
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

TRAPPED BY SIMPLICITY: WHEN TRANSFORMERS
FAIL TO LEARN FROM NOISY FEATURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Noise is ubiquitous in data used to train large language models, but it is not well
understood whether these models are able to correctly generalize to inputs gener-
ated without noise. Here, we study noise-robust learning: are transformers trained
on data with noisy features able to find a target function that correctly predicts
labels for noiseless features? We show that transformers succeed at noise-robust
learning for a selection of k-sparse parity and majority functions, compared to
LSTMs which fail at this task for even modest feature noise. However, we find
that transformers typically fail at noise-robust learning of random k-juntas, espe-
cially when the boolean sensitivity of the optimal solution is smaller than that of
the target function. We argue that this failure is due to a combination of two fac-
tors: transformers’ bias toward simpler functions, combined with an observation
that the empirically optimal function for noise-robust learning has lower sensi-
tivity than the target function. We test this hypothesis by exploiting transformers’
simplicity bias to trap them in an incorrect solution, but show that transformers can
escape this trap by training with an additional loss term penalizing high-sensitivity
solutions. Overall, we find that transformers are particularly ineffective for learn-
ing boolean functions in the presence of feature noise.

1 INTRODUCTION

Large language models (LLMs) are powerful tools for natural language processing, code generation,
scientific research, and reasoning across a wide range of domains. The training data for these models
contain noise in the form of stochasticity and different modalities of errors, and yet LLMs trained
on these noisy data are often applied in settings where next-token prediction is highly sensitive to
noise in the preceding tokens, such as solving arithmetic problems. This raises the question, are
transformers actually capable of noise-robust learning, i.e. can transformers trained on data with
feature noise learn a target function that makes accurate predictions for noiseless data?

Boolean functions of binary input data provide a simplified setting for studying noise-robust learn-
ing. Recent results demonstrate that transformers prefer to learn simple boolean functions for next-
bit prediction tasks on binary input data (Bhattamishra et al., 2023b; Hahn & Rofin, 2024). An
immediate consequence is that the functions learned by these models are robust to input perturba-
tions (i.e. noise) at evaluation time (Vasudeva et al., 2025). Yet, less is known about the setting
where training data themselves contain feature noise (for example, bitflips randomly applied to the
input bitstring). From another angle, Deletang et al. (2024) analyzed natural language modeling in
terms of compression in the presence of an inherent amount of randomness found in natural language
(Shannon, 1951). However, such analyses neglect the effect of noise on information transmission
(Shannon, 1948). It is well-known that feature noise induces simpler solutions in ordinary least
squares via attenuation Fuller (2009), but there is little empirical evidence describing how feature
noise affects the learning behavior of transformers in discrete domains, like learning boolean func-
tions. Our goal is to study whether these models are capable noise-robust learning – learning an
underlying boolean function from training data with feature noise.

Our main finding is that transformers fail at noise-robust learning for a large class of boolean func-
tions. We attribute this outcome to a combination of two factors: (i) the simplicity bias of trans-
formers makes them prefer simple functions that achieve low loss on the training data and (ii) an
empirical observation that the optimal solution for noise-robust learning is simpler than the target

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

function used to generate the data. Meanwhile, we find that long short-term memory networks
(LSTMs), which exhibit less bias towards simple functions, also fail at noise-robust learning, albeit
for different reasons. Thus, while a neural network with an inductive bias towards complex functions
might be capable of noise-robust learning in principle, we show that both transformers (with their
simplicity bias) and LSTMs (without a simplicity bias) are poor candidates for this task.

These results imply that transformers are ill-suited to classification and generative modeling in bi-
nary domains where feature noise is prevalent, such as learning to decode classical (Kim et al., 2018;
Nachmani & Wolf, 2019; Choukroun & Wolf, 2022; Cammerer et al., 2022) and quantum error cor-
recting codes (Torlai & Melko, 2017; Lange et al., 2025; Bausch et al., 2024; Peters, 2025). More
broadly, our findings suggest that the simplicity bias of LLMs hurts their ability to learn complex
relationships via natural language processing with sufficient feature noise. For instance, models
trained on noisy data (e.g. high stochasticity, incorrect grammar or semantics) will likely struggle
to perform next-bit prediction for tasks such as arithmetic and discrete mathematics, where each
next token depends on preceding noiseless input text according to some sensitive function. This
complements observations that feature noise at evaluation time can reduce transformers’ ability to
do arithmetic and other discrete mathematics (Shi et al., 2023; Abedin et al., 2025). Our work high-
lights a potential need to mitigate the simplicity biases of large language models, if we hope for
these models to learn algorithmic tasks from noisy training data.

Our contributions we show mixed results for transformers’ performance at noise-robust learning.
(i) We find that transformers succeed at this task for sparse parity and majority functions at high
rates of feature noise, while LSTMs generally fail at this task even for low levels of feature noise.
(ii) We show that transformers fail at this task for random k-juntas while simultaneously reaching
near-optimal accuracy on noisy validation data. (iii) We propose an explanation for this behavior:
We conjecture that the sensitivity of the optimal solution for noise-robust learning is never greater
than the sensitivity of the target function, and therefore transformers’ simplicity bias will result in
a solution that is suboptimal for noiseless evaluation. (iv) We explore this hypothesis by showing
that transformers can be trapped by an incorrect solution that achieves similar accuracy as the target
function on noisy validation data, and that transformers with a penalty for high-sensitivity solutions
can escape this trap.

1.1 PRIOR WORK

Learning boolean functions with transformers: In an effort to understand the success of contem-
porary LLMs, significant attention has been given to the ability of transformers to model formal
languages (Bhattamishra et al., 2020; Chiang & Cholak, 2022; Strobl et al., 2024), with some results
showing shortcomings for modeling certain functions such as PARITY (Hahn, 2020; Bhattamishra
et al., 2020). In turn, some work has shown that transformers are biased towards learning low-
sensitivity Boolean functions, and that they are robust to label noise (Bhattamishra et al., 2023b;
Jonasson et al., 2023; Bhattamishra et al., 2023a). Our work is distinct because we consider learning
from examples with feature noise rather than label noise, which has a qualitatively different effect
on the learning behavior of language models. The k-sparse parity problem is often used to evaluate
the learning abilities of transformers (Barak et al., 2023; Michaud et al., 2024), but we show how
performance at learning this function is somewhat deceptive in the setting of noise-robust learning.

Simplicity bias in transformers: A growing body of evidence shows that neural networks exhibit
a bias towards learning simple functions for a variety of domains and simplicity measures (Arpit
et al., 2017; Valle-Perez et al., 2019; Kalimeris et al., 2019; Mingard et al., 2020; Cao et al., 2020;
Yang & Salman, 2020; Rahaman et al., 2019). Bhattamishra et al. (2023b) showed empirically that
transformers tasked with learning boolean functions are biased towards low-sensitivity solutions,
compared to other recurrent models such as LSTMs. Later works provided additional theoretical
and empirical evidence for this effect (Hahn & Rofin, 2024; Vasudeva et al., 2025). Our work
extends and applies these insights in two ways: We demonstrate that LSTMs generally fail to learn
boolean functions given noisy input data, while transformers exhibit function-dependent learning
abilities. Indeed, we argue that due to their low sensitivity bias, transformers are fundamentally less
capable of learning boolean functions in the presence of feature noise, while such functions might
in principle be learnable by a model with high sensitivity-bias.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Information theory and noisy features: Information theory provides a natural framework for de-
scribing any learner’s ability to to predict subsequent or missing tokens of text in terms of the re-
dundancy (or compressibility) of a source of randomness (Shannon, 1951). Accordingly, prior work
has related language modeling to compression in the context of Shannon source coding (Teahan &
Harper, 2003; Deletang et al., 2024) or Kolmogorov complexity (Sutskever, 2023). However, our
analysis differs by considering noisy features produced by some stochastic map acting on noiseless
bitstrings, so that our setting is more related to noisy channel coding (Shannon, 1948; 1949) than
compression.

2 BACKGROUND

We first introduce some notation for dealing with distributions of random variables, and bitstring-
valued variables in particular. We usually consider a random length-n bitstring X := (X1, . . . , Xn)
taking value x := (x1, . . . , xn) ∈ {0, 1}n uniformly at random. The expected value of a function f
with domain {0, 1}n is written EpX

[f(x)] :=
∑

x∈X pX(x)f(x), or just Ex[f(x)] when there is no
ambiguity. We define the conditional distribution pY |X of the n + 1 bit Y := f(X) generated by
applying a boolean function to the noiseless input bitstring X . Optimal performance at (noiseless)
next-bit prediction is related to the next-bit conditional entropy of Y given X: The entropy H(X) :=
Ex[− log(pX(x))], loosely, measures the uncertainty in predicting the value of X . The conditional
entropy H(X|Y) := Ex,y[− log(pX|Y (x|y))] describes the uncertainty about the value of X given
that Y is known.

