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Abstract

Recent active learning (AL) approaches in Nat-001
ural Language Processing (NLP) proposed us-002
ing off-the-shelf pretrained language models003
(LMs). In this paper, we argue that these LMs004
are not adapted effectively to the downstream005
task during AL and we explore ways to ad-006
dress this issue. We suggest to first adapt the007
pretrained LM to the target task by continu-008
ing training with all the available unlabeled009
data and then use it for AL. We also propose a010
simple yet effective fine-tuning method to en-011
sure that the adapted LM is properly trained012
in both low and high resource scenarios dur-013
ing AL. Our experiments demonstrate that our014
approach provides substantial data efficiency015
improvements compared to the standard fine-016
tuning approach, suggesting that a poor train-017
ing strategy can be catastrophic for AL.018

1 Introduction019

Active Learning (AL) is a method for training su-020

pervised models in a data-efficient way (Cohn et al.,021

1996; Settles, 2009). AL methods iteratively alter-022

nate between (i) model training with the labeled023

data available; and (ii) data selection for annotation024

using a stopping criterion, e.g. until exhausting a025

fixed annotation budget or reaching a pre-defined026

performance on a held-out dataset.027

Data selection is performed by an acquisition028

function that ranks unlabeled data points by some029

informativeness metric aiming to improve over ran-030

dom selection, using either uncertainty (Lewis and031

Gale, 1994; Cohn et al., 1996), diversity (Brinker,032

2003; Bodó et al., 2011; Sener and Savarese, 2018),033

or both (Ducoffe and Precioso, 2018; Ash et al.,034

2020; Yuan et al., 2020; Margatina et al., 2021).035

Previous AL approaches in NLP use task-036

specific neural models that are trained from scratch037

at each iteration (Shen et al., 2017; Siddhant and038

Lipton, 2018; Prabhu et al., 2019; Ikhwantri et al.,039

2018; Kasai et al., 2019). However, these models040

are usually outperformed by pretrained language 041

models (LMs) adapted to end-tasks (Howard and 042

Ruder, 2018), making them suboptimal for AL. 043

Only recently, pretrained LMs such as BERT (De- 044

vlin et al., 2019) have been introduced in AL set- 045

tings (Yuan et al., 2020; Ein-Dor et al., 2020; Shel- 046

manov et al., 2021; Karamcheti et al., 2021; Mar- 047

gatina et al., 2021). Still, they are trained at each 048

AL iteration with a standard fine-tuning approach 049

that mainly includes a pre-defined number of train- 050

ing epochs, which has been demonstrated to be 051

unstable, especially in small datasets (Zhang et al., 052

2020; Dodge et al., 2020; Mosbach et al., 2021). 053

Since AL includes both low and high data resource 054

settings, the AL model training scheme should be 055

robust in both scenarios.1 056

To address these limitations, we introduce a suite 057

of effective training strategies for AL (§2). Con- 058

trary to previous work (Yuan et al., 2020; Ein-Dor 059

et al., 2020; Margatina et al., 2021) that also use 060

BERT (Devlin et al., 2019), our proposed method 061

accounts for various data availability settings and 062

the instability of fine-tuning. First, we continue 063

pretraining the LM with the available unlabeled 064

data to adapt it to the task-specific domain. This 065

way, we leverage not only the available labeled data 066

at each AL iteration, but the entire unlabeled pool. 067

Second, we further propose a simple yet effective 068

fine-tuning method that is robust in both low and 069

high resource data settings for AL. 070

We explore the effectiveness of our approach 071

on five natural language understandings tasks with 072

various acquisition functions, showing that it out- 073

performs all baselines (§3). We also conduct an 074

analysis to demonstrate the importance of adapta- 075

tion of pretrained models for AL (§4). Our findings 076

highlight that the LM adaptation strategy can be 077

more critical than the data acquisition strategy. 078

1During the first few AL iterations the available labeled
data is limited (low-resource), while it could become very
large towards the last iterations (high-resource).
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2 Adapting & Fine-tuning Pretrained079

