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ABSTRACT

Noise is ubiquitous in data used to train large language models, but it is not well
understood whether these models are able to correctly generalize to inputs gener-
ated without noise. Here, we study noise-robust learning: are transformers trained
on data with noisy features able to find a target function that correctly predicts
labels for noiseless features? We show that transformers succeed at noise-robust
learning for a selection of k-sparse parity and majority functions, compared to
LSTMs which fail at this task for even modest feature noise. However, we find
that transformers typically fail at noise-robust learning of random k-juntas, espe-
cially when the boolean sensitivity of the optimal solution is smaller than that of
the target function. We argue that this failure is due to a combination of two fac-
tors: transformers’ bias toward simpler functions, combined with an observation
that the optimal function for noise-robust learning typically has lower sensitivity
than the target function for random boolean functions. We test this hypothesis
by exploiting transformers’ simplicity bias to trap them in an incorrect solution,
but show that transformers can escape this trap by training with an additional loss
term penalizing high-sensitivity solutions. Overall, we find that transformers are
particularly ineffective for learning boolean functions in the presence of feature
noise.

1 INTRODUCTION

Large language models (LLMs) are powerful tools for natural language processing, code generation,
scientific research, and reasoning across a wide range of domains. The training data for these models
contain noise in the form of stochasticity and different modalities of errors, and yet LLMs trained
on these noisy data are often applied in settings where next-token prediction is highly sensitive to
noise in the preceding tokens, such as solving arithmetic problems. This raises the question, are
transformers actually capable of noise-robust learning, i.e. can transformers trained on data with
feature noise learn a target function that makes accurate predictions for noiseless data?

Boolean functions of binary input data provide a simplified setting for studying noise-robust learn-
ing. Recent results demonstrate that transformers prefer to learn simple boolean functions for next-
bit prediction tasks on binary input data (Bhattamishra et al 2023b; Hahn & Rofin, 2024). An
immediate consequence is that the functions learned by these models are robust to input perturba-
tions (i.e. noise) at evaluation time (Vasudeva et al.| [2025). Yet, less is known about the setting
where training data themselves contain feature noise (for example, bitflips randomly applied to the
input bitstring). From another angle, Deletang et al.| (2024) analyzed natural language modeling in
terms of compression in the presence of an inherent amount of randomness found in natural language
(Shannon, |1951). However, such analyses neglect the effect of noise on information transmission
(Shannon, (1948). It is well-known that feature noise induces simpler solutions in ordinary least
squares via attenuation Fuller| (2009), but there is little empirical evidence describing how feature
noise affects the learning behavior of transformers in discrete domains, like learning boolean func-
tions. Our goal is to study whether these models are capable noise-robust learning — learning an
underlying boolean function from training data with feature noise.
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Our main finding is that transformers fail at noise-robust learning for a large class of boolean func-
tions. We attribute this outcome to a combination of two factors: (i) the simplicity bias of transform-
ers makes them prefer simple functions that achieve low loss on the training data and (ii) empirical
and theoretical arguments that the optimal solution for noise-robust learning is simpler than the tar-
get function used to generate the data. Meanwhile, we find that long short-term memory networks
(LSTMs), which exhibit less bias towards simple functions, also fail at noise-robust learning, albeit
for different reasons. Thus, while a neural network with an inductive bias towards complex functions
might be capable of noise-robust learning in principle, we show that both transformers (with their
simplicity bias) and LSTMs (without a simplicity bias) are poor candidates for this task.

These results imply that transformers are ill-suited to classification and generative modeling in bi-
nary domains where feature noise is prevalent, such as learning to decode classical (Kim et al.,2018;
Nachmani & Wolf}, 2019; (Choukroun & Wolf}, 2022; |(Cammerer et al., 2022) and quantum error cor-
recting codes (Torlai & Melkol 2017 [Lange et al., [2025; Bausch et al., [2024; [Peters), 2025). More
broadly, our findings suggest that the simplicity bias of LLMs hurts their ability to learn complex
relationships via natural language processing with sufficient feature noise. For instance, models
trained on noisy data (e.g. high stochasticity, incorrect grammar or semantics) will likely struggle
to perform next-bit prediction for tasks such as arithmetic and discrete mathematics, where each
next token depends on preceding noiseless input text according to some sensitive function. This
complements observations that feature noise at evaluation time can reduce transformers’ ability to
do arithmetic and other discrete mathematics (Shi et al., [2023]; |Abedin et al.,|2025)). Our work high-
lights a potential need to mitigate the simplicity biases of large language models, if we hope for
these models to learn algorithmic tasks from noisy training data.

Our contributions we show mixed results for transformers’ performance at noise-robust learning.
(1) We find that transformers succeed at this task for sparse parity and majority functions at high
rates of feature noise, while LSTMs generally fail at this task even for low levels of feature noise.
(i) We show that transformers fail at this task for random k-juntas while simultaneously reaching
near-optimal accuracy on noisy validation data. (iii) We propose an explanation for this behavior:
We observe that the sensitivity of the optimal solution for noise-robust learning is rarely greater
than the sensitivity of the target function, and therefore transformers’ simplicity bias will result in
a solution that is suboptimal for noiseless evaluation. (iv) We explore this hypothesis by showing
that transformers can be trapped by an incorrect solution that achieves similar accuracy as the target
function on noisy validation data, and that transformers with a penalty for high-sensitivity solutions
can escape this trap.

1.1 PRIOR WORK

Learning boolean functions with transformers: In an effort to understand the success of contem-
porary LLMs, significant attention has been given to the ability of transformers to model formal
languages (Bhattamishra et al., | 2020; (Chiang & Cholak! [2022}Strobl et al., 2024), with some results
showing shortcomings for modeling certain functions such as PARITY (Hahn| [2020; |Bhattamishra
et al} [2020). In turn, some work has shown that transformers are biased towards learning low-
sensitivity Boolean functions, and that they are robust to label noise (Bhattamishra et al., [2023b;
Jonasson et al.| [2023} Bhattamishra et al.,2023a). Our work is distinct because we consider learning
from examples with feature noise rather than label noise, which has a qualitatively different effect
on the learning behavior of language models. The k-sparse parity problem is often used to evaluate
the learning abilities of transformers (Barak et al., [2023} Michaud et al., 2024)), but we show how
performance at learning this function is somewhat deceptive in the setting of noise-robust learning.

Simplicity bias in transformers: A growing body of evidence shows that neural networks exhibit
a bias towards learning simple functions for a variety of domains and simplicity measures (Arpit
et al., 2017; [Valle-Perez et al.| 2019} |[Kalimeris et al., 2019; Mingard et al., [2020; [Cao et al.| 2020;
Yang & Salman, [2020; Rahaman et al., 2019). Bhattamishra et al.| (2023b)) showed empirically that
transformers tasked with learning boolean functions are biased towards low-sensitivity solutions,
compared to other recurrent models such as LSTMs. Later works provided additional theoretical
and empirical evidence for this effect (Hahn & Rofin| 2024} Vasudeva et al., [2025). Our work
extends and applies these insights in two ways: We demonstrate that LSTMs generally fail to learn
boolean functions given noisy input data, while transformers exhibit function-dependent learning
abilities. Indeed, we argue that due to their low sensitivity bias, transformers are fundamentally less



capable of learning boolean functions in the presence of feature noise, while such functions might
in principle be learnable by a model with high sensitivity-bias.