We model feature noise using independent, symmetric bitflip errors on uniformly random input
bitstrings. This error model is used broadly in both boolean analysis (O’Donnell, 2014), and com-
munication theory (Cover, 1999). We describe bitflips using a random variable E ∈ {0, 1}n, where
Pr(Ei = 1) := p. Then, the noisy bitstring Z = X ⊕ E is generated by adding E to the noiseless
bitstring X (mod 2), and induces a distribution pZ . We generate a training data point (Z, Y) for
next-bit prediction with noisy features as follows: (i) Sample a noiseless bitstring X according to
pX , (ii) generate the next bit Y = f(X), (iii) apply iid bitflip errors En to create noisy features Z,
and the goal of the learner is to predict Y given Z with (Z, Y) ∼ pZY . Noisy validation data are
generated in the same way, while noiseless test data (X,Y) are sampled directly from pXY . We
define the noisy generalization error of a boolean function g with respect to a label function f (used
to generate labels Y = f(X)) as

errf (g) := Pr
X,Z

(g(Z) ̸= f(X)) = Pr
Z,Y

(g(Z) ̸= Y), (1)

where PrX(·) denotes the probability with respect to X ∼ pX . We are mainly interested in a model’s
ability to learn the function f after training only on noisy training data (Z, Y). The noiseless gen-
eralization error of a model g evaluated on noiseless data is computed as PrX(g(X) ̸= f(X)). A
learning algorithm succeeds at noise-robust learning if it learns a boolean function g with small
noiseless generalization error, after being trained to minimize (empirical estimates of) errf (g).
Throughout this work, we only consider training data with noisy features (Z, Y) where Z is a noisy
version of X while Y is unaffected by label noise.

We will compare the noise-robust learning capabilities of self-attention network transformers
(SANs) (Vaswani et al., 2017) to LSTMs, continuing a recent line of investigation into the relative
advantages and behaviors of these models (Bhattamishra et al., 2023b). Many of our experiments
involve the parity function, PARITY(x) := wt(x) mod 2, and the majority function MAJ(x) which
outputs 1 if and only if wt(x) ≥ n/2, where wt(x) denotes the Hamming weight. Importantly, MAJ
is an imbalanced function when n is even. When relevant, we will use a subscript to refer to the
input length (e.g. MAJn). We will often consider sparse versions of these functions, whose output
only depends on a subset of k ≤ n input bits. We will denote this by an (n, k) pair, e.g. MAJ(n, k)
computes the majority for a specific subset of k bits.

Performing experiments using boolean functions dependent on relatively few bits allows us to com-
pare models’ performance to an optimal prediction rule. We denote a Bayes-optimal predictor for
the distribution pZY as f∗

N : {0, 1}n → {0, 1}, to be a boolean function that satisfies
errf (f

∗
N) ≤ errf (g) (2)

for all g : {0, 1}n → {0, 1}. The choice of optimal predictor is not unique in general (for instance,
when f(x) = x1, f∗

N (x) will not be influenced by x2 . . . xn). We choose to evaluate a particular

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

optimal predictor with the following formula:

f∗
N (x) := sign(T1−2pf(x)), (3)

where Tρg(x) := EZ|X=x[g(Z)] denotes the noise operator with respect to the distribution pXZ

with bitwise correlation ρ := E[xizi] O’Donnell (2014). We define F∗
N (f) to be the set of all

boolean functions h such that err(h) = err(f∗
N). We defer further background on Boolean func-

tions to Appendix A. As mentioned before, the task of predicting f(x) given z is rooted in noisy
channel coding. Specifically, the best possible accuracy err(f∗

N) is bounded from above and below
by (monotone decreasing) functions of the next bit (conditional) entropy (Feder & Merhav, 1994):

Φ−1 (H(Y |Z)) ≤ errf (f
∗
N) ≤ ϕ−1 (H(Y |Z)) . (4)

Here, ϕ is an invertible piece-wise linear function, while H(Y |Z) ≤ Φ(errf (f
∗
N)) is Fano’s in-

equality (see Appendix A.2). The inequalities in Eq. 4 are analogous to upper (Candes & Tao, 2006;
Donoho, 2006) and lower bounds (Peters, 2024) for certain learning tasks on continuous domains.

The dependence of next-bit prediction accuracy with noisy features on the next-bit conditional en-
tropy H(Y |Z) captures a broader relationship between next-token prediction and noisy channel
coding (Shannon, 1948). We model next-token prediction as a communication process between a
sender Alice and a receiver Bob, using a finite alphabet Λ. Alice first chooses a token of information
Y = f(X) ∈ Σ that she wishes to communicate to Bob. She then encodes this token into the space
of token sequences X ∈ Λn. This encoding process contains some randomness (e.g. there are many
ways to construct sentences that are semantically equivalent), as well as noise (grammatical or syn-
tactical errors), and so the map Y → X need not be one-to-one or even deterministic. Bob receives
noisy bitstring Z ∈ Λn due to this combination of noise and stochasticity, and his goal is to decode
the token f(X) of Alice’s message given the string of noisy tokens Z without knowledge of her
encoding scheme. Thus, learning next-token prediction from noisy features is firmly rooted in noisy
channel coding, and is distinct from (but complements) alternative models based on source coding
(compression) (Deletang et al., 2024) or Kolmogorov complexity (Sutskever, 2023). Since Bob does
not a priori know Alice’s encoding scheme, he may not be capable of decoding her messages even
in the noiseless setting. Eq. 4 therefore relates next-bit entropy to limitations on generalization per-
formance in language modeling, and is related to noisy channel capacity in the asymptotic limit.
In contrast, Bob’s ability to learn f from noisy features depends on properties of the noise and f ,
which we will return to in Section 3.1.

3 TRANSFORMERS SUCCEED AT NOISE-ROBUST LEARNING OF SPARSE
PARITIES AND ODD MAJORITIES

We now show that for a certain class of functions, transformers are able to learn a noiseless function
f when trained entirely with noisy features. This moves beyond prior work showing that transform-
ers learn functions robust to noise at evaluation time (Vasudeva et al., 2025). Our experiments show
that transformers are more robust than LSTMs at learning PARITY(n, k) and MAJ(n, k) (but only
when k is odd), when trained on data with iid bitflip noise applied to input features. We tested two
kinds of boolean functions: sparse majorities and sparse parities. For each choice of bitflip rate p,
we generated a size N dataset of (Z, f(X)) pairs, and then trained an LSTM or transformer to pre-
dict the label for each point. We do not apply label noise to any of our data. Since a model’s ability
to learn is sensitive to initial parameter choice and hyperparameters, we repeated this process 300
times for each model with random initializations and random hyperparameters. We constructed the
set of possible hyperparameters by iterative grid search while training each model on noiseless data,
and then expanded this set slightly to account for hyperparameter optimality changing with noise
strength. We provide detailed experiment descriptions in Appendix B.

Fig. 1 shows the relative performance of LSTMs versus SANs on learning several commonly-tested
boolean functions with feature noise. We considered the sparse majority functions MAJ(20, 5),
MAJ(40, 5), MAJ(50, 3) with N = 2000 noisy training data. In both cases, LSTMs and SANs
reliably learn with zero feature noise. At modest noise strengths, the best of 300 LSTMs performs
worse than the median transformer (which performs close to the information-theoretic optimal). We
also compare both models’ abilities to learn PARITY(n, k). However, sparse parity is significantly
harder to learn: (i) LSTMs generally fail to learn PARITY(n, k) for n > 20 even with noiseless
inputs (Bhattamishra et al., 2023b), and (ii) learning parity with feature noise rate p corresponds to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

0.0 0.5 1.0
Next bit entropy

0.5

0.6

0.7

0.8

0.9

1.0
Va

lid
at

io
n

ac
cu

ra
cy

MAJ(20, 5)

(a)

0.0 0.5 1.0
Next bit entropy

MAJ(40, 5)

(b)

0.0 0.5 1.0
Next bit entropy

MAJ(50, 3)

(c)

0.0 0.2
4
0.3

8
0.6

6
0.7

9
0.8

8
0.9

3
0.9

6
0.9

8
0.9

9

Next bit entropy

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n

of
 m

od
el

s l
ea

rn
in

g
f

PARITY(20, 4)

(d)

SAN
LSTM

best LSTM
best LSTM [noiseless]

median SAN
median SAN [noiseless]

opt
opt [noiseless]

Figure 1: Transformers learn MAJn (with odd n) and PARITY robustly from noisy features.
(a-c) For MAJ(20, 5) and MAJ(40, 5), the median transformer (SAN) reliably outperforms the best
LSTM across 300 training runs with a variety of hyperparameters tuned to optimize both architec-
tures’ success probability. Validation accuracy approximates errf (f̂) using 10000 examples, where
f̂ is either an LSTM or SAN prediction rule. Each point on the solid lines represents the best (me-
dian) LSTM (SAN) from 300 training experiments. (d) While both LSTMs and SANs fail in a
large fraction of training experiments learning PARITY(20, 4) with feature noise, transformers suc-
cessfully learn PARITY(20, 4) (defined as achieving noiseless accuracy ≥ 95%) more often than
LSTMs, even when both architectures perform comparably at zero noise rate. See Appendix B for
experiment details.

an instance of learning parity with noise (Blum et al., 2003), an intractable learning problem. For
f := PARITY(20, 4), we compute the fraction of models that learned f from noisy training data
since the training process is highly sensitive to initial parameter choices. Among SANs and LSTMs
that achieve comparable performance on learning PARITY(20, 4) in the noiseless setting, only SANs
are capable of learning from noisy input features. We also found that this behavior extends to
sparse multitask parities (Michaud et al., 2024), for which transformers succeeded at noise-robust
learning while all LSTMs failed. Thus, for the commonly-studied PARITY and MAJ functions, we
find that transformers achieve better learning outcomes across a variety of hyperparameter choices
and initializations.