Models for Active Learning080

Given a classification task with C classes, a typical081

AL setup consists of a pool of unlabeled dataDpool,082

a modelM, an annotation budget b of data points083

and an acquisition function a(.) for selecting k un-084

labeled data points for annotation (i.e. acquisition085

size) until b runs out. The AL performance is as-086

sessed by training a model on the actively acquired087

dataset and evaluating on a held-out test set Dtest.088

Adaptation (TAPT) Inspired by recent work on089

transfer learning that shows improvements in down-090

stream classification performance by continuing the091

pretraining of the LM with the task data (Howard092

and Ruder, 2018) we add an extra step to the093

AL process by continuing pretraining the LM (i.e.094

Task-Adaptive Pretraining TAPT), as in Gururan-095

gan et al. (2020). Formally, we use an LM, such as096

BERT (Devlin et al., 2019), P(x;W0) with weights097

W0, that has been already pretrained on a large098

corpus. We fine-tune P(x;W0) with the available099

unlabeled data of the downstream task Dpool, re-100

sulting in the task-adapted LM PTAPT(x;W
′
0) with101

new weights W ′
0 (cf. line 2 of algorithm 1).102

Fine-tuning (FT+) We now use the adapted103

LM PTAPT(x;W
′
0) for AL. At each iteration i,104

we initialize our model Mi with the pretrained105

weights W ′
0 and we add a task-specific feedfor-106

ward layer for classification with weights Wc on107

top of the [CLS] token representation of BERT-108

based PTAPT. We fine-tune the classification model109

Mi(x; [W
′
0,Wc]) with all x ∈ Dlab. (cf. line 6 to110

8 of algorithm 1).111

Recent work in AL (Ein-Dor et al., 2020; Yuan112

et al., 2020) uses the standard fine-tuning method113

proposed in Devlin et al. (2019) which includes114

a fixed number of 3 training epochs, learning rate115

warmup over the first 10% of the steps and AdamW116

optimizer (Loshchilov and Hutter, 2019) without117

bias correction, among other hyperparameters.118

We follow a different approach by taking into119

account insights from few-shot fine-tuning liter-120

ature (Mosbach et al., 2021; Zhang et al., 2020;121

Dodge et al., 2020) that proposes longer fine-tuning122

and more evaluation steps during training. We com-123

bine these guidelines to our fine-tuning approach124

by using early stopping with 20 epochs based on125

the validation loss, learning rate 2e − 5, bias cor-126

rection and 5 evaluation steps per epoch. How-127

ever, increasing the number of epochs from 3 to128

Algorithm 1: AL with Pretrained LMs
Input: unlabeled data Dpool, pretrained LM

P(x;W0), acquisition size k, AL
iterations T , acquisition function a

1 Dlab ← ∅
2 PTAPT(x;W

′
0)← Train P(x;W0) on Dpool

3 Q0 ← RANDOM(.), |Q0| = k
4 Dlab = Dlab ∪Q0

5 Dpool = Dpool \ Q0

6 for i← 1 to T do
7 Mi(x; [W

′
0,Wc])← Initialize from

PTAPT(x;W
′
0)

8 Mi(x;Wi)← Train model on Dlab
9 Qi ← a(Mi,Dpool, k)

10 Dlab = Dlab ∪Qi

11 Dpool = Dpool \ Qi

12 end
Output: Dlab

DATASETS TRAIN VAL TEST k C

TREC-6 4.9K 546 500 1% 6
DBPEDIA 20K 2K 70K 1% 14
IMDB 22.5K 2.5K 25K 1% 2
SST-2 60.6K 6.7K 871 1% 2
AGNEWS 114K 6K 7.6K 0.5% 4

Table 1: Datasets statistics for Dpool, Dval and Dtest re-
spectively. k stands for the acquisition size (% ofDpool)
and C the number of classes.

