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Abstract

Convolutional neural networks (CNNs) have become essential models for pre-
dicting neural activity and behavior in visual tasks. However, their ability to
capture complex cognitive functions, such as numerosity discrimination, remains
debated. Numerosity, the ability to perceive and estimate the number of items
in a visual scene, is thought to be represented by specialized ‘number-detector’
units in CNNs. In this study, we address the limitations of classical Represen-
tational Similarity Analysis (RSA), which assumes equal importance for all fea-
tures, by applying pruning—a feature selection technique that identifies and re-
tains the most behaviorally relevant units. We applied pruning to retain only the
most behaviorally relevant units in the CNNs. Our results show that number-
detector units are not critical for population-level representations of numeros-
ity, challenging their proposed significance in previous studies. All code and
data used to generate stimuli, train models, and analyze results is available at:
https://github.com/alireza-kr/CORnetOnNumber

1 Introduction

Early breakthroughs in the study of biological vision served as the foundation for convolutional
neural networks (CNNs; Lindsay, 2021). Like the brain, these hierarchical models consist of several
feedforward layers, with each layer comprising numerous artificial units that mimic neurons. Since
then, CNNs have evolved into state-of-the-art models for predicting neural activity and behavior
in visual tasks (Cichy et al., 2016; Khaligh-Razavi & Kriegeskorte, 2014; Yamins & DiCarlo,
2016; Yamins et al., 2014). For example, it has been demonstrated that CNNs trained on an object
classification task can account for the brain responses of both humans’ and monkeys’ inferior temporal
cortex (IT), a key region for object recognition (Khaligh-Razavi & Kriegeskorte, 2014).

But what happens when the images contain multiple objects? Perceiving and representing the number
of items in a set—known as numerosity—without counting is considered a core and ancient cognitive
ability shared by humans and many animal species, often referred to as ‘number sense’ (Dehaene,
2011). Specialized neurons, or ‘number neurons’, that are tuned to the number of items in a visual
display have been identified in numerically naive monkeys (Viswanathan & Nieder, 2013), crows
(Wagener et al., 2018), and untrained 10-day-old domestic chicks (Kobylkov et al., 2022), suggesting
that numerosity is automatically represented in the brain. Brain imaging studies have also pinpointed
regions in the parietal cortex that are responsible for representing numerosity in both adults (Castaldi
et al., 2019; Karami et al., 2023; Piazza et al., 2004) and preverbal infants (Edwards et al., 2015;
Hyde et al., 2010; Izard et al., 2008), demonstrating this ability at the population level. Additionally,
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fMRI decoding in the parietal regions of adults has been linked to behavioral number discrimination
acuity (Lasne et al., 2019). Collectively, these findings highlight the critical role of parietal brain
activity in human number discrimination.

Recently, it has been shown that number-detector units, analogous to number neurons recorded in
the prefrontal and parietal cortices of monkeys, can emerge in the final layers of CNNs trained for
visual object recognition (Nasr et al., 2019) and even in completely untrained CNNs (Kim et al.,
2021). However, Karami et al. (2023), using RSA (Kriegeskorte, 2008), demonstrated that CNNs
fall short of explaining the variance in numerosity representation observed in fMRI data from the
human parietal cortex. Further analysis using multidimensional scaling (MDS; Kruskal, 1964)
revealed significant differences in the geometric structure of numerosity representations between
human parietal regions and CNNs (Karami et al., 2023). In the classical RSA framework used by
Karami (2024), all features contribute equally to the final dissimilarity estimate. However, this ‘equal
weights’ assumption conflicts with the notion that, when comparing representational dissimilarity
matrices (RDMs), certain features may carry more informative content than others. As a result,
this approach can underestimate the true correspondence between the model and a specific brain
region or behavior (Kaniuth & Hebart, 2022; Tarigopula et al., 2023). Moreover, the classical RSA
approach may overemphasize non-relevant units by treating them as equally important as units that
carry behaviorally relevant information, such as number-detector units in our case.

