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ABSTRACT

Contextual Stochastic Optimization (CSO) aims to predict uncertain, context-
dependent parameters to inform downstream decisions. A central challenge is
that high predictive accuracy does not necessarily translate into optimal deci-
sions. Existing approaches typically rely on custom loss functions, but these of-
ten suffer from non-differentiability, discontinuity, and limited modularity. To
address these limitations, we propose a decision-aware Label Distribution Learn-
ing (LDL) framework that retains standard loss functions to avoid computational
issues, while encoding decision knowledge entirely at the level of data represen-
tation. Our approach models uncertainty as full label distributions and reshapes
them during the label enhancement stage to reduce predictive mass in high-risk
regions. Scalar targets are transformed into individualized mixture distributions
using decision-aware similarity matrices, and a dual-branch neural network is
trained to learn decision-aware label distributions. Extensive experiments on
synthetic benchmarks (e.g., newsvendor, network flow) and real-world datasets
demonstrate consistent regret reduction across different sample sizes, with par-
ticularly strong improvements in low-data regimes. These results highlight LDL
as a promising new pathway for achieving robust and principled decision-making
under complex cost structures.

1 INTRODUCTION

Predict-then-optimize is a widely used paradigm for solving optimization problems under uncer-
tainty. In this framework, given covariates, a contextual predictor first estimates the distribution of
the uncertain parameters, and the resulting estimates serve as input to a Contextual Stochastic Opti-
mization (CSO) model (Sadana et al., 2025). The traditional sequential learning-then-optimization
(SLO) approach trains the contextual predictor by minimizing an estimation error between the true
conditional distribution and the conditional distribution given by the contextual predictor. While
effective for improving prediction accuracy, this approach neglects the downstream optimization
objective and can therefore result in suboptimal decisions.

To bridge this gap, Integrated Learning and Optimization (ILO) has emerged as a promising alter-
native (Sadana et al., 2025). ILO methods train contextual predictors explicitly incorporating the
downstream decision objective into the learning process, thereby aligning prediction and optimiza-
tion. The predominant way to realize this is by designing decision-aware loss functions, which
maximize decision quality on the training set (Mandi et al., 2024), rather than minimizing an esti-
mation error.

Nevertheless, existing methods are subject to two fundamental limitations. The first concerns the
high training cost of loss-function-based approaches. These methods design decision-aware loss
functions (e.g., regret) to align predictions with downstream decision quality. However, such losses
are often discontinuous and non-differentiable, which makes gradient-based optimization unstable
and computationally expensive. Although surrogate losses have been proposed to mitigate this issue
(Elmachtoub & Grigas, 2022), they still impose substantially higher training costs than conventional
predictive models and frequently rely on task-specific approximations, thereby limiting their general
applicability.
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The second challenge is the lack of a general and adaptive framework for modeling uncertainty
distributions in CSO. Modeling uncertain parameters as continuous distributions often renders the
downstream optimization problem intractable, due to the curse of dimensionality arising from high-
dimensional integration. A common workaround is to approximate the uncertainty using a discrete
distribution. However, most prior work either fixes the discrete support set a priori (Qi et al., 2023)
or derives it solely from the feature space (Bertsimas & Kallus, 2020). Such approaches overlook
the fact that the choice of support set itself can have a substantial impact on decision quality.

To address the aforementioned challenges, we introduce the Label Distribution Learning (LDL)
framework into CSO. LDL provides a refined way to represent uncertainty through label distribu-
tions: point labels are first enhanced into distributional labels, which then serve as the foundation
for training conditional distribution predictors (Geng, 2016). This framework not only offers a more
flexible mechanism for modeling uncertainty distributions, but also opens up a novel pathway to
achieve decision-awareness without relying on loss-function-based methods. In particular, our pa-
per makes the following key contributions:

• Decision-awareness through label enhancement. We incorporate decision-awareness at
the label enhancement (LE) stage within the LDL framework. This avoids the discontinuity
and computational cost associated with decision-aware loss functions while still aligning
prediction with downstream decision-making.