20, also increases the warmup steps (10% of total 129

steps2) almost 7 times. This may be problematic 130

in scenarios where the dataset is large but the op- 131

timal number of epochs may be small (e.g. 2 or 132

3). To account for this limitation in our AL setting 133

where the size of training set changes at each it- 134

eration, we propose to select the warmup steps as 135

min(10% of total steps, 100). We denote standard 136

fine-tuning as SFT and our approach as FT+. 137

3 Experiments & Results 138

Data We experiment with five natural language 139

understanding tasks: question classification (TREC- 140

6) (Voorhees and Tice, 2000), sentiment anal- 141

ysis (IMDB, SST-2) (Maas et al., 2011; Socher 142

et al., 2013) and topic classification (DBPEDIA, AG- 143

NEWS) (Zhang et al., 2015), including binary and 144

multi-class labels and varying dataset sizes (Ta- 145

ble 1). More details can be found in Appendix A.1. 146

2Some guidelines propose an even smaller number of
warmup steps, such as 6% in RoBERTa (Liu et al., 2020).
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Figure 1: Test accuracy during AL iterations. We plot the median and standard deviation across five runs.

Experimental Setup We perform all AL experi-147

ments using BERT-base (Devlin et al., 2019) and148

ENTROPY, BERTKM, ALPS (Yuan et al., 2020),149

BADGE (Ash et al., 2020) and RANDOM (baseline)150

as the acquisition functions. We pair our proposed151

training approach TAPT-FT+ with ENTROPY acqui-152

sition. We describe in detail the AL setting and we153

provide results with more uncertainty-based acqui-154

sition functions in the Appendix.155

Results Figure 1 shows the test accuracy during156

AL iterations. We first observe that our proposed157

approach (TAPT-FT+) achieves large data efficiency158

reaching the full-dataset performance within the159

budget for all datasets, in contrast to the standard160

AL approach (BERT-SFT). The effectiveness of our161

approach is mostly notable in the smaller datasets.162

In TREC-6, it achieves the goal accuracy with al-163

most 10% annotated data, while in DBPEDIA only164

in the first iteration with 2% of the data. After the165

first AL iteration in IMDB, TAPT-FT+, it achieves166

only 2.5 points of accuracy lower than the per-167

formance when using 100% of the data. In the168

larger SST-2 and AGNEWS datasets, it is closer to169

the baselines but still outperforms them, achieving170

the full-dataset performance with 8% and 12% of171

the data respectively. We also observe that in all172

datasets, the addition of our proposed pretraining173

step (TAPT) and fine-tuning technique (FT+) leads174

to large performance gains, especially in the first175

AL iterations. This is particularly evident in TREC-176

6, DBPEDIA and IMDB datasets, where after the177

first AL iteration (i.e. equivalent to 2% of train-178

ing data) TAPT+FT+ with ENTROPY is 45, 30 and179

12 points in accuracy higher than the ENTROPY180

baseline with BERT and SFT.181

Training vs. Acquisition Strategy We finally182

observe that the performance curves of the vari-183

ous acquisition functions considered (i.e. dotted184

lines) are generally close to each other, suggesting185

that the choice of the acquisition strategy may not186
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Figure 2: Validation MLM loss during TAPT.

affect substantially the AL performance in certain 187

cases. In other words, we conclude that the training 188

strategy can be more important than the acquisi- 189

tion strategy. We find that uncertainty sampling 190

with ENTROPY is generally the best performing 191

acquisition function, followed by BADGE. Still, 192

finding a universally well-performing acquisition 193

function, independent of the training strategy, is an 194

open research question. 195

4 Analysis & Discussion 196

Task-Adaptive Pretraining We present details 197

of TAPT (§2) and reflect on its effectiveness in the 198

AL pipeline. Following Gururangan et al. (2020), 199

we continue pretraining BERT for the MLM task 200

using all the unlabeled data Dpool for all datasets 201

separately. We plot the learning curves of BERT- 202

TAPT for all datasets in Figure 2. We first observe 203

that the masked LM loss is steadily decreasing for 204

DBPEDIA, IMDB and AGNEWS across optimization 205

steps, which correlates with the high early AL per- 206

formance gains of TAPT in these datasets (Fig. 1). 207

We also observe that the LM overfits in TREC-6 208

and SST-2 datasets. We attribute this to the very 209

small training dataset of TREC-6 and the informal 210

textual style of SST-2. Although SST-2 includes 211

approximately 67K of training data, the sentences 212

are very short (i.e. average length of 9.4 words per 213

sentence). We hypothesize the LM overfits because 214

of the lack of long and more diverse sentences. See 215

Appendix B.1 for more details on TAPT. 216
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Figure 3: Few-shot standard BERT fine-tuning.