Information theory and noisy features: Information theory provides a natural framework for de-
scribing any learner’s ability to to predict subsequent or missing tokens of text in terms of the re-
dundancy (or compressibility) of a source of randomness (Shannonl|1951)). Accordingly, prior work
has related language modeling to compression in the context of Shannon source coding (Teahan &
Harper] [2003; Deletang et al., 2024)) or Kolmogorov complexity (Sutskever, |2023)). However, our
analysis differs by considering noisy features produced by some stochastic map acting on noiseless
bitstrings, so that our setting is more related to noisy channel coding (Shannon, [1948; [1949)) than
compression.

2 BACKGROUND

We first introduce some notation for dealing with distributions of random variables, and bitstring-
valued variables in particular. We usually consider a random length-n bitstring X := (X1,...,X,,)
taking value = := (x1,...,2,) € {0,1}" uniformly at random. The expected value of a function f
with domain {0, 1}" is written E,,  [f(z)] := >y px () f(2), or just E;[f(x)] when there is no
ambiguity. We define the conditional distribution py | x of the n + 1 bit Y := f(X) generated by
applying a boolean function to the noiseless input bitstring X. Optimal performance at (noiseless)
next-bit prediction is related to the next-bit conditional entropy of Y given X : The entropy H (X) :=
E.[—log(px (z))], loosely, measures the uncertainty in predicting the value of X. The conditional
entropy H(XY) := E, [ log(px|y (x|y))] describes the uncertainty about the value of X given
that Y is known.

We model feature noise using independent, symmetric bitflip errors on uniformly random input
bitstrings. This error model is used broadly in both boolean analysis (O’Donnell, [2014), and com-
munication theory (Cover, |1999). We describe bitflips using a random variable £ € {0, 1}", where
Pr(E; = 1) := p. Then, the noisy bitstring Z = X @ FE is generated by adding E to the noiseless
bitstring X (mod 2), and induces a distribution pz. We generate a training data point (Z,Y") for
next-bit prediction with noisy features as follows: (i) Sample a noiseless bitstring X according to
px, (ii) generate the next bit Y = f(X), (iii) apply iid bitflip errors E™ to create noisy features Z,
and the goal of the learner is to predict Y given Z with (Z,Y) ~ pzy. Noisy validation data are
generated in the same way, while noiseless test data (X,Y") are sampled directly from pxy. We
define the noisy generalization error of a boolean function g with respect to a label function f (used
to generate labels Y = f(X)) as

err(9) := Pr(9(2) # f(X)) = Pr(g(2) #Y), ()

where Prx (+) denotes the probability with respect to X ~ px. We are mainly interested in a model’s
ability to learn the function f after training only on noisy training data (Z,Y"). The noiseless gen-
eralization error of a model g evaluated on noiseless data is computed as Prx (¢(X) # f(X)). A
learning algorithm succeeds at noise-robust learning if it learns a boolean function g with small
noiseless generalization error, after being trained to minimize (empirical estimates of) err f(g).
Throughout this work, we only consider training data with noisy features (Z,Y) where Z is a noisy
version of X while Y is unaffected by label noise.

We will compare the noise-robust learning capabilities of self-attention network transformers
(SANs) (Vaswani et al., 2017) to LSTMs, continuing a recent line of investigation into the relative
advantages and behaviors of these models (Bhattamishra et al.| [2023b). Many of our experiments
involve the parity function, PARITY (z) := wt(x) mod 2, and the majority function MAJ(z) which
outputs 1 if and only if wt(x) > n/2, where wt(x) denotes the Hamming weight. Importantly, MAJ
is an imbalanced function when n is even. When relevant, we will use a subscript to refer to the
input length (e.g. MAJ,,). We will often consider sparse versions of these functions, whose output
only depends on a subset of k& < n input bits. We will denote this by an (n, k) pair, e.g. MAJ(n, k)
computes the majority for a specific subset of k bits.

Performing experiments using boolean functions dependent on relatively few bits allows us to com-
pare models’ performance to an optimal prediction rule. We denote a Bayes-optimal predictor for
the distribution pzy as f% : {0,1}"™ — {0, 1}, to be a boolean function that satisfies

errs(fy) <errs(g) 2)



forall g : {0,1}™ — {0,1}. The choice of optimal predictor is not unique in general (for instance,
when f(z) = z1, f(x) will not be influenced by x5 ... xz,). We choose to evaluate a particular
optimal predictor with the following formula:

fn () = sign(T1—op f (), 3)
where T,g(z) := Ez x—.[g9(Z)] denotes the noise operator with respect to the distribution py 7
with bitwise correlation p := E[z;2;] [O’Donnell| (2014). We define Fx (f) to be the set of all
boolean functions h such that err(h) = err(f%). We defer further background on Boolean func-
tions to Appendix |Al As mentioned before, the task of predicting f(x) given z is rooted in noisy
channel coding. Specifically, the best possible accuracy err(f3) is bounded from above and below
by (monotone decreasing) functions of the next bit (conditional) entropy (Feder & Merhavl [1994):

o~ (H(Y]2)) < errp(fx) < ¢~ (H(Y|Z)). 4)

Here, ¢ is an invertible piece-wise linear function, while H(Y|Z) < ®(errs(f%)) is Fano’s in-
equality (see Appendix[A.2)). The inequalities in Eq.[dare analogous to upper (Candes & Taol [2006;
Donoho, [2006) and lower bounds (Peters|, [2024) for certain learning tasks on continuous domains.

The dependence of next-bit prediction accuracy with noisy features on the next-bit conditional en-
tropy H(Y'|Z) captures a broader relationship between next-token prediction and noisy channel
coding (Shannon, [1948). We model next-token prediction as a communication process between a
sender Alice and a receiver Bob, using a finite alphabet A. Alice first chooses a token of information
Y = f(X) € X that she wishes to communicate to Bob. She then encodes this token into the space
of token sequences X € A”™. This encoding process contains some randomness (e.g. there are many
ways to construct sentences that are semantically equivalent), as well as noise (grammatical or syn-
tactical errors), and so the map Y — X need not be one-to-one or even deterministic. Bob receives
noisy bitstring Z € A™ due to this combination of noise and stochasticity, and his goal is to decode
the token f(X) of Alice’s message given the string of noisy tokens Z without knowledge of her
encoding scheme. Thus, learning next-token prediction from noisy features is firmly rooted in noisy
channel coding, and is distinct from (but complements) alternative models based on source coding
(compression) (Deletang et al.,2024)) or Kolmogorov complexity (Sutskever,|[2023). Since Bob does
not a priori know Alice’s encoding scheme, he may not be capable of decoding her messages even
in the noiseless setting. Eq. 4] therefore relates next-bit entropy to limitations on generalization per-
formance in language modeling, and is related to noisy channel capacity in the asymptotic limit.
In contrast, Bob’s ability to learn f from noisy features depends on properties of the noise and f,
which we will return to in Section

