On the Importance of Effectively Adapting Pretrained Language Models for Active Learning

Anonymous ACL submission

Abstract

Recent active learning (AL) approaches in Natural Language Processing (NLP) proposed using off-the-shelf pretrained language models (LMs). In this paper, we argue that these LMs are not adapted effectively to the downstream task during AL and we explore ways to address this issue. We suggest to first adapt the pretrained LM to the target task by continuing training with all the available unlabeled data and then use it for AL. We also propose a simple yet effective fine-tuning method to ensure that the adapted LM is properly trained in both low and high resource scenarios during AL. Our experiments demonstrate that our approach provides substantial data efficiency improvements compared to the standard fine-tuning approach, suggesting that a poor training strategy can be catastrophic for AL.

1 Introduction

Active Learning (AL) is a method for training supervised models in a data-efficient way (Cohn et al., 1996; Settles, 2009). AL methods iteratively alternate between (i) model training with the labeled data available; and (ii) data selection for annotation using a stopping criterion, e.g. until exhausting a fixed annotation budget or reaching a pre-defined performance on a held-out dataset.

Data selection is performed by an acquisition function that ranks unlabeled data points by some informativeness metric aiming to improve over random selection, using either uncertainty (Lewis and Gale, 1994; Cohn et al., 1996), diversity (Brinker, 2003; Bodó et al., 2011; Sener and Savarese, 2018), or both (Ducoffe and Precioso, 2018; Ash et al., 2020; Yuan et al., 2020; Margatina et al., 2021).

Previous AL approaches in NLP use task-specific neural models that are trained from scratch at each iteration (Shen et al., 2017; Siddhant and Lipton, 2018; Prabhu et al., 2019; Ikhwantri et al., 2018; Kasai et al., 2019). However, these models are usually outperformed by pretrained language models (LMs) adapted to end-tasks (Howard and Ruder, 2018), making them suboptimal for AL. Only recently, pretrained LMs such as BERT (Devlin et al., 2019) have been introduced in AL settings (Yuan et al., 2020; Ein-Dor et al., 2020; Shemmanov et al., 2021; Karamcheti et al., 2021; Margatina et al., 2021). Still, they are trained at each AL iteration with a standard fine-tuning approach that mainly includes a pre-defined number of training epochs, which has been demonstrated to be unstable, especially in small datasets (Zhang et al., 2020; Dodge et al., 2020; Mosbach et al., 2021).

Since AL includes both low and high data resource settings, the AL model training scheme should be robust in both scenarios.\footnote{During the first few AL iterations the available labeled data is limited (low-resource), while it could become very large towards the last iterations (high-resource).}

To address these limitations, we introduce a suite of effective training strategies for AL (§2). Contrary to previous work (Yuan et al., 2020; Ein-Dor et al., 2020; Margatina et al., 2021) that also use BERT (Devlin et al., 2019), our proposed method accounts for various data availability settings and the instability of fine-tuning. First, we continue pretraining the LM with the available unlabeled data to adapt it to the task-specific domain. This way, we leverage not only the available labeled data at each AL iteration, but the entire unlabeled pool. Second, we further propose a simple yet effective fine-tuning method that is robust in both low and high resource data settings for AL.

We explore the effectiveness of our approach on five natural language understandings tasks with various acquisition functions, showing that it outperforms all baselines (§3). We also conduct an analysis to demonstrate the importance of adaptation of pretrained models for AL (§4). Our findings highlight that the LM adaptation strategy can be more critical than the data acquisition strategy.
2 Adapting & Fine-tuning Pretrained Models for Active Learning

Given a classification task with C classes, a typical AL setup consists of a pool of unlabeled data \mathcal{D}_{pool}, a model \mathcal{M}, an annotation budget b of data points, and an acquisition function $a(\cdot)$ for selecting k unlabeled data points for annotation (i.e. acquisition size) until b runs out. The AL performance is assessed by training a model on the actively acquired dataset and evaluating on a held-out test set \mathcal{D}_{test}.

