
Under review as a conference paper at ICLR 2021

DEEP QUOTIENT MANIFOLD MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

One of the difficulties in modeling real-world data is their complex multi-manifold
structure due to discrete features. In this paper, we propose quotient manifold
modeling (QMM), a new data-modeling scheme that considers generic manifold
structure independent of discrete features, thereby deriving efficiency in modeling
and allowing generalization over untrained manifolds. QMM considers a deep
encoder inducing an equivalence between manifolds; but we show it is sufficient
to consider it only implicitly via a bias-regularizer we derive. This makes QMM
easily applicable to existing models such as GANs and VAEs, and experiments
show that these models not only present superior FID scores but also make good
generalizations across different datasets. In particular, we demonstrate an MNIST
model that synthesizes EMNIST alphabets.

1 INTRODUCTION

Real-world data are usually considered to involve a multi-manifold structure by having discrete fea-
tures as well as continuous features; continuous features such as size or location induce a smooth
manifold structure in general, whereas discrete features such as digit-class or a new object in the
background induce disconnections in the structure, making it a set of disjoint manifolds instead of a
single (Khayatkhoei et al., 2018). While this multiplicity makes modeling data a difficult problem,
recently proposed deep generative models showed notable progresses by considering each manifold
separately. Extending the conventional models by using multiple generators (Khayatkhoei et al.,
2018; Ghosh et al., 2017; Hoang et al., 2018), discrete latent variables (Chen et al., 2016; Dupont,
2018; Jeong and Song, 2019), or mixture densities (Gurumurthy et al., 2017; Xiao et al., 2018; Tom-
czak and Welling, 2018), they exhibit improved performances in image generations and in learning
high-level features.

There are, however, two additional properties little considered by these models. First, since discrete
features are both common and combinatorial, there can be exponentially many manifolds that are
not included in the dataset. For example, an image dataset of a cat playing around in a room would
exhibit a simple manifold structure according to the locations of the cat, but there are also numerous
other manifolds derivable from it via discrete variations—such as placing a new chair, displacing
a toy, turning on a light or their combinations—that are not included in the dataset (see Fig. 1).
Second, while the manifolds to model are numerous considering such variations, they usually have
the same generic structure since the underlying continuous features remain the same; regardless of
the chair, toy, or light, the manifold structures are equally due to the location of the cat.

Considering these properties, desired is a model that can handle a large number of resembling man-
ifolds, but the aforementioned models show several inefficiencies. They need proportionally many
generators or mixture components to model a large number of manifolds; each of them requires
much data, only to learn the manifolds having the same generic structure. Moreover, even if they
are successfully trained, new discrete changes are very easy to be made, yet they cannot generalize
beyond the trained manifolds.

In this paper, we propose quotient manifold modeling (QMM)—a new generative modeling scheme
that considers generic manifold structure independent of discrete features, thereby deriving effi-
ciency in modeling and allowing generalization over untrained manifolds. QMM outwardly follows
the multi-generator scheme (Khayatkhoei et al., 2018; Ghosh et al., 2017; Hoang et al., 2018); but
it involves a new regularizer that enforces encoder compatibility—a condition that the inverse maps
of the generators to be presented by a single deep encoder. Since deep encoders usually exhibit

1

Under review as a conference paper at ICLR 2021

Figure 1: An illustration of quotient manifold modeling (QMM). Images of a cat moving around
in a room would form an 1-D manifold due to the location of the cat; but the structure can become
multi-manifold by having different discrete features (a chair or a vase in the background). The
idea of QMM is to consider the generic structure shared by the manifolds using an encoding map.
The encoding map induces an equivalence relation that can be seen as a contour map (green dotted
curves). The quotient of the relation (or the orthogonal curve to the map) gives the manifold structure
for an untrained image (shown in purple, dotted).

good generalizability, this condition not only makes a generic structure be shared among the gener-
ators but also makes it generalizable to untrained manifolds. In particular, it induces a generalizable
equivalence relation between data, and the manifold structure of out-of-sample data can be derived
by taking the quotient of this relation, hence the name QMM.

Since the implementation of QMM is essentially adding a regularizer, it can be easily applied to
existing deep generative models such as generative adversarial networks (GANs; (Goodfellow et al.,
2014)), variational auto-encoders (VAEs; (Kingma and Welling, 2013)), and their extensions. We
demonstrate that these QMM-applied models not only show better FID scores but also show good
generalizations.

Our contributions can be summarized as follows:

• We propose QMM, a new generative modeling scheme that considers generic manifold
structure, thereby allowing generalizations over untrained manifolds.

• We derive a regularizer enforcing encoder compatibility, an essential condition for QMM.

• We show that GANs and VAEs implementing QMM show superior FID scores and gener-
alize across different datasets.

2 BACKGROUND

2.1 MANIFOLD MODELING IN GANS AND VAES

While generative adversarial networks (GANs) (Goodfellow et al., 2014) and variational auto-
encoders (VAEs) (Kingma and Welling, 2013) are two different strands of models, they have the
same data-modeling scheme that leads to a manifold structure (though VAEs involve stochasticity).
They model data x ∈ X as a transformation of a low-dimensional latent code z ∈ Z via a gen-
erative (decoding) map fG : Z → X , which makes every datum they consider lie on a subspace
M = fG(Z) ⊂ X . Since fG can be assumed to be smooth and injective in practice (Shao et al.,
2017), M accords with the mathematical definition of a smooth manifold.

But to deal with multi-manifold data, these models need to approximate disconnections in the struc-
ture with low densities. This requires them to have a highly nonlinear fG, which is difficult to learn
and often leads to either a low-quality model or a mode collapse (Khayatkhoei et al., 2018).