Few-shot Fine-tuning We highlight the impor-217

tance of considering the few-shot learning problem218

in the early AL stages which is often neglected219

in literature. This is more important when using220

pretrained LMs, since they are overparameterized221

models that require adapting their training scheme222

in low data settings to ensure robustness. To illus-223

trate the inefficiency of standard fine-tuning (SFT),224

we randomly undersample AGNEWS and IMDB225

to form low, medium and high data settings (i.e.226

100, 1, 000 and 10, 000 training samples) and train227

BERT for a fixed number of 3, 10, and 20 epochs.228

Figure 3 shows that SFT is suboptimal for low data229

settings, indicating that more optimization steps are230

needed for the model to adapt to the few training231

samples (Zhang et al., 2020; Mosbach et al., 2021).232

As the training samples increase, fewer epochs are233

often better. It is thus evident that there is not234

an optimal way to choose a predefined number235

of epochs to train the model given the number of236

training examples. This motivates the need to find237

a fine-tuning policy for AL that effectively adapts238

to the data resource setting of each iteration, which239

is mainly tackled by our proposed fine-tuning ap-240

proach FT+ (§2).241

Ablation Study We also conduct an ablation242

study to show that our proposed pretraining step243

(TAPT) and fine-tuning method (FT+), provide large244

gains compared to standard BERT fine-tuning (SFT)245

in terms of accuracy, data efficiency and uncer-246

tainty calibration. We compare BERT with SFT,247

BERT with FT+ and BERT-TAPT with FT+. Along248

with test accuracy, we also evaluate each AL model249

using uncertainty estimation metrics (Ovadia et al.,250

2019): Brier score, negative log likelihood (NLL),251

expected calibration error (ECE) and entropy. A252

well-calibrated model should have high accuracy253

and low uncertainty. Figure 4 shows the results254

for the smallest and largest datasets, TREC-6 and255
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Figure 4: Ablation study for TAPT and FT+.

AGNEWS respectively. For TREC-6, training BERT 256

with our fine-tuning approach FT+ provides large 257

gains both in accuracy and uncertainty calibration, 258

showing the importance of fine-tuning the LM for 259

a larger number of epochs in low resource settings. 260

For the larger dataset, AGNEWS, we see that BERT 261

with SFT performs equally to FT+ which is the ideal 262

scenario. We see that our fine-tuning approach does 263

not deteriorate the performance of BERT given the 264

large increase in warmup steps, showing that our 265

simple strategy provides robust results in both high 266

and low resource settings. After demonstrating 267

that FT+ yields better results than SFT, we next 268

compare BERT-TAPT-FT+ against BERT-FT+. We 269

observe that in both datasets BERT-TAPT outper- 270

forms BERT, with this being particularly evident in 271

the early iterations. This confirms our hypothesis 272

that by implicitly using the entire pool of unlabeled 273

data for extra pretraining (TAPT), we boost the per- 274

formance of the AL model using less data. 275

5 Conclusion 276

We have presented a simple yet effective train- 277

ing scheme for AL with pretrained LMs, that 278

yields substantially better results than standard fine- 279

tuning. We also find that the proposed training strat- 280

egy is more effective in improving performance 281

than the selected acquisition function in certain 282

cases, showing how critical it is to properly adapt a 283

large pretrained LM to low data AL settings. 284
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A Appendix: Experimental Setup507

