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ABSTRACT

Asynchronous stochastic discrete event based processes are commonplace in appli-
cation domains such as social science, homeland security, and health informatics.
Modeling complex interactions of such event data via marked temporal point pro-
cesses (MTPPs) provides the ability of detection and prediction of specific interests
or profiles. We present a novel multi-category MTPP generation technique for
applications where training datasets are inherently sparse, incomplete, and small.
The proposed adversarial architecture augments adversarial autoencoder (AAE)
with feature mapping techniques, which includes a transformation between the
categories and timestamps of marked points and the percentile distribution of the
particular category. The transformation of training data to the distribution facilitates
the accurate capture of underlying process characteristics despite the sparseness
and incompleteness of data. The proposed method is validated using several bench-
mark datasets. The similarity between actual and generated MTPPs is evaluated
and compared with a Markov process based baseline. Results demonstrate the
effectiveness and robustness of the proposed technique.

1 INTRODUCTION

Marked Temporal Point Processes (MTPPs) are widely used for modeling and analysis of asyn-
chronous stochastic discrete events in continuous time (Upadhyay et al., 2018; Türkmen et al.,
2019; Yan, 2019) with applications in numerous domains such as homeland security, cybersecu-
rity, consumer analytics, health care analytics, and social science. An MTPP models stochas-
tic discrete events as marked points (ei) defined by its time of the occurrence ti and its cat-
egory ci. Usually, point processes are characterized using the conditional intensity function,
λ∗(t) = λ(t|Ht) = P[event ∈ [t, t + dt)|Ht], which given the past Ht = {ei = (zi, ti)|ti < t}
specifies the probability of an event occurring at future time points. There are many popular intensity
functional forms. Hawkes process (self-exciting process) (Hawkes, 1971) is a point process used in
both statistical and machine learning contexts where the intensity is a linear function of past events
(Ht) (Türkmen et al., 2019). In traditional parametric models, the conditional intensity functions are
manually pre-specified (Yan, 2019). Recently, various neural network models (generally called neural
TPP) have been used to learn arbitrary and unknown distributions while eliminating the manual
intensity function selection. Reinforcement learning (Zhu et al., 2019; Li et al., 2018), recurrent
Neural Networks (RNN) (Du et al., 2016), and generative neural networks (Xiao et al., 2018) are used
to approximate the intensity functions and learn complex MTPP distributions using larger datasets.

Recent advances in data collection techniques allow collecting complex event data which form
heterogeneous MTTPs where a marked point (eij) defines a time of occurrence (ti) and a category
(cj) separately. Therefore, multi-category MTTPs not only concern about the time of occurrence but
also the category of the next marked point. The multi-category MTTPs append extra dimensionality
to the distribution which complicates the learning using existing technologies. In fact, multi-category
MTPPs are greatly helpful to model the behavioral patterns of suspicious or specific individuals and
groups in homeland security (Campedelli et al., 2019b;a; Hung et al., 2018; 2019), potential malicious
network activities in cybersecurity (Peng et al., 2017), recommendation systems in consumer analytics
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(Vassøy et al., 2019), and the behavioral patterns of patients to determine certain illnesses (Islam
et al., 2017; Mancini & Paganoni, 2019).

A number of challenges limit the collection and access to data in many fields often resulting in small
and incomplete datasets. Scenarios involving social, political and crime behaviors are often incom-
plete due to data collection challenges such as data quality maintenance, privacy and confidentiality
issues (National Institutes of Health & Services, 2020), but still a rigorous analysis with complete data
is essential to produce accurate and reliable outcomes. So, there is a critical need for a technique to
capture and learn from MTPP distribution, develop and apply machine learning algorithms, etc., for a
small set of data some of which may be incomplete. We present an adversarial multi-category MTPP
generation technique which is capable of generating sparse, asynchronous, stochastic, multi-category,
discrete events in continuous time based on a limited dataset. Adversarial training has recently
evolved and is able to provide exceptional results in many data generation applications, mostly in
image, audio, and video generation while precisely mimicking the features of an actual dataset. The
primary GAN architecture (Goodfellow et al., 2014) only engages well for continuous and complete
data distributions and GANs have not been used for learning the distribution of discrete variables
(Choi et al., 2017). Later, GAN architectures for discrete events have been introduced (Makhzani
et al., 2015; Yu et al., 2017) and also applied for MTTP generation using extensive training data
(Xiao et al., 2018; 2017).