2

Under review as a conference paper at ICLR 2021

2.2 MULTI-MANIFOLD EXTENSIONS

To better model the multi-manifold structure, several studies proposed extended GAN and VAE
models that consider each of the manifolds separately. According to which component is extended,
the approaches can be broken down into the below three. While these approaches have advantages in
dealing with multi-manifold data, they still show limiting performance in learning generic structure
and do not allow generalization over untrained manifolds.

1) Multi-generators—x(i) = f
(i)
G (z) (Khayatkhoei et al., 2018; Ghosh et al., 2017; Hoang et al.,

2018). In this approach, each manifold is modeled by a separate generator. The generators are
usually independent, but some models design them to share the weight parameters in a subset of the
layers. This in part contributes to the learning of a generic structure, but lacks theoretical grounds
and shows inferior performances (see Appendix F). 2) Mixture density—x(i) = fG(z(i)), where
z(i) ∼ p(i) (Gurumurthy et al., 2017; Xiao et al., 2018; Tomczak and Welling, 2018). In this
approach, each manifold is modeled by a separate mode of the latent distribution. While the modes
outwardly share the generator, the actual mappings are effectively different from each other as they
reside in different regions in Z. 3) Discrete latent variables—x(i) = fG([z; d]) (Chen et al., 2016;
Dupont, 2018; Jeong and Song, 2019). In this approach, discrete random variables are explicitly
defined and concatenated to the continuous variable. Since discrete information is slowly blended
in layer by layer, it can learn the generic structure to some degree, but not as clear (see Table 1).

3 QUOTIENT MANIFOLD MODELING (QMM)

QMM inherits the multi-generator scheme (Khayatkhoei et al., 2018; Ghosh et al., 2017; Hoang
et al., 2018), but involves an additional regularizer enforcing the encoder compatibility. Leaving
the regularizer for the next section, we first explain the role of this compatibility as binding the
generative maps. Then, we see how a plausible equivalence relation can be defined using a deep
encoder. Lastly, we explain how a new manifold can be obtained by taking the quotient of the
relation.

3.1 ENCODER COMPATIBILITY

Definition 1. LetH be a set of encoding maps (X → Z) that can be represented by a deep encoder.
We say that generative maps {f (i)G : Z →M (i) ⊂ X}Ai=1 have encoder compatibility if there exists
hE ∈ H satisfying (f

(i)
G)−1(x) = hE(x) for all x ∈M (i) and i.

With this condition satisfied, the generative maps {f (i)G }i are no longer independent to each other
but share a single X ↔ Z translation rule represented by the deep encoder hE ∈ H. However, this
binding is meaningful only when H has a certain property; otherwise, hE is just an extension of
functions {(f (i)G)−1}i giving no useful signal to {f (i)G }i.
In practice, H indeed involves an important property that its elements—deep encoders—have good
generalizability. Having numerous parameters, deep encoders could overfit data, but in practice they
find the smoothest function exhibiting generalizability. For example, if a deep encoder is trained on
images illustrated in Fig. 1 to output the position of the cat, we expect it would work fairly well
even after we place a vase or turn on a light, generalizing over the discrete changes of the room con-
dition. While this generalizing property is not fully understood to date (there are several compelling
theories (Zhang et al., 2016; Brutzkus et al., 2018)), it has been consistently demonstrated by many
deep recognition models (e.g., VGG-Net (Simonyan and Zisserman, 2014), Fast R-CNN (Girshick,
2015)). In this regard, we assume its continuity and generalizability in developing our model, and
verify them later from the experiments.

3.2 EQUIVALENCE RELATION AND QUOTIENT MANIFOLDS

Putting the generalizability of hE and the compatibility (f
(i)
G)−1 = hE together, we expect hE to

output the continuous features z given data x. Then, there is a naturally induced equivalence relation

3

Under review as a conference paper at ICLR 2021

𝑀(#)

𝑀(%)

𝒂(𝟏) 𝒂(𝟐)

𝑧

𝑈𝑧

𝒙(𝟏) = 𝑼𝒛 + 𝒂(𝟏)

𝒙(𝟐) = 𝑼𝒛 + 𝒂(𝟐)
G
en
er
at
io
n

𝑎∥

𝑥3
(#)

𝑥3
(%)

𝑥∥
𝒙(𝟐)

𝑊#
𝑊%

𝒙(𝟏)

𝑀(#)

𝑀(%)

𝑂 (Origin)

𝑊6𝑥∥							
= 𝑊6𝑥(#)
= 𝑊6𝑥(%)

𝑧 = 𝑊6𝑥∥ + 𝑏

𝑏

Encoding

𝑥∥

𝑈#6
𝑈%6

Figure 2: The generators and the encoder of a linear layer are illustrated. Generation: A latent point
z is transformed by the same weight U , then different biases a(1) and a(2) are added to generate x(1)

and x(2) for different manifolds. The biases are regularized to have the same tangential component
(to the column space of W or U>) a‖, which makes the generators encoder-compatible (Def. 1).
Encoding: The points x(1) and x(2) lying on different manifolds are mapped to the same z if they
have the same tangential components x‖. Note this becomes false if the biases are not regularized.

(called the kernel of hE) x(1) ∼hE
x(2) ⇐⇒ hE(x(1)) = hE(x(2)), which effectively groups data

having the same continuous features together regardless of the manifolds they are lying on.