• General and adaptive distribution construction. We present a method for constructing
discrete uncertainty distributions by leveraging the similarity between the feature space
and the decision space to determine the support set. Unlike existing methods that fix the
support set a priori or derive it solely from features, our approach adapts flexibly across
diverse problem settings.

• Robustness and scalability. Through extensive experiments on both synthetic and real-
world datasets, we demonstrate that our approach consistently outperforms baseline mod-
els, delivering robust and high-quality decisions across diverse problem settings.

2 RELATED WORKS

2.1 CONTEXTUAL STOCHASTIC OPTIMIZATION

Stochastic optimization is a classical paradigm for decision-making under uncertainty. A common
approach is sample average approximation (SAA) (Kleywegt et al., 2002), which replaces the true
distribution with an empirical one but ignores covariates. CSO addresses this by leveraging covari-
ates to predict uncertain parameters (Sadana et al., 2025). Within CSO, prescriptive analytics extends
SAA by assigning covariate-based weights to samples via k-nearest neighbors, kernel methods, or
tree models (Bertsimas & Kallus, 2020), though this SLO method can yield suboptimal decisions.

To overcome this, ILO methods jointly train predictive models and decision tasks, typically through
customized decision-aware loss functions. However, such losses are often discontinuous and non-
differentiable, hindering gradient-based training (Mandi et al., 2024). Solutions include surrogate-
based methods such as SPO+ for linear objectives (Elmachtoub & Grigas, 2022), conditional
estimation–optimization (ICEO) for discrete distributions (Qi et al., 2023), perturbed maximizers
(Berthet et al., 2020), differentiable solver modules (Sahoo et al., 2023; Vlastelica et al., 2020), and
gradient-free models like decision trees with decision-aware objectives (Elmachtoub et al., 2020;
Kallus & Mao, 2023).

Unlike prior work centered on loss design, our approach embeds decision-awareness during the
LE stage within the LDL framework. This avoids reliance on differentiable surrogates or gradient
propagation from the optimization model, thereby sidestepping limitations of traditional decision-
focused learning.

2.2 LABEL DISTRIBUTION LEARNING

LDL addresses the ambiguity in real-world labeling by assigning each instance a distribution of
description degrees across labels. Unlike single-label learning, which fixes a definitive label, or
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multi-label learning, which uses binary indicators without graded relevance, LDL represents super-
vision as a probability-like vector summing to one, thereby quantifying relative importance (Geng,
2016). Its foundations draw on fuzzy logic and probabilistic labeling, formalized as learning a condi-
tional probability mass function to minimize divergences such as Kullback-Leibler. Early methods
included problem transformation (e.g., PT-Bayes, PT-SVM), algorithm adaptation (e.g., AA-kNN
via neighbor averaging, AA-BP with softmax), and specialized algorithms (e.g., SA-IIS, SA-BFGS)
(Zheng et al., 2018). Evaluations across yeast gene expression, natural scenes, and facial datasets
(SJAFFE, SBU-3DFE) employed diverse metrics (Chebyshev, Clark, Canberra, KL, cosine, inter-
section), where specialized designs often performed best (Jia et al., 2018).

To address data scarcity, LE reconstructs distributions from logical labels, with Graph Laplacian
LE (GLLE) exploiting topology and correlations (Xu et al., 2021; Gu et al., 2025). Integrated ap-
proaches like Directly LDL jointly optimize LE and LDL via KL-divergence and alternating op-
timization, supported by Rademacher bounds and strong benchmarks (Jia et al., 2023). Objective
mismatches are alleviated by Label Distribution Learning Machine (LDLM), which extends mar-
gins with SVR and adaptive losses, achieving top performance in 76.5% of tasks (Zhao et al., 2023).
For ordinal data, Ordinal LDL applies sequential objectives such as Cumulative Absolute Distance,
Quadratic Form Distance, and Cumulative Jensen-Shannon, yielding significant gains in age, beauty,
and acne grading (Wen et al., 2023).

