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ABSTRACT

Identifying interacting sequences from two sets of potential partners has impor-
tant applications in computational biology. Several methods have been developed
to address this problem, applying different approximate optimization methods to
different scores. We introduce DiffPaSS, a framework for flexible, fast, scalable,
and hyperparameter-free optimization for pairing interacting biological sequences,
which can be applied to a wide variety of scores. DiffPaSS consistently finds
strong score optima, outperforming existing algorithms for optimizing the same
scores.

1 INTRODUCTION

Identifying which polypeptide molecules interact together, using their sequence data alone, is an
important and combinatorially difficult task. Mapping the network of protein-protein interactions,
and predicting the three-dimensional structures of individual protein complexes, often requires de-
termining which sequences are functional interaction partners among the paralogous proteins of two
families. This problem can be formulated as looking for a permutation of the sequences one family
with respect to those of the other. Information-theoretic, coevolution-based, and sequence-based
scores have been proposed to tackle this problem; namely, score-maximising permutations are ex-
pected to encode several correct interactions (Bitbol et al., 2016; Bitbol, 2018; Gandarilla-Perez
et al., 2023). More recently, sophisticated scores coming from language models have also been
proposed, see Chen et al. (2023); Lupo et al. (2023).

We present DiffPaSS (“Differentiable Pairing using Soft Scores”), a family of flexible, fast, scal-
able, and hyperparameter-free algorithms for pairing interacting sequences by optimizing smooth
extensions of these scores to “soft” permutations of the input sequences, using gradient methods.
Strong optima are reached thanks to a novel bootstrap technique, motivated by heuristic insights
into this smooth optimization process. When using inter-chain mutual information between two
multiple sequence alignments (MSAs) as the score to be maximised, DiffPaSS outperforms existing
coevolution- and phylogeny-based pairing methods on difficult benchmarks extracted from ubiqui-
tous interacting prokaryotic systems. Thanks to its scalability, DiffPaSS can easily produce paired
alignments that can be used by AlphaFold-Multimer (AFM, (Evans et al., 2021)) to predict the
three-dimensional structure of protein complexes. We show promising results in this direction, on a
selection of eukaryotic complexes. Finally, we show that DiffPaSS can also be used when reliable
MSAs are not available. Namely, using data for T-cell receptor (TCR) CDR3α and CDR3β loops,
we use DiffPaSS to perform graph alignment based on pairwise Levenshtein distances, outperform-
ing existing simulated annealing techniques. A PyTorch implementation and installable Python
package are available at https://github.com/Bitbol-Lab/DiffPaSS.
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2 METHODS

2.1 PRELIMINARIES

LetMA andMB be ordered collections of amino-acid sequences that are partitioned into K groups,
each of size Nk where k = 1, . . . ,K. In the important special case where MA and MB are
collections of proteins from two interacting protein families, the “groups” will be species, with
species k assumed to contain Nk paralogous proteins in both families.

Let S be a score function of the two ordered collections. We would like to find a permutation π
of the entries inMA which maximises S (π(MA),MB), under the constraint that π does not send
sequences from any one group into a different group. A priori, there are

∏K
k=1 Nk! permutations

satisfying this constraint. Note that we can equivalently describe this as the problem of finding S -
maximising one-to-one matchings between the sequences inMA and those inMB. SinceMA and
MB will remain fixed, by abusing notation we denote S (π(MA),MB) simply by S (π).

Let N > 0, and denote the set of permutation matrices of N elements by PN . For any integer ℓ > 0
and arbitrary N ×N square matrix X , define the ℓ-truncated Sinkhorn operator

Sℓ(X) = (C ◦ R)ℓ(exp(X)) (1)

consisting of first applying the componentwise exponential function exp to X , and then iteratively
normalizing rows (R) and columns (C) ℓ times. It can be shown (Mena et al., 2018) that S(X) :=
lim
ℓ→∞

Sℓ(X) defines a smooth operator mapping to bistochastic matrices1 and that, for almost all X ,

lim
τ→0+

S(X/τ) = M(X) := argmax
P∈PN

[trace(PTX)]. (2)

The operator M defined in Eq. (2), which maps onto permutation matrices, can be computed us-
ing standard discrete algorithms for linear assignment problems (Kuhn, 1955). Eq. (2) implies that,
using the “parameterization matrices” X , one can smoothly navigate the space BN of all N × N
bistochastic (resp. near-bistochastic) matrices using S (resp. Sℓ), while keeping track of the “near-
est” permutation matrices using M . In what follows, we will refer to (near-)bistochastic matrices as
“soft permutations” and to true permutations as “hard permutations”.