Adversarial autoencoders (AAE) are fluent in capturing latent discrete or continuous distributions
(Makhzani et al., 2015). In this work, we present feature mapping modules for accommodating
incomplete data and make AAE capable of capturing the MTPP distributions of incomplete and
small datasets. The incompleteness of the data points can be occurred in following ways. The
marked points have been not collected or actors did not originally expose some marked points due to
the dynamicity of these stochastic processes, which is the case especially in social and behavioral
domains. Main contribution of the paper is a novel technique to synthetically generate high-fidelity
multi-category MTPPs using adversarial autoencoders and feature mapping techniques by leveraging
sparse, incomplete, and small datasets. To the best of our knowledge, there is no technique available
for multi-category MTTP generation using such a dataset which is significantly more challenging
than the existing generation scenarios.

Section 2 reviews related literature on MTTPs and AAEs. Section 3 presents the definition of multi-
category MTTPs and Section 4 discusses the usage of AAEs for incomplete, multi-category MTTP
generation. Then Section 5 presents the unique preprocessing and postprocessing techniques include
in the feature mapping encoder and the decoder. Section 6 discusses the results of the experiment,
and Section 7 summarises the conclusion and future work.

2 RELATED WORK

MTPPs are widely used for modeling of asynchronous stochastic discrete events in continuous
time (Upadhyay et al., 2018; Du et al., 2016; Li et al., 2018; Türkmen et al., 2019). Usually, an
MTTP is defined using a conditional intensity function (Türkmen et al., 2019) which provides the
instantaneous rate of events given previous points. Intensity functions are often approximated by
various processes such as the Poisson process, Hawkes process (self-exciting process) (Hawkes, 1971),
and self-correcting process (Isham & Westcott, 1979). In traditional MTPPs, the intensity function
has to be explicitly defined; however any mismatch between the manually defined and the underlying
intensity function of a process can have a significant adverse impact on the accuracy of models and
outcomes. Deep generative networks avoid the requirement of manually identifying the intensity and
thus allows the use of arbitrary and complex distributions. Recurrent Neural Networks (RNNs) with
reinforcement learning have been widely used in recent years (Du et al., 2016; Li et al., 2018) as well
as several hybrid and extended models are also presented. A stochastic sequential model is proposed
in (Sharma et al., 2019) as a combination of a deep state space model and deterministic RNN for
modeling MTPPs. FastPoint (Türkmen et al., 2019) uses deep RNNs to capture complex temporal
patterns and self-excitation dynamics within each mark are modeled using Hawkes processes. A
semi-parametric generative model is introduced in (Zhu et al., 2019) for spatio-temporal event data
by combining spatial statistical models with reinforcement learning. The advanced data collection
techniques and online social media platforms produce complex event data and thus social network
analysis can now be used to inform solutions to many societal issues (Bonchi et al., 2011). Many such
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processes of heterogeneous and complex events require multi-category MTPP-based representation.
The data integrity is also a major concern in social networks as many fake and misleading data is
not uncommon (Muramudalige et al., 2019). In many disciplines, such as economics, biological and
social sciences, removal of non-verifiable entries is crucial for maintaining the required data integrity,
which in turn leads to incomplete and small datasets. Various techniques are introduced to handle
missing data in different contexts (Folch-Fortuny et al., 2015; MacNeil Vroomen et al., 2016).