3.1 NOISE ROBUSTNESS VERSUS SIMPLICITY BIAS

What explains transformers’ impressive robustness to feature noise compared to LSTMs? Fig. 1
demonstrated that transformers can learn from data with feature noise more robustly than LSTMs
for a few specific functions. One explanation for this behavior is the observed simplicity bias of deep
neural networks (Arpit et al., 2017; Valle-Perez et al., 2019; Mingard et al., 2020; Cao et al., 2020),
as recent works demonstrate that transformers tend to learn simpler boolean functions compared
to LSTMs without any explicit regularization (Bhattamishra et al., 2023b; Hahn & Rofin, 2024).
Sensitivity is a common measure of simplicity in the context of boolean functions (Kahn et al.,
1988). The sensitivity of a boolean function f is defined as

I[f] :=

n∑
i=1

Pr
x∼{0,1}n

(f(x) ̸= f(x⊕i)), (5)

where x⊕i denotes x with a bitflip at location i. Simplicity bias helps explain why transformers
trained on noiseless data enjoy robustness to feature noise at evaluation time, since small test error on
noisy data combined with transformers’ robustness implies small noisy generalization error (Eq. 1):
For uniformly distributed x ∈ {0, 1}n and iid bitflip noise with probability p, a function f̂ obeys
Prx,z(f̂(x) ̸= f̂(z)) ≤ p I[f̂] (O’Donnell, 2014). Ordinarily, a transformer is trained to achieve
low error on noiseless inputs, such that Prx(f̂(x) ̸= f(x)) = ϵ is small. Then, a simple triangle
inequality gives

errf (f̂) ≤ ϵ+ p I[f̂]. (6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

From this, we see that a transformer’s simplicity bias (preference for f̂ with small I[f̂]) implies
small error in predictions on noisy features at evaluation time. This intuitively explains observations
that transformers trained on noiseless data can accurately classify noisy examples at evaluation time
(Zhou et al., 2022), and has been referred to as noise robustness in other literature (Vasudeva et al.,
2025).

However, in our setting we are concerned with training models on noisy features, which is a qual-
itatively different than what is typically studied for boolean learning problems. Specifically, we
ask: Will transformers trained on noisy features learn to make accurate predictions on noiseless
data at evaluation time? The general answer is no. Our first clue that transformers can fail at noise-
robust learning is that the functions PARITY(n, k) and MAJ(n, k) analyzed above are actually special
boolean functions that happen to be optimal for prediction on both noiseless and noisy features. The
following proposition summarizes several results of (Weinberger & Shayevitz, 2018) demonstrating
how the majority and parity functions functions are qualitatively special among boolean functions:
Proposition 1. For each function f ∈ {MAJn, PARITY} (n odd), f is optimal for prediction on noisy
features data, i.e. f = f∗

N .

In the terminology of Weinberger & Shayevitz (2018), the majority and parity functions are self-
predicting, as each function achieves optimal test error when evaluated on its respective noisy input
distribution (Z, f(X)) and can therefore, in principle, be learned by ordinary loss minimization
(the self-predicting property immediately extends to sparse versions of each function). In this way,
MAJ(n, k) with odd n and PARITY(n, k) function are uniquely easy to learn with feature noise. We
will now argue that for a typical boolean function f , it is instead true that f ̸= f∗

N . Therefore, we
should expect that SANs and LSTMs will fail to learn f from noisy inputs, though we show an
example of mitigating this shortcoming via a tailored loss function.

4 TRAPPING TRANSFORMERS WITH SIMPLICITY BIAS

Section 3.1 suggested that transformers can learn boolean functions robustly in the presence of
feature noise for several commonly-considered functions. We now show that this behavior does not
hold in general, and should even be considered atypical. We will show that transformers generally
fail at noise-robust learning due to a combination of their simplicity bias, and the observation that the
optimal prediction rule for noisy data is often (or perhaps always) lower sensitivity than the optimal
prediction rule for noiseless data. Thus, whenever a model with low sensitivity bias is trained via
risk minimization on noisy examples (Z, f(X)), the model will typically fail to learn the target
function f without further intervention.

Intuitively, feature noise should cause an optimal predictor f∗
N to be simpler than f , by some measure

of simplicity. For example, if f is an imbalanced function and p is sufficiently large, f∗
N will be

a constant function. The relative simplicity of f∗
N compared to f is also observed in least-squares

regression as attenuation, wherein feature noise decreases the learned slope in ordinary least squares
regression (Fuller, 2009). Similarly, feature noise can be understood to act as a regularization term
in learning problems (Bishop, 1995; Wager et al., 2013). Whenever f∗

N ̸= f , a model minimizing
validation error by finding some f̂ ∈ F∗

N (f) will forgo the possibility of learning f . In this case, it
might still be possible to learn f noise-robustly, but only if the model has inductive biases towards
learning f rather than alternative solutions g with errf (g) < errf (f). Conversely, the simplicity bias
of transformers actually hurts their performance at noise-robust learning. We summarize numerical
evidence that the optimal solution f∗

N for noise-robust learning has lower sensitivity than the target
function f in the following conjecture:
Conjecture 1. Let f : {0, 1}n → {0, 1} be a boolean function and let (x, f(x)) be training data for
uniformly random samples x ∼ {0, 1}n. Then, for noise-robust learning on iid bitflipped features
(z, f(x)) (Pr(zi = xi) = 1− p), the function f∗

N (x) := sign(T1−2pf(x)) is optimal and obeys

I[f∗
N] ≤ I[f] (7)

We discuss evidence for this conjecture in Appendix A.4, and we are unaware of any general proof
of this inequality. Regardless of whether Conjecture 1 holds, Fig. 2 demonstrates that the sensitivity
difference between f and f∗

N is relatively large on average, with respect to random boolean func-
tions. Correspondingly, across 3200 randomly-generated k-sparse boolean functions (k-juntas), we

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

0.00 0.05 0.10 0.15 0.20 0.25 0.30
(I[f] - I[f *

N]) / n

0.000

0.005

0.010

0.015

0.020

0.025

0.030
er

r f
(f)

 -
er

r f
(f

* N
)

(a)

0.00 0.01 0.02 0.03
errf (f) - errf (f *

N)

0.0

0.2

0.4 noiseless val error

(val error) - errf (f *
N)

(b)

0.0 0.1 0.2 0.3
(I[f] - I[f *

N]) / n

noiseless val error

(val error) - errf (f *
N)

(c)

0.0 0.2 0.4
errf (f *

N)

0.0

0.2

0.4

va
l e

rro
r

(d)

0.0 0.2 0.4
train error

(e)
0.00

0.25

0.50

0.75

En
tro

py

0.0

0.5

1.0

1.5

2.0

lo
g(

co
un

ts
)

Figure 2: Transformers generally fail at noise-robust learning for random k-juntas, and per-
form worse as the difference in sensitivity and validation error for f versus f∗

N grows. (a) Each
point represents a randomly sampled k-junta f (3200 total). For every f sampled, I[f] ≥ I[f∗

N]
(Conjecture 1), while by definition errf (f) ≥ errf (f

∗
N). Minimizing validation error in noise-robust

learning will only succeed for functions near the bottom of the plot, while a training algorithm with
low sensitivity bias will only succeed for points near the left of the plot. By Prop. 1, MAJn (odd
n) and PARITY are represented by the coordinate (0, 0). (b-c) Transformers only succeed at noise-
robust learning when I[f] ≈ I[f∗

N] and errf (f) ≈ errf (f
∗
N) (across 3200 learning experiments).

Histograms of models’ final validation error, train error, and optimal error demonstrate that noise-
robust learning fails despite (d) near-optimal performance with (e) little overfitting. See Appendix B
for additional experimental details.

find that transformers tend to perform worse at noise-robust learning as the difference (I[f]− I[f∗
N])

grows. This is despite – or because of – achieving near-optimal validation error with minimal over-
fitting, and demonstrates a correlation between the transformer’s worsening performance and de-
creasing sensitivity of the optimal solution for noisy data. However, this relationship is potentially
confounded as the difference (errf (f) − errf (f

∗
N)) also grows, which will make the transformer

less likely to learn f via loss-minimization regardless of I[f].