We may therefore hope to find optimal hard permutations for the original score S by optimizing
a suitable smooth extension Ŝ of S to soft permutations, since this can be done efficiently using
gradient methods. In practice, there are typically infinitely many choices for such an extension,
and whether this strategy can work with e.g. a few steps of gradient descent starting from a typical
random initialization (e.g. Gaussian i.i.d. entries for X) depends strongly on these choices. For
some choices of Ŝ , the optimal soft permutations may be too distant from hard permutations to
approximate good solutions of the original problem. For other choices, every hard permutation may
be a local minimum. In general, optimization of Ŝ can be very sensitive to hyperparameters such
as the “temperature” τ > 0 in Eq. (2), the standard deviation of the entries of X at initialization, the
optimizer learning rate, and the strength of regularization.

2.2 PAIRED MULTIPLE SEQUENCE ALIGNMENTS, MUTUAL-INFORMATION–BASED SCORES

In several applications, the ordered collections MA and MB in Section 2.1 consist of full-length
protein sequences or of protein domains, and are given in the form of MSAs, assumed here to have
the same depth. Denoting the i-th column ofMA,i (and analogously forMB), we define the total
inter-chain mutual information score SMI(MA,MB) as

SMI(MA,MB) :=
∑
i,j

I(MA,i;MB,j) =
∑
i,j

[H(MA,i) + H(MB,j)−H(MA,i,MB,j)], (3)

where I(·; ·) denotes the mutual information between two random variables, and H denotes Shannon
entropy. Note that, in Eq. (3), these information quantities are in fact replaced by their plug-in
estimates. For a random variable Z, this means using H(Z) = −

∑
z fz log2 fz , with fz being the

observed frequency of state z, which converges to its probability in the limit of infinite sample size.
1A bistochastic matrix is a matrix with non-negative entries whose all rows and columns sum to 1.
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Since, for any i and permutation π, H(MA,i) = H(π(MA)i) (and similarly for MB and any j),
maximising SMI(π) is equivalent to minimizing the total inter-chain two-body entropy loss

L2BE(π) :=
∑
i,j

H(π(MA)i,MB,j). (4)

A simple smooth extension L̂2BE of L2BE to soft permutations can be defined as follows. First,
we represent the amino acids/gap symbols in the MSAs as one-hot vectors. Namely, let mA,i,n

denote the one-hot vector corresponding to row (i.e. sequence) n and column (i.e. site) i inMA –
and similarly forMB. The matrix of observed counts of all joint amino-acid states at the column
pair (i, j) can then be computed as

∑
n mA,i,n ⊗mB,j,n, where ⊗ denotes vector outer product.

This expression is actually well-defined and smooth for pairs of arbitrary vectors. Provided these
vectors have non-negative entries, we can thus define a smooth extension Ĥ(·, ·) of the two-body
entropy H(·, ·). For a soft permutation π̂ represented as a matrix P̂ , we can compute a “soft MSA”
by matrix multiplication as π̂(MA) = P̂MA, where MA is the representation ofMA as a tensor
with an additional “one-hot” dimension. Finally, we can extend L2BE as

L̂2BE(π̂) :=
∑
i,j

Ĥ((P̂MA)i,MB,j). (5)

2.3 INITIALIZATION AND BOOTSTRAPPED OPTIMIZATION

We experimentally found that solving X∗ = argminX L̂2BE(S
ℓ(X/τ)), for some choice of ℓ and