By representing supervision as distributions, LDL captures label ambiguity and relative importance
beyond traditional settings. When applied to CSO, it enables encoding uncertainty directly in predic-
tion, avoiding discontinuous decision-aware losses. Decision-awareness is embedded during label
construction and enhancement, aligning predictive distributions with downstream optimization and
enhancing robustness in decision quality—forming the basis of our proposed decision-aware LDL
framework.

3 PROBLEM STATEMENT

In CSO, the decision-maker selects a decision variable z ∈ Z to minimize the expected task cost
under uncertain parameters:

z∗(x) = argmin
z∈Z

Ey∼P (y|x) [c(z,y)] , (1)

where x ∈ X is the observed context, y ∈ Y represents uncertain problem parameters, and c(z,y) is
the task-specific cost function. A fundamental challenge arises because the conditional distribution
P (y | x) is unknown in practice. Here, we approximate this distribution using a parameterized
predictor f(·; θ) parameterized by θ, taking x as input and outputting the corresponding distribution
over y.

The contextual predictor is typically learned from historical data. It is important to note that data
on the conditional distribution P (y | x) is often unavailable. Instead, we have a training dataset
D = {(xi,yi)}Ni=1. The problem of interest is how to train such a predictor f(·; θ) so that the
resulting decisions z∗(x) yield low expected cost in the downstream optimization task.

4 METHODOLOGY

This section introduces the decision-aware LDL pipeline, which constructs enhanced label distribu-
tions from feature and task information and trains a model to predict these distributions for down-
stream decision-making.

4.1 DECISION-AWARE LEARNING AND DECISION-MAKING PIPELINE WITH LABEL
DISTRIBUTIONS

LDL first transforms each target into a distribution to capture its uncertainty in LE stage, and then
learns a predictive model to map features to these distributions. Figure 1 illustrates the overall
structure of the framework. The pipeline consists of two stages:

• Label Enhancement: Transform the regression dataset D = {(xi,yi)}Ni=1, where yi =

(y
(1)
i , . . . , y

(K)
i ) denotes the K uncertain parameters for sample i, into an enhanced dataset

3
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D′ = {(xi, pi(y))}Ni=1, where pi(y) =
∏K

k=1 pi(y
(k)) represents the joint distribution

composed of the marginal distributions pi(y(k)).

• Label Distribution Learning: Learn a vector-valued function f(·; θ) =
(f1(·; θ1), . . . , fK(·; θK)), where each component fk(xi; θk) predicts the marginal distri-
bution pi(y

(k)), and the joint distribution is reconstructed as pi(y) =
∏K

k=1 fk(xi; θk)
optimized for downstream decision-making.

To ensure tractability in the downstream decision task, we model each uncertain parameter y
(k)
i

within yi using a discrete distribution. The distribution of the k-th parameter is represented as

pi(y
(k)) =

M∑
m=1

π
(k)
i,m δ(y(k) − µ

(k)
i,m), (2)

where M is the number of mixture components (a hyperparameter), π(k)
i,m ≥ 0,

∑M
m=1 π

(k)
i,m = 1,

and δ(·) is the Dirac delta function. Each data point’s support set is denoted as the vector µ(k)
i =

(µ
(k)
i,1 , . . . , µ

(k)
i,M ), constructed individually based on approximation relationships rather than from

predefined values.

In our framework, the predictive model outputs a distribution over uncertain parameters for each
input, capturing multiple plausible outcomes. We then optimize the expected cost under this pre-
dicted distribution. In practice, we represent each marginal distribution as a finite mixture and solve
a weighted empirical risk minimization over the mixture components. A detailed derivation and the
full discrete-support formulation are provided in Appendix A.
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Figure 1: Overview of the Decision-aware LDL Framework; a) Mapping relationships; b) Mining
decision information; c) Mining feature information; d) Constructing enhanced weights; e) Learning
enhanced label distributions

4.2 LABEL ENHANCEMENT VIA LOCAL MANIFOLD AND TASK-DRIVEN GRAPH
STRUCTURES

4.2.1 DECISION-AWARE LABEL SUPPORT CONSTRUCTION

A key insight of this paper is that, as shown in Figure 1(b), rather than redefining the loss function,
we reconstruct the label manifold to embed decision-awareness into label representations. To this
end, we define the optimization transfer cost difference from sample j to i as

∆j→i :=
∣∣c(z∗(yi),yi)− c(z∗(yj),yi)

∣∣, (3)

4
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where z∗(yi) denotes the optimal decision under parameters yi, and c(z,y) is the task cost evaluated
for decision z under parameters y.