This can be seen more concretely in Fig. 1. Assuming the model is well trained, it should have
captured the crucial continuous feature—the location of the cat—in Z. Due to the encoder com-
patibility, such a feature should be encoded in Z smoothly, meaning that hE outputs the location
information of the cat in a consistent and generalizable way, if not exactly calibrated. Given this,
images having the cat on the same location, regardless of the chair, will have the same hE(x), thus
being equivalent under ∼hE

(ones on a green dotted curve). Since hE can generalize, the equiv-
alence relation is consistent for data lying on an untrained manifold as well (ones with the vase,
drawn in purple).

Now that the data lying on different manifolds are made equivalent under ∼hE
, manifold structures

are described as quotients of this relation. In implementations, taking the quotient is the same
as taking the orthogonal directions to the equivalence-relation contours. In Fig. 1, we can see
that M (1) and M (2), the manifolds that are included in the dataset, are already orthogonal to the
contours formed from hE . When given an untrained image (shown in purple), we can obtain the new
manifold just by following the orthogonal directions. It will be explained later that this manifold
can be described by a new generator, whose bias parameters are optimized for the manifold to pass
through the given image (see Sec. 5).

4 BIAS-ALIGNING REGULARIZER

To implement the discussed scheme, the main issue is to make the generators have the encoder com-
patibility. We first examine a simplified case where each generator is single-layered and derive that
a sufficient condition for this is that the biases of the generators are aligned in a certain way (Propo-
sition 1). To achieve the alignment, we introduce a bias-aligning regularizer, the main component
of QMM. After, we explain how the regularizer can be extended to the multi-layer case.

4.1 ENCODER COMPATIBILITY FOR SINGLE LINEAR LAYER

Consider a set of linear generative maps {f (i)G : Z → M (i) ⊂ X}i; each of the maps is defined as
f
(i)
G (z) := U (i)z + a(i), where U (i) ∈ RdX×dZ (dX > dZ) and a(i) ∈ RdX are the weight and bias

parameters respectively. We assume U (i) is a full-rank matrix (rank-dZ) such that f (i)G is injective.
Then, the inverse (f

(i)
G)−1 : M (i) → Z can be derived as

(f
(i)
G)−1 = (U (i))+(x(i) − a(i)) (1)

4

Under review as a conference paper at ICLR 2021

where (U (i))+ :=
(
(U (i))>U (i)

)−1
(U (i))> denotes the pseudo-inverse of U (i). To achieve the

encoder compatibility (Def. 1), our desire is to restrict the inverse maps {(f (i)G)−1}i such that they
can be represented by a single encoder hE : X → Z. One simple way to achieve this is to use the
following proposition.

Proposition 1. If the linear generating maps {f (i)G (z)}i are restricted to have the same weight
U and to have the same tangential components of bias a‖, then their inverses {(f (i)G)−1}i can
be represented by a single linear encoder hE(x) := W>x + b, where W = U(U>U)−1 and
b = −W>a‖.

Proof. Let a(i)‖ and a(i)⊥ denote the tangential and the normal components of a(i) (to the column

space of U>), respectively. Then, the restrictions can be expressed as U (i) = U and a(i) = a‖+a
(i)
⊥

for all i. Substituting these in Eq. 1,

(f
(i)
G)−1 = U+x− U+(a‖ + a

(i)
⊥) = U+x− U+a‖

= W>x+ b.

4.2 BIAS-ALIGNING REGULARIZER FOR SINGLE LINEAR LAYER

When implementing Proposition 1, making {U (i)}i the same is as trivial as setting the same weight
U for all f (i)G , but making {a(i)‖ }i the same is nontrivial since the tangential direction keeps changing
while training. One solution would be to use a regularizer minimizing the sum of the variance:
trace(cov(a

(i)
‖)). However, computing this term is intractable due to the inversion (U>U)−1 inside

of a(i)‖ = U(U>U)−1U>a(i).

Theorem 1. The following inequality holds:

trace
(

cov(U>a(i))
)
≥ 1

dz
H({λk}dz

k=1)trace
(

cov(a
(i)
‖)
)

where {λk}dz

k=1 denotes the eigenvalues of U>U and H(·) denotes harmonic mean.

Proof. See Appendix A.

As the harmonic mean in Theorem 1 is constant from the perspective of a(i)‖ , we can minimize the
original term by minimizing the upper bound instead. With an addition of log to match the scale
due to the dimensionality of the layer, we propose this upper bound as a regularizer to make a(i)‖ the
same:

BA-regularizer: RBA = log
(

trace
(

cov(U>a(i))
))

. (2)

4.3 MULTI-LAYER NETWORK

The encoder compatibility for multi-layer networks can be enforced straightforwardly by applying
Proposition 1 to all the linear layers. That means, for the l-th linear layer of all the generators,
their weights are shared, U (i)

l = Ul, and their biases are regularized to have the same tangential
components, a(i)l = al,‖ + a

(i)
l,⊥ via Eq. 2; other layers—nonlinear activation functions (we use

LeakyReLU) and batch-normalization layers—are simply set to be shared.

This design guarantees the inverses of the generator networks to be represented by a single deep
encoder (though we do not actually compute the inversion), inducing the encoder compatibility.
Since all the layers are invertible, the entire networks are invertible; also, due to Eq. 2, inverses of
l-th linear layers can be represented by a single linear layer (W (l)>x+ B), and other layers can be
trivially inverted and represented by the same layers.

5

Under review as a conference paper at ICLR 2021

Table 1: FID (smaller is better) and Disentanglement (larger is better) scores are shown. We compare
WGAN (Arjovsky et al., 2017), DMWGAN (Khayatkhoei et al., 2018), β-VAE (Higgins et al.,
2016), InfoGAN (Chen et al., 2016) with our model. The mean and std. values are computed from
10 (MNIST) and 5 (3D-Chair) replicated experiments.