To assess the relevance of number-detector units in representing numerosity at the population level
within CNNs, we employed a pruning approach. Pruning is a feature selection technique used to
identify and retain the most relevant parts of a model, such as specific weights or activations, that
best align with the behavior data and improve predictions (Bao & Hasson, 2024; Flechas Manrique
et al., 2023; Truong et al., 2024). This approach is based on the observation that pretrained models
often contain redundant information (Cheng et al., 2015; Frankle & Carbin, 2018). Therefore, using
the entire model may not be necessary for a specific task, such as numerosity discrimination in our
case. Specifically, we pruned different CNN architectures based on the number RDM, which captures
the behavioral signature of numerosity perception in humans. This matrix serves as a benchmark for
comparing the alignment of CNN representations with human numerosity processing. Our results
revealed that number-detector units are not critical for representing numerosity at the population
level within these networks. This finding suggests that, while number-detector units may emerge in
specific layers of CNNs, they do not play a significant role in capturing the broader, population-level
representation of numerosity, as reflected in human behavioral data.

2 Methods and experimental setup

2.1 Stimuli and Training the CNN

To investigate number-detector units in CNNs we used CORnet-Z and CORnet-S, models with four
anatomically mapped areas (V1, V2, V4, and IT) followed by a decoder layer. CORnet-Z is the
simplest network in the CORnet family and a lightweight alternative to AlexNet. CORnet-S also
has recurrent connectivity and is designed to maximize Brain-Score (Schrimpf et al., 2018). Each
anatomically mapped area in the CORnet consists of a single convolution, followed by a ReLU
nonlinearity, max pooling and the decoder is a 1000-way linear classifier (Kubilius et al., 2018, 2019).

We chose CORnet-Z and CORnet-S because it balanced the resemblance to the architectures used by
previous studies on numerosity and because it well fit the visual system (Schrimpf et al., 2018). We
used three versions of the CORnet:

1. the completely untrained version with randomly initialized weights to reveal the effect of architec-
ture alone (Cichy et al., 2016),

2. a version trained on object recognition using the ImageNet dataset (Deng et al., 2009), which
contained 1.2 million images of objects over 1000 categories, as it has been used in a previous
study by Nasr et al. (2019),

3. and a version of the network was specifically trained to discriminate between ten numerosity
values: 6, 7, 9, 10, 12, 14, 17, 20, 24, and 29. We specifically trained the networks to discriminate
between numbers because Mistry et al. (2023) demonstrated that training a CNN for numerosity
discrimination significantly reorganizes the number-detector units. To avoid flawed stimulus
design (Park, 2022), where low-level visual features like size or dot density correlate with the
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number of dots, we used the method introduced by DeWind et al. (2015) to generate the dot sets.
A sample of the generated stimuli used for training the network is shown in Figure 1A. Following
the approach of Mistry et al. (2023), we first initialized the network with weights pre-trained on
ImageNet, then trained it on the numerosity task for 100 epochs using the Stochastic Gradient
Descent (SGD) optimizer with default PyTorch parameters.

After training, the three versions of the model were tested with visual dot sets, where both the number
of dots and low-level visual features (average item area and total field area) varied across 32 different
conditions: 4 numerosities (6, 10, 17, 29), 4 average item areas, and 2 total field areas (Figure 1B).
Each input image was 500 × 500 pixels. We selected four layers of the network-analogous to visual
brain areas (V1, V2, V4, and IT) and extracted the activations of all nodes in each layer. The results
from 100 instances of each condition were averaged to produce a single activity vector for each
condition from the output of each layer.

Figure 1: (A) Sample stimuli used for training the networks. (B) Sample stimuli used for testing the
networks. (C) Number RDM, reflecting human behavioral data, used to prune the network layers.