3 TRANSFORMERS SUCCEED AT NOISE-ROBUST LEARNING OF SPARSE
PARITIES AND ODD MAJORITIES

‘We now show that for a certain class of functions, transformers are able to learn a noiseless function
f when trained entirely with noisy features. This moves beyond prior work showing that transform-
ers learn functions robust to noise at evaluation time (Vasudeva et al 2025). Our experiments show
that transformers are more robust than LSTMs at learning PARITY(n, k) and MAJ(n, k) (but only
when £k is odd), when trained on data with iid bitflip noise applied to input features. We tested two
kinds of boolean functions: sparse majorities and sparse parities. For each choice of bitflip rate p,
we generated a size N dataset of (Z, f(X)) pairs, and then trained an LSTM or transformer to pre-
dict the label for each point. We do not apply label noise to any of our data. Since a model’s ability
to learn is sensitive to initial parameter choice and hyperparameters, we repeated this process 300
times for each model with random initializations and random hyperparameters. We constructed the
set of possible hyperparameters by iterative grid search while training each model on noiseless data,
and then expanded this set slightly to account for hyperparameter optimality changing with noise
strength. We provide detailed experiment descriptions in Appendix

Fig.[I]shows the relative performance of LSTMs versus SANs on learning several commonly-tested
boolean functions with feature noise. We considered the sparse majority functions MAJ(20,5),
MAJ(40,5), MAJ(50,3) with N = 2000 noisy training data. In both cases, LSTMs and SANs
reliably learn with zero feature noise. At modest noise strengths, the best of 300 LSTMs performs
worse than the median transformer (which performs close to the information-theoretic optimal). We
also compare both models’ abilities to learn PARITY (n, k). However, sparse parity is significantly
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Figure 1: Transformers learn MAJ,, (with odd »n) and PARITY robustly from noisy features.
(a-c) For MAJ(20,5) and MAJ(40, 5), the median transformer (SAN) reliably outperforms the best
LSTM across 300 training runs with a variety of hyperparameters tuned to optimize both architec-

tures’ success probability. Validation accuracy approximates err s ( f) using 10000 examples, where

f is either an LSTM or SAN prediction rule. Each point on the solid lines represents the best (me-
dian) LSTM (SAN) from 300 training experiments. (d) While both LSTMs and SANs fail in a
large fraction of training experiments learning PARITY (20, 4) with feature noise, transformers suc-
cessfully learn PARITY(20,4) (defined as achieving noiseless accuracy > 95%) more often than
LSTMs, even when both architectures perform comparably at zero noise rate. See Appendix |B|for
experiment details.

harder to learn: (i) LSTMs generally fail to learn PARITY(n, k) for n > 20 even with noiseless
inputs (Bhattamishra et al., 2023b)), and (ii) learning parity with feature noise rate p corresponds to
an instance of learning parity with noise (Blum et al.,[2003), an intractable learning problem. For
f := PARITY(20,4), we compute the fraction of models that learned f from noisy training data
since the training process is highly sensitive to initial parameter choices. Among SANs and LSTMs
that achieve comparable performance on learning PARITY (20, 4) in the noiseless setting, only SANs
are capable of learning from noisy input features. We also found that this behavior extends to
sparse multitask parities (Michaud et al, 2024), for which transformers succeeded at noise-robust
learning while all LSTMs failed. Thus, for the commonly-studied PARITY and MATJ functions, we
find that transformers achieve better learning outcomes across a variety of hyperparameter choices
and initializations.

3.1 NOISE ROBUSTNESS VERSUS SIMPLICITY BIAS

What explains transformers’ impressive robustness to feature noise compared to LSTMs? Fig. [I]
demonstrated that transformers can learn from data with feature noise more robustly than LSTMs
for a few specific functions. One explanation for this behavior is the observed simplicity bias of deep
neural networks (Arpit et al.}, 2017}, [Valle-Perez et al.,[2019; Mingard et al.} [2020; [Cao et al., [2020),
as recent works demonstrate that transformers tend to learn simpler boolean functions compared
to LSTMs without any explicit regularization (Bhattamishra et al.} [2023b; [Hahn & Rofin} 2024).
Sensitivity is a common measure of simplicity in the context of boolean functions (Kahn et al.
[1988). The sensitivity of a boolean function f is defined as

n

I[f] := Pr (f(x) # f(z9)), (5)

~{0,1}™
— on{0,1}

where 27 denotes 2 with a bitflip at location 4. Simplicity bias helps explain why transformers
trained on noiseless data enjoy robustness to feature noise at evaluation time, since small test error on
noisy data combined with transformers’ robustness implies small noisy generalization error (Eq. [I):

For uniformly distributed « € {0, 1}" and iid bitflip noise with probability p, a function f obeys

Pr, .( f(x) # f(2)) < pI[f] (O'Donnell, 2014). Ordinarily, a transformer is trained to achieve

low error on noiseless inputs, such that Pr,(f(z) # f(z)) = € is small. Then, a simple triangle



inequality gives

erry(f) < e+ plI[f]. (6)
From this, we see that a transformer’s simplicity bias (preference for f with small I] f]) implies
small error in predictions on noisy features at evaluation time. This intuitively explains observations
that transformers trained on noiseless data can accurately classify noisy examples at evaluation time
(Zhou et al., 2022)), and has been referred to as noise robustness in other literature (Vasudeva et al.}
2025)).

However, in our setting we are concerned with training models on noisy features, which is a qual-
itatively different than what is typically studied for boolean learning problems. Specifically, we
ask: Will transformers trained on noisy features learn to make accurate predictions on noiseless
data at evaluation time? The general answer is no. Our first clue that transformers can fail at noise-
robust learning is that the functions PARITY (n, k) and MAJ(n, k) analyzed above are actually special
boolean functions that happen to be optimal for prediction on both noiseless and noisy features. The
following proposition summarizes several results of (Weinberger & Shayevitz, 2018]) demonstrating
how the majority and parity functions functions are qualitatively special among boolean functions:

Proposition 1. For each function f € {MAJ,,, PARITY} (n 0dd), f is optimal for prediction on noisy
features data, i.e. f = f3.

In the terminology of Weinberger & Shayevitz (2018)), the majority and parity functions are self-
predicting, as each function achieves optimal test error when evaluated on its respective noisy input
distribution (Z, f(X)) and can therefore, in principle, be learned by ordinary loss minimization
(the self-predicting property immediately extends to sparse versions of each function). In this way,
MAIJ(n, k) with odd n and PARITY (n, k) function are uniquely easy to learn with feature noise. We
will now argue that for a typical boolean function f, it is instead true that f # f3;. Therefore, we
should expect that SANs and LSTMs will fail to learn f from noisy inputs, though we show an
example of mitigating this shortcoming via a tailored loss function.

4 TRAPPING TRANSFORMERS WITH SIMPLICITY BIAS

Section suggested that transformers can learn boolean functions robustly in the presence of fea-
ture noise for several commonly-considered functions. We now show that this behavior does not
hold in general, and should even be considered atypical. We will show that transformers generally
fail at noise-robust learning due to a combination of their simplicity bias, and the observation that
the optimal prediction rule for noisy data on average has lower sensitivity than the optimal predic-
tion rule for noiseless data for randomly k-juntas with small k. Thus, whenever a model with low
sensitivity bias is trained via risk minimization on noisy examples (Z, f(X)) on such functions, the
model will typically fail to learn the target function f without further intervention.