To isolate effect of simplicity bias and Conjecture 1 on transformers’ and LSTMs’ ability to do
noise-robust learning, we design a controlled experiment involving a trap function f such that
errf (f

∗
N) ≈ errf (f) , but I[f∗

N] ≪ I[f]. In this case, a learning algorithm could learn f from noisy
data in principle, but will fail if it is biased towards lower sensitivity functions. Indeed, Figs. 3(a-c)
demonstrate that transformers fail to learn f and instead converge towards the trap function f∗

N .
LSTMs also fail to learn f , but instead due to overfitting on training data. Thus, SANs and LSTMs
both struggle with noise-robust learning, but fail to learn f from noisy data for completely different
reasons.

A neural network might be capable of escaping the trap and learning f if we were to replace its pref-
erence for simple functions with a preference for complex functions. To test this possibility, we ran
learning experiments for the same trap function but with an additional term in the loss function that
penalizes low-sensitivity solutions. We add an additional loss term approximating −λ I[f̂] at each
training step, which achieves a similar effect to penalizing high-weight components of the function’s
Fourier spectrum (Gorji et al., 2023). For a narrow choice of λ, transformers were capable of es-
caping the learning trap with this complexity bias (Fig. 3c), though this outcome depends on a good
choice for λ, which may not be practical to optimize. Furthermore, a learning algorithm is unlikely
to learn f∗

N when errf (f
∗
N) ≪ errf (f), even with a strong complexity bias. To demonstrate, we

return to f := MAJ(n, k) (n even), for which f∗
N ̸= f in general since f is imbalanced. Fig. 3(d-f)

shows that transformers typically fail to learn MAJ(30, 4) from noisy features (for many penalty pa-
rameters λ), while at the same time LSTMs become more capable of learning the lower-sensitivity
f∗
N . As a result, the performance gap between the median SAN and best LSTM for learning MAJn

with even n almost completely disappears (Fig. 3e).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

2.0 2.5 3.0 3.5
0.56

0.58

0.60

0.62

0.64
ac

cu
ra

cy
validation

(a)
SAN LSTM SAN+

2.0 2.5 3.0 3.5

0.6

0.7

0.8

0.9

1.0
noiseless
validation

(b)

10 2 10 1 100

0.6

0.7

0.8

0.9

1.0
(c)

SAN+
LSTM

[noiseless]
[noiseless]

0 1 2 3
Sensitivity

0.685

0.690

0.695

0.700

0.705

ac
cu

ra
cy

validation

(d)

0 1 2 3
Sensitivity

0.7

0.8

0.9

1.0

noiseless
validation

(e)

10 2 10 1 100

 (sensitivity regularization)

0.70

0.72

0.74

0.76

0.78

0.80

(f)

0.0 0.5 1.0
Next bit entropy

0.5

0.6

0.7

0.8

0.9

1.0

MAJ(30, 4)

(g)

Figure 3: LSTMs and transformers fail to learn f from training data with feature noise in
distinct ways. (a)-(b) We consider a particular trap function f such that errf (f∗

N) ≈ errf (f), while
I[f∗

N] ≪ I[f]. Blue and red lines show (smoothed) training dynamics of transformers and LSTMs
trained on noisy inputs across a variety of hyperparameters and initializations. Each point represents
a (learned) boolean function. Transformers approach optimal validation accuracy () while RNNs
perform no better than memorization of training data (), and both models fail to learn f (★).
However, an explicit sensitivity penalty in the loss function λ I[f̂] (λ = 1) allows transformers to
learn f (green lines) (c) There is a clear optimum λ for learning f from noisy data using sensitivity
penalty in the loss. (d-f) This behavior does not extend to functions where err(f∗

N) ≪ errf (f),
for example MAJ(30, 4) with p = 0.32, for which f∗

N is a heavily biased function. (g) Overall,
transformers do not outperform LSTMs at learning MAJ(n, k) with even n (shown: MAJ(30, 4))
with feature noise. See Appendix B.3.2 for additional details.

5 DISCUSSION

Limitations: Our noise model and input data are limited in several ways: We have only considered
noise in the form of independent bitflip errors on uniformly random input bitstrings, and it is unclear
if our findings would extend to other forms of noise. Many of the effects we observed depend on
the condition that f∗

N ̸= f , which in turn requires relatively high noise rates that may not be present
in natural datasets. While we have not considered label noise, previous analyses suggest that this
would not affect the qualitative behavior of our models (Bhattamishra et al., 2023b). Finally, noise
models of this form are memory-less, and therefore qualitatively different than input bit sequences
generated recurrently, in which each next bit may depend on noise acting on previous bits. Each
of these limitations can be addressed in future work by considering more complex data generating
functions and noise models.

Our experiments with noise-robust learning involved randomly-generated k-juntas, which may not
be representative of real noise-robust learning problems. Our trapping experiment using sensitivity
penalties succeeded under tightly controlled conditions, though this experiment is provided only as
a demonstration and this particular strategy may fail in general. It is likely that more sophisticated
techniques will be needed to improve transformers’ ability to do noise-robust learning when f∗

N
is much more accurate than f . Finally, while we have provided significant empirical evidence for
Conjecture 1, this result remains to be proven, and if proven only applies to a particular optimal
function f∗

N (which may not be the unique loss minimizer).

Future work: Our results suggest that transformers’ simplicity bias has practical, negative con-
sequences for learning boolean functions from training data with noisy features. Do these con-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

sequences extend to domains with more complex inputs such as natural language processing? In
certain natural language tasks like modular arithmetic (Liu et al., 2022), one hopes that transform-
ers can learn input-sensitive discrete functions after training on text that contains both errors and
stochasticity (i.e. entropy of written language). Our findings suggest that this may be impossible
for sufficiently high-entropy inputs, since optimal prediction on noisy features corresponds to a low
complexity predictor on the training data. Our work complements recent observations that LLMs
tend to perform poorly at math when exposed to noise at evaluation time (Shi et al., 2023; Abedin
et al., 2025), and suggests a need for further experiments to examine how noise and stochasticity in
training data affect LLMs reasoning abilities at evaluation time. Indeed, the mismatch between f
and f∗

N in our experiments suggests that reducing model loss to the next-token conditional entropy
may actually be detrimental for learning precise concepts from natural text.

5.1 CONCLUSION

We have shown that transformers outperform LSTMs for learning sparse parities and (odd-length)
sparse majorities in the presence of feature noise. But we show that transformers fail at noise-robust
learning of boolean functions more generally, and use controlled experiments with modified loss
functions to connect this failure specifically to transformers’ bias towards learning simple boolean
functions. Our analysis suggests that transformers may be particularly unsuitable for learning sensi-
tive functions in the presence of feature noise.

REFERENCES

Zain Ul Abedin, Shahzeb Qamar, Lucie Flek, and Akbar Karimi. Arithmattack: Evaluating robust-
ness of llms to noisy context in math problem solving. CoRR, abs/2501.08203, 1 2025. URL
https://doi.org/10.48550/arXiv.2501.08203.

Devansh Arpit, Stanisław Jastrzundefinedbski, Nicolas Ballas, David Krueger, Emmanuel Bengio,
Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, and Simon
Lacoste-Julien. A closer look at memorization in deep networks. In Proceedings of the 34th
International Conference on Machine Learning - Volume 70, ICML’17, pp. 233–242. JMLR.org,
2017.

Boaz Barak, Benjamin L. Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang.
Hidden progress in deep learning: SGD learns parities near the computational limit, 2023. URL
http://arxiv.org/abs/2207.08799.

Johannes Bausch, Andrew W Senior, Francisco JH Heras, Thomas Edlich, Alex Davies, Michael
Newman, Cody Jones, Kevin Satzinger, Murphy Yuezhen Niu, Sam Blackwell, et al. Learning
high-accuracy error decoding for quantum processors. Nature, pp. 1–7, 2024.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of trans-
formers to recognize formal languages. In Proceedings of the 2020 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), pp. 7096–7116, 2020. doi: 10.
18653/v1/2020.emnlp-main.576. URL https://www.aclweb.org/anthology/2020.
emnlp-main.576.

Satwik Bhattamishra, Arkil Patel, Phil Blunsom, and Varun Kanade. Understanding in-context
learning in transformers and llms by learning to learn discrete functions, 2023a. URL https:
//arxiv.org/abs/2310.03016.

Satwik Bhattamishra, Arkil Patel, Varun Kanade, and Phil Blunsom. Simplicity bias in transformers
and their ability to learn sparse boolean functions. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (ACL), pp. 5767–5791, 2023b. doi: 10.18653/v1/
2023.acl-long.317. URL https://aclanthology.org/2023.acl-long.317.