2.2 Identification of Number-Detector Units

Following Nasr et al. (2019) and Kim et al. (2021), we used ANOVA to find number-detector units.
Specifically, a three-way analysis of variance (ANOVA) with three factors - numerosity, total field
area, and average item area - was applied to select number-detector units. The goal was to identify
units that had a significant change in response across different numerosities while maintaining an
invariant response across variations in total field area and average item area, as well as across the
three interactions among pairs of factors, and the interaction among all of the three. A unit is marked
as a number-detector if it shows a significant change for numerosity (p < 0.01) but no significant
change for the other two factors or any of the interactions. Units that did not meet these criteria
were classified as non-selective. This method of selecting number-detector units is analogous to the
method that has been used to detect numerosity-sensitive neurons in monkeys and humans.

2.3 Representational Similarity Analysis between Number RDM and Network RDM

To create the CNNs’ RDMs, we used the 32 activity vectors obtained by averaging the 100 instances
per condition. We chose 100 instances to address concerns about the limited number of sample
images used in previous studies, such as Nasr et al. (2019), which were criticized for this limitation
(Zhang & Wu, 2020). The CNNs’ RDMs were constructed using 1 – Pearson correlation between the
activations of each layer for each pair of conditions. The number RDM (Figure 1C) was based on
the logarithmic distance between the pairs of conditions in terms of numerosity, approximating the
behavior judgments (Castaldi et al., 2019). We then compute the correlation between each CNN’s
RDM and the number RDM.
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2.3.1 Pruning the Layers of Models

The pruning algorithm, which is adapted from Tarigopula et al. (2023), involves three steps. First,
the importance of each unit is assessed by removing it from the full set of units. Each time a unit
is removed, a new RDM is computed, and its score is compared to the number RDM. A significant
drop in the score compared to the full set RDM indicates that the unit is important for matching
the number RDM, while a smaller drop or an increase in score suggests the unit is unimportant or
possibly encoding noise. Second, all units are ranked based on their importance scores, from highest
to lowest. Third, starting with an empty activation vector, units are sequentially added back in the
order of their ranking. After each addition, the fit between the RDM derived from the new embedding
and the number RDM is re-evaluated. We truncate and select the set of neurons when the highest
RSA score is achieved, and refer these units as the ‘retained units’ after pruning.

3 Results

3.1 Retained Units After Pruning and Number-Detector Units Often Do Not Overlap

Table 1: Number of retained units after pruning, and of number-detector units identified by ANOVA.
The full set of units in V1, V2, V4, and IT layer in both models are 262144, 131072, 65536, 32768
respectively. The numbers in parentheses denote the percentage of units compared to the full set.

After Pruning ANOVACORnet Layer ImageNet DeWind Untrained ImageNet DeWind Untrained
V1 101511 (39) 100081 (38) 72429 (28) 68 (0.03) 83 (0.03) 77 (0.03)
V2 45421 (35) 45584 (35) 40176 (31) 44 (0.03) 24 (0.02) 1 (0)
V4 32264 (49) 31979 (49) 20358 (31) 13 (0.02) 27 (0.04) 13 (0.02)Z

IT 6074 (19) 1971 (6) 4139 (13) 32 (0.1) 10 (0.03) 3 (0.01)
V1 58310 (22) 117169 (45) 100637 (38) 803 (0.31) 939 (0.36) 657 (0.25)
V2 6886 (5) 39881 (30) 12344 (9) 414 (0.32) 121 (0.09) 454 (0.35)
V4 423 (1) 16444 (25) 2595 (4) 101 (0.15) 62 (0.09) 257 (0.39)S

IT 66 (0.2) 37 (0.1) 424 (1.3) 126 (0.38) 0 (0) 125 (0.38)

Table 2: The overlap scores between the units selected by the two methods. The scores are defined
as the number of units presented in both two sets divides by the number of units in the smaller set,
ranging from 0 (in case of no overlap) to 1 (in case of the bigger set contains the entire smaller set).
The value for CORnet-S trained on DeWind was undefined as there was no unit detected via ANOVA.