GANs VAEs

WGAN DMWGAN InfoGAN Q-WGAN
(Ours)

Q-WGAN,
λ = 0

β-VAE Q-β-VAE
(Ours)

Q-β-VAE,
λ = 0

FI
D MNIST 10.13± 3.16 5.41± 0.34 12.17± 1.30 5.69± 0.89 15.74± 10.00 58.43± 0.23 41.74± 1.40 40.74±2.03

3D-Chair 125.32± 1.16 184.5± 31.5 187.94± 9.51 125.27± 4.34 128.44± 7.06 217.12± 0.55 211.39± 7.42 210.05± 4.26

D
is

en
ta

ng
le MNIST (slant) 1.62± 0.41 1.08± 0.04 1.24± 0.15 2.15± 0.17 1.76± 0.35 5.04± 1.19 5.93± 1.78 5.18± 0.77

MNIST (width) 1.68± 0.49 1.11± 0.06 1.18± 0.11 2.93± 0.60 2.75± 0.67 5.63± 0.75 5.71± 1.06 5.00± 0.77

3D-Chair (height) 2.14± 0.20 1.14± 0.05 1.41± 0.34 3.27± 1.73 2.76± 0.31 8.10± 0.20 8.88± 1.23 6.99± 1.20

3D-Chair (bright.) 3.53± 0.80 1.20± 0.14 3.02± 0.88 4.45± 0.66 4.24± 0.54 3.96± 0.20 7.27± 1.48 5.88± 1.01

5 DEEP QUOTIENT GENERATIVE MODELS

Now that we described the QMM scheme, we explain how it can be applied to the concrete models.
We present its applications on Wasserstein GANs and β-VAEs among others.

Generation As above, let us denote the weight of the l-th linear layer as Ul and the biases as
{a(i)l }Ai=1 . Then, we can express the data generating distribution in the form of ancestral sampling:

x ∼ f (i)G

(
z; {Ul, a

(i)
l }

L
l=1

)
where z ∼ p(z), i ∼ πi.

Here, πi stands for the probability of selecting the i-th bias. This probability could be also learned
using the method proposed in Khayatkhoei et al. (2018), but it is beyond our scope and we fix it as
1/A. We denote the distribution due to this process as pG.

Encoding (Deriving Quotient Manifolds) Due to the bias regularizer, we do not need to con-
cretize the encoder hE by actually inverting f (i)G during training. But, when encoding is needed, we
can obtain the latent codes and biases by minimizing the Euclidean distance (as suggested in Ma
et al. (2018)) along with a similar bias regularization as follows.

z, {al}Ll=1 = arg min
z̃,{ãl}Ll=1

∥∥x− fG (z̃; {ãl}Ll=1

)∥∥2 + µ

L∑
l=1

log
∥∥U>l al − U>l āl,‖∥∥2 , (3)

Q-WGAN Applying QMM to the Wasserstein GAN (WGAN; (Arjovsky et al., 2017)), we can
define the QMM-applied WGAN losses by simply adding the regularizer:

LG = −Ex∼pG
[D(x)] + λ

L∑
l=1

log
(

trace(cov(U>l a
(i)
l))

)
,

where LG and LD = Ex∼pG
[D(x)] − Ex∼pR

[D(x)] (pR being the real data distribution) are the
generator and the discriminator losses, respectively, λ is a regularization weight, and D(x) is a
k-Lipschitz discriminator function.

Q-β-VAE We use a multi-generator version of β-VAE, which use EM algorithm for training (de-
tailed in Appendix C). Applying QMM can be similarly done by adding the BA-regularizer:

L = −Ez∼q(z|x)

[
A∑
i=1

γ(i) log p
(i)
G (x|z)

]
+ βDKL (q(z|x)‖p(z)) +RBA({a(i)l }l,i)

6 EXPERIMENTS

Datasets We experiment on MNIST (Lecun et al., 1998), 3D-Chair (Aubry et al., 2014) and UT-
Zap50k (Yu and Grauman, 2014) image datasets. 3D-Chair contains 1393 distinct chairs rendered
from 62 different viewing angles (total 86,366 images); in experiments, only front-looking 44,576
images are used and rescaled to 64x64 grayscale images. UT-Zap50k contains images of 4 different
types of shoes (total 50,025 images); the images are rescaled to 32x32.

6

Under review as a conference paper at ICLR 2021

Figure 3: Images generated from the trained Q-VAEs (first row) and Q-GANs. Each i-th row
presents samples from the i-th manifold (only 8 out of 20 are shown for 3D-Chair) and each column
presents the samples generated from the same latent code z, which is randomly sampled from p(z).

Model Architectures For GAN models, we use DCGAN (Radford et al., 2015)-like model archi-
tectures for all the datasets (see Appendix B for the complete information). In the discriminator,
we use spectral normalization (Miyato et al., 2018) to achieve the k-Lipschitz condition. For VAE
models, the architectures are generally the same as GANs, except that the batch-norms are not used.
We use β = 4 and ten EM steps. In both models, Adam (Kingma and Ba, 2014) is used for training
and encoding, with the default values except for the learning rate, 0.0002.

In the QMM-applied models, the number of biases, A, is set to 10 (MNIST), 20 (3D-Chair), and
4 (UT-Zap50k), respectively. Although our multi-biased linear layer can be applied to both fully-
connected and convolutional layers, we apply it only to the former. This was sufficient for our pur-
pose since disconnections rarely exist for such small-sized (thus low-dimensional) kernel patches.