Chris M Bishop. Training with noise is equivalent to tikhonov regularization. Neural computation,
7(1):108–116, 1995.

Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and
the statistical query model. J. ACM, 50(4):506–519, July 2003. ISSN 0004-5411. doi: 10.1145/
792538.792543. URL https://doi.org/10.1145/792538.792543.

9

https://doi.org/10.48550/arXiv.2501.08203
http://arxiv.org/abs/2207.08799
https://www.aclweb.org/anthology/2020.emnlp-main.576
https://www.aclweb.org/anthology/2020.emnlp-main.576
https://arxiv.org/abs/2310.03016
https://arxiv.org/abs/2310.03016
https://aclanthology.org/2023.acl-long.317
https://doi.org/10.1145/792538.792543

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Sebastian Cammerer, Jakob Hoydis, Fayçal Aı̈t Aoudia, and Alexander Keller. Graph neural net-
works for channel decoding. In 2022 IEEE Globecom Workshops (GC Wkshps), pp. 486–491.
IEEE, 2022.

Emmanuel J. Candes and Terence Tao. Near-optimal signal recovery from random projections:
Universal encoding strategies? IEEE Trans. Inf. Theory, 52(12):5406–5425, 2006. doi: 10.1109/
TIT.2006.885507.

Yuan Cao, Zhiying Fang, Yue Wu, Ding-Xuan Zhou, and Quanquan Gu. Towards understanding the
spectral bias of deep learning, 2020. URL https://arxiv.org/abs/1912.01198.

David Chiang and Peter Cholak. Overcoming a theoretical limitation of self-attention, 2022. URL
http://arxiv.org/abs/2202.12172.

Yoni Choukroun and Lior Wolf. Error correction code transformer. In Alice H. Oh, Alekh Agar-
wal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing
Systems (Neurips), 2022. URL https://openreview.net/forum?id=4F0Pd2Wjl0.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Gregoire Deletang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein, Christo-
pher Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew Aitchison, Laurent Orseau, Marcus
Hutter, and Joel Veness. Language modeling is compression. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
jznbgiynus.

D.L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52(4):1289–1306, 2006. doi: 10.
1109/TIT.2006.871582.

M. Feder and N. Merhav. Relations between entropy and error probability. IEEE Transactions on In-
formation Theory, 40(1):259–266, 1994. ISSN 1557-9654. doi: 10.1109/18.272494. Conference
Name: IEEE Transactions on Information Theory.

Wayne A. Fuller. Measurement Error Models, volume 305 of Wiley Series in Probability and Statis-
tics. John Wiley & Sons, Hoboken, NJ, 2009. ISBN 9780470317334.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Ali Gorji, Andisheh Amrollahi, and Andreas Krause. A scalable Walsh-Hadamard regularizer to
overcome the low-degree spectral bias of neural networks. In Robin J. Evans and Ilya Shpitser
(eds.), Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, vol-
ume 216 of Proceedings of Machine Learning Research, pp. 723–733. PMLR, 7 2023. URL
https://proceedings.mlr.press/v216/gorji23a.html.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions
of the Association for Computational Linguistics, 8:156–171, 2020. ISSN 2307-387X. doi: 10.
1162/tacl a 00306. URL http://arxiv.org/abs/1906.06755.

Michael Hahn and Mark Rofin. Why are sensitive functions hard for transformers? In Lun-Wei Ku,
Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), pp. 14973–15008, Bangkok, Thai-
land, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.
800. URL https://aclanthology.org/2024.acl-long.800/.

Johan Jonasson, Jeffrey E Steif, and Olof Zetterqvist. Noise sensitivity and stability of deep neural
networks for binary classification. Stochastic Processes and their Applications, 165:130–167,
2023.

J. Kahn, G. Kalai, and N. Linial. The influence of variables on boolean functions. In [Proceedings
1988] 29th Annual Symposium on Foundations of Computer Science, pp. 68–80, 1988. doi:
10.1109/SFCS.1988.21923.

10

https://arxiv.org/abs/1912.01198
http://arxiv.org/abs/2202.12172
https://openreview.net/forum?id=4F0Pd2Wjl0
https://openreview.net/forum?id=jznbgiynus
https://openreview.net/forum?id=jznbgiynus
https://proceedings.mlr.press/v216/gorji23a.html
http://arxiv.org/abs/1906.06755
https://aclanthology.org/2024.acl-long.800/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Dimitris Kalimeris, Gal Kaplun, Preetum Nakkiran, Benjamin Edelman, Tristan Yang, Boaz
Barak, and Haofeng Zhang. Sgd on neural networks learns functions of increasing complex-
ity. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/b432f34c5a997c8e7c806a895ecc5e25-Paper.pdf.

Hyeji Kim, Yihan Jiang, Ranvir Rana, Sreeram Kannan, Sewoong Oh, and Pramod Viswanath.
Communication algorithms via deep learning. In International Conference on Learning Repre-
sentations (ICLR), 2018. URL https://openreview.net/forum?id=ryazCMbR-.

Moritz Lange, Pontus Havström, Basudha Srivastava, Isak Bengtsson, Valdemar Bergentall, Karl
Hammar, Olivia Heuts, Evert van Nieuwenburg, and Mats Granath. Data-driven decoding of
quantum error correcting codes using graph neural networks. Phys. Rev. Res., 7:023181, 5
2025. doi: 10.1103/PhysRevResearch.7.023181. URL https://link.aps.org/doi/10.
1103/PhysRevResearch.7.023181.

Ziming Liu, Ouail Kitouni, Niklas Nolte, Eric J Michaud, Max Tegmark, and Mike Williams. To-
wards understanding grokking: An effective theory of representation learning. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=6at6rB3IZm.

Eric J. Michaud, Ziming Liu, Uzay Girit, and Max Tegmark. The quantization model of neural
scaling, 2024. URL http://arxiv.org/abs/2303.13506.

Chris Mingard, Joar Skalse, Guillermo Valle-Pérez, David Martı́nez-Rubio, Vladimir Mikulik, and
Ard A. Louis. Neural networks are a priori biased towards boolean functions with low entropy,
2020. URL https://openreview.net/forum?id=Skgeip4FPr.

Eliya Nachmani and Lior Wolf. Hyper-graph-network decoders for block codes. Advances in Neural
Information Processing Systems (Neurips), 32, 2019.

Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

Evan Peters. Bounds and guarantees for learning and entanglement, 2024.

Evan Peters. Sample importance for data-driven decoding, 2025. URL https://arxiv.org/
abs/2505.22741.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 5301–5310. PMLR, 6
2019. URL https://proceedings.mlr.press/v97/rahaman19a.html.

C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27
(3):379–423, 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x.

Claude E Shannon. Communication in the presence of noise. Proceedings of the IRE, 37(1):10–21,
1949.

Claude E Shannon. Prediction and entropy of printed english. Bell system technical journal, 30(1):
50–64, 1951.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H. Chi, Nathanael
Schärli, and Denny Zhou. Large language models can be easily distracted by irrelevant context.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 31210–31227. PMLR, 7 2023.
URL https://proceedings.mlr.press/v202/shi23a.html.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal lan-
guages can transformers express? a survey. Transactions of the Association for Computational
Linguistics, 12:543–561, 2024.

11

https://proceedings.neurips.cc/paper_files/paper/2019/file/b432f34c5a997c8e7c806a895ecc5e25-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/b432f34c5a997c8e7c806a895ecc5e25-Paper.pdf
https://openreview.net/forum?id=ryazCMbR-
https://link.aps.org/doi/10.1103/PhysRevResearch.7.023181
https://link.aps.org/doi/10.1103/PhysRevResearch.7.023181
https://openreview.net/forum?id=6at6rB3IZm
http://arxiv.org/abs/2303.13506
https://openreview.net/forum?id=Skgeip4FPr
https://arxiv.org/abs/2505.22741
https://arxiv.org/abs/2505.22741
https://proceedings.mlr.press/v97/rahaman19a.html
https://proceedings.mlr.press/v202/shi23a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Ilya Sutskever. An observation on generalization, 2023. URL https://simons.berkeley.
edu/news/observation-generalization.

William J Teahan and David J Harper. Using compression-based language models for text catego-
rization. In Language modeling for information retrieval, pp. 141–165. Springer, 2003.

Giacomo Torlai and Roger G. Melko. Neural decoder for topological codes. Phys. Rev. Lett., 119
(3):030501, 2017. ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.119.030501. URL
http://link.aps.org/doi/10.1103/PhysRevLett.119.030501.

Guillermo Valle-Perez, Chico Q. Camargo, and Ard A. Louis. Deep learning generalizes be-
cause the parameter-function map is biased towards simple functions. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
rye4g3AqFm.