Generative adversarial networks (Goodfellow et al., 2014) have become an alternative for data
generation without extensive problem specific theoretical foundation or empirical verification (Yan,
2019). The initial GAN architecture (Goodfellow et al., 2014) is capable of capturing the exact
distribution of continuous and complete data but cannot be used for learning the distribution of
discrete variables (Choi et al., 2017). The recent improvement in the form of Wasserstein GAN
(Arjovsky et al., 2017) is used to implement generative TPP models (Xiao et al., 2018). medGAN
is designed to learn the distribution of discrete features, such as diagnosis or medication codes, via
a combination of an autoencoder and the adversarial framework (Choi et al., 2017). Adversarial
Autoencoder (AAE) (Makhzani et al., 2015) is a probabilistic autoencoder which uses the GAN
framework as a variational inference algorithm for both discrete and continuous latent variables. An
aggregated posterior distribution of q(z) on the latent code is defined with the encoding function
q(z|x) and the data distribution pd(x) as follows where x denotes a input sample set.

q(z) =

∫
x

q(z|x)pd(x)dx (1)

In general usage of an AAE, x represents consistent, discrete or continuous data samples where
almost all data points are captured or completed in a given context. The challenge addressed in our
paper is to apply an AAE for scattered and incomplete multi-category MTPPs generation using our
proposed feature mapping techniques with a data approximation method. Details of such an AAE
for sparse, incomplete, and multi-category MTPPs generation and feature mapping techniques are
presented in Sections 4 and 5 respectively.

3 MULTI-CATEGORY MARKED TEMPORAL POINT PROCESSES

A marked temporal point process (MTPP) represents a certain set of asynchronous stochastic discrete
actions/events in continuous time (Upadhyay et al., 2018; Li et al., 2018). Due to the immense
availability of heterogeneous and complex event data in recent years, it is significant to model such
complex events using multi-category MTPPs. A multi-category marked point is denoted as follows.

Figure 1: A basic representation of a multi-category MTPP, marked point colors depict multiple
categories in a MTPP.

A marked point eij is an event of category cj occurring at time ti as shown in Figure 1. Tables in
Appendix A illustrate categories (i.e., cj) in datasets, where these heterogeneous events exhibits
complex dependencies and correlations. Usually, a MTPP analysis deals with an ensemble of marked
temporal point processes (MTPPs). Multi-category MTPPs are described as follows. If the kth MTPP
is Hk and its marked points are denoted as ekij ∈ Hk. Consider n events (marked points) and m
categories in the kth MTPP, then marked points are characterized as ekij = (ti, cj) where i ∈ [1, n]
and j ∈ [1,m]. Then,

H = {ekij = (ti, cj) ∈ Hk; k ∈ [1, N ]}, (2)
whereH represents N number of multi-category MTPPs. However, without loss of generality, we
denote ekij as eij in the following discussion.

In some problem domains, i (time of occurrences) or j (categories) values may change rapidly
and some categories may not be recorded frequently. More importantly, with many problems in
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Figure 2: Architecture of an AAE for sparse, incomplete, and multi-category MTPPs.

domains such as social and behavioral sciences, not all marked points (eij) of a MTPP are known
or observable due to the limitations of information gathering process, confidentiality constraints,
unverifiability, deception, etc. A notable aspect of our work, is the use of sparse, incomplete, and
multi-category MTPPs where an actor (an MTTP) either did not carry out activities corresponding to
a certain event categories and marked points or they carried them out, but such activities were not
reported in the reliable or permissible sources. To address these challenges, we propose a feature
mapping encoder and decoder which are capable of capturing the sparseness and incompleteness of
the data. The proposed feature mapping techniques consist of multiple steps including the calculation
of cumulative probabilities for each category and a data approximation technique for incomplete data
(briefly described in Algorithm 1). More details of the feature mapping encoder and the decoder are
discussed in Section 5.

3.1 MULTI-CATEGORY MTTP DATASETS

We evaluate the performance of our technique using 3 real-world datasets from a diverse range of
domains.