6.1 BASIC MULTI-MANIFOLD LEARNING

QMM-applied models show great performance in multi-manifold learning with a good alignment,
both qualitatively and quantitatively. Looking at Fig. 3 row-wise, we can see that Q-WGAN and
Q-β-VAE learn distinct manifolds well, where each manifold accounts for a different discrete class:
e.g., different digits; rolling vs. armchairs; boots vs. flat shoes. Column-wise, we can see that the
continuous features are well aligned among the manifolds: e.g., stroke weight, the slant of numbers;
viewing angle of chairs; colors of shoes. For quantitative evaluation, we compare FID score (Heusel
et al., 2017), a widely used metric to examine the diversity and quality of the generated image
samples, reflecting the manifold learning performance overall. As seen in Table 1, our models give
better or comparable scores than others.

6.2 DISENTANGLEMENT OF LATENT CODES

To further investigate the manifold alignment performance, we examine how much the learned latent
features are disentangled. We take a few images from the dataset and manually change one of
the smooth features that corresponds to a known transformation (e.g., sheer transform). Then, we
encode these images to the latent codes using our model, analyze the principal direction of the
change, and compute the linearity of the change as the disentanglement score (see Appendix D).
Fig. 4 shows that the learned continuous features are well disentangled along the principal changing
directions. Table 1 shows that our models get better scores than other models.

7

Under review as a conference paper at ICLR 2021

Figure 4: Disentangled features. Images are arranged the same as Fig. 3, except the columns show
linear changes in the latent space along the first eigenvector from the disentanglement analysis (see
Sec. 6.2). Slant, width (MNIST), height and brightness (3D-Chair) components are shown.

Figure 5: Manifolds derived for a noise-added data 1(highlighted in red boxes). Here, we also train
on RGB-MNIST dataset: a simple extension of MNIST by coloring with (R, G, or B).

6.3 GENERALIZATION OVER UNTRAINED MANIFOLDS

Using the encoding method deriving quotient manifolds (Eq. 3), we examine if QMM-applied
models well generalize over untrained manifolds. In both case of added noises (Fig. 5) and different
datasets (Fig. 6) they indeed show fair performances in generalization, sharing generic structure
with the trained manifolds (aligning continuous features column-wise).

7 CONCLUSION

We proposed QMM that performs multi-manifold learning in consideration for the generic structure.
Unique to QMM is that it utilizes the generalization ability of a deep encoder, from which it showed
its potential to infer the untrained manifolds even across different datasets. If it is trained with larger
datasets such as ImageNet in the future, we expect QMM-applied models would become a more
versatile tool that can derive the manifold structure of images in wild.

Figure 6: Left: QMM-applied models trained on MNIST generates alphabet ’v’ included in EM-
NIST dataset. Right: QMM-applied models trained on two-digit MNIST (multiples of 9) dataset,
generating one-digit MNIST and non-multiples.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. January 2017.

Mathieu Aubry, Daniel Maturana, Alexei A. Efros, Bryan C. Russell, and Josef Sivic. Seeing 3D
Chairs: Exemplar Part-Based 2D-3D Alignment Using a Large Dataset of CAD Models. In 2014
IEEE Conference on Computer Vision and Pattern Recognition, pages 3762–3769, Columbus,
OH, USA, June 2014. IEEE. ISBN 978-1-4799-5118-5. doi: 10.1109/CVPR.2014.487.

Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. SGD LEARNS
OVER-PARAMETERIZED NETWORKS THAT PROVABLY GENERALIZE ON LINEARLY
SEPARA- BLE DATA. page 17, 2018.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. InfoGAN:
Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets.
In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems 29, pages 2172–2180. Curran Associates, Inc., 2016.

Emilien Dupont. Learning Disentangled Joint Continuous and Discrete Representations.
arXiv:1804.00104 [cs, stat], October 2018.

Arnab Ghosh, Viveka Kulharia, Vinay Namboodiri, Philip H. S. Torr, and Puneet K. Dokania. Multi-
Agent Diverse Generative Adversarial Networks. arXiv:1704.02906 [cs, stat], April 2017.

Ross Girshick. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer
Vision, pages 1440–1448, 2015.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 27, pages 2672–2680. Curran Associates, Inc., 2014.

Swaminathan Gurumurthy, Ravi Kiran Sarvadevabhatla, and R. Venkatesh Babu. DeLiGAN : Gener-
ative Adversarial Networks for Diverse and Limited Data. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 166–174, 2017.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems 30, pages 6626–6637. Curran Asso-
ciates, Inc., 2017.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. Beta-Vae: Learning Basic Visual Concepts with a
Constrained Variational Framework. November 2016.

Quan Hoang, Tu Dinh Nguyen, Trung Le, and Dinh Phung. MGAN: Training Generative Adversar-
ial Nets with Multiple Generators. February 2018.

Yeonwoo Jeong and Hyun Oh Song. Learning Discrete and Continuous Factors of Data via Alter-
nating Disentanglement. arXiv:1905.09432 [cs, stat], May 2019.

Mahyar Khayatkhoei, Maneesh K. Singh, and Ahmed Elgammal. Disconnected Manifold Learning
for Generative Adversarial Networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems
31, pages 7343–7353. Curran Associates, Inc., 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. December 2014.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. arXiv:1312.6114 [cs,
stat], December 2013.

Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. In Proceedings of the IEEE, pages 2278–2324, 1998.

9

Under review as a conference paper at ICLR 2021

Fangchang Ma, Ulas Ayaz, and Sertac Karaman. Invertibility of Convolutional Generative Networks
from Partial Measurements. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages
9628–9637. Curran Associates, Inc., 2018.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral Normalization
for Generative Adversarial Networks. arXiv:1802.05957 [cs, stat], February 2018.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks. November 2015.