Bhavya Vasudeva, Deqing Fu, Tianyi Zhou, Elliott Kau, Youqi Huang, and Vatsal Sharan. Trans-
formers learn low sensitivity functions: Investigations and implications. In The Thirteenth In-
ternational Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=4ikjWBs3tE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Stefan Wager, Sida Wang, and Percy Liang. Dropout training as adaptive regularization. In Proceed-
ings of the 27th International Conference on Neural Information Processing Systems - Volume 1,
NIPS’13, pp. 351–359, Red Hook, NY, USA, 2013. Curran Associates Inc.

Nir Weinberger and Ofer Shayevitz. Self-predicting boolean functions. In 2018 IEEE International
Symposium on Information Theory (ISIT), pp. 276–280, 2018. doi: 10.1109/ISIT.2018.8437521.

Greg Yang and Hadi Salman. A fine-grained spectral perspective on neural networks, 2020. URL
https://arxiv.org/abs/1907.10599.

Daquan Zhou, Zhiding Yu, Enze Xie, Chaowei Xiao, Animashree Anandkumar, Jiashi Feng, and
Jose M. Alvarez. Understanding the robustness in vision transformers. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of
the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 27378–27394. PMLR, 7 2022. URL https://proceedings.mlr.
press/v162/zhou22m.html.

12

https://simons.berkeley.edu/news/observation-generalization
https://simons.berkeley.edu/news/observation-generalization
http://link.aps.org/doi/10.1103/PhysRevLett.119.030501
https://openreview.net/forum?id=rye4g3AqFm
https://openreview.net/forum?id=rye4g3AqFm
https://openreview.net/forum?id=4ikjWBs3tE
https://openreview.net/forum?id=4ikjWBs3tE
https://arxiv.org/abs/1907.10599
https://proceedings.mlr.press/v162/zhou22m.html
https://proceedings.mlr.press/v162/zhou22m.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

APPENDICES

APPENDIX A BACKGROUND

A.1 BOOLEAN ANALYSIS

Unless otherwise noted, we will always consider uniform distributions of bitstrings x ∈ {0, 1}n, i.e.
pX(x) = 2−n ∀x. We can represent bitflips using an iid bitflip random variable E = (E1, . . . , En)
where each Ei takes values in {0, 1} with Pr(Ei = 1) = p. This means that Pr(wt(E) = w) =
(1− p)n−wpw, for instance. Then, Z := X ⊕E represents the string X that has undergone a bitflip
at each location where E is nonzero. The variables X and Z are not independent, but X and E
are independent (written X ⊥ E). We can compute relationships of X and Z using this fact, for
example:

pX|Z(x|z) =
PrX,Z(X = x, Z = z)

pX(x)
(8)

=
PrX,E(X = x,E = x⊕ z)

pX(x)
(9)

= pE(x⊕ z) (10)

The sensitivity of f at x is defined as the number of bit positions such that a single bitflip of x
changes the value of f :

s(f, x) :=

n∑
i=1

I{f(x) ̸= f(x⊕ ei)}. (11)

The average sensitivity (or “total influence”) of f is then defined as the average sensitivity over all
inputs

I[f] := Ex[s(f, x)] =
1

2n

∑
x∈{0,1}n

s(f, x). (12)

This takes values in the range [n], and thus I[f]/n gives the likelihood over random inputs that a
single bitflip changes the output value of f . If we alternatively represent bits {0, 1} as {1,−1}, we
represent noise by considering pairs (x, z) with x sampled uniformly at random from {−1, 1}n and
z sampled conditionally such that each bit satisfies E[xizi] = ρ. In this case, we define the noise
operator Tρ according to Tρf(x) := Ez∼ρx[f(z)], where z ∼ρ x denotes sampling z conditionally
on x in the way described above.

A.2 INFORMATION THEORY

We briefly introduce concepts from information theory, in order to motivate how next-bit conditional
entropy closely describes the hardness of next-bit prediction. Consider a random variable X taking
values x ∈ X with probability pX(x). The entropy of X is defined as

H(X) = −
∑
x∈X

pX(x) log pX(x). (13)

For a joint distribution pX1X2 over the pair of random variables (X1, X2), the conditional entropy
of X2 given X1 is

H(X2|X1) = H(X1X2)−H(X1) = −
∑
x1,x2

pX1X2
(x1, x2) log pX2|X1

(x2|x1). (14)

The following theorem from Ref. Feder & Merhav (1994) shows how the error of a Bayes-optimal
next-token predictor is tightly controlled by the entropy of the next bit:
Theorem 2. (Feder, 1994) Define the piecewise function ϕN : [0, 1] → R and ΦN : [0, 1] → R as

ϕN (λ) =
{
ak(λ− k−1

k) + log(k), k−1
k ≤ λ ≤ k

k+1 (15)

ΦN (λ) = h2(λ) + λ log(N − 1) (16)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

with ak = k(k+1) log((k+1)/k) for k = 1 . . . N . Let X and Y be random variables be a random
variable taking values in alphabets X and Y respectively, with |X | = N . Define the error probability
of an optimal estimator as p∗e(Y |X) := minŶ :X→Y Pr(Ŷ (X) ̸= Y). Then,

ΦN (p∗e(Y |X)) ≥ H(Y |X) ≥ ϕN (p∗e(Y |X)) (17)

Evidently, the optimal noisy generalization error errf (f∗
N) is close to zero if and only if the cor-

responding entropy H(f(X)|Z) is close to zero, and errf (f
∗
N) approaches 1/2 as H(f(X)|Z) ap-

proaches 1.

A.3 OPTIMAL NEXT-BIT PREDICTION

In this section, we show that f∗
N from Eq. 1 minimizes errf , and provide a combinatorial proof

for part of Proposition 1 as an alternative to Ref. Weinberger & Shayevitz (2018). We will always
assume a uniform distribution of input bitstrings x ∈ {0, 1}n, and a conditional distribution for noisy
bitstrings z based on i.i.d. bitflips applied to each bit of x with probability p. The set of (Bayes-
)optimal predictors F∗

N (f) for a set of boolean-labeled data with corrupted inputs {(Zi, f(Xi))} is
given by all g satisfying

Pr
x,z

(g(z) = f(x)) ≥ Pr
x,z

(h(z) = f(x)) (18)

for all boolean functions h. We will now show that f∗
N defined in Eq. 2 of the main text is an optimal

predictor:

Lemma 3. For any symmetric bitflip rate p ∈ [0, 0.5), then for ρ = 1− 2p we have

f∗
N := sign(Tρf) ∈ F∗

N (f) (19)

Proof. Eq. 18 is equivalent to

g(z) =

{
1, Prx(f(x) = 1|Z = z) ≥ 1/2

−1, else
(20)

Compare this to

Tρf(x) := Ez∼Nρ(x)[f(z)] (21)

=
∑
z

p(z|x)f(z) (22)

=
∑

z:f(z)=1

p(z|x)−
∑

z:f(z)=−1

p(z|x) (23)

= Pr
z
(f(z) = 1|x)− Pr

z
(f(z) = −1|x) (24)

= Pr
x
(f(x) = 1|z)− Pr

x
(f(x) = −1|z) (25)

And so, ignoring the Tρf = 0 case,

sign(Tρf(x)) = 1 ⇔ Tρf(x) > 0 ⇔ Pr
x
(f(x) = 1|Z = z) > 1/2 ⇔ g(x) = 1 (26)

For the interested reader, we provide a simple combinatorial proof for part of Proposition 1 of
Weinberger & Shayevitz (2018).

Lemma 4. Fix a boolean function f and generate (X,Z) according to the bitflip scheme above.
Then,

Pr
X|Z=z

(f(z) = f(X)) ≥ Pr
X|Z=z

(f(z) ̸= f(X)), (27)

for all z implies that f ∈ F∗
N (f).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Proof. We will show that the condition in Eq. 27 is sufficient for optimal prediction on noisy Z by
showing that no other boolean function can do better than f when this condition holds. For any
particular function g, define the set of inputs on which g agrees with f as

P(f, g) := {z ∈ {0, 1}n : g(z) = f(z)}, (28)

We may rewrite the output of g as

g(z) =

{
f(z), z ∈ P(f, g)

¬f(z), z ∈ P(f, g)c
(29)

Thus we find

Pr
X,Z

(g(Z) = f(X)) = Pr
Z

Pr
X|Z

(g(Z) = f(X)) (30)

=
1

2n

∑
z∈{0,1}n

Pr
X|Z=z

(g(z) = f(X))

=
1

2n

∑
z∈P(f,g)

Pr
X|Z=z

(f(z) = f(X)) +
1

2n

∑
z∈P(f,g)c

Pr
X|Z=z

(¬f(z) = f(X))

=
1

2n

∑
z∈P(f,g)

Pr
X|Z=z

(f(z) = f(X)) +
1

2n

∑
z∈P(f,g)c

Pr
X|Z=z

(f(z) ̸= f(X))

≤ 1

2n

∑
z∈P(f,g)

Pr
X|Z=z

(f(z) = f(X)) +
1

2n

∑
z∈P(f,g)c

Pr
X|Z=z

(f(z) = f(X))

= Pr
X,Z

(f(Z) = f(X)) (31)

where the final inequality follows from Eq. 27, and we have used the fact that the marginal distribu-
tion of Z is uniformly random whenever the distribution of X is uniformly random.