Radicalization Dataset The Western Jihadism Database (Klausen et al., 2020) has almost all the
incidents of terrorist actions committed in western countries including timestamps and yet it does
not consist of unconfirmed or undiscovered activities that cause an incomplete dataset. We use 135
detailed pathways (multi-category MTPPs) of home-grown jihadists (Klausen et al., 2018a) which
have been extracted from radicalization trajectories of 335 known American jihadists (Klausen et al.,
2016) as our real data distribution which covers over 24 behavioral indicators (categories). Table 1 in
Appendix A describes the categories in the radicalization dataset.

Mimic III Dataset MIMIC III medical dataset (Johnson et al., 2016) is a large, freely-available
database of clinical visit records of Intensive Care Unit (ICU) patients between 2001 and 2012. We
only use the SERVICES data table, which describes the services that patients were admitted under.
We extract 500 patient records as MTTPs across 6 different service types (categories). Service types
are described in Table 2 in Appendix A.

Stack Overflow Dataset Stack Overflow is a question answering website, which attains badges to
encourage user engagement and guide behaviors. We use publicly available archived dataset (Internet
Archive, 2020) related to data science. Only 285 records (MTTPs) across 32 badges are extracted
for our evaluations where the dataset is sparse, incomplete, and small. The details of the badges
(categories) are shown in Table 3 (Appendix A).

4 ADVERSARIAL AUTOENCODER (AAE) FOR SPARSE, INCOMPLETE, AND
MULTI-CATEGORY MTPPS

Figure 2 shows the adversarial autoencoder architecture for sparse, incomplete, and multi-category
MTPPs. The actual and generated multi-category MTPPs are depicted in a tree structure where a root
represents an actor of an MTTP. Square nodes stand for marked points, cj denotes the jth category,
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and the value ti on an edge (connects an actor and a marked point) denotes the ith time of occurrence.
The general AAE only includes an autoencoder and a discriminator (Makhzani et al., 2015), but our
proposed architecture consists of an additional feature mapping encoder and a decoder to capture
characteristics of the sparseness and incompleteness of the data. The feature mapping encoder
transforms sparse, incomplete, and multi-category MTPPs (H) to a cumulative distribution-based
representation φ(H), which enables generating incomplete multi-category MTPPs through an AAE.
The feature mapping decoder is able to rearrange the generated multi-category MTPPs φ(H′) to the
actual format of multi-category MTPPs (H′).
The autoencoder forces a compressed knowledge representation of the original input which recon-
structs the same data distribution. Initially, the original data distribution of multi-category MTTPs
pd(H) is fed into the feature mapping encoder which outputs the feature-mapped data distributions
pd(φ(H)). Then, the feature-mapped data is sent to the encoder where it compresses the data to a
latent code vector z. q(z|φ(H)) and p(φ(H)|z) stand for the encoding and decoding distributions
respectively. q(z) represents the aggregated posterior distribution of hidden code which forms through
the encoding function and the feature-mapped data distribution. An aggregated posterior distribution
(q(z)) of the hidden code vector of an autoencoder for sparse, incomplete, and multi-category MTPPs
can be defined as

q(z) =

∫
φ(H)

q(z|φ(H))pd(φ(H))dφ(H). (3)

The operating principle of the AAE is that the autoencoder attempts to minimize the reconstruction
error while the adversarial network tries to minimize the adversarial cost. Two simultaneous phases,
reconstruction phase and regularization phase take place in each mini batch during training. The re-
construction phase relates to the autoencoder of the network, and it minimizes the data reconstruction
error, often referred to as the loss. The regularization phase relates to the adversarial component of the
network, where it minimizes the adversarial cost to fool the discriminator by maximally regularizing
an aggregated posterior distribution q(z) to the prior p(z) distribution.