Intuitively, feature noise should cause an optimal predictor f3; to be simpler than f, by some measure
of simplicity. For example, if f is an imbalanced function and p is sufficiently large, fx, will be
a constant function. The relative simplicity of f3, compared to f is also observed in least-squares
regression as attenuation, wherein feature noise decreases the learned slope in ordinary least squares
regression (Fuller, 2009). Similarly, feature noise can be understood to act as a regularization term
in learning problems (Bishopl [1995; |Wager et al.l 2013). Whenever f}, # f, a model minimizing

validation error by finding some f € F5(f) will forgo the possibility of learning f. In this case, it
might still be possible to learn f noise-robustly, but only if the model has inductive biases towards
learning f rather than alternative solutions g with errs(g) < erry(f). Conversely, the simplicity
bias of transformers can actually harm their ability to do noise-robust learning since the optimal
solution fy, for noise-robust learning often has lower sensitivity than the target function f, which
we make concrete with the following proposition:

Proposition 2. Let f : {0,1}" — {0, 1} be a function sampled uniformly at random from the set
of all boolean functions on n bits. Then, for sufficiently large n the optimal predictor fx (z) :=
sign(T1—2p f()) has average sensitivity

2p(1 —
By l73] ~ 2 anccos (2= @
and in particular for p € (0,1/2],
Ef[I[f]] > Ef[I[fx]] ®)



We prove Proposition [2] in Appendix [A.4 Importantly, Eq. [§] states that for uniformly random
boolean functions on sufficiently many bits, the sensitivity f is larger than the sensitivity of the
optimal predictor f, on average. We observe that this inequality typically holds even for small
n: Fig. [2| shows that I[f] > I[f] holds for random k-juntas (k € (5,6,7,8)), and additional
simulations find no violations of the inequality. On the other hand, there do exist functions for
which I[f] < I[f%], and so I[f] > I[f%] can only hold as an average case statement. We discuss
these details further in Appendix[A.4]
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Figure 2: Transformers generally fail at noise-robust learning for random k-juntas, and per-
form worse as the difference in sensitivity and validation error for f versus f3 grows. (a)
Each point represents a randomly sampled k-junta f (3200 total). Every randomly sample f obeys
I[f] > I[f%]. while by definition err;(f) > erry(fx ). Minimizing validation error in noise-robust
learning will only succeed for functions near the bottom of the plot, while a training algorithm with
low sensitivity bias will only succeed for points near the left of the plot. By Prop. |l} MAT, (odd
n) and PARITY are represented by the coordinate (0, 0). (b-c) Transformers only succeed at noise-
robust learning when I[f] ~ I[f5] and errs(f) ~ erry(f%) (across 3200 learning experiments).
Histograms of models’ final validation error, train error, and optimal error demonstrate that noise-
robust learning fails despite (d) near-optimal performance with (e) little overfitting. See Appendix [B]
for additional experimental details.

Fig. 2| demonstrates that the sensitivity difference between f and f3; is usually large, with respect
to random boolean functions. Correspondingly, across 3200 randomly-generated k-sparse boolean
functions (k-juntas), we find that transformers tend to perform worse at noise-robust learning as the
difference (I[f] — I[f%/]) grows. This is despite — or because of — achieving near-optimal validation
error with minimal overfitting, and demonstrates a correlation between the transformer’s worsening
performance and decreasing sensitivity of the optimal solution for noisy data. However, this rela-
tionship is potentially confounded as the difference (erry(f) — erry(fx)) also grows, which will
make the transformer less likely to learn f via loss-minimization regardless of I[f].

To isolate effect of simplicity bias on transformers’ and LSTMSs’ ability to do noise-robust learning,
we design a controlled experiment involving a trap function f such that err;(fX) = errs(f) , but
I[f%] < I[f]. In this case, a learning algorithm could learn f from noisy data in principle, but
will fail if it is biased towards lower sensitivity functions. Indeed, Figs. 3(a-c) demonstrate that
transformers fail to learn f and instead converge towards the trap function f3,. LSTMs also fail to
learn f, but instead due to overfitting on training data. Thus, SANs and LSTMs both struggle with
noise-robust learning, but fail to learn f from noisy data for completely different reasons.

A neural network might be capable of escaping the trap and learning f if we were to replace its pref-
erence for simple functions with a preference for complex functions. To test this possibility, we ran
learning experiments for the same trap function but with an additional term in the loss function that

penalizes low-sensitivity solutions. We add an additional loss term approximating —\I[f] at each
training step, which achieves a similar effect to penalizing high-weight components of the function’s
Fourier spectrum (Gorji et al., |2023)). For a narrow choice of )\, transformers were capable of es-
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Figure 3: LSTMs and transformers fail to learn f from training data with feature noise in
distinct ways. (a)-(b) We consider a particular trap function f such that errs(f% ) ~ erry(f), while
I[f%] < I[f]. Blue and red lines show (smoothed) training dynamics of transformers and LSTMs
trained on noisy inputs across a variety of hyperparameters and initializations. Each point represents
a (learned) boolean function. Transformers approach optimal validation accuracy (3X) while RNNs
perform no better than memorization of training data (X), and both models fail to learn f ().

However, an explicit sensitivity penalty in the loss function AI[f] (A = 1) allows transformers to
learn f (green lines) (c¢) There is a clear optimum A for learning f from noisy data using sensitivity
penalty in the loss. (d-f) This behavior does not extend to functions where err(fy) < errs(f),
for example MAJ(30,4) with p = 0.32, for which f3, is a heavily biased function. (g) Overall,
transformers do not outperform LSTMs at learning MAJ(n, k) with even n (shown: MAJ(30,4))
with feature noise. See Appendix [B.3.2]for additional details.

caping the learning trap with this complexity bias (Fig.[3t), though this outcome depends on a good
choice for A, which may not be practical to optimize. Furthermore, a learning algorithm is unlikely
to learn f} when erry(f5) < erry(f), even with a strong complexity bias. To demonstrate, we
return to f := MAJ(n, k) (n even), for which f% # f in general since f is imbalanced. Fig.d—f)
shows that transformers typically fail to learn MAJ(30, 4) from noisy features (for many penalty pa-
rameters A), while at the same time LSTMs become more capable of learning the lower-sensitivity
fx- As aresult, the performance gap between the median SAN and best LSTM for learning MA7T,,
with even n almost completely disappears (Fig. [3).

5 DISCUSSION

Limitations: Our noise model and input data are limited in several ways: We have only considered
noise in the form of independent bitflip errors on uniformly random input bitstrings, and it is unclear
if our findings would extend to other forms of noise. Many of the effects we observed depend on
the condition that f3, # f, which in turn requires relatively high noise rates that may not be present
in natural datasets. While we have not considered label noise, previous analyses suggest that this
would not affect the qualitative behavior of our models (Bhattamishra et al.,|2023b).

Here we have studied independent and identically distributed bitflip noise, a toy model for noise
occurring in real world data. Our observations should extend to other noise processes: For example,
the mechanism by which T}, decreases the sensitivity of a boolean function does not depend on
identically distributed errors, and so the inequality I[f%] < I[f] should hold with high probability
even for non-iid noise models. But here is no reason to expect that this inequality will hold for noise



models with arbitrary correlations between bitflips (see Appendix [A.5). Moreover, bitflips lead
to a qualitatively different form of noise than randomness introduced by generating bit sequences
recurrently according to some stochastic process. Future work will be necessary to determine the
extent to which complex and realistic noise models obey I[f] > I[fx].

Our experiments with noise-robust learning involved randomly-generated k-juntas, which may not
be representative of real noise-robust learning problems. Our trapping experiment using sensitivity
penalties succeeded under tightly controlled conditions, though this experiment is provided only as
a demonstration and this particular strategy may fail in general. It is likely that more sophisticated
techniques will be needed to improve transformers’ ability to do noise-robust learning when fy; is
much more accurate than f.