Hang Shao, Abhishek Kumar, and P. Thomas Fletcher. The Riemannian Geometry of Deep Gener-
ative Models. arXiv:1711.08014 [cs, stat], November 2017.

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image
Recognition. arXiv:1409.1556 [cs], September 2014.

Jakub M. Tomczak and Max Welling. VAE with a VampPrior. arXiv:1705.07120 [cs, stat], February
2018.

Chang Xiao, Peilin Zhong, and Changxi Zheng. BourGAN: Generative Networks with Metric Em-
beddings. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems 31, pages 2269–2280. Curran Asso-
ciates, Inc., 2018.

Aron Yu and Kristen Grauman. Fine-Grained Visual Comparisons with Local Learning. In 2014
IEEE Conference on Computer Vision and Pattern Recognition, pages 192–199, Columbus, OH,
USA, June 2014. IEEE. ISBN 978-1-4799-5118-5. doi: 10.1109/CVPR.2014.32.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv:1611.03530 [cs], November 2016.

10

Under review as a conference paper at ICLR 2021

A THE PROOF OF THEOREM 1

Theorem 1. The following inequality holds

trace
(

cov(U>a(i))
)
≥ 1

dz
H({λk}dz

k=1)trace
(

cov(a
(i)
‖)
)

where {λk}dz

k=1 are the eigenvalues of U>U and H(·) denotes a harmonic mean.

Proof. Note that

trace
(

cov(a
(i)
‖)
)

= trace
(

cov(U(U>U)−1U>a(i))
)

= trace

(
1

A− 1

A∑
i=1

U(U>U)−1U>(a(i) − ā)(a(i) − ā)>U(U>U)−1U>

)

= trace

(
1

A− 1

A∑
i=1

U>(a(i) − ā)(a(i) − ā)>U(U>U)−1

)
= trace

(
cov(U>a(i))(U>U)−1

)
≤ trace

(
cov(U>a(i))

)
trace

(
(U>U)−1

)
,

where the second and the fourth lines use the definition of the covariance, third line is obtained from
the cyclic property of trace and the last line is obtained from the Cauchy-Schwarz inequality of the
positive semi-definite matrices. Thus,

trace
(

cov(U>a(i))
)
≥ trace

(
cov(a

(i)
‖)
)
/trace

(
(U>U)−1

)
=

1

D
H({λd}Dd=1)trace

(
Var(a(i)‖)

)
where {λd}Dd=1 are the eigenvalues of U>U and H(·) denotes the harmonic mean.

B MODEL ARCHITECTURE AND EXPERIMENTING ENVIRONMENTS

We used machines with one NVIDIA Titan Xp for the training and the inference of all the models.

B.1 MNIST

We use A = 10 distinct decoding biases in the model. In the training, we set the regularization
weight λ = 0.05 and use the Adam optimizer with learning rate 0.0002. In the encoding, we use the
Adam optimizer with learning rate 0.1, and the set the regularization weight µ = 0.1.

Table B.1: Q-WGAN architecture used for MNIST dataset (Q-β-VAE architecture is similar. See
below for the differences.)

Generator Discriminator

Input(8) Input(1,28,28)

Full(1024), BN, LReLU(0.2) Conv(c=64, k=4, s=2, p=1), BN, LReLU(0.2)

Full(6272), BN, LReLU(0.2) Conv(c=128, k=4, s=2, p=1), BN, LReLU(0.2)

ReshapeTo(128,7,7) ReshapeTo(6272)

ConvTrs(c=64, k=4, s=2, p=1), BN, LReLU(0.2) Full(1024), BN, LReLU(0.2)

ConvTrs(c=32, k=4, s=2, p=1), BN, LReLU(0.2) Full(1)

ConvTrs(c=1, k=3, s=1, p=1), Tanh

11

Under review as a conference paper at ICLR 2021

B.1.1 NOTES ON THE OTHER COMPARED MODELS

Overall, we match the architecture of other models with our model for fair comparison. Some
differences to note are:

• DMWGAN: We used 10 generators. Each generator has the same architecture as ours
except the number of features or the channels are divided by 4, to match the number of
trainable parameters. Note that 4 is the suggested number from the original paper.

• InfoGAN: Latent dimensions consist of 1 discrete variable (10 categories), 2 continuous
variables and 8 noise variables.

• β-VAE & Q-β-VAE: We used the same architecture as the generators of Q-WGAN, except
the BatchNorm layers are removed. We used the Bernoulli likelihood.

B.2 3D-CHAIR

We use A = 20 distinct decoding biases in the model. In the training, we set the regularization
weight λ = 0.05 and use the Adam optimizer with learning rate 0.0002. In the encoding, we use the
Adam optimizer with learning rate 0.1, and the set the regularization weight µ = 0.1.

Table B.2: Q-WGAN architecture used for 3D-Chair dataset.

Generator Discriminator

Input(10) Input(1,64,64)

Full(256), BN, LReLU(0.2) Conv(c=64, k=4, s=2, p=1), BN, LReLU(0.2)

Full(8192), BN, LReLU(0.2) Conv(c=128, k=4, s=2, p=1), BN, LReLU(0.2)

ReshapeTo(128,8,8) Conv(c=128, k=4, s=2, p=1), BN, LReLU(0.2)

ConvTrs(c=64, k=4, s=2, p=1), BN, LReLU(0.2) ReshapeTo(8192)

ConvTrs(c=32, k=4, s=2, p=1), BN, LReLU(0.2) Full(1024), BN, LReLU(0.2)

ConvTrs(c=16, k=4, s=2, p=1), BN, LReLU(0.2) Full(1)

ConvTrs(c=1, k=3, s=1, p=1), Tanh

B.2.1 NOTES ON THE OTHER COMPARED MODELS

• DMWGAN: We used 20 generators. Each generator has the same architecture as ours
except the BatchNorms are removed and the number of features or the channels are divided
by 4, to match the number of trainable parameters. Note that 4 is the suggested number
from the original paper. Note that this was the best setting among what we have tried
(division number 2; ones with the BatchNorms).