The simultaneous training process forces the discriminative adversarial network into thinking that
the samples from hidden code q(z) come from the prior distribution p(z) (Makhzani et al., 2015).
In these experiments, a normal distribution is used as the arbitrary prior p(z). After the training
process, the decoder defines a deep generative model that maps the prior distribution p(z) to the
feature-mapped data distribution pd(φ(H)) and generates data samples φ(H′) from the prior and
decoding distribution. The data generation can be interpreted as

pd(φ(H′)) =
∫
z

p(φ(H)|z)p(z)dz, where φ(H′) ≈ φ(H). (4)

The generated feature mapped data (φ(H′)) by the AAE is fed into the feature mapping decoder to
transform the actual format of multi-category MTPPs (H′). Further details of the feature mapping
encoder and the decoder are discussed in Section 5.

5 FEATURE MAPPING

The major challenge of applying the AAE framework to multi-category MTPPs is that the data
representation is structured; that is, each MTPP consists of a set of marked points belonging to
various categories. In addition, each MTPP starts from an initial point (in the radicalization dataset,
the date of birth of an actor) and continues with exposed multi-category marked points at different
times. To implement the AAE framework discussed in the previous section, we propose a feature
mapping which essentially maps the complicated MTPPs into the Euclidean space. This is achieved
by a set of preprocessing steps including a data transformation for each category. The architecture of
our proposed method is shown in Figure 2, and its functionality is summarized in Algorithm 1.

There are two major components: a feature mapping encoder (steps 1-3) and a decoder (steps 5-6)
and the data generation (step 4). In step 1, all the marked point times (ti) are transformed to the
days (ai) based on the initial point of each actor and shifted to a same days range. As a result,
the updated marked points can be denoted as eij = (ashiftedi , cj). For each MTPP, the value 0 is
assigned to those categories that do not occur. As explained earlier, the absence of a certain category
in an MTPP instance may be due to either that category not being associated with the MTPP, or
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Algorithm 1 Feature mapping & MTPP generation pipeline

Input: H (real MTTPs), eij = (ti, cj) ∈ H
Output: H′ (generated MTTPs), e′ij = (t′i, cj) ∈ H′

Step 1 Convert timestamps to days eij = (ashiftedi , cj)
Step 2 Replace with percentiles eij = (Pij , cj)

Step 3 Data approximation technique for incomplete marks
Step 4 Data generation via AAE pd(φ(H))→ pd(φ(H′)) where e′ij = (P ′ij , cj) ∈ H′

Step 5 Replace percentiles with actual values e′ij = (a
′shifted
i , cj)

Step 6 Convert days to timestamps e′ij = (t
′

i, cj)

Figure 3: (Inverse) percentile graphs for categories in radicalization dataset (‘Convert date’, ‘Trauma’,
and ‘Step towards violence’). In this example, Y-axis represents days (ai). Day 0 indicates the
unavailability of marked points (eg: There are 70.37%, 80.74%, and 35.55% of unavailability of
marked points for ‘Convert date’, ‘Trauma’, and ‘Step towards violence’ categories respectively).

limitations of data collection, or its presence not being recorded. The (inverse) percentile graphs for
three categories (Convert date, Trauma, and Step towards violence) in the radicalization dataset are
depicted in Figure 3. To measure the dissimilarity between two marked points in the same category,
the difference of their shifted time is sufficient. However, such time difference varies a lot across
different categories. In step 2, we propose to use the inverse percentiles instead. It helps to overcome
the effect of sparseness and incompleteness of the marked processes to some extent. For instance, the
shifted time of the marked point eij can be transformed using Pij = F−1cj (ashiftedi ), where F−1cj is
the inverse cumulative distribution function of the category cj .

The inverse percentile distributions are shown in Figure 3 depict that there is a significance un-
availability of marked points in categories. Therefore, unavailable marked points obtain higher
percentile values which are sufficient to confuse the MTTP distribution. In step 3, we present a data
approximation technique to further mitigate the effect of the sparseness and the incompleteness of
the data by changing the percentile values only for unavailable marked points (where ashiftedi = 0)
using a uniform distribution. Pcj (0) denotes the percentile value of unavailable marked points in
jth category. The percentile values (Pij) of unavailable marked points are substituted by randomly
generated values (vr where vr ∈ [0, Pcj (0)]) from the uniform distribution . Then, the percentile
values are changed as follows. For a percentile value of jth category at ith time occurrence,