Future work: Our results suggest that transformers’ simplicity bias has practical, negative con-
sequences for learning boolean functions from training data with noisy features. Do these con-
sequences extend to domains with more complex inputs such as natural language processing? In
certain natural language tasks like modular arithmetic (Liu et al., |2022), one hopes that transform-
ers can learn input-sensitive discrete functions after training on text that contains both errors and
stochasticity (i.e. entropy of written language). Our findings suggest that this may be impossible
for sufficiently high-entropy inputs, since optimal prediction on noisy features corresponds to a low
complexity predictor on the training data. Our work complements recent observations that LLMs
tend to perform poorly at math when exposed to noise at evaluation time (Shi et al., [2023} |Abedin
et al.l 2025)), and suggests a need for further experiments to examine how noise and stochasticity in
training data affect LLMs reasoning abilities at evaluation time. Indeed, the mismatch between f
and f3}; in our experiments suggests that reducing model loss to the next-token conditional entropy
may actually be detrimental for learning precise concepts from natural text.

5.1 CONCLUSION

We have shown that transformers outperform LSTMs for learning sparse parities and (odd-length)
sparse majorities in the presence of feature noise. But we show that transformers fail at noise-robust
learning of boolean functions more generally, and use controlled experiments with modified loss
functions to connect this failure specifically to transformers’ bias towards learning simple boolean
functions. Our analysis suggests that transformers may be particularly unsuitable for learning sensi-
tive functions in the presence of feature noise.

CODE AVAILABILITY

Code to reproduce experiments an analysis is available on Github: https://github.com/
peterse/noise-robust-boolean—-learning/.
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APPENDICES

APPENDIX A BACKGROUND

A.1 BOOLEAN ANALYSIS

Unless otherwise noted, we will always consider uniform distributions of bitstrings = € {0, 1}", i.e.
px (x) = 27"V x. We can represent bitflips using an iid bitflip random variable £ = (E4, ..., E,)
where each F; takes values in {0,1} with Pr(E; = 1) = p. This means that Pr(wt(E) = w) =
(1 —p)»~¥p*, for instance. Then, Z := X @ FE represents the string X that has undergone a bitflip
at each location where E is nonzero. The variables X and Z are not independent, but X and E
are independent (written X L FE). We can compute relationships of X and Z using this fact, for
example:

Prx z(X =2,Z=2%)

= 9

:PrXVE(X:x,E:xEBz) (10)
px ()

=pp(r® 2) (11)

The sensitivity of f at x is defined as the number of bit positions such that a single bitflip of =

changes the value of f:

s(fo) =Y I{f(z) # fz @ ei)}. (12)

i=1
On the other hand, if we fix a single bit 7, then the influence of bit ¢ is defined as
Infi(f] := Pr(f(2) # f(=®)). (13)
The average sensitivity (or “total influence”) of f is then defined as the average sensitivity over all
inputs
U] =Els(hal = 5 S0 s(fa) = S Ml (14)
ze{0,1}™ i

This takes values in the range [n], and thus I[f]/n gives the likelihood over random inputs that a
single bitflip changes the output value of f.

If we alternatively represent bits {0,1} as {1, —1}, we represent noise by considering pairs (x, z)
with « sampled uniformly at random from {—1,1}" and z sampled conditionally such that each
bit satisfies E[x;2;] = p. In this case, we define the noise operator T, according to T}, f(x) :=
E.~,z[f(2)], where z ~, x denotes sampling z conditionally on x in the way described above.

We will sometimes use Fourier analysis of Boolean. For a subset S C [n], the Fourier coefficient of
f:{1,-1}™ — R at subset S is defined

f8):= Y flxs) (15)

ze{—-1,1}"
where xs(z) := [],cq 2
A.2 INFORMATION THEORY
We briefly introduce concepts from information theory, in order to motivate how next-bit conditional

entropy closely describes the hardness of next-bit prediction. Consider a random variable X taking
values © € X with probability px (). The entropy of X is defined as

H(X) =- Y px(z)logpx(z). (16)
reX

14



For a joint distribution px, x, over the pair of random variables (X1, X5), the conditional entropy
of X5 given Xj is

H(X,[X:) = H(X; X5) — H(X;) = — Z Px, X2 (21, 22) log px, x, (w2]21). a7

T1,22

The following theorem from Ref. |[Feder & Merhav| (1994) shows how the error of a Bayes-optimal
next-token predictor is tightly controlled by the entropy of the next bit:

Theorem 3. (Feder, 1994) Define the piecewise function ¢ : [0,1] — Rand & : [0,1] — R as

¢N(M::{GMA‘*&%H‘¥bg“Q, e (18)
Pn(A) = ha(X) + Alog(N — 1) 19)

with ay, = k(k+1)log((k+1)/k) fork =1...N. Let X and Y be random variables be a random
variable taking values in alphabets X" and ) respectively, with |X'| = N. Define the error probability

of an optimal estimator as p? (Y[ X) := minyg. 5 _,, Pr(Y(X) # Y). Then,
Oy (pe(YX)) = H(Y[X) > én(pe(Y]X)) (20)

Evidently, the optimal noisy generalization error err¢(f3) is close to zero if and only if the cor-
responding entropy H(f(X)|Z) is close to zero, and err;(f%) approaches 1/2 as H(f(X)|Z) ap-
proaches 1.

A.3 OPTIMAL NEXT-BIT PREDICTION

In this section, we show that f3; from Eq. [I| minimizes errs, and provide a combinatorial proof
for part of Proposition [I] as an alternative to Ref. Weinberger & Shayevitz] (2018). We will always
assume a uniform distribution of input bitstrings = € {0, 1}", and a conditional distribution for noisy
bitstrings z based on i.i.d. bitflips applied to each bit of = with probability p. The set of (Bayes-
)optimal predictors F (f) for a set of boolean-labeled data with corrupted inputs {(Z;, f(X;))} is

given by all g satisfying
Pr(g(2) = f(2)) = Pr(h(z) = f(2) 21

for all boolean functions h. We will now show that f3; defined in Eq. of the main text is an optimal
predictor:

Lemma 4. For any symmetric bitflip rate p € [0, 0.5), then for p = 1 — 2p we have

fn = sign(T,f) € Fx(f) (22)

Proof. Eq.[21]is equivalent to
yo) {1_,17 Puo( (o) =112 =5) 2 1/2 .

Compare this to
Tpf(x) = E.un, @ [f(2)] (24)
= _p(l2)f(2) (25)
= > pGl) = D pGzle) (26)
z:f(2)=1 z:if(z)=-1

=Pr(f(z) =1|X =z) = Pr(f(z) = -1|X =) 27)
=E.[f(2)|X = 2] (28)

Since pz|x (z|7) = px|z(x|2), we have T}, f(2) = E.[f(2)|Z = z]. And so, ignoring the T),f = 0
case

sign(T,f(2)) =1 T,f(z) >0 & P;r(f(ac) =1llZ=2)>1/249(2)=1 (29)
O
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For the interested reader, we provide a simple combinatorial proof for part of Proposition [I] of
Weinberger & Shayevitz/ (2018)).

Lemma 5. Fix a boolean function f and generate (X, Z) according to the bitflip scheme above.

Then,
Pr (f(z) = f(X)) = Pr (f(z)# f(X)), (30)

X|Z== T X|Z==z
for all z implies that f € Fx (f).