A.1 Datasets508

We experiment with five diverse natural language509

understanding tasks including binary and multi-510

class labels and varying dataset sizes (Table 1).511

The first task is question classification using the six-512

class version of the small TREC-6 dataset of open-513

domain, fact-based questions divided into broad514

semantic categories (Voorhees and Tice, 2000). We515

also evaluate our approach on sentiment analysis516

using the binary movie review IMDB dataset (Maas517

et al., 2011) and the binary version of the SST-2518

dataset (Socher et al., 2013). We finally use the519

large-scale AGNEWS and DBPEDIA datasets from520

Zhang et al. (2015) for topic classification. We521

undersample the latter and form a Dpool of 20K ex-522

amples and Dval 2K as in Margatina et al. (2021).523

For TREC-6, IMDB and SST-2 we randomly sample524

10% from the training set to serve as the valida-525

tion set, while for AGNEWS we sample 5%. For526

the DBPEDIA dataset we undersample both training527

and validation datasets (from the standard splits)528

to facilitate our AL simulation (i.e. the original529

dataset consists of 560K training and 28K valida-530

tion data examples). For all datasets we use the531

standard test set, apart from the SST-2 dataset that532

is taken from the GLUE benchmark (Wang et al.,533

2019) we use the development set as the held-out534

test set (and subsample a development set from the535

original training set).536

A.2 Training & AL Details537

We use BERT-BASE (Devlin et al., 2019) and fine-538

tune it (TAPT §2) for 100K steps, with learning539

rate 2e− 05 and the rest of hyperparameters as in540

Gururangan et al. (2020) using the HuggingFace541

library (Wolf et al., 2020). We evaluate the model542

5 times per epoch on Dval and keep the one with543

the lowest validation loss as in Dodge et al. (2020).544

We use the code provided by Kirsch et al. (2019)545

for the uncertainty-based acquisition functions and546

Yuan et al. (2020) for ALPS, BADGE and BERTKM.547

We use the standard splits provided for all datasets,548

if available, otherwise we randomly sample a val-549

idation set. We test all models on a held-out test550

set. We repeat all experiments with five different551

random seeds resulting into different initializations552

of Dlab and the weights of the extra task-specific553

output feedforward layer. For all datasets we use as554

budget the 15% of Dpool. Each experiment is run555

on a single Nvidia Tesla V100 GPU.556

A.3 Hyperparameters 557

For all datasets we train BERT-BASE (Devlin et al., 558

2019) from the HuggingFace library (Wolf et al., 559

2020) in Pytorch (Paszke et al., 2019). We train 560

all models with batch size 16, learning rate 2e− 5, 561

no weight decay, AdamW optimizer with epsilon 562

1e− 8. For all datasets we use maximum sequence 563

length of 128, except for IMDB and AGNEWS that 564

contain longer input texts, where we use 256. To 565

ensure reproducibility and fair comparison between 566

the various methods under evaluation, we run all 567

experiments with the same five seeds that we ran- 568

domly selected from the range [1, 9999]. 569

A.4 Baselines 570

Acquisition functions We compare EN- 571

TROPYwith four baseline acquisition functions. 572

The first is the standard AL baseline, RANDOM, 573

which applies uniform sampling and selects k data 574

points from Dpool at each iteration. The second is 575

BADGE (Ash et al., 2020), an acquisition function 576

that aims to combine diversity and uncertainty 577

sampling. The algorithm computes gradient 578

embeddings gx for every candidate data point 579

x in Dpool and then uses clustering to select a 580

batch. Each gx is computed as the gradient of the 581

cross-entropy loss with respect to the parameters of 582

the model’s last layer. We also compare against a 583

recently introduced cold-start acquisition function 584

called ALPS (Yuan et al., 2020). ALPS acquisition 585

uses the masked language model (MLM) loss 586

of BERT as a proxy for model uncertainty in 587

the downstream classification task. Specifically, 588

aiming to leverage both uncertainty and diversity, 589

ALPS forms a surprisal embedding sx for each x, 590

by passing the unmasked input x through the BERT 591

MLM head to compute the cross-entropy loss for 592

a random 15% subsample of tokens against the 593

target labels. ALPS clusters these embeddings to 594

sample k sentences for each AL iteration. Last, 595

following Yuan et al. (2020), we use BERTKM as 596

a diversity baseline, where the l2 normalized BERT 597

output embeddings are used for clustering. 598

Models & Fine-tuning Methods We evaluate 599

two variants of the pretrained language model; the 600

original BERT model, used in Yuan et al. (2020) 601

and Ein-Dor et al. (2020)3, and our adapted model 602

BERT-TAPT (§2), and two fine-tuning methods; 603

3Ein-Dor et al. (2020) evaluate various acquisition func-
tions, including entropy with MC dropout, and use BERT with
the standard fine-tuning approach (SFT).
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our proposed fine-tuning approach FT+ (§2) and604