Pij =

{
Pij if ashiftedi 6= 0

vr ∈ [0, Pcj (0)] otherwise
(5)

After applying the data approximation technique, the updated marked points can be indicated as
eij = (Pij , cj). Steps 1-3 describe the sequential steps of pre-processing in the feature mapping
encoder and produces feature mapped multi-category MTPPs φ(H) as the input to the AAE (see
Figure 2). The feature mapped multi-category MTPPs can be denoted as follows. The kth feature
mapped MTPP is φ(Hk) and eij ∈ φ(Hk), then

φ(H) = {eij = (Pij , cj) ∈ φ(Hk); k ∈ [1, N ]} (6)

where φ(H) is N number of feature mapped multi-category MTPPs.

In step 4, feature mapped MTTPs φ(H) are fed to the AAE and data similar to the actual data is
generated. The details of statistical methods that inspect the similarity between the datasets and the
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Figure 4: Conditional probability matrices for actual and generated datasets, and the difference.
(radicalization data)

results are presented in the Section 6. Let M denotes the number of MTTPs φ(H′), that are generated
by the AAE. Then, the generated MTTPs can be denoted as follows.

φ(H′) = {e′ij = (P ′ij , cj) ∈ φ(H′k); k ∈ [1,M ]} (7)

Then, the feature mapping decoder (see Figure 2) is applied to transform generated percentile values
to the actual multi-category MTPP format. In step 5, a generated percentile value of a marked point
of jth category at ith time occurrence P ′ij is converted to its day, based on the inverse percentile
graphs in each category Fcj (Figure 3), and reshifted to the actual days range. Then, a marked point
is redefined as, eij = (a′i, cj). In step 6, pre-defined or any distribution-based on the initial point
can be utilized to convert days to real timestamps (t′i) of the marked points. The advantage is that,
it allows selecting any date range where provides flexibility to generate even future marked points
based upon the requirement of the analysis. After the conversion, a generated marked point (e′ij) of
jth category at the ith occurrence t′i is denoted as e′ij = (t′i, cj). The kth generated MTTP is H′k
and e′ij ∈ H′k, we can define the generated multi-category MTTP (H′) as

H′ = {e′ij = (t′i, cj) ∈ H′k; k ∈ [1,M ]}. (8)

The introduced feature mapping techniques generate multi-category MTPPs similar to the actual
MTPPs. In Section 6, we show the similarity between AAE-based generated and actual MTPPs for
radicalization using different statistical measurements.

6 RESULTS

In our experiment, the AAE is configured for 10K epochs with 32 mini-batch sizes in the training
phase. The MTPP generation runs for 100 times and yields 10K MTPPs in each run. A Keras
Tensorflow codebase1 is used for the AAE implementation. The typical MTTP baselines like
Reinforcement Learning, RNNs, Wasserstein GANs require a significant amount of data to train a
network. Therefore, such techniques are not applicable to our proposed approach. As the baseline, we
compare the proposed data generation technique with a Markov chain approach which was applied
to the same dataset in (Klausen et al., 2018b). To compare with AAE-based generated MTTPs, we
produce datasets using their conditional probability diagrams of the Markov chain by running 100
times and obtain 10K pathways in each run. Conditional probability calculation is performed after
applying the data approximation technique (step 3) described in Section 5. Here, the pre-processed
data φ(H) is used to calculate actual conditional probability which provides further validation on our
proposed feature mapping techniques. In the same way, generated data φ(H′) by AAE (before enter
the feature-mapping decoder) is utilized to calculate generated conditional probabilities.