Proof. We will show that the condition in Eq. [30}is sufficient for optimal prediction on noisy Z by
showing that no other boolean function can do better than f when this condition holds. For any
particular function g, define the set of inputs on which g agrees with f as

P(f.9) =={2 €{0,1}" : g(2) = f(2)}, €29)
We may rewrite the output of g as
fz),  z€P(f.9)
z) = . (32)
R A
Thus we find
Prig(2) = f(X)) =Er Pr(9(2) = f(X)) (33)
1
o 2. ybr () = F0)
ze{0,1}7
1 1
=3 2 (B U@=f&)+5m > P (0f()=f(X)
z€P(f,9) z€P(f,9)°
1 1
o 2 B U@=fED+gm > Pr (FE)#£(X)
z€P(£,9) z€P(f,9)°
1 1
< —_— g —_— P —
Sgmo 2 (B UE@=r@)+g > P (Fe) = f(X)
z€P(f,9) zeP(f,9)°
= Pr(/(2) = 1) (34
where the final inequality follows from Eq.[30] and we have used the fact that the marginal distribu-
tion of Z is uniformly random whenever the distribution of X is uniformly random. O

Note that Eq. [30] for optimality at noisy prediction is equivalent to

1
Pr(f(s) = f(z®¢) 2 5 (35)
Consider the dictator function DICT, which outputs the value of the first bit. It immediately follows
that for f = DICT, fx;, = DICT, since

(36)

1
Pr(DICT(z) = DICT(2 ®e)) =1 —€ > 3

We will next show that Eq. [35]holds for PARITY as well.
Proposition 6 (PARITY is optimal for predicting noisy PARITY).

Proof. We will first show that for any noisy bitstring z, the parity of the corresponding noiseless
bitstring is most likely to match the parity of z. Using linearity and p < %, we have

Xll:;r— (PARITY(Z) = PARITY (X)) := PEr(PARITY(z) = PARITY(z @ E)) 37
= I;Jr(PARITY(z) = PARITY(z) @ PARITY(E)) (38)
= EEr(PARITY(E) =0) (39)
= I;Jr(wt(E) is even) (40)
1
=51+ (1 —2p)") @0

16



The final line is never less than % and therefore satisfies Eq. By Lemma the proof is completé

A combinatorial proof also exists showing that f := MAJ,, satisfies f = f5 for odd n. The proof is
not particularly illuminating, so we have excluded it.

A.4 PROOF OF PROPOSITION[2]

Here we prove Proposition [2|and then discuss further the inequality
1] > /3], “2)

which holds with high probability for randomly sampled boolean functions (even for small n), but
does not hold for all boolean functions.

Before proving an asymptotic relationship between the influence of f3; and f, we will need statistical
moments of random boolean functions. Recall that a Rademacher random variable takes values in
{1, —1} with equal probability. Each Fourier coefficient

f&9= > fl@xs) 43)

ze{—-1,1}n

is a sum of 2" independent Rademacher variables, since each f(x) is itself Rademacher. As a result,

the coefficients are distributed according to f(S) ~ 2" (Bin(2", 1) — 2") where Bin denotes the

binomial distribution. Using standard results for the Binomial distribution yields

Ef[f(S)] =0 (44)

slfsia={5" Se "

(45)
and so the Fourier coefficients of a random function are, on average, uncorrelated (they are not
independent, as we require » SCin f(S)? = 1). We may now prove the following proposition,
which leads directly to Propositionin the main text.

Proposition 7. Let f : {1,—1}" — {1, —1} be a uniformly random boolean function on 7 bits,

and define f3 := sign(7, f) for p € (0, 1). Then, for r(p) = 8;—22;

I[fx5] = %arccos(T(p)) (46)

Proof. We will work with bitstrings taking values in {1, —1}". Define k,(z|z) := Pr(Z = 2|X =
x) denote the probability for a noisy bitstring z given a p-correlated input bitstring , i.e. k,(z|z) =
2771 — p)¥te) (1 + p)n =7t and so T, f(z) = 3, ., kp(z|z) f(z). For uniformly random f,
f(z) is Rademacher, and we define a family of two-dimensional random variables { A, }

pim (H5)

For any particular f, we have E,[A.] = (T, f(z),T,f(z®"))T. By the Central Limit Theorem, we
have that E,[A.] approaches a bivariate Gaussian distribution with covariance matrix

_ (BT f(@)? BT, f(2)T,f (2%
Y= E.[4,47] = (Esz[(m) T(p }(i@i)] [Ez[zg,, }(;c@i(ﬂ >]), (48)

By symmetry, we only need to compute two terms in this matrix. Recall that

Tpof(x) =Y p*1f(S)xs(@), (49)
SCln]
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and so

Bf(Tof ()T f ()] =Es | Y pl¥HF(S) A(T)xs (@)xr (y) (50)
S,1Cn]
= Y pSHTTrIS = Ty (@)xr (y) (51)
S.7C(n]
=27 plxs(z+y) (52)
S
=27 " H(l + pPziy;) (53)

i=1

where we have used Eq. [45]in the second equality. The terms in the covariance matrix X are then
[T, f(2)%] = B [T, f(@®)*) = 27" (1 + p*)" (54)
Ef[T,f(2)T,f (2% = 27"(1 = p*) (1 + p*)"7". (55)

Thus, we may define a unit-variance variable A, := A,/\/27"(1 + p?)™ which converges to a
bivariate Gaussian distribution with covariance matrix

(1 5
2=y (56)
1+p2

Then, Pr,(sign(T, f(z)) = sign(T},f(z®"))) is equal to the probability that both components of
A, are positive. Clearly this probability is unaffected by renormalization, and so we may apply
Sheppard’s formula (e.g. |O’Donnell| (2014)): For standard Gaussian random variables a;, ay with
Elaias] =7,

Pr(a; < 0,as < 0) = % (1 - amﬂos(r)) . (57)

Thus, we find that in the limit of large n, the average sensitivity of f5 for a randomly sampled f
obeys

E;[Infilf%]] = 1 — Pr (sign(Z,.f () = sign(T, f (z%1))) (58)
=1-2 I;r(Tpf(x) > 0,7, f(z%) >0) (59)
~ arccos(r(p))' 60)

7r

Where we have invoked symmetry in the distribution of f to remove the averaging over x in the
definition of Inf;, and further invocation of symmetry gives I[f] = nInf;[f]. Substitution of p =
1 — 2p recovers the result from the main text. O

Additional observations We found that the inequality 2] holds for all Boolean functions of n < 4
bits, and a large number of randomly-sampled boolean functions for larger n. For n > 5, we
tested this inequality with the following procedure: (1) sample a uniformly random element of
{-1, 1}2", (2) generate f from this vector as a hash table, (3) compute 7}, f in the Fourier domain,
(4) compute I[f%] and I[f] in the Fourier domain. We repeated this procedure for several million
boolean functions for n € {5, 6,7, 8}, for bitflip values in {0.01,0.25,0.49}. No randomly sampled
function violated inequality

Despite holding with high probability for random boolean functions, Eq. 42] does not hold for all
boolean functions. A counterexample with I[sign(7,f)] > I[f] is given by the linear threshold
function (LTF) f(z) = sign(ag + Y, a;z;) with

(ag, a1, az,as,as,as,as) = (0.3,0.1,0.1,0.2,.3,0.4,0.9) (61)

and p = 0.2. Additional counterexamples may be found via grid search of LTFs over p and (a;) for
larger n. We are unaware of any characterization of all such functions violating Eq.
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A.5 DISCUSSION OF OTHER NOISE MODELS

We discuss how changes in the noise model might affect our findings. First, we argue that if the
noise is non-independent, then the relationship between I[fx] and I[f] can easily break down as
the noise on distinct bits starts to become more correlated. Second, we argue that independent (but
non-identical noise) is less likely to affect our findings.