Adaptation (TAPT) Inspired by recent work on transfer learning that shows improvements in downstream classification performance by continuing pretrained the LM (i.e. Task-Adaptive Pretraining TAPT), as in Gurrangan et al. (2020). Formally, we use an LM, such as BERT (Devlin et al., 2019), $\mathcal{P}(x; W_0)$ with weights W_0, that has been already pretrained on a large corpus. We fine-tune $\mathcal{P}(x; W_0)$ with the available unlabeled data of the downstream task \mathcal{D}_{pool} resulting in the task-adapted LM $\mathcal{P}_{TAPT}(x; W'_0)$ with new weights W'_0 (cf. line 2 of algorithm 1).

Fine-tuning (FT+) We now use the adapted LM $\mathcal{P}_{TAPT}(x; W'_0)$ for AL. At each iteration i, we initialize our model \mathcal{M}_i with the pretrained weights W'_0 and we add a task-specific feedforward layer for classification with weights W_c on top of the [CLS] token representation of BERT-based \mathcal{P}_{TAPT}. We fine-tune the classification model $\mathcal{M}_i(x; [W'_0, W_c])$ with all $x \in \mathcal{D}_{lab}$ (cf. line 6 to 8 of algorithm 1).

Recent work in AL (Ein-Dor et al., 2020; Yuan et al., 2020) uses the standard fine-tuning method proposed in Devlin et al. (2019) which includes a fixed number of 3 training epochs, learning rate warmup over the first 10% of the steps and AdamW optimizer (Loshchilov and Hutter, 2019) without bias correction, among other hyperparameters.

We follow a different approach by taking into account insights from few-shot fine-tuning literature (Mosbach et al., 2021; Zhang et al., 2020; Dodge et al., 2020) that proposes longer fine-tuning and more evaluation steps during training. We combine these guidelines to our fine-tuning approach by using early stopping with 20 epochs based on the validation loss, learning rate $2e - 5$, bias correction and 5 evaluation steps per epoch. However, increasing the number of epochs from 3 to 20, also increases the warmup steps (10% of total steps) almost 7 times. This may be problematic in scenarios where the dataset is large but the optimal number of epochs may be small (e.g. 2 or 3). To account for this limitation in our AL setting where the size of training set changes at each iteration, we propose to select the warmup steps as $\min(10\%$ of total steps, 100). We denote standard fine-tuning as SFT and our approach as FT+.

![Algorithm 1: AL with Pretrained LMs](image)

Data We experiment with five natural language understanding tasks: question classification (TREC-6) (Voorhees and Tice, 2000), sentiment analysis (IMDB, SST-2) (Maas et al., 2011; Socher et al., 2013) and topic classification (DBPEDIA, AGNEWS) (Zhang et al., 2015), including binary and multi-class labels and varying dataset sizes (Table 1). More details can be found in Appendix A.1.

Some guidelines propose an even smaller number of warmup steps, such as 6% in RoBERTa (Liu et al., 2020).
Experimental Setup We perform all AL experiments using BERT-base (Devlin et al., 2019) and ENTROPY, BERTKM, ALPS (Yuan et al., 2020), BADGE (Ash et al., 2020) and RANDOM (baseline) as the acquisition functions. We pair our proposed training approach TAPT-FT+ with ENTROPY acquisition. We describe in detail the AL setting and we provide results with more uncertainty-based acquisition functions in the Appendix.

Results Figure 1 shows the test accuracy during AL iterations. We first observe that our proposed approach (TAPT-FT+) achieves large data efficiency reaching the full-dataset performance within the budget for all datasets, in contrast to the standard AL approach (BERT-SFT). The effectiveness of our approach is notably apparent in the smaller datasets. In TREC-6, it achieves the goal accuracy with almost 10% annotated data, while in DBPEDIA only in the first iteration with 2% of the data. After the first AL iteration in IMDB, TAPT-FT+, it achieves only 2.5 points of accuracy lower than the performance when using 100% of the data. In the larger SST-2 and AGNEWS datasets, it is closer to the baselines but still outperforms them, achieving the full-dataset performance with 8% and 12% of the data respectively. We also observe that in all datasets, the addition of our proposed pretraining step (TAPT) and fine-tuning technique (FT+) leads to large performance gains, especially in the first AL iterations. This is particularly evident in TREC-6, DBPEDIA and IMDB datasets, where after the first AL iteration (i.e. equivalent to 2% of training data) TAPT+FT+ with ENTROPY is 45, 30 and 12 points in accuracy higher than the ENTROPY baseline with BERT and SFT.