Figure 4 depicts the conditional probability matrices for actual data (panel (a)), generated data (panel
(b)), and their difference (panel (c)) for the radicalization data using a color map. In each matrix,
a cell (x, y) denotes the conditional probability p(y|x) of category y given category x. Here, the
probability is calculated based on the marked points eij = (ti, cj). The probability difference matrix

1https://github.com/eriklindernoren/Keras-GAN
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highlights the accuracy and the robustness of our proposed generation method by showing that the
real and generated conditional probabilities are almost the same for every pair of categories. The only
noticeable difference arises in Category 24 (max val = 0.35), which is due to the fact that ‘date of
criminal action’ is the last marked point for almost all observations. The marginal distributions for
radicalization and mimic data in Figure 5 further corroborates the similarity of the actual and the
AAE-based generated datasets. The generated marginals are calculated based on over 100 runs.

(a) Radicalization data (b) Mimic data

Figure 5: Marginal distribution for each category: column sum for the conditional probability matrix;
Real (green), Markov generated (orange), and AAE generated (red) data.

(a) Radicalization data (b) Mimic data

Figure 6: Bar plots for the probability of occurrence for each category based on real (green), Markov
(orange), and AAE (red) generated data. Error bars (blue) represent the standard error over 100 runs.

We further calculate the probabilities of occurrence for the categories described in Appendix A.
Figure 6 compares the percentages of categories in actual and generated datasets. The error bar
shows the standard error (s.d./

√
n where n = 100) of each category and proves the robustness of the

proposed multi-category MTPP generation technique. The 3rd (stackoverflow) dataset also performs
the same in all experiments.

7 CONCLUSION & FUTURE WORK

We propose a novel multi-category MTPP generation technique using adversarial autoencoders for
sparse, incomplete, and small datasets, where it is challenging to mimic an actual data distribution
using existing techniques. The performance of our proposed method is demonstrated through real
data examples. A cumulative distribution based preprocessing technique is introduced to capture
the sequence pattern of the categories and reduce the dominance of the unavailable categories. The
statistical similarity between the generated and actual data is demonstrated via diverse descriptive
statistics. Ongoing work includes extending to the data anonymization applications and applying our
proposed multi-category MTPP generation technique to address data privacy concerns.
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A APPENDIX

The multi-category MTPP datasets

1. Radicalization dataset
ID Name ID Name ID Name ID Name

1 Convert Date 7 Rebellion 13 Dawa-Real Life 19 Desire for Action
2 Disillusionment 8 Lifestyle Changes 14 Epiphany 20 Passive Support
3 Trauma 9 Edu./Occ. Disen. 15 Peer-Immersion 21 Joins Foreign Org.
4 Personal Crisis 10 Drop-Out Date 16 Phy./Dom. Training 22 Issues Threats
5 Seeking Information 11 Underemployment 17 Marriage Seeking 23 Steps towards Violence
6 New Authority Figures 12 Dawa-Virtual 18 Societal Disengagement 24 Date of Criminal Action

Table 1: Category IDs and category names in the radicalization dataset

2. Mimic III dataset
ID Name Description

1 CMED Cardiac Medical - for non-surgical cardiac related admissions
2 CSURG Cardiac Surgery - for surgical cardiac admissions
3 MED Medical - general service for internal medicine
4 SURG Surgical - general surgical service not classified elsewhere
5 NSURG Neurologic Surgical - surgical, relating to the brain
6 TRAUM Trauma - injury or damage caused by physical harm from an external source

Table 2: Category IDs and category names in the mimic III dataset

3. Stack Overflow dataset
ID Name ID Name ID Name ID Name

1 Nice Answer 9 Good Question 17 Student 25 Autobiographer
2 Enthusiast 10 Curious 18 Notable Question 26 Tumbleweed
3 Good Answer 11 Critic 19 Editor 27 Explainer
4 Excavator 12 Popular Question 20 Necromancer 28 Commentator
5 Nice Question 13 Yearling 21 Custodian 29 Promoter
6 Revival 14 Constituent 22 Caucus 30 Teacher
7 Quorum 15 Informed 23 Enlightened 31 Organizer
8 Famous Question 16 Scholar 24 Supporter 32 Patrol

Table 3: Category IDs and category names in the stackoverflow dataset
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