We first generalize the Bayes-optimal predictor to handle non-iid noise. An arbitrary noise distri-
bution is defined according to a conditional probability g(z|z) := Pr(Z = z|X = z) of a noisy
bitstring z given noiseless input x. If z is generated by flipping bits of « independently of the value
of , then we may write g(z|x) := pg(z — z). The generalization of the noise operator T}, is then

(Tof)(@) = Bz x[f(Z)|X = 2] (62)

= alzla)f(2) (63)

= (pe * f)(2), (64)

where (f * g) denotes convolution. As in Lemma E], one may verify that this generalized noise
operator obeys fx := sign(T,f). We may use Fourier theory to show that correlated noise can

greatly increase the sensitivity of Ty, f over the sensitivity of f. Applying the convolution theorem
to T, f(z) = (pE * f)(x) gives|O’Donnell (2014):

T,1(S) = pu(S)f(S) (65)

The influence of fis I[f] = > gy, S £(S)2, and so

.....

0T, f1= Y ISIpe(S)*f(S)? (66)

SC1,...,n

A distribution pg with strong correlations between individual bit flip events corresponds to large
values of pg(S) for higher-order terms (larger |S|), in which case I[T, f] can become much larger
than I[f]. While this argument is incomplete, the inequality I[T, f] > I[f] will often result in an
inequality I[sign(T, f)] > I[f].

On the other hand, noise that is independent but non-identical will tend preserve the relationship
between the sensitivity of f and the sensitivity of f, demonstrated in Proposition If the noise is
uncorrelated, then pg is separable over bits, and so pg(S) = Hie g Pi Where p; is the correlation
between z; and z;. So Ty f acts like an exponential filter in Fourier space, i.e.

T,7(8) = [] pif () (67)

€S

This is qualitatively similar behavior to the iid case where /T;(S ) = p!¥! results in I[T, f] < I[f],
suggesting that our observations about the relative sensitivity of f versus f3; (and specifically Propo-
sition [2) likely extend to the case where noise is independent but non-identical across bits.

APPENDIX B  EXPERIMENTAL METHODS

In this appendix, we describe in detail all the experimental methods used to obtain the results dis-
played in figures and 3]In what follows, we shall refer to the experiments performed to obtain
the robustness results of section [3.1] as experiment 1, whereas experiment 3 shall refer to all the
methods used to show how one can trap transformers with simplicity bias (section ).

B.1 DATASET GENERATION

We generate synthetic datasets for our experiments. for each dataset, we specify the number of
validation samples n,|, the number of training samples ny,i,, the number of bits in one data point
npit, a bit flip rate p, a seed for reproducibility and a boolean function f. Given these inputs, we
generate the following:
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1. Noiseless Data: uniformly sample 7,y + nva many bitstrings, each of length nyy — 1,
compute the final bit for each using f. Take the first n,;, as the training data and the rest
as validation data.

2. Noisy Data: Take the noiseless data above, for each data point, apply a symmetric bit flip
rate p on each bit for the previous (ny — 1) bits, and keep the last bit unchanged.

Experiment 1 To obtain the results in Fig. [I} the function f is taken as MAJ(20, 5), MAJ(40,5),
MAJ(50, 3), and PARITY (20, 4), respectively. For MAJ(20, 5), MAJ(40, 5), and MAJ(50, 3), we chose
Nyrain = 2000 and ny,; = 10000, while for the function PARITY (20, 4) we worked with 7., = 5000
and ny, = 10000.

Experiment 2 To obtain the results in Fig. 2] we generated 3200 random k-juntas (boolean functions
depending on only k bits) for k € {5,6,7}. All experiments used a total of n = 10 bits, with the
subset of k bits chosen randomly. We generated noisy input data using a bitflip rate uniformly
sampled from

{0,0.05,0.08,0.10,0.13,0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3}, (68)

At bitflip rates lower than ~ 0.10, we found that f = f; with high likelihood for our range of
k values. We generated training and validation sets with ny,;, = 5000, ny, = 10000 datapoints
(smaller training datasets frequently resulted in underfitting).

Experiment 3 For experiments shown in Fig. 3] we generated a “trap” function, i.e., a function f
for which the corresponding f3; is such that erry(f5) =~ errs(f) and I[f%] < I[f]. To construct
this function, we proceeded as follows. First, we restricted our search space to boolean functions
f:{0,1}™ — {0,1} satisfying f(z) = f(wt(z)) (weight-based function), since we only have
27+1 guch functions compared to the 22" number of all possible boolean functions over n bits.
Let us denote the space of weight-based functions by W,,. For each function in W,, (which can
be completely characterized by an n-bit string s), we choose a bitflip rate p € (0,1). We iterated
over the values n € {4,5,6,7,8} and p € {0.2,0.22,0.24,0.26,0.28,0.30}. For each combina-
tion of n and p, we initially computed errs(f), errs(f), I[f], and I[f}]. Since err; represents
generalization error over an arbitrarily large dataset, for functions satisfying err¢(fx) ~ errs(f),
we sampled finite training and validation datasets to select a dataset such that the performance of a
lookup table (which achieves optimal performance on validation data) was close to errs(f). This
led to a specific dataset on n = 8, p = 0.2, where f (i) := s; with s = 000110000. We again use
sparse functions depending on a subset n of nyis = 14 that depends only on the embedded string
s. The individual models (SAN, RNN, and regularized SAN) were trained using n,;, = 10000 and
nval = 20000. The resulting trap function that was used to generate the datasets used in experiment
3 will be denoted by 7.

B.2 TRAINING AND HYPERPARAMETERS

Our experiments involve learning discrete functions, which can be sensitive to parameter initializa-
tion and hyperparameter choice. In order to control for the effects of these choices, we chose to
perform many trials of each learning experiment (with different initializations) over a range of hy-
perparameters. In order to compare results across models and learning tasks, we used the following
procedure to select hyperparameters for each experiment:

1. Select an initial range of hyperparameters

2. Perform several hundred trials of the noiseless learning experiment (to learn either f or
some randomly sampled f)

3. Prune the hyperparameter set to remove any ranges of hyperparameters for which models
consistently failed to learn the target function

The result was a hyperparameter set for which a large number (at least 70%) of the corresponding
set of models were capable of learning the noiseless function. This implies that failure to learn the
function (in the noisy setting) is not a capacity problem, and instead is due to either bad initialization
or limitations of the architecture. The exception for this procedure was learning PARITY (20, 4)
(Fig.[Id) which resulted in a bimodal distribution of models: Models were either able to learn parity,
or completely failed early in the experiment. This is in line with results reported in Ref. Bhattamishra
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et al.| (2023b), which observed that PARITY (20, 4) was near the limit of what is learnable by (small)
transformers.

All experiments were performed on a CPU cluster consisting of either Intel Xeon Gold 6230 pro-
cessors (20 cores, 2.1 GHz) and 768 GB of RAM each, or AMD EPYC 9754 processors (128 cores,
2.25 GHz) and 1.5 TB of RAM. On average, a single hyperparameter tuning experiment took ap-
proximately 5 hours across 300 cores in parallel. Total CPU estimates are

* ~ 60,000 CPU hours for Fig.|I|(~ 100,000 CPU hours for Experiment 1 in total)
* ~ 15000 CPU hours for Fig. |2 (~ 30000 CPU hours for Experiment 2 in total)
* ~ 5000 CPU hours for Fig. [3](~ 10000 CPU hours for Experiment 3 in total).