A smaller value of ∆j→i indicates that, in the decision problem associated with sample i, substitut-
ing yj for the true parameters yi incurs only a minor additional cost. Predictions with smaller ∆j→i

are thus more acceptable from the perspective of downstream decision-making. We normalize this
asymmetric transfer cost into a decision-aware similarity score. Since minr,l ∆r→l = 0, we have

sj→i = 1− ∆j→i

maxr,l=1,...,N ∆r→l
, (4)

where higher values denote stronger optimization-level affinity.

Finally, we perform row-wise normalization so that the similarities sum to 1 for each target i:

s̃j→i =
sj→i∑N
r=1 sr→i

. (5)

The resulting matrix S̃ = [s̃j→i]
N
i,j=1 ∈ RN×N encodes the decision-aware relational structure

among samples, where its (i, j)-th entry s̃j→i quantifies the transferability from sample j to sample
i and is utilized in the label enhancement stage.

To convert the point-supervised target yi into a mixture of Dirac delta functions, we construct an
individualized support vector µ(k)

i for each k-th parameter of sample i. Unlike conventional ap-
proaches that define support points solely based on feature similarity, we propose to select them
according to decision-aware similarity s̃j→i.

Specifically, we identify the top-M neighbors whose decisions exhibit maximal transferability to
sample i, characterized by the largest values of s̃j→i. Formally, the neighborhood is defined as

NM (xi) := {j ∈ {1, . . . , n} | rank(s̃j→i) ≤ M} ,

where rank(s̃j→i) denotes the rank of s̃j→i in descending order among all values s̃j→i. The support
vector corresponding to the k-th parameter is then defined as the ordered vector of the neighbor
values:

µ
(k)
i =

(
y
(k)
j

)
j∈NM (xi)

. (6)

This construction ensures that the support vector µ(k)
i for each sample xi captures the local decision-

level structure of the M most transferable neighbors for the k-th parameter, thereby providing a
decision-aware foundation for label distribution reconstruction. In this way, each label component
is enriched to carry more information, and by selecting support values aligned with similar decisions,
the support set further guides the predictive model toward outputs that induce lower decision errors.

4.2.2 DECISION-AWARE LABEL WEIGHTING VIA MANIFOLD RECONSTRUCTION

To assign weights to each µ
(k)
i,m, as shown in Figure 1(c), we draw inspiration from manifold learning

techniques that capture local geometric structures in the feature space. Formally, the feature-space
neighborhood of a point xi is defined as

NP (xi) :=
{
j ∈ {1, . . . , N}

∣∣ rank
(
d(xi,xj)

)
≤ P, j ̸= i

}
, (7)

where d(·, ·) denotes the distance metric in the feature space, rank
(
d(xi,xj)

)
is the ascending rank

of the distance d(xi,xj) among all other points with respect to xi, and P is the number of nearest
neighbors considered for each point (a hyperparameter).

Based on the neighborhood structure, we construct a local linear relationship by solving the follow-
ing optimization problem. Let W ∈ RN×N denote the reconstruction weight matrix, whose (i, j)-th
entry is wij . The weights are obtained by minimizing

min
W

Θ(W ) :=

N∑
i=1

∥∥∥∥∥∥xi −
N∑
j=1

wijxj

∥∥∥∥∥∥
2

, (8)

5
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subject to
N∑
j=1

wij = 1, wij = 0 if j /∈ NP (xi), ∀i, j = 1, . . . , N. (9)

The objective function in equation 8 seeks to represent each point xi as a convex combination
of its neighbors, minimizing the reconstruction error. The constraints in equation 9 restrict the
reconstruction to the P -nearest neighbors, exclude self-reconstruction, and enforce convexity.