• InfoGAN: Latent dimensions consist of 3 discrete variables (20 categories), 1 continuous
variable and 10 noise variables.

• β-VAE & Q-β-VAE: We used the same architecture as the generators of Q-WGAN, except
the BatchNorm layers are removed. We used the Bernoulli likelihood.

B.3 UT-ZAP50K

We use A = 4 distinct decoding biases in the model. For the regularization weight in the training,
we start with λ = 5e− 6 then raise to λ = 5e− 4 after 300 epochs.

12

Under review as a conference paper at ICLR 2021

Table B.3: Q-WGAN architecture used for UT-Zap50k dataset.

Generator Discriminator

Input(8) Input(3,32,32)

Full(512), BN, LReLU(0.2) Conv(c=128, k=4, s=2, p=1), BN, LReLU(0.2)

Full(1024), BN, LReLU(0.2) Conv(c=256, k=4, s=2, p=1), BN, LReLU(0.2)

Full(8192), BN, LReLU(0.2) Conv(c=512, k=4, s=2, p=1), BN, LReLU(0.2)

ReshapeTo(512,4,4) ReshapeTo(8192)

ConvTrs(c=256, k=4, s=2, p=1), BN, LReLU(0.2) Full(1024), BN, LReLU(0.2)

ConvTrs(c=128, k=4, s=2, p=1), BN, LReLU(0.2) Full(512), BN, LReLU(0.2)

ConvTrs(c=64, k=4, s=2, p=1), BN, LReLU(0.2) Full(1)

ConvTrs(c=3, k=3, s=1, p=1), Tanh

C Q-β-VAE MODEL

Q-β-VAE model adopts a multi-generator (multi-decoder) version of β-VAE along with the BA-
regularizer. To maximize the marginal likelihood given the multiple generators, it uses an EM-like
algorithm:

E-Step:

Q(G) =

A∑
i=1

γ(i) log p
(i)
G (x|z), where γ(i) = p

(i)
G (x|z)/

∑
i

p
(i)
G (x|z)

M-Step:

L = −Ez∼q(z|x) [Q(G)] + βDKL (q(z|x)‖p(z)) +RBA({a(i)l }l,i).

where RBA({a(i)l }l,i) = λ
∑L

l=1 log
(

trace(cov(U>l a
(i)
l))

)
.

In the E-Step, it takes the expectation over the different generators; the responsibilities of each gen-
erator can be computed as presented above since γ(i) = p(i|x, z) = πip

(i)
G (x|z)/

∑
i πip

(i)
G (x|z) =

p
(i)
G (x|z)/

∑
i p

(i)
G (x|z). In the M-Step, we plug in the computed expectation Q(G) as the marginal

likelihood term (γ(i) is fixed). Repeating E and M step multiple times (we take ten repeats), we
finish the gradient step for a single mini-batch.

D DISENTANGLEMENT SCORE

To compute the disentanglement score, we first take 500 images from the dataset and manually
change one of the smooth features that corresponds to a known transformation. For example, we
change the slant of the MNIST digits by taking a sheer transform. With 11 different degrees of the
transformation, we obtain 5500 transformed images in total. We encode these images to obtain the
corresponding latent codes and subtract the mean for each group of the images (originates from the
same image) to align all the latent codes. Then, we conduct Principal Component Analysis (PCA) to
obtain the principal direction and the spectrum of variations of the latent codes. If the latent features
are well disentangled, the dimensionality of the variation should be close to one. To quantify how
much it is close to one, we compute the ratio of the first eigenvalue to the second eigenvalue of the
PCA covariance, and set it as the disentanglement score.

13

Under review as a conference paper at ICLR 2021

E EFFECT OF THE NUMBER OF GENERATORS, A

To investigate the effect of the number of generators (or biases), A, we train our model on MNIST
with different A values then compute the FID and the disentanglement scores (Fig. E.1). It can
be seen that our model performs consistently better than the baseline, WGAN, regardless of the
different A values.

Figure E.1: The FID scores (right axis, the smaller the better) and the disentanglement scores (left
axis, the larger the better) of Q-WGAN with varying A are shown for MNIST dataset. The dashed
lines show the mean scores of the baseline model (WGAN).

F EFFECT OF THE REGULARIZATION WEIGHT, λ, IN TRAINING

To investigate the effect of the regularization weight, λ, we train our model on MNIST with differ-
ent λ values. It can be seen that our model performs consistently better than the other compared
models—Q-WGAN with no regularization (λ = 0), DMWGAN, MADGAN-like (see the next
paragraph)—regardless of the different λ values (other models are omitted for better readability;
see Table 1 for the omitted ones). It can be also seen that the scores are not very sensitive to the
different choices of λ’s; this is beneficial in that one may choose any reasonable value for λ when
training the model with a new dataset.