standard BERT fine-tuning SFT.605

MODEL TREC-6 DBPEDIA IMDB SST-2 AGNEWS

VALIDATION SET

BERT 94.4 99.1 90.7 93.7 94.4
BERT-TAPT 95.2 99.2 91.9 94.3 94.5

TEST SET

BERT 80.6 99.2 91.0 90.6 94.0
BERT-TAPT 77.2 99.2 91.9 90.8 94.2

Table 2: Accuracy with 100% of data over five runs
(different random seeds).

B Appendix: Analysis606

B.1 Task-Adaptive Pretraining (TAPT) &607

Full-Dataset Performance608

As discussed in §2 and §4, we continue training609

the BERT-BASE (Devlin et al., 2019) pretrained610

masked language model using the available data611

Dpool. We explored various learning rates between612

1e− 4 and 1e− 5 and found the latter to produce613

the lowest validation loss. We trained each model614

(one for each dataset) for up to 100K optimization615

steps, we evaluated on Dval every 500 steps and616

saved the checkpoint with the lowest validation617

loss. We used the resulting model in our (BERT-618

TAPT) experiments. We plot the learning curves of619

masked language modeling task (TAPT) for three620

datasets and all considered learning rates in Figure621

5. We notice that a smaller learning rate facilitates622

the training of the MLM.623

In Table 2 we provide the validation and test624

accuracy of BERT and BERT-TAPT for all datasets.625

We present the mean across runs with three random626

seeds. For fine-tuning the models, we used the627

proposed approach FT+ (§2).628

B.2 Performance of Acquisition Functions629

In our BERT-TAPT-FT+ experiments so far, we630

showed results with ENTROPY. We have also exper-631

imented with various uncertainty-based acquisition632

functions. Specifically, four uncertainty-based ac-633

quisition functions are used in our work: LEAST634

CONFIDENCE, ENTROPY, BALD and BATCH-635

BALD. LEAST CONFIDENCE (Lewis and Gale,636

1994) sorts Dpool by the probability of not pre-637

dicting the most confident class, in descending638

order, ENTROPY (Shannon, 1948) selects sam-639

ples that maximize the predictive entropy, and640

BALD (Houlsby et al., 2011), short for Bayesian641

Active Learning by Disagreement, chooses data642
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Figure 5: Learning curves of TAPT for various learning
rates.
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Figure 6: Comparison of acquisition functions using
TAPT and FT+ in training BERT.

points that maximize the mutual information be- 643

tween predictions and model’s posterior probabil- 644

ities. BATCHBALD (Kirsch et al., 2019) is a re- 645

cently introduced extension of BALD that jointly 646

scores points by estimating the mutual informa- 647

tion between multiple data points and the model 648

parameters. This iterative algorithm aims to find 649

batches of informative data points, in contrast to 650

BALD that chooses points that are informative 651

individually. Note that LEAST CONFIDENCE, EN- 652

TROPY and BALD have been used in AL for NLP 653

by Siddhant and Lipton (2018). To the best of our 654
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TREC-6 SST-2 IMDB DBPEDIA AGNEWS

RANDOM 0/0 0/0 0/0 0/0 0/0
ALPS 0/57 0/478 0/206 0/134 0/634
BADGE 0/63 0/23110 0/1059 0/192 -
BERTKM 0/47 0/2297 0/324 0/137 0/3651
ENTROPY 81/0 989/0 557/0 264/0 2911/0
LEAST CONFIDENCE 69/0 865/0 522/0 256/0 2607/0
BALD 69/0 797/0 524/0 256/0 2589/0
BATCHBALD 69/21 841/1141 450/104 256/482 2844/5611

Table 3: Runtimes (in seconds) for all datasets. In each cell of the table we present a tuple i/s where i is the
inference time and s the selection time. Inference time is the time for the model to perform a forward pass for
all the unlabeled data in Dpool and selection time is the time that each acquisition function requires to rank all
candidate data points and select k for annotation (for a single iteration). Since we cannot report the runtimes for
every model in the AL pipeline (at each iteration the size of Dpool changes), we provide the median.