Training vs. Acquisition Strategy We finally observe that the performance curves of the various acquisition functions considered (i.e. dotted lines) are generally close to each other, suggesting that the choice of the acquisition strategy may not affect substantially the AL performance in certain cases. In other words, we conclude that the training strategy can be more important than the acquisition strategy. We find that uncertainty sampling with ENTROPY is generally the best performing acquisition function, followed by BADGE. Still, finding a universally well-performing acquisition function, independent of the training strategy, is an open research question.

4 Analysis & Discussion

Task-Adaptive Pretraining We present details of TAPT (§2) and reflect on its effectiveness in the AL pipeline. Following Gururangan et al. (2020), we continue pretraining BERT for the MLM task using all the unlabeled data P_{pool} for all datasets separately. We plot the learning curves of BERT-TAPT for all datasets in Figure 2. We first observe that the masked LM loss is steadily decreasing for DBPEDIA, IMDB and AGNEWS across optimization steps, which correlates with the high early AL performance gains of TAPT in these datasets (Fig. 1). We also observe that the LM overfits in TREC-6 and SST-2 datasets. We attribute this to the very small training dataset of TREC-6 and the informal textual style of SST-2. Although SST-2 includes approximately 67K of training data, the sentences are very short (i.e. average length of 9.4 words per sentence). We hypothesize the LM overfits because of the lack of long and more diverse sentences. See Appendix B.1 for more details on TAPT.
Few-shot Fine-tuning We highlight the importance of considering the few-shot learning problem in the early AL stages which is often neglected in literature. This is more important when using pretrained LMs, since they are overparameterized models that require adapting their training scheme in low data settings to ensure robustness. To illustrate the inefficiency of standard fine-tuning (SFT), we randomly undersample AGNEWS and IMDB to form low, medium and high data settings (i.e. 100, 1,000 and 10,000 training samples) and train BERT for a fixed number of 3, 10, and 20 epochs. Figure 3 shows that SFT is suboptimal for low data settings, indicating that more optimization steps are needed for the model to adapt to the few training samples (Zhang et al., 2020; Mosbach et al., 2021). As the training samples increase, fewer epochs are often better. It is thus evident that there is not an optimal way to choose a predefined number of epochs to train the model given the number of training examples. This motivates the need to find a fine-tuning policy for AL that effectively adapts to the data resource setting of each iteration, which is mainly tackled by our proposed fine-tuning approach FT+ (§2).

Ablation Study We also conduct an ablation study to show that our proposed pretraining step (TAPT) and fine-tuning method (FT+), provide large gains compared to standard BERT fine-tuning (SFT) in terms of accuracy, data efficiency and uncertainty calibration. We compare BERT with SFT, BERT with FT+ and BERT-TAPT with FT+. Along with test accuracy, we also evaluate each AL model using uncertainty estimation metrics (Ovadia et al., 2019): Brier score, negative log likelihood (NLL), expected calibration error (ECE) and entropy. A well-calibrated model should have high accuracy and low uncertainty. Figure 4 shows the results for the smallest and largest datasets, TREC-6 and AGNEWS respectively. For TREC-6, training BERT with our fine-tuning approach FT+ provides large gains both in accuracy and uncertainty calibration, showing the importance of fine-tuning the LM for a larger number of epochs in low resource settings. For the larger dataset, AGNEWS, we see that BERT with SFT performs equally to FT+ which is the ideal scenario. We see that our fine-tuning approach does not deteriorate the performance of BERT given the large increase in warmup steps, showing that our simple strategy provides robust results in both high and low resource settings. After demonstrating that FT+ yields better results than SFT, we next compare BERT-TAPT-FT+ against BERT-FT+. We observe that in both datasets BERT-TAPT outperforms BERT, with this being particularly evident in the early iterations. This confirms our hypothesis that by implicitly using the entire pool of unlabeled data for extra pretraining (TAPT), we boost the performance of the AL model using less data.