τ , using several steps of gradient descent, generally yields sub-optimal hard permutations M(X∗)
for the original loss L2BE, see Eq. (2). Informally, this is because hard permutations are local
minima for L̂ , a situation reminiscent of how the entropy of a single Bernoulli random variable
with parameter p has minima at the “sharp” cases p = 0 and p = 1. Nevertheless, we found
that outcomes improved when entries of X are initialized with zero standard deviation. Indeed, as
shown in Figs. A1 and A2 for the benchmark HK-RR prokaryotic dataset described in Appendix A2,
the first gradient step alone, when X ≡ 0 at initialization, is often competitive with a full-blown
discrete algorithm for approximate maximization of SMI, called MI-IPA (Bitbol, 2018). Finally, as
previously observed using several methods (Bitbol et al., 2016; Bitbol, 2018; Gandarilla-Perez et al.,
2023; Lupo et al., 2023), pairing performance can be expected to increase if correct pairings are used
as fixed context, biasing the computation of the two-body entropies. Together, these considerations
led us to DiffPaSS, our proposed bootstrapped approach to differentiable pairing. Given a loss L
and its smooth extension L̂ , two ordered collections MA and MB containing D sequences, and
(optionally) a pre-existing set FAB = {(ai, bi)}Dfix

i=1 containing Dfix matched pairs of sequences, we
proceed as follows.2 Initialize F ′ = FAB; then, for every n = 1, . . . , D −Dfix:

1. define P ′ as the (Dfix + n− 1)× (Dfix + n− 1) permutation matrix corresponding to the
matchings in F ′;

2. initialize two zero D × D matrices P and P̂ , and copy P ′ into the row-column pairs
belonging to F ′ in both cases;

3. initialize a (D −Dfix − n+ 1)× (D −Dfix − n+ 1) parameterization matrix X ≡ 0, to
be used for sequences not involved in pairs in F ′;

4. update X ← −∇(L̂ ◦ S̃ℓ)(X = 0), where S̃ℓ(X) denotes copying Sℓ(X) into the sub-
matrix of P̂ obtained by removing rows and columns involved in pairs in F ′;

5. compute the hard permutation π = M̃(X), where M̃(X) denotes copying M(X) into the
submatrix of P obtained by removing rows and columns involved in pairs in F ′;

6. pick n pairs of sequences matched by π, but not in FAB, uniformly at random;

7. update F ′ ← FAB ∪ {pairs selected in step 6}.

2An animation illustrating this algorithm in the special case Dfix = 0 is available at the following URL:
https://www.youtube.com/watch?v=G2rV4ldgTIY.
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For every n = 1, . . . , D−Dfix, we record the loss L (π) at step 5, and the final output of DiffPaSS
is the hard permutation π∗ corresponding to the lowest recorded loss.

Note that the gradient of Sℓ(X/τ), evaluated at X = 0, only changes by a global scale factor if τ is
changed, and the matching operator M is scale-invariant. Hence, we can set τ = 1 as the obtained
hard permutations are independent of it. Similarly, all hard permutations obtained are independent
of the choice of learning rate and regularization strength. Perhaps more surprisingly, for any ℓ > 1,
the gradient of Sℓ evaluated at X = 0 is equal to corresponding gradient of Sℓ=1. We prove this in
Appendix A1. Hence, we can set ℓ = 1 throughout, leading to significant runtime gains.

Robust pairs and DiffPaSS-IPA. We noticed that, even when the starting set FAB of fixed pairs
is empty, some pairs are matched by all the D−Dfix hard permutations π explored by DiffPaSS (see
step 5 in Section 2.3). We call these robust pairs, and notice experimentally that they tend to have
high precision, see Fig. A4. This suggests that they can be used as the starting set FAB of fixed pairs
in a further run of DiffPaSS. We call this procedure DiffPaSS-IPA (“Iterative Pairing Algorithm”,
following Bitbol et al. (2016); Bitbol (2018)). It can be iterated an arbitrary number NIPA of times,
enlarging the set of robust pairs after each iteration and stopping if no further robust pairs are found.
The final output of DiffPaSS-IPA is the hard permutation with lowest observed loss across all IPA
runs. We use NIPA = 3 throughout.