To further align label representation with the downstream decision task, we introduce a decision-
aware correction directly in the optimization objective, rather than modifying the similarity matrix
W itself. Specifically, for the k-th uncertain parameter, we estimate the distribution weights π(k)

i =

(π
(k)
i,1 , . . . , π

(k)
i,M ), representing the probability distribution over the M values in the support vector

µ
(k)
i . Let u denote the index of the support value µ

(k)
i,u that corresponds to the ground-truth label of

the i-th sample. The optimization problem is formulated as a convex combination of two consistency
terms: one based on the feature-level similarity W and the other on the task-induced similarity S̃:

min
{π(k)

i }
Ψ(π(k)) :=

N∑
i=1

∥∥∥∥∥∥µ(k)
i π

(k)
i

⊤
−

N∑
j=1

wij µ
(k)
j π

(k)
j

⊤

∥∥∥∥∥∥
2

+ α

N∑
i=1

∥∥∥∥∥∥µ(k)
i π

(k)
i

⊤
−

N∑
j=1

s̃ij µ
(k)
j π

(k)
j

⊤

∥∥∥∥∥∥
2

,

(10)

subject to
M∑

m=1

π
(k)
i,m = 1, ∀i = 1, . . . , N, (11)

π
(k)
i,m ≥ 0, ∀i = 1, . . . , N, m = 1, . . . ,M, (12)

π
(k)
i,u ≥ λ, ∀i = 1, . . . , N. (13)

The objective in equation 10 enforces local consistency by matching the expected label values
weighted by πi with those of neighbors under both the feature-based similarity W and the task-
induced similarity S, combined through the trade-off parameter α. The constraints in equation 11
ensure that each πi forms a valid probability distribution by summing to one. The constraints
in equation 12 guarantee non-negativity of all distribution components. Finally, the constraints
in equation 13 enforce a minimum confidence λ on the ground-truth label for each sample, thereby
incorporating supervision into the manifold-based formulation.

4.3 ENHANCED LABEL DISTRIBUTION LEARNING WITH NEURAL NETWORKS

As shown in Figure 1(e), given the enhanced dataset D′ = {(xi, pi(y))}Ni=1 obtained via LE, we
employ K independent dual-branch neural networks fk(·; θk), k = 1, . . . ,K, to predict the marginal
distributions of the K uncertain parameters individually, enabling the model to capture parameter-
specific uncertainty as well as variations relevant to downstream decision-making.

For the k-th parameter, the network fk(·; θk) consists of an encoder and two specialized decoders
for predicting mixture weights and support positions. The encoder maps the feature xi through L
hidden layers to generate a parameter-specific representation

h(L,k) = f (k)
enc (xi) ∈ Rt,

where t denotes the dimension of the encoder output, capturing the contextual information relevant
to both decoder branches for the k-th parameter.

The decoders then compute the mixture weights and support positions as

π(k)(xi) = f (k)
π

(
h(L,k)

)
∈ ∆M−1, (14)

µ(k)(xi) = f (k)
µ

(
h(L,k)

)
∈ RM , (15)

6
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where f
(k)
π and f

(k)
µ denote the multi-layer decoders mapping the encoder output h(L,k) to the

respective mixture weights and support positions.

To measure the discrepancy between the predicted and target distributions for each parameter, we
employ the Maximum Mean Discrepancy (MMD) metric, which quantifies the distance between
distributions in a reproducing kernel Hilbert space (RKHS). The detailed derivation and closed-form
expression of MMD for mixtures of Dirac delta functions are provided in Appendix B.

This design enables end-to-end learning of individualized label distributions for all K parameters,
preserving the geometric structure from the LE phase while aligning with decision-aware similari-
ties—without requiring gradient flow through downstream optimization.

5 CASE STUDY

In this section, we evaluate the numerical performance of the proposed decision-aware LDL frame-
work on both synthetic and real-world datasets. Synthetic data allow for controlled and reliable
evaluation, while real-world data provide practical validation under realistic noise and annotation
challenges. The following benchmark methods are included for comparison:

• SAA: This baseline disregards contextual features and determines decisions by minimizing
the average cost under the empirical distribution of observed random parameters.