knowledge, BATCHBALD is evaluated for the first655

time in the NLP domain.656

Instead of using the output softmax probabilities657

for each class, we use a probabilistic formulation of658

deep neural networks in order to acquire better cali-659

brated scores. Monte Carlo (MC) dropout (Gal and660

Ghahramani, 2016) is a simple yet effective method661

for performing approximate variational inference,662

based on dropout (Srivastava et al., 2014). Gal663

and Ghahramani (2016) prove that by simply per-664

forming dropout during the forward pass in making665

predictions, the output is equivalent to the predic-666

tion when the parameters are sampled from a varia-667

tional distribution of the true posterior. Therefore,668

dropout during inference results into obtaining pre-669

dictions from different parts of the network. Our670

BERT-basedMi model uses dropout layers during671

training for regularization. We apply MC dropout672

by simply activating them during test time and we673

perform multiple stochastic forward passes. For-674

mally, we do N passes of every x ∈ Dpool through675

Mi(x;Wi) to acquire N different output proba-676

bility distributions for each x. MC dropout for677

AL has been previously used in the literature (Gal678

et al., 2017; Shen et al., 2017; Siddhant and Lip-679

ton, 2018; Lowell and Lipton, 2019; Ein-Dor et al.,680

2020; Shelmanov et al., 2021).681

Our findings show that all functions provide sim-682

ilar performance, except for BALD that slightly683

underperforms. This makes our approach agnos-684

tic to the selected uncertainty-based acquisition685

method. We also evaluate our proposed methods686

with our baseline acquisition functions, i.e. RAN-687

DOM, ALPS, BERTKM and BADGE, since our688

training strategy is orthogonal to the acquisition689

strategy. We compare all acquisition functions with 690

BERT-TAPT-FT+ for AGNEWS and IMDB in Fig- 691

ure 6. We observe that in general uncertainty-based 692

acquisition performs better compared to diversity, 693

while all acquisition strategies have benefited from 694

our training strategy (TAPT and FT+). 695

B.3 Efficiency of Acquisition Functions 696

In this section we discuss the efficiency of the 697

eight acquisition functions considered in this work; 698

RANDOM, ALPS, BADGE, BERTKM, ENTROPY, 699

LEAST CONFIDENCE, BALD and BATCHBALD. 700

In Table 3 we provide the runtimes for all ac- 701

quisition functions and datasets. Each AL experi- 702

ments consists of multiple iterations and (therefore 703

multiple models), each with a different training 704

dataset Dlab and pool of unlabeled data Dpool. In 705

order to evaluate how computationally heavy is 706

each method, we provide the median of all the 707

models in one AL experiment. We calculate the 708

runtime of two types of functionalities. The first is 709

the inference time and stands for the forward pass 710

of each x ∈ Dpool to acquire confidence scores for 711

uncertainty sampling. RANDOM, ALPS, BADGE 712

and BERTKM do not require this step so it is only 713

applied of uncertainty-based acquisition where ac- 714

quiring uncertainty estimates with MC dropout is 715

needed. The second functionality is selection time 716

and measures how much time each acquisition func- 717

tion requires to rank and select the k data points 718

from Dpool to be labeled in the next step of the AL 719

pipeline. RANDOM, ENTROPY, LEAST CONFI- 720

DENCE and BALD perform simple equations to 721

rank the data points and therefore so do not require 722

selection time. On the other hand, ALPS, BADGE, 723
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BERTKM and BATCHBALD perform iterative al-724

gorithms that increase selection time. From all ac-725

quisition functions ALPS and BERTKM are faster726

because they do not require the inference step of727

all the unlabeled data to the model. ENTROPY,728

LEAST CONFIDENCE and BALD require the same729

time for selecting data, which is equivalent for the730

time needed to perform one forward pass of the en-731

tire Dpool. Finally BADGE and BATCHBALD are732

the most computationally heavy approaches, since733

both algorithms require multiple computations for734

the selection time. RANDOM has a total runtime of735

zero seconds, as expected.736
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