5 Conclusion

We have presented a simple yet effective training scheme for AL with pretrained LMs, that yields substantially better results than standard fine-tuning. We also find that the proposed training strategy is more effective in improving performance than the selected acquisition function in certain cases, showing how critical it is to properly adapt a large pretrained LM to low data AL settings.
References

A Appendix: Experimental Setup

A.1 Datasets
We experiment with five diverse natural language understanding tasks including binary and multi-class labels and varying dataset sizes (Table 1). The first task is question classification using the six-class version of the small TREC-6 dataset of open-domain, fact-based questions divided into broad semantic categories (Voorhees and Tice, 2000). We also evaluate our approach on sentiment analysis using the binary movie review IMDB dataset (Maas et al., 2011) and the binary version of the SST-2 dataset (Socher et al., 2013). We finally use the large-scale AGNEWS and DBPEDIA datasets from Zhang et al. (2015) for topic classification. We undersample the latter and form a D_{pool} of 20K examples and D_{val} 2K as in Margarita et al. (2021). For TREC-6, IMDB and SST-2 we randomly sample 10% from the training set to serve as the validation set, while for AGNEWS we sample 5%. For the DBPEDIA dataset we underscore both training and validation datasets (from the standard splits) to facilitate our AL simulation (i.e. the original dataset consists of 560K training and 28K validation data examples). For all datasets we use the standard test set, apart from the SST-2 dataset that is taken from the GLUE benchmark (Wang et al., 2019) we use the development set as the held-out test set (and subsample a development set from the original training set).

A.2 Training & AL Details
We use BERT-BASE (Devlin et al., 2019) and fine-tune it (TAPT §2) for 100K steps, with learning rate $2e-05$ and the rest of hyperparameters as in Gururangan et al. (2020) using the HuggingFace library (Wolf et al., 2020). We evaluate the model 5 times per epoch on D_{val} and keep the one with the lowest validation loss as in Dodge et al. (2020). We use the code provided by Kirsch et al. (2019) for the uncertainty-based acquisition functions and Yuan et al. (2020) for ALPS, BADGE and BERTKM. We use the standard splits provided for all datasets, if available, otherwise we randomly sample a validation set. We test all models on a held-out test set. We repeat all experiments with five different random seeds resulting into different initializations of D_{val} and the weights of the extra task-specific output feedforward layer. For all datasets we use as budget the 15% of D_{pool}. Each experiment is run on a single Nvidia Tesla V100 GPU.

A.3 Hyperparameters
For all datasets we train BERT-BASE (Devlin et al., 2019) from the HuggingFace library (Wolf et al., 2020) in Pytorch (Paszke et al., 2019). We train all models with batch size 16, learning rate $2e-5$, no weight decay, AdamW optimizer with epsilon $1e-8$. For all datasets we use maximum sequence length of 128, except for IMDB and AGNEWS that contain longer input texts, where we use 256. To ensure reproducibility and fair comparison between the various methods under evaluation, we run all experiments with the same five seeds that we randomly selected from the range [1, 9999].

A.4 Baselines

Acquisition functions We compare EN-TROPY with four baseline acquisition functions. The first is the standard AL baseline, RANDOM, which applies uniform sampling and selects k data points from D_{pool} at each iteration. The second is BADGE (Ash et al., 2020), an acquisition function that aims to combine diversity and uncertainty sampling. The algorithm computes gradient embeddings g_x for every candidate data point x in D_{pool} and then uses clustering to select a batch. Each g_x is computed as the gradient of the cross-entropy loss with respect to the parameters of the model’s last layer. We also compare against a recently introduced cold-start acquisition function called ALPS (Yuan et al., 2020). ALPS acquisition uses the masked language model (MLM) loss of BERT as a proxy for model uncertainty in the downstream classification task. Specifically, aiming to leverage both uncertainty and diversity, ALPS forms a surprisal embedding s_x for each x, by passing the unmasked input x through the BERT MLM head to compute the cross-entropy loss for a random 15% subsample of tokens against the target labels. ALPS clusters these embeddings to sample k sentences for each AL iteration. Last, following Yuan et al. (2020), we use BERTKM as a diversity baseline, where the l_2 normalized BERT output embeddings are used for clustering.