Note that Eq. 27 for optimality at noisy prediction is equivalent to

Pr
e
(f(z) = f(z ⊕ e)) ≥ 1

2
(32)

Consider the dictator function DICT, which outputs the value of the first bit. It immediately follows
that for f = DICT, f∗

N = DICT, since

Pr
e
(DICT(z) = DICT(z ⊕ e)) = 1− ϵ ≥ 1

2
. (33)

We will next show that Eq. 32 holds for PARITY as well.
Proposition 5 (PARITY is optimal for predicting noisy PARITY).

Proof. We will first show that for any noisy bitstring z, the parity of the corresponding noiseless
bitstring is most likely to match the parity of z. Using linearity and p < 1

2 , we have

Pr
X|Z=z

(PARITY(Z) = PARITY(X)) := Pr
E
(PARITY(z) = PARITY(z ⊕ E)) (34)

= Pr
E
(PARITY(z) = PARITY(z)⊕ PARITY(E)) (35)

= Pr
E
(PARITY(E) = 0) (36)

= Pr
E
(wt(E) is even) (37)

=
1

2
(1 + (1− 2p)n) (38)

The final line is never less than 1
2 and therefore satisfies Eq. 32. By Lemma 4 the proof is complete.

A combinatorial proof also exists showing that f := MAJn satisfies f = f∗
N for odd n. The proof is

not particularly illuminating, so we have excluded it.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

A.4 EVIDENCE FOR CONJECTURE 1

We verified Conjecture 1 for all Boolean functions of n ≤ 4 bits. Due to doubly-exponential growth
in the problem size, we found it intractable to verify the conjecture for n > 4 on any available
compute. For n ≥ 5, we searched for counterexamples to Conjecture 1 with the following procedure:
(1) sample a uniformly random element of {−1, 1}2n , (2) generate f from this vector as a hash
table, (3) compute Tρf in the Fourier domain, (4) compute I[f∗

N] and I[f] in the Fourier domain. We
repeated this procedure for several million boolean functions for n ∈ {5, 6, } and several hundred
thousand for n ∈ {7, 8}, for bitflip values in {0.01, 0.25, 0.49} and found no counterexamples.

APPENDIX B EXPERIMENTAL METHODS

In this appendix, we describe in detail all the experimental methods used to obtain the results dis-
played in figures 1, 2, and 3.In what follows, we shall refer to the experiments performed to obtain
the robustness results of section 3.1 as experiment 1, whereas experiment 3 shall refer to all the
methods used to show how one can trap transformers with simplicity bias (section 4).

B.1 DATASET GENERATION

We generate synthetic datasets for our experiments. for each dataset, we specify the number of
validation samples nval, the number of training samples ntrain, the number of bits in one data point
nbit, a bit flip rate p, a seed for reproducibility and a boolean function f . Given these inputs, we
generate the following:

1. Noiseless Data: uniformly sample ntrain + nval many bitstrings, each of length nbit − 1,
compute the final bit for each using f . Take the first ntrain as the training data and the rest
as validation data.

2. Noisy Data: Take the noiseless data above, for each data point, apply a symmetric bit flip
rate p on each bit for the previous nbit bits, and keep the last bit unchanged.

Experiment 1 To obtain the results in Fig. 1, the function f is taken as MAJ(20, 5), MAJ(40, 5),
MAJ(50, 3), and PARITY(20, 4), respectively. For MAJ(20, 5), MAJ(40, 5), and MAJ(50, 3), we chose
ntrain = 2000 and nval = 10000, while for the function PARITY(20, 4) we worked with ntrain = 5000
and nval = 10000.

Experiment 2 To obtain the results in Fig. 2, we generated 3200 random k-juntas (boolean functions
depending on only k bits) for k ∈ {5, 6, 7}. All experiments used a total of n = 10 bits, with the
subset of k bits chosen randomly. We generated noisy input data using a bitflip rate uniformly
sampled from

{0, 0.05, 0.08, 0.10, 0.13, 0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3}, (39)

At bitflip rates lower than ≈ 0.10, we found that f = f∗
N with high likelihood for our range of

k values. We generated training and validation sets with ntrain = 5000, nval = 10000 datapoints
(smaller training datasets frequently resulted in underfitting).

Experiment 3 For experiments shown in Fig. 3, we generated a “trap” function, i.e., a function f
for which the corresponding f∗

N is such that errf (f∗
N) ≈ errf (f) and I[f∗

N] ≪ I[f]. To construct
this function, we proceeded as follows. First, we restricted our search space to boolean functions
f : {0, 1}n → {0, 1} satisfying f(x) = f(wt(x)) (weight-based function), since we only have
2n+1 such functions compared to the 22

n

number of all possible boolean functions over n bits.
Let us denote the space of weight-based functions by Wn. For each function in Wn (which can
be completely characterized by an n-bit string s), we choose a bitflip rate p ∈ (0, 1). We iterated
over the values n ∈ {4, 5, 6, 7, 8} and p ∈ {0.2, 0.22, 0.24, 0.26, 0.28, 0.30}. For each combina-
tion of n and p, we initially computed errf (f

∗
N), errf (f), I[f], and I[f∗

N]. Since errf represents
generalization error over an arbitrarily large dataset, for functions satisfying errf (f

∗
N) ≈ errf (f),

we sampled finite training and validation datasets to select a dataset such that the performance of a
lookup table (which achieves optimal performance on validation data) was close to errf (f). This
led to a specific dataset on n = 8, p = 0.2, where f(i) := si with s = 000110000. We again use
sparse functions depending on a subset n of nbits = 14 that depends only on the embedded string

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

s. The individual models (SAN, RNN, and regularized SAN) were trained using ntrain = 10000 and
nval = 20000. The resulting trap function that was used to generate the datasets used in experiment
3 will be denoted by T .

B.2 TRAINING AND HYPERPARAMETERS

Our experiments involve learning discrete functions, which can be sensitive to parameter initializa-
tion and hyperparameter choice. In order to control for the effects of these choices, we chose to
perform many trials of each learning experiment (with different initializations) over a range of hy-
perparameters. In order to compare results across models and learning tasks, we used the following
procedure to select hyperparameters for each experiment:

1. Select an initial range of hyperparameters
2. Perform several hundred trials of the noiseless learning experiment (to learn either f or

some randomly sampled f)
3. Prune the hyperparameter set to remove any ranges of hyperparameters for which models

consistently failed to learn the target function

The result was a hyperparameter set for which a large number (at least 70%) of the corresponding
set of models were capable of learning the noiseless function. This implies that failure to learn the
function (in the noisy setting) is not a capacity problem, and instead is due to either bad initialization
or limitations of the architecture. The exception for this procedure was learning PARITY(20, 4)
(Fig. 1d) which resulted in a bimodal distribution of models: Models were either able to learn parity,
or completely failed early in the experiment. This is in line with results reported in Ref. Bhattamishra
et al. (2023b), which observed that PARITY(20, 4) was near the limit of what is learnable by (small)
transformers.

All experiments were performed on a CPU cluster consisting of either Intel Xeon Gold 6230 pro-
cessors (20 cores, 2.1 GHz) and 768 GB of RAM each, or AMD EPYC 9754 processors (128 cores,
2.25 GHz) and 1.5 TB of RAM. On average, a single hyperparameter tuning experiment took ap-
proximately 5 hours across 300 cores in parallel. Total CPU estimates are

• ∼ 60, 000 CPU hours for Fig. 1 (∼ 100, 000 CPU hours for Experiment 1 in total)
• ∼ 15000 CPU hours for Fig. 2 (∼ 30000 CPU hours for Experiment 2 in total)
• ∼ 5000 CPU hours for Fig. 3 (∼ 10000 CPU hours for Experiment 3 in total).

In each experiments, models were trained for up to 1000 epochs, with an early stopping criterion of
300 epochs conditioned on no improvement in validation accuracy. All reported metrics correspond
to the model performance at the epoch with maximum validation accuracy. We do not tokenize
any of these datasets, since both the underlying distribution and noise acting on our synthetic data
depend on individual bits.

B.3 MODEL ARCHITECTURES

Transformer: Our experiments employ an encoder-only transformer with a final linear layer to gen-
erate outputs. We initialize with the Xavier uniform Glorot & Bengio (2010) (following Ref. Bhat-
tamishra et al. (2023b)) and ReLU activation for the encoder’s FFN and absolute positional encod-
ing. We train using cross-entropy loss. The initial hyperparameter search space for Experiments
1, 2, and 3 is given in Table 1, and refers to hyperparameters as introduced in Ref. Vaswani et al.
(2017).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Table 1: Hyperparameter search space for Transformer model for experiments 1-3. The final hyper-
parameter sampling space across trials was tuned for each experiment separately (see above).