2.4 OTHER SCORES

We have motivated the DiffPaSS bootstrap framework using the data structure of MSAs and the
mutual information between MSA columns. However, DiffPaSS can in principle be applied to
a variety of other scores, including scores based on sequence similarities, orthology, and phy-
logeny Izarzugaza et al. (2008); Bradde et al. (2010). In the case of coevolving families of interacting
proteins for which alignments of good quality are available, we could not match the performance
obtained using mutual information using these alternative scores alone. This is in agreement with
previous findings (Gandarilla-Perez et al., 2023).

However, for some polypeptide sequences of interest, alignments are not always easy to construct or
even meaningful. This is arguably the case for collections of sequence from hypervariable CDR3α
and CDR3β loops in TCRs binding to a fixed epitope.3 In these cases, one may instead opt for
computing matrices of pairwise scores between unaligned sequences, and performing a graph align-
ment between the two collections of interestMA andMB, using these matrices as edge weights.
We propose a simple variant of DiffPaSS for performing hyperparameter-free graph alignment (GA)
starting from two weighted adjacency matrices WA and WB computed from MA and MB (Pet-
ric Maretic et al., 2019; Maretic et al., 2022b;a; Gandarilla-Perez et al., 2023). We assume that
the score S has the form S (MA,MB) = µ(WA,WB) for a differentiable function µ, so that
S (π) = µ(PWAP

T,WB). Then, we simply perform a DiffPaSS bootstrap procedure as in Sec-
tion 2.3, using −µ(P̂WAP̂

T,WB), for soft permutations P̂ , as the loss.

3 RESULTS AND DISCUSSION

DiffPaSS significantly outperforms other coevolution or phylogeny methods based on simple
MSA scores. We test DiffPaSS and DiffPaSS-IPA, using the total inter-chain mutual information
as a score (see Section 2.2), on a dataset of cognate pairs of histidine kinases (HK) and response
regulators (RR), paired using genome proximity and described in Appendix A2. Fig. 1 shows that
they significantly outperform existing methods based on simple MSA scores, particularly the MI-
IPA algorithm in Bitbol (2018) – which performs an approximate maximization of the same MI
score – and the current in-class state of the art GA–MI-IPA (Gandarilla-Perez et al., 2023) – which
improves on MI-IPA by combining it with a computationally costly simulated annealing GA al-
gorithm, based on sequence similarity and used to produce “phylogenetically-robust pairs”. With
all methods, a full one-to-one within-species pairing is produced, and performance is measured as
“precision-100”, which is the fraction of correct pairs among all predicted pairs. Importantly, these
results are obtained in all cases without giving any paired sequences (other than the self-identified
robust pairs in the case of GA–MI-IPA and DiffPaSS-IPA) as inputs.

3Here, the “groups” are not species but individuals, e.g. human patients.
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Figure 1: Performance of pairing on the HK-RR dataset described in Appendix A2. For GA–MI-
IPA, we used the same settings as Gandarilla-Perez et al. (2023). Results for DiffPALM are taken
from Lupo et al. (2023).

While DiffPaSS does not outperform the MSA-Transformer–based model DiffPALM (Rao et al.,
2021; Lupo et al., 2023) on this dataset, it is several orders of magnitude faster (see below), and
easily scales to much deeper MSA depths for which DiffPALM cannot be run due to memory limi-
tations. Fig. A3 shows that, on average, DiffPaSS(-IPA) final pairings have almost indistinguishable
scores from the ground truth pairings. Hence, motivated by the question of whether additional sig-
nal can be extracted from simple phylogeny measures, we test a variant, called GA-DiffPaSS, in
which the same robust pairs obtained by the GA step in the GA–MI-IPA algorithm are used as fixed
context pairs for a run of DiffPaSS. While we obtain some improvements for deeper MSAs, relative
to a single DiffPaSS run, these can be matched or surpassed by DiffPaSS-IPA, which has no direct
access to phylogenetic signal. Fig. A7 shows that DiffPaSS-IPA typically identifies fewer correct
pairs as robust than GA–MI-IPA, but its robust pairs are correct more often.
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Figure 2: Runtime comparison between DiffPaSS and GA–MI-IPA (Gandarilla-Perez et al., 2023),
on the HK-RR dataset described in Appendix A2. DiffPaSS was implemented in PyTorch v2.2.1,
and run on an NVIDIA® GeForce RTXTM 3090 GPU with 24 GB memory. We used the original
implementation of GA–MI-IPA in the Julia programming language (Julia v1.10.0). All 20 GA
replicates were run in parallel on separate Intel® Xeon® Platinum 8360Y CPUs running at 2.4 GHz.
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DiffPaSS can easily be run on a modern GPU, while GA–MI-IPA is a CPU-only algorithm. Fig. 2
demonstrates that DiffPaSS is considerably faster than GA–MI-IPA across all the MSA depths we
analyzed. DiffPALM (Lupo et al., 2023) – not shown in Fig. 2 – has much longer runtimes than both
methods, taking e.g. over three orders of magnitudes longer than DiffPaSS to pair HK-RR MSAs of
depth ∼ 50.