• Prescriptive Analytics: Following the framework of Bertsimas & Kallus (2020), we evalu-
ate several local learning variants, including k-nearest neighbors (KNN), kernel regression
(Kernel), local linear smoothing (LOESS), and classification and regression trees (CART
tree).

• Feature-based LDL: As a strong baseline derived from our proposed method, this variant
replaces the decision-aware similarity matrix S with a standard feature-based similarity. It
can also be viewed as an ablation of our full framework, highlighting the contribution of
decision-aware structure.

Details of the synthetic data generation process and the feature engineering procedures for both
synthetic and real-world datasets (Buttler et al., 2022) are provided in the Appendix C. In our
experiments, the synthetic data samples are drawn from a set of n ∈ {100, 200, 500, 700, 1000},
while the real-world datasets are constructed by rescaling historical data from years 1, 2, 3, and
4. To evaluate out-of-sample performance, each dataset is randomly split into training and test sets
with an 80:20 ratio.

5.1 MULTI-ITEM NEWSVENDOR PROBLEM

The multi-item Newsvendor problem seeks the optimal replenishment quantities for K different
products. Let y := (y1, . . . , yK) denote the random demand vector for the K products, and let
z ∈ RK represent the corresponding order quantities.

The demand y may depend on contextual factors such as promotions, holiday effects, or brand
attributes. The total inventory cost consists of holding costs hk and stockout costs bk, which penalize
overstock and understock, respectively. Thus, the cost function is defined as:

c(z,y) :=

K∑
k=1

hk(zk − yk)
+ + bk(yk − zk)

+,

where (a)+ := max{a, 0} denotes the positive part function.

Additionally, we impose a budget constraint C > 0 on the total order quantities, leading to the
following feasible set:

Z :=

{
z ∈ RK :

K∑
k=1

zk ≤ C, z ≥ 0

}
.

We consider the case of K = 2, where the newsvendor jointly decides the order quantities for two
products under a total budget constraint of 200. The unit overstock costs are set to h1 = 1 and

7
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h2 = 1.3, while the unit stockout costs are b1 = 9 and b2 = 8, respectively. For our decision-aware
LDL model, the parameters are set as P = M = 6, α = 0.1 and λ = 0.3.

Figure 2 and Figure 3 compare the test-set performance of decision-aware LDL and baseline ap-
proaches on synthetic and real-world data, respectively. Decision-aware LDL consistently achieves
the lowest regret with strong stability, even in small-sample settings, demonstrating robustness
across scenarios. Removing task-specific information increases both regret and variance. Overall,
these results highlight that decision-aware LDL reliably improves decision quality in both controlled
simulations and practical applications.
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Figure 2: Comparison results for multi-item newsvendor problem in synthetic data.
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Figure 3: Comparison results for multi-item newsvendor problem in real-world data.

5.2 QUADRATIC COST NETWORK FLOW PROBLEM

Many applications such as urban traffic systems and communication networks can be formulated as a
minimum convex cost flow problem. We consider a directed graph with K edges, where the decision
variable z = (z1, . . . , zK) ∈ RK denotes the flow on each edge, and y = (y1, . . . , yK) ∈ RK is a
random parameter vector influencing the edge costs. The cost function is defined as

c(z,y) :=

K∑
k=1

gk(zk, yk), (16)

where each gk(zk, yk) is a convex function of the flow zk, and may vary across edges.

Let A ∈ Rn×K be the node-arc incidence matrix of the graph, representing flow conservation at
each node. In addition, let C ∈ Rm×K be a constraint matrix that encodes edge- or path-based flow
restrictions, with lower and upper bounds ℓ,u ∈ Rm. The feasible set is then expressed as

Z :=
{
z ∈ RK : Az = 0, ℓ ≤ Cz ≤ u

}
. (17)
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1
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3

4

Figure 4: Network Graph

We consider a directed network with two source nodes (1 and 2) and
two sink nodes (3 and 4), as illustrated in Figure 4. Let z1, z2, z3, z4
denote the flows on arcs (1,3), (1,4), (2,3), and (2,4), respectively.
The flow on each arc incurs a convex cost of the form gk(zk, yk) =
ck(zk − yk)

2, where yk is a random parameter and c1 = 1, c2 =
3, c3 = 2, c4 = 2 denote the cost coefficients for each arc. Each
source node must send at least 10 units of flow, and each sink node
must receive at least 10 units of flow.

