (a) Shapley, (b) (4, 1)-Beta
Shapley, and (c) Banzhaf. Each cross marks the embedding ψω,D(z) of a data point (with u1 = λ,
u2 = γ), the dashed circle is the unit circle S1, and the filled dot indicates one utility direction ᾱ.

(a) Shapley (b) (4, 1)-Beta Shapley (c) Banzhaf

Figure 9: Spatial signature of the CPU dataset for three semivalues (a) Shapley, (b) (4, 1)-Beta
Shapley, and (c) Banzhaf. Each cross marks the embedding ψω,D(z) of a data point (with u1 = λ,
u2 = γ), the dashed circle is the unit circle S1, and the filled dot indicates one utility direction ᾱ.

(a) Shapley (b) (4, 1)-Beta Shapley (c) Banzhaf

Figure 10: Spatial signature of the 2DPLANES dataset for three semivalues (a) Shapley, (b) (4, 1)-Beta
Shapley, and (c) Banzhaf. Each cross marks the embedding ψω,D(z) of a data point (with u1 = λ,
u2 = γ), the dashed circle is the unit circle S1, and the filled dot indicates one utility direction ᾱ.
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(a) Shapley (b) (4, 1)-Beta Shapley (c) Banzhaf

Figure 11: Spatial signature of the POL dataset for three semivalues (a) Shapley, (b) (4, 1)-Beta
Shapley, and (c) Banzhaf. Each cross marks the embedding ψω,D(z) of a data point (with u1 = λ,
u2 = γ), the dashed circle is the unit circle S1, and the filled dot indicates one utility direction ᾱ.
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