In each experiments, models were trained for up to 1000 epochs, with an early stopping criterion of
300 epochs conditioned on no improvement in validation accuracy. All reported metrics correspond
to the model performance at the epoch with maximum validation accuracy. We do not tokenize
any of these datasets, since both the underlying distribution and noise acting on our synthetic data
depend on individual bits.

B.3 MODEL ARCHITECTURES

Transformer: Our experiments employ an encoder-only transformer with a final linear layer to gen-
erate outputs. We initialize with the Xavier uniform |Glorot & Bengio| (2010) (following Ref. |Bhat-
tamishra et al.| (2023b))) and ReLLU activation for the encoder’s FFN and absolute positional encod-
ing. We train using cross-entropy loss. The initial hyperparameter search space for Experiments
1, 2, and 3 is given in Table[I] and refers to hyperparameters as introduced in Ref. [Vaswani et al.
2017).

Table 1: Hyperparameter search space for Transformer model for experiments 1-3. The final hyper-
parameter sampling space across trials was tuned for each experiment separately (see above).

Hyperparameter Values

Learning Rate (1r) [1x1075,6.31 x 1072
Depth 1,2,3,4,5,6

Model Dimension (d_model) 16, 32, 64, 128

Dropout Rate 0.05,0.10

Number of Attention Heads 2,4, 8

Feedforward Dimension (d_ffn) 32, 64, 128

LSTM: We used LSTMs with Xavier uniform initialization, log-likelihood loss and softmax acti-

vation (i.e. cross-entropy loss). The initial hyperparameter search space for LSTMs is shown in
Table[2l

Table 2: Hyperparameter search space for LSTM trials in Experiments 1 and 3.

Hyperparameter Values

Learning Rate (1r) [1x1074,2.78 x 1071]
Embedding Size (emb_size) 16,32, 64, 128

Hidden Size (hidden_size) 16,32, 64, 128

Dropout Rate 0.05, 0.10

Depth 1,2,3,4,5,6

Our experiments are initialized with hyperparameters sampled from a distribution such that models
achieved =~ 70% on the corresponding noiseless learning task. This introduces significant variance
in model architectures and parameter counts. Tables 3}] provide some typical parameter counts
(and corresponding hyperparameters) for models initialized in this way in Experiment 1 for the
PARITY (20, 4) task.
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Table 3: Parameter count and hyperparameter settings for three random transformers. Median pa-
rameter count for transformers was 32514 in the Experiment 1 PARITY (20, 4) task.
parameters d-model heads d_-ffn depth

42562 64 2 32 2
11218 16 4 32 5
8738 32 4 64 1

Table 4: Parameter count and hyperparameters for three random LSTMs from the Experiment 1
PARITY (20, 4) task. Median parameter count: 46530.
parameters emb_size hidden_size depth

54978 64 32 6
11938 64 16 4
29634 64 32 3

B.3.1 EXPERIMENT 1

Experiment 1 involved training transformers and LSTMs to learn MAJ and PARITY from noisy fea-
tures. For each of f € {MAJ(20,5), MAJ(40,5), MAI(50, 3), MAJ(30,4), PARITY(20,4)}, we con-
struct datasets (z, f(x)) with a range of bitflip error probabilities selected from [0, 0.49). For each
dataset, we train 300 randomly initialized LSTMs and Transformers (each training run is one trial)
to minimize their corresponding loss function, with early stopping and model selection based on
maximum validation accuracy.

Fig. @] shows distributions of validation accuracies for all experiments involving MAJ functions. For
all majority functions, the transformer validation accuracy concentrates near optimal for each bitflip
rate. By contrast, from Fig [3g the noiseless performance of transformers on MAJ(30,4) degrades
faster than MAJ with odd n. We also find that the distribution of LSTM validation accuracies for
MAJ(30, 4) tends to be more bimodal than for MAJ problems with odd n.

For learning PARITY (20, 4), Fig.|5|shows a clear bimodal distribution in the final validation accuracy
across a range of bitflip rates. Other than the noiseless scenario, LSTMs trained in our hyperparam-
eter set were practically incapable of noise-robust learning.
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Figure 4: Validation accuracy for LSTMs (top row) and transformers (bottom row) for each sparse
MATJ noise-robust learning task, colored according to bitflip rate. Each experiment with a particular
error rate consists of 300 independent training runs with random initialization (maximum validation
accuracy over each training trial is shown).
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Figure 5: Validation accuracy for LSTMs (left) and transformers (right) for the PARITY (20, 4) noise-
robust learning task (other details same as Fig. [).
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B.3.2 EXPERIMENT 3

Figure [0] represents the collection of experiments that were used to show that transformers can be
trapped due to their simplicity bias (refer to section [d)). Fig. [6] compares the relationship between
sensitivity and accuracy for different architectures for both noisy and noiseless validation datasets
generated with the function 7. Each plot shows training trajectories of individual models (colored
lines) that end at the point where the model achieves maximum accuracy on the respective validation
dataset (circular markers). In the presence of noise (Figs. [6(a), [6[c), and [f[e)), one sees that all the
models cluster in a relatively narrow accuracy band around (0.5,0.6). As pointed out in Section
the overall behavior of the SANs is to learn a function that optimizes the validation accuracy
(optimal validation lookup table represented by X). Nonetheless, due to the unavoidable randomness
in machine learning models, combined with the transformer simplicity bias, Fig. [6fa) shows that
some individual models can get significantly closer to the true function (represented by *). This is
certainly not the case with LSTMs (Fig. [7), as all the individual models seem to cluster around the
optimal training accuracy (lookup table for training set denoted by ). In Fig.[7[c), we see that the
presence of simplicity penalty helps to bring the vast majority of the individual models significantly
closer to the true function.

On the other hand, when the models are evaluated on the noiseless (original) dataset (Figs. @b),
@d), and @f)), the architectures SAN and LSTM fail to learn the original function. Nonetheless,
SANs perform better than LSTMs and are generally more suitable for this problem. As before, the
addition of a simplicity penalty improves the learning traces of the SANSs.

The pattern no longer holds for the function MAJ(30, 4) (Fig. . Here, in both the noisy and noise-
less validation cases, there seems to be no overall pattern followed by the individual learning traces.
The overall behavior of the experiments indicates that LSTMs and SANs approach optimal valida-
tion accuracy, with no clear differences in their sensitivity. Adding a simplicity penalty to SANs has
minimal effect on their performance. Across experiments, no model comes close to learning the true
function.
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Figure 6: Validation (top row) and noiseless-validation (bottom row) accuracies for each architecture
(rows: SAN, RNN, SAN+)\) trained on the dataset generated by the trap function 7 as a function of
the sensitivity. Each colored curve is one of 19 independent runs, shown up to the epoch of its peak
validation accuracy (blue, red, and green circles). The X represents a lookup table for the validation
dataset; the X represents a lookup table on the training dataset; the * represents the true (noiseless)
function.
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sensitivity. Each colored curve is one of 19 independent runs, shown up to the epoch of its peak
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Large language models were used to assist in literature review, code development, theory develop-
ment, and analysis for this project. None of the text or equations in this manuscript were generated
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retain their meaning from Fig. [6]
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