Hyperparameter Values

Learning Rate (lr) [1× 10−5, 6.31× 10−2]
Depth 1, 2, 3, 4, 5, 6
Model Dimension (d model) 16, 32, 64, 128
Dropout Rate 0.05, 0.10
Number of Attention Heads 2, 4, 8
Feedforward Dimension (d ffn) 32, 64, 128

LSTM: We used LSTMs with Xavier uniform initialization, log-likelihood loss and softmax acti-
vation (i.e. cross-entropy loss). The initial hyperparameter search space for LSTMs is shown in
Table 2.

Table 2: Hyperparameter search space for LSTM trials in Experiments 1 and 3.
Hyperparameter Values

Learning Rate (lr) [1× 10−4, 2.78× 10−1]
Embedding Size (emb size) 16, 32, 64, 128
Hidden Size (hidden size) 16, 32, 64, 128
Dropout Rate 0.05, 0.10
Depth 1, 2, 3, 4, 5, 6

B.3.1 EXPERIMENT 1

Experiment 1 involved training transformers and LSTMs to learn MAJ and PARITY from noisy fea-
tures. For each of f ∈ {MAJ(20, 5), MAJ(40, 5), MAJ(50, 3), MAJ(30, 4), PARITY(20, 4)}, we con-
struct datasets (z, f(x)) with a range of bitflip error probabilities selected from [0, 0.49). For each
dataset, we train 300 randomly initialized LSTMs and Transformers (each training run is one trial)
to minimize their corresponding loss function, with early stopping and model selection based on
maximum validation accuracy.

Fig. 4 shows distributions of validation accuracies for all experiments involving MAJ functions. For
all majority functions, the transformer validation accuracy concentrates near optimal for each bitflip
rate. By contrast, from Fig 3g the noiseless performance of transformers on MAJ(30, 4) degrades
faster than MAJ with odd n. We also find that the distribution of LSTM validation accuracies for
MAJ(30, 4) tends to be more bimodal than for MAJ problems with odd n.

For learning PARITY(20, 4), Fig. 5 shows a clear bimodal distribution in the final validation accuracy
across a range of bitflip rates. Other than the noiseless scenario, LSTMs trained in our hyperparam-
eter set were practically incapable of noise-robust learning.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

0.5
0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5
1.0

0

LSTM val acc

0

50

100

150

Nu
m

be
r o

f L
ST

M
s

MAJ(20, 5)

0%
5%
10%
15%
20%

25%
30%
35%
40%
45%

0.5
0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5
1.0

0

LSTM val acc

0

50

100

150

200

250

300 MAJ(30, 4)

0.0%
1.2%
3.0%
5.3%
8.0%

11.1%
14.8%
19.2%
24.6%
31.9%

0.5
0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5
1.0

0

LSTM val acc

0

100

200

300

400

500

600
MAJ(40, 5)

0%
5%
10%
15%
20%

25%
30%
35%
40%
45%

0.5
0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5
1.0

0

LSTM val acc

0

25

50

75

100

125
MAJ(50, 3)

0.0%
1.2%
3.0%
5.3%
8.0%

11.1%
14.8%
19.2%
24.6%
31.9%

0.5
0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5
1.0

0

Transformer val acc

0

50

100

150

200

Nu
m

be
r o

f t
ra

ns
fo

rm
er

s

MAJ(20, 5)

0.5
0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5
1.0

0

Transformer val acc

0

50

100

150

200

250
MAJ(30, 4)

0.5
0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5
1.0

0

Transformer val acc

0

50

100

150

200

250
MAJ(40, 5)

0.5
0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5
1.0

0

Transformer val acc

0

50

100

150

200

250
MAJ(50, 3)

Figure 4: Validation accuracy for LSTMs (top row) and transformers (bottom row) for each sparse
MAJ noise-robust learning task, colored according to bitflip rate. Each experiment with a particular
error rate consists of 300 independent training runs with random initialization (maximum validation
accuracy over each training trial is shown).

0.5
0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5
1.0

0

LSTM val acc

0

50

100

150

200

250

Nu
m

be
r o

f L
ST

M
s

PARITY(20, 4)

0.5
0
0.5

5
0.6

0
0.6

5
0.7

0
0.7

5
0.8

0
0.8

5
0.9

0
0.9

5
1.0

0

Transformer val acc

0

50

100

150

200

250

300

Nu
m

be
r o

f t
ra

ns
fo

rm
er

s

PARITY(20, 4)
0.0%
1.0%
2.0%
5.0%
7.5%

10.0%
12.5%
15.0%
17.5%
20.0%

Figure 5: Validation accuracy for LSTMs (left) and transformers (right) for the PARITY(20, 4) noise-
robust learning task (other details same as Fig. 4).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

B.3.2 EXPERIMENT 3

Figure 6 represents the collection of experiments that were used to show that transformers can be
trapped due to their simplicity bias (refer to section 4). Fig. 6 compares the relationship between
sensitivity and accuracy for different architectures for both noisy and noiseless validation datasets
generated with the function T . Each plot shows training trajectories of individual models (colored
lines) that end at the point where the model achieves maximum accuracy on the respective validation
dataset (circular markers). In the presence of noise (Figs. 6(a), 6(c), and 6(e)), one sees that all the
models cluster in a relatively narrow accuracy band around (0.5, 0.6). As pointed out in Section
4, the overall behavior of the SANs is to learn a function that optimizes the validation accuracy
(optimal validation lookup table represented by). Nonetheless, due to the unavoidable randomness
in machine learning models, combined with the transformer simplicity bias, Fig. 6(a) shows that
some individual models can get significantly closer to the true function (represented by ★). This is
certainly not the case with LSTMs (Fig. 7), as all the individual models seem to cluster around the
optimal training accuracy (lookup table for training set denoted by). In Fig. 7(c), we see that the
presence of simplicity penalty helps to bring the vast majority of the individual models significantly
closer to the true function.

On the other hand, when the models are evaluated on the noiseless (original) dataset (Figs. 6(b),
6(d), and 6(f)), the architectures SAN and LSTM fail to learn the original function. Nonetheless,
SANs perform better than LSTMs and are generally more suitable for this problem. As before, the
addition of a simplicity penalty improves the learning traces of the SANs.

The pattern no longer holds for the function MAJ(30, 4) (Fig. 7). Here, in both the noisy and noise-
less validation cases, there seems to be no overall pattern followed by the individual learning traces.
The overall behavior of the experiments indicates that LSTMs and SANs approach optimal valida-
tion accuracy, with no clear differences in their sensitivity. Adding a simplicity penalty to SANs has
minimal effect on their performance. Across experiments, no model comes close to learning the true
function.

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700
SAN

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700
LSTM

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700
SAN +

1.5 2.0 2.5 3.0 3.5 4.0
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.5 2.0 2.5 3.0 3.5 4.0
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.5 2.0 2.5 3.0 3.5 4.0
0.5

0.6

0.7

0.8

0.9

1.0

1.1

Sensitivity

Ac
cu

ra
cy

Va
lid

at
io

n
N

oi
se

le
ss

 v
al

id
at

io
n

Figure 6: Validation (top row) and noiseless-validation (bottom row) accuracies for each architecture
(rows: SAN, RNN, SAN+λ) trained on the dataset generated by the trap function T as a function of
the sensitivity. Each colored curve is one of 19 independent runs, shown up to the epoch of its peak
validation accuracy (blue, red, and green circles). The represents a lookup table for the validation
dataset; the represents a lookup table on the training dataset; the ★ represents the true (noiseless)
function.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

0.4

0.5

0.6

0.7

0.8

0.9
SAN

0.4

0.5

0.6

0.7

0.8

0.9
LSTM

0.4

0.5

0.6

0.7

0.8

0.9
SAN +

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Sensitivity

Ac
cu

ra
cy

Va
lid

at
io

n
N

oi
se

le
ss

 v
al

id
at

io
n

Figure 7: Validation (top row) and noiseless-validation (bottom row) accuracies for each architecture
(rows: SAN, RNN, SAN+λ) trained on datasets generated with MAJ(30, 4) as a function of the
sensitivity. Each colored curve is one of 19 independent runs, shown up to the epoch of its peak
validation accuracy (blue, red, and green circles). The , , ★ retain their meaning from Fig. 6.

STATEMENT ON LLM USAGE

Large language models were used to assist in literature review, code development, and analysis for
this project. None of the text or equations in this manuscript were generated by an LLM.

21

	Introduction
	Prior work

	Background
	Transformers succeed at noise-robust learning of sparse parities and odd majorities
	Noise robustness versus simplicity bias

	Trapping transformers with simplicity bias
	Discussion
	Conclusion

	Background
	Boolean analysis
	Information theory
	Optimal next-bit prediction
	Evidence for Conjecture 1

	Experimental methods
	Dataset generation
	Training and Hyperparameters
	Model architectures
	Experiment 1
	Experiment 3