Models & Fine-tuning Methods We evaluate two variants of the pretrained language model; the original BERT model, used in Yuan et al. (2020) and Ein-Dor et al. (2020)3, and our adapted model BERT-TAPT (§2), and two fine-tuning methods;
our proposed fine-tuning approach FT+ (§2) and standard BERT fine-tuning SFT.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>TREC-6</th>
<th>DBPEDIA</th>
<th>IMDB</th>
<th>SST-2</th>
<th>AGNEWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERT</td>
<td>94.4</td>
<td>99.1</td>
<td>90.7</td>
<td>93.7</td>
<td>94.4</td>
</tr>
<tr>
<td>BERT-TAPT</td>
<td>95.2</td>
<td>99.2</td>
<td>91.9</td>
<td>94.3</td>
<td>94.5</td>
</tr>
</tbody>
</table>

Table 2: Accuracy with 100% of data over five runs (different random seeds).

B Appendix: Analysis

B.1 Task-Adaptive Pretraining (TAPT) & Full-Dataset Performance

As discussed in §2 and §4, we continue training the BERT-BASE (Devlin et al., 2019) pretrained masked language model using the available data D_{pool}. We explored various learning rates between $1e^{-4}$ and $1e^{-5}$ and found the latter to produce the lowest validation loss. We trained each model (one for each dataset) for up to 100K optimization steps, we evaluated on D_{val} every 500 steps and saved the checkpoint with the lowest validation loss. We used the resulting model in our (BERT-TAPT) experiments. We plot the learning curves of masked language modeling task (TAPT) for three datasets and all considered learning rates in Figure 5. We notice that a smaller learning rate facilitates the training of the MLM.

In Table 2 we provide the validation and test accuracy of BERT and BERT-TAPT for all datasets. We present the mean across runs with three random seeds. For fine-tuning the models, we used the proposed approach FT+ (§2).

B.2 Performance of Acquisition Functions

In our BERT-TAPT-FT+ experiments so far, we showed results with ENTROPY. We have also experimented with various uncertainty-based acquisition functions. Specifically, four uncertainty-based acquisition functions are used in our work: LEAST CONFIDENCE, ENTROPY, BALD and BATCHBALD. LEAST CONFIDENCE (Lewis and Gale, 1994) sorts D_{pool} by the probability of not predicting the most confident class, in descending order, ENTROPY (Shannon, 1948) selects samples that maximize the predictive entropy, and BALD (Houlsby et al., 2011), short for Bayesian Active Learning by Disagreement, chooses data points that maximize the mutual information between predictions and model’s posterior probabilities. BATCHBALD (Kirsch et al., 2019) is a recently introduced extension of BALD that jointly scores points by estimating the mutual information between multiple data points and the model parameters. This iterative algorithm aims to find batches of informative data points, in contrast to BALD that chooses points that are informative individually. Note that LEAST CONFIDENCE, ENTROPY and BALD have been used in AL for NLP by Siddhant and Lipton (2018). To the best of our knowledge, BATCHBALD has not been used in AL for NLP so far.
Table 3: Runtimes (in seconds) for all datasets. In each cell of the table we present a tuple i/s where i is the inference time and s the selection time. Inference time is the time for the model to perform a forward pass for all the unlabeled data in D_{pool} and selection time is the time that each acquisition function requires to rank all candidate data points and select k for annotation (for a single iteration). Since we cannot report the runtimes for every model in the AL pipeline (at each iteration the size of D_{pool} changes), we provide the median.

<table>
<thead>
<tr>
<th></th>
<th>TREC-6</th>
<th>SST-2</th>
<th>IMDB</th>
<th>DBPEDIA</th>
<th>AGNEWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANDOM</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>ALPS</td>
<td>0/57</td>
<td>0/478</td>
<td>0/206</td>
<td>0/134</td>
<td>0/634</td>
</tr>
<tr>
<td>BADGE</td>
<td>0/63</td>
<td>0/23110</td>
<td>0/1059</td>
<td>0/192</td>
<td>-</td>
</tr>
<tr>
<td>BERTKM</td>
<td>0/47</td>
<td>0/2297</td>
<td>0/324</td>
<td>0/137</td>
<td>0/3651</td>
</tr>
<tr>
<td>ENTROPY</td>
<td>81/0</td>
<td>989/0</td>
<td>557/0</td>
<td>264/0</td>
<td>2911/0</td>
</tr>
<tr>
<td>LEAST CONFIDENCE</td>
<td>69/0</td>
<td>865/0</td>
<td>522/0</td>
<td>256/0</td>
<td>2607/0</td>
</tr>
<tr>
<td>BALD</td>
<td>69/0</td>
<td>797/0</td>
<td>524/0</td>
<td>256/0</td>
<td>2589/0</td>
</tr>
<tr>
<td>BatchBALD</td>
<td>69/21</td>
<td>841/1141</td>
<td>450/104</td>
<td>256/482</td>
<td>2844/5611</td>
</tr>
</tbody>
</table>