CORnet Layer ImageNet DeWind Untrained
V1 0.40 0.57 0
V2 0.59 0.71 1
V4 1 0.85 1Z

IT 0.09 0 0
V1 0.31 0.27 0.65
V2 0.01 0.21 0.01
V4 0 0 0S

IT 0 - 0

Table 1 presents the number of units selected by two methods: pruning and ANOVA. In both models,
the number of retained units after pruning is significantly higher than the number of number-detector
units identified by ANOVA. ANOVA results in significant more units in CORnet-S compared to
Z. Moreover, pruning removed the largest proportion of units in the IT layer, while the ANOVA
method showed no significant differences across layers. There is no noticeable difference between the
ImageNet-trained and DeWind-trained models, suggesting that there are no advantages on reducing
the dimensions when training the models on numerosity discrimination tasks beforehand. Interestingly,
both retained units and number-detector units are found in untrained networks, consistent with the
findings of Kim et al. (2021). However, in the untrained models, pruning often retained more units in
CORnet-Z compared to S, while ANOVA resulted in the opposite pattern.

The overlap between the units selected by the two methods is defined as the number of units shared
by both sets, divided by the number of units in the smaller set: |Pruning ∩ ANOVA| / min(|Pruning|,
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|ANOVA|). The overlap scores, as shown in table 2, vary considerably across layers and models.
Little to no overlap was observed in the IT layer of both models and in the V4 layer of CORnet-S,
while significant overlap was found in the V2 and V4 layers of CORnet-Z, and in the V1 layer of
CORnet-S. Only three cases showed a perfect overlap score of 1, while seven cases had a score of 0.
Overall, the results suggest that the two methods generally select non-overlapping sets of units.

3.2 Retained Units after Pruning Fit the Behavior Data Better than Number-Detector Units

Figure 2 shows that the retained units after pruning provide a better fit for modeling the number
RDM compared to the full set of units, highlighting the limitations of using the full set in classical
RSA. Additionally, in most cases—except for V2 and V1 in CORnet-S DeWind, which is specifically
trained for number discrimination—the number-detector units selected by ANOVA, as commonly
studied in traditional literature, perform worse than the retained units after pruning. In 8/22 cases,
they are even worse than the full set of units. This demonstrates that the number-detector units are not
important for capturing the population-level representation of numerosity in human behavioral data.

Figure 2: The Pearson correlations, quantified using RSA, from the full set of units, the retained units
after pruning, and the number-detector units identified by ANOVA. The missing data points are due
to an insufficient number of minimum units (2) required to compute the correlations.

4 Discussion

It has been emphasized that cognitive and behavioral functions emerge from the collective dynamics of
neural populations, rather than isolated neuronal activity (Yuste, 2015), underscoring the importance
of population-level analysis for understanding complex behaviors like numerosity discrimination.
In this context, RSA has become a widely used method for comparing representational spaces from
human brain activity, behavioral data, and computational models. However, classical RSA assumes
that each feature is equally important, making it difficult to interpret the contribution of individual
features. In our case, classical RSA does not provide insights into the importance of number-detector
units identified in CNNs. To address this limitation, we applied pruning, a feature selection technique
used to identify and retain the most relevant components of a model—such as specific weights or
activations—that best align with behavioral data. Pruning revealed that the number-detector units are
not essential for contributing to the representation of numerosity at the population level, casting doubt
on their significance for numerosity discrimination. These findings are also consistent with previous
work by Mistry et al. (2023), which demonstrated that training a CNN for numerosity discrimination
significantly reorganizes the number-detector units, and by Chapalain et al. (2024), which showed
that dot-pattern-tuned units do not generalize to object-number information in photorealistic stimuli.

Future work could use explainable AI techniques to decode the semantic content within the subset of
units selected by both methods. Extending the work on more ecological, natural image datasets (Hou
et al., 2024; Upadhyay & Varma, 2023) or exploring the language domain (Shah et al., 2023; Varma
et al., 2024; Wennberg & Henter, 2024) are also promising directions.
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