For our decision-aware LDL model, we set M = P = 6, α = 0.1
and λ = 0.3. Due to the symmetric quadratic objective, prediction errors have a relatively small
effect on decision outcomes, so less emphasis is placed on decision-specific correlations.

Figure 5 shows that decision-aware LDL consistently achieves the lowest regret with strong sta-
bility. Removing decision-specific structure increases regret and variance, though the simplified
version remains acceptable. As sample size grows, performance differences narrow, indicating that
all methods approach optimal decisions with more information. Overall, across diverse problems,
decision-aware LDL demonstrates robust and effective decision learning.
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Figure 5: Comparison results for the minimum quadratic cost network flow problem.

6 CONCLUSION

Existing ILO approaches typically achieve decision-awareness by modifying the loss function of the
predictor. However, the non-differentiable and discontinuous nature of decision-aware losses poses
significant challenges for efficient training. In this work, we propose an alternative pathway that
avoids loss modification.

Our decision-aware LDL framework provides a principled solution by modeling uncertainty as full
distributions and strategically reallocating predictive mass away from high-risk regions. The ap-
proach transforms scalar targets into individualized mixture distributions using decision-aware sim-
ilarity matrices, and employs a dual-branch neural network to learn decision-optimized representa-
tions. Experimental results on the newsvendor and network flow problems demonstrate consistent
superiority in regret minimization across different sample sizes, with particularly strong perfor-
mance in small-sample regimes where traditional methods struggle.

While promising, our approach has limitations including the conditional independence assumption
for multivariate parameters and computational overhead of the label enhancement procedure. Future
work should explore extensions to handle dependent parameters, develop efficient approximation
techniques for large-scale applications, and provide theoretical performance guarantees. Neverthe-
less, this work establishes LDL as a viable paradigm for bridging statistical prediction and decision
optimization, opening new research avenues at the intersection of machine learning and operations
research.
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A DISCRETE MIXTURE REPRESENTATION FOR DECISION-AWARE LDL

Once the predictive function f learns to output individualized mixture distributions Gi for each data
point, we obtain, for each input x, a collection of mixture parameters {(πk,m(x), µk,m(x))}Mm=1
for each dimension k = 1, . . . ,K. Here, K denotes the number of uncertain parameters (or output
dimensions) involved in the decision problem.

In practice, we train K separate predictive models, each dedicated to learning the mixture dis-
tribution of one uncertain parameter. That is, the k-th model outputs {(πk,m(x), µk,m(x))}Mm=1,
capturing the uncertainty associated with dimension k. This decomposition allows the framework to
scale to high-dimensional decision problems while preserving interpretability at the marginal level.

Each marginal distribution is represented as a mixture of Dirac delta functions:

pk(yk | x) =
M∑

m=1

πk,m(x) δ(yk − µk,m(x)),

and under the conditional independence assumption, the joint distribution is

P (y | x) =
K∏

k=1

pk(yk | x) =
∑

m∈[M ]K

Πm(x) δ(y − µm(x)),

where m = (m1, . . . ,mK) indexes one mixture component per dimension, µm(x) =

[µ1,m1(x), . . . , µK,mK
(x)]T , and Πm(x) =

∏K
k=1 πk,mk

(x).

The expected cost under this distribution reduces to a weighted sum:

Ey∼P (y|x) [c(z,y)] =
∑

m∈[M ]K

Πm(x) c (z,µm(x)) ,

and the corresponding optimal decision is

z∗dist(x) = argmin
z∈Z

∑
m∈[M ]K

Πm(x) · c (z,µm(x)) .

B MAXIMUM MEAN DISCREPANCY BETWEEN TWO MIXTURES OF DIRAC
DELTA FUNCTIONS

Let us consider two probability distributions that are discrete mixtures of Dirac delta functions:

P =

m∑
i=1

ai δ(x− xi), Q =

n∑
j=1

bj δ(y − yj),

where each xi and yj is a point in the sample space X , and the weights satisfy

ai ≥ 0, bj ≥ 0,

m∑
i=1

ai =

n∑
j=1

bj = 1.