Knowledge, BatchBALD is evaluated for the first time in the NLP domain.

Instead of using the output softmax probabilities for each class, we use a probabilistic formulation of deep neural networks in order to acquire better calibrated scores. Monte Carlo (MC) dropout (Gal and Ghahramani, 2016) is a simple yet effective method for performing approximate variational inference, based on dropout (Srivastava et al., 2014). Gal and Ghahramani (2016) prove that by simply performing dropout during the forward pass in making predictions, the output is equivalent to the prediction when the parameters are sampled from a variational distribution of the true posterior. Therefore, dropout during inference results into obtaining predictions from different parts of the network. Our BERT-based M_i model uses dropout layers during training for regularization. We apply MC dropout by simply activating them during test time and we perform multiple stochastic forward passes. Formally, we do N passes of every $x \in D_{\text{pool}}$ through $M_i(x; W_i)$ to acquire N different output probability distributions for each x. MC dropout for AL has been previously used in the literature (Gal et al., 2017; Shen et al., 2017; Siddhant and Lipton, 2018; Lowell and Lipton, 2019; Ein-Dor et al., 2020; Shelmanov et al., 2021).

Our findings show that all functions provide similar performance, except for BALD that slightly underperforms. This makes our approach agnostic to the selected uncertainty-based acquisition method. We also evaluate our proposed methods with our baseline acquisition functions, i.e. RANDOM, ALPS, BERTKM and BADGE, since our training strategy is orthogonal to the acquisition strategy. We compare all acquisition functions with BERT-TAPT-FT+ for AGNEWS and IMDB in Figure 6. We observe that in general uncertainty-based acquisition performs better compared to diversity, while all acquisition strategies have benefited from our training strategy (TAPT and FT+).

B.3 Efficiency of Acquisition Functions

In this section we discuss the efficiency of the eight acquisition functions considered in this work: RANDOM, ALPS, BADGE, BERTKM, ENTROPY, LEAST CONFIDENCE, BALD and BatchBALD.

In Table 3 we provide the runtimes for all acquisition functions and datasets. Each AL experiment consists of multiple iterations and (therefore multiple models), each with a different training dataset D_{lab} and pool of unlabeled data D_{pool}. In order to evaluate how computationally heavy is each method, we provide the median of all the models in one AL experiment. We calculate the runtime of two types of functionalities. The first is the inference time and stands for the forward pass of each $x \in D_{\text{pool}}$ to acquire confidence scores for uncertainty sampling. RANDOM, ALPS, BADGE and BERTKM do not require this step so it is only applied of uncertainty-based acquisition where acquiring uncertainty estimates with MC dropout is needed. The second functionality is selection time and measures how much time each acquisition function requires to rank and select the k data points from D_{pool} to be labeled in the next step of the AL pipeline. RANDOM, ENTROPY, LEAST CONFIDENCE and BALD perform simple equations to rank the data points and therefore so do not require selection time. On the other hand, ALPS, BADGE,
BERTKM and BATCHBALD perform iterative algorithms that increase selection time. From all acquisition functions ALPS and BERTKM are faster because they do not require the inference step of all the unlabeled data to the model. ENTROPY, LEAST CONFIDENCE and BALD require the same time for selecting data, which is equivalent for the time needed to perform one forward pass of the entire P_{pool}. Finally BADGE and BATCHBALD are the most computationally heavy approaches, since both algorithms require multiple computations for the selection time. RANDOM has a total runtime of zero seconds, as expected.