Here, MADGAN-like is a DMWGAN model, but has a similar parametrization to the MADGAN [6]:
The parameters of the first three layers (from the top) are shared for all the generators. In contrast, Q-
WGAN shares the parameters in all the layers except the biases in the fully-connected layers. Thus,
in a sense, one can say that Q-WGAN shares only the last few layers, whereas MADGAN-like shares
only the first few layers (of course, there is another difference due to the regularizers). Although the
both models have the shared structures among the generators, Q-WGAN performs much better in
both of the scores as seen in Figure F.2. This suggests that a simple parameter sharing is not enough
to obtain a good performance, and the bias regularizer is indeed required.

14

Under review as a conference paper at ICLR 2021

(a) FID Scores

(b) Disentanglement Score (Slant) (c) Disentanglement Score (Width)

Figure F.2: The FID scores (the smaller the better) and the disentanglement scores (the larger the
better) of Q-WGAN with varying λ are shown for MNIST dataset. Note the other models are
positioned in the center (shaded in gray) to be visually comparable with the best-performing Q-
WGAN model (λ = 0.05).

G EFFECT OF THE REGULARIZATION WEIGHT, µ, IN ENCODING

To investigate the effect of the regularization weight, µ, in encoding (Eq. 3), we take a trained
model and encode an image from the train set using different µ values. Then, plugging in the
encoded (estimated) biases, {al}Ll=1, we randomly generate the samples from this new manifold and
compare the qualities for different µ’s.

From Figure G.3 (b), we can see that the quality of the encoding tends to improve as µ gets smaller.
This might seem opposite to what we expect, as weaker regularization gives better results. However,
looking closer, we can see that the features like the slant and the stroke are more aligned with a
stronger regularization of µ = 0.05, when comparing with the other manifolds in the bottom pane.
Thus, a trade-off exists here between the image quality of the samples and the alignment of the
manifold to the others. Note we chose to use µ = 0.05 in all the other experiments.

15

Under review as a conference paper at ICLR 2021

(a) Left: An image taken from the training dataset. Middle: The same im-
age with a rectangle noise. Right: Regenerated image from the estimated
biases, {al}Ll=1, and the estimated latent code z, from Eq. 3.

(b) Top pane: Generated samples from the estimated biases, {al}Ll=1. The
biases are estimated with different µ’s, (5.0, 0.5, 0.05, 0.005, 0.0005, 0.0),
from the top to the bottom. Bottom pane: Generated samples from the
originally-learned biases, {{a(i)l }Ai=1}Ll=1 (only 5 out of 10 are shown).
Note the images in the same column have the same latent value z.

Figure G.3: Effect of the regularization weight µ in encoding is shown with a MNIST-trained Q-
WGAN model.

H EFFECT OF THE BIAS REGULARIZER

To examine the effectiveness of our bias regularizer, we visualize the raw values of biases {a(i)l }i,l
and their (pseudo-)tangential component {U>l a

(i)
l }i,l (see Fig. H.4, H.5). In all figures, we see that

the biases are diverse, but their tangential components are well aligned due to the bias regularizer
(left). On the contrary, without the regularizer, the tangential components are not aligned (right).

I SAMPLES GENERATED FROM VARIOUS MODELS

16

Under review as a conference paper at ICLR 2021

Figure H.4: Biases a(i)l and their (pseudo-)tangential components U>l a
(i)
l of the Q-WGAN models,

trained on MNIST. Individual curve indicates each i-th bias. Left Parameters of Q-WGAN Right
Parameters of Q-WGAN without the regularizer (λ = 0). It can be seen that the regularizer makes
the tangential components of the biases well aligned.

17

Under review as a conference paper at ICLR 2021

Figure H.5: Biases a(i)l and their (pseudo-)tangential component U>l a
(i)
l of the Q-WGAN models,

trained on 3D-Chair. Individual curve indicates each i-th bias. Left Parameters of Q-WGAN Right
Parameters of Q-WGAN without the regularizer (λ = 0). It can be seen that the regularizer makes
the tangential components of the biases well aligned.

18

Under review as a conference paper at ICLR 2021

(a) Q-WGAN (b) Q-WGAN (λ = 0)

(c) DMWGAN (d) WGAN

(e) β-VAE (f) InfoGAN

Figure I.6: MNIST image samples generated from the trained models

19

Under review as a conference paper at ICLR 2021

(a) WGAN (b) β-VAE (c) InfoGAN

Figure I.7: 3D-Chair image samples generated from the trained models

20

Under review as a conference paper at ICLR 2021

Figure I.8: 3D-Chair image samples generated from the trained Q-WGAN

21

Under review as a conference paper at ICLR 2021

Figure I.9: 3D-Chair image samples generated from Q-WGAN (λ = 0)

22

Under review as a conference paper at ICLR 2021

Figure I.10: 3D-Chair image samples generated from the trained DMWGAN

23

	Introduction
	Background
	Manifold Modeling in GANs and VAEs
	Multi-manifold Extensions

	Quotient Manifold Modeling (QMM)
	Encoder Compatibility
	Equivalence Relation and Quotient Manifolds

	Bias-Aligning Regularizer
	Encoder Compatibility for Single Linear Layer
	Bias-Aligning Regularizer for Single Linear Layer
	Multi-layer Network

	Deep Quotient Generative Models
	Experiments
	Basic Multi-Manifold Learning
	Disentanglement of Latent Codes
	Generalization over Untrained Manifolds

	Conclusion
	The Proof of Theorem 1
	Model Architecture and Experimenting Environments
	MNIST
	Notes on the Other Compared Models

	3D-Chair
	Notes on the Other Compared Models

	UT-Zap50k

	Q–VAE Model
	Disentanglement Score
	Effect of the Number of Generators, A
	Effect of the Regularization Weight, , in Training
	Effect of the Regularization Weight, , in Encoding
	Effect of the Bias Regularizer
	Samples Generated from Various Models