Here, δ(·) denotes the Dirac delta distribution, so that δ(x− xi) places all of its probability mass at
the point xi.

Given a symmetric positive definite kernel function k : X × X → R (for example, the Gaussian
radial basis function kernel), the squared Maximum Mean Discrepancy (MMD) between P and Q is
defined as:

MMD2(P,Q) = Ex,x′∼P k(x, x′) + Ey,y′∼Q k(y, y′)− 2Ex∼P, y∼Q k(x, y).

The MMD measures the distance between the mean embeddings of P and Q in the reproducing
kernel Hilbert space (RKHS) induced by k. When k is characteristic, MMD2(P,Q) = 0 if and
only if P = Q.
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For discrete measures such as mixtures of Dirac deltas, the expectations above reduce to finite sums.
Substituting the expressions for P and Q into the MMD definition yields:

MMD2(P,Q) =

m∑
i=1

m∑
i′=1

aiai′ k(xi, xi′) +

n∑
j=1

n∑
j′=1

bjbj′ k(yj , yj′)− 2

m∑
i=1

n∑
j=1

aibj k(xi, yj).

This expression is exact and does not require any sampling, as all terms are directly computable
from the given support points and weights.

It is often convenient to express the above in matrix notation. Define:

KXX [i, i′] = k(xi, xi′), KY Y [j, j
′] = k(yj , yj′), KXY [i, j] = k(xi, yj),

and let a = (a1, . . . , am)⊤, b = (b1, . . . , bn)
⊤. Then:

MMD2 = a⊤KXXa+ b⊤KY Y b− 2a⊤KXY b.

This compact form is particularly useful for implementation, since it involves only matrix–vector
multiplications.

The above closed-form expression is valid for any positive definite kernel k. For the Gaussian RBF
kernel:

k(x, y) = exp

(
−∥x− y∥2

2σ2

)
,

MMD2(P,Q) becomes a function of the pairwise squared Euclidean distances between {xi} and
{yj}, making it especially efficient to compute when these distances can be precomputed.

C DATASET DETAILS

C.1 REAL-WORLD BAKERY DATA

For our experiments on real-world data, we use the bakery dataset from Buttler et al. (2022). We
focus on two products from the same store. The target variable y corresponds to product demand,
while the feature set X includes:

• Historical demand of the past week

• Holiday indicators: is schoolholiday, is holiday, is holiday next2days

• Weather-related features: temp min, temp avg celsius, temp max, rain mm

• Promotion features: promotion currentweek, promotion lastweek

• Temporal features: weekday, month

All non-categorical features are normalized, while categorical features are encoded as one-hot vec-
tors.

C.2 SYNTHETIC DATA GENERATION

For synthetic experiments, we generate regression datasets using make regression. Specifi-
cally:

• Newsvendor problem: 4 features, with y scaled to the range [10, 120], and each demand’s
noise standard deviation σ = 8

• Quadratic cost network flow problem: 6 features, with y scaled to the range [5, 15], and
each arc’s noise standard deviation σ approximately 1.2

In both cases, we set the number of informative features to 4 to control the signal-to-noise ratio,
ensuring that the synthetic targets are compatible with the respective problem characteristics.
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D USE OF LARGE LANGUAGE MODELS IN MANUSCRIPT PREPARATION

During the preparation of this manuscript, large language models (LLMs) were occasionally em-
ployed to assist with tasks such as improving grammar, refining wording, and drafting certain sec-
tions of the text. These tools were used as aids to enhance clarity and readability, while all scientific
content, analyses, results, and interpretations were developed and verified solely by the authors.

The use of LLMs did not influence the originality of the research, the formulation of hypotheses,
the design of experiments, or the interpretation of results. The authors have carefully reviewed
and edited all content generated with the assistance of LLMs to ensure accuracy, consistency, and
adherence to the manuscript’s scientific standards.
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