Using DiffPaSS for eukaryotic complex structure prediction by AFM. We ask the question
whether DiffPaSS can improve complex structure prediction by AFM (Evans et al., 2021) in eukary-
otic complexes, for which pairing correct interaction partners is notoriously difficult. To this end, we
consider the same 15 eukaryotic structures as in Lupo et al. (2023), where improvements over the
default AFM pairing methods were reported by pairing using the MSA-Transformer–based method
DiffPALM (Rao et al., 2021). More information on these structures and on the AFM setup can be
found in Appendices A2 and A3. Fig. 3 compares the performance of AFM on these complexes,
using three different pairing methods (default AFM, DiffPALM, and DiffPaSS based on mutual in-
formation) on the same initial unpaired MSAs. We use the DockQ score – a widely used measure of
quality for protein-protein docking (Basu & Wallner, 2016) – as a performance metric for this task.
Multimer confidence scores for these predictions are shown in Fig. A5. These preliminary results
show that DiffPaSS can improve complex structure prediction in some cases. We leave a larger-scale
exploration on more eukaryotic complexes – made possible by the scalability of our method – to a
future version of this work.
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Figure 3: Performance of structure prediction by AFM using different MSA pairing methods.
“Trajectory visualizations” and results for Default AFM and DiffPALM-based pairing are as in Lupo
et al. (2023, Fig. S5).

Graph alignment for TCR data using DiffPaSS. Our dataset of paired CDR3α-CDR3β loop
sequences from TCRs is described in Appendix A2. Using DiffPaSS as described in Section 2.4, we
maximise the same graph alignment score as the stochastic algorithm based on simulated annealing
in Gandarilla-Perez et al. (2023), using (exponentially weighted) Levenshtein distances between
pairs of CDR3 sequences to define edge weights. Fig. A6 shows that, on average, DiffPaSS obtains
better scores than simulated annealing. Fig. A7 shows that the fraction of pairs correctly predicted
by DiffPaSS is higher than the chance expectation in most cases. These results show promise for the
use of DiffPaSS to optimize scores that cannot be constructed from MSAs.
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A1 INDEPENDENCE OF NUMBER OF SINKHORN NORMALIZATIONS

Let Sℓ (for an integer ℓ > 0) be the ℓ-truncated Sinkhorn operator defined in Eq. (1). In this section
we prove that, for any ℓ > 1, all first-order derivatives of Sℓ, when evaluated at the zero matrix, are
equal to the corresponding derivatives of Sℓ=1.

Let R (resp. C) be the row-wise (resp. column-wise) matrix normalization operator on D × D
matrices. Denote the partial derivative operator with respect to the (i, j)-th matrix entry by ∂ij , and
the (k, l)-th matrix component of a matrix-valued operatorO byOkl. Furthermore, let T ∗ = C ◦R.
Let 1mat denote the D × D matrix whose entries are all equal to 1. Given the definition of the
Sinkhorn operator in Eq. (1), and since the componentwise exponential of the zero matrix is a matrix
of ones, it suffices, for our purposes, to show that

[∂ij(T ∗ ◦ T ∗)kl](1mat) = [∂ijT ∗
kl](1mat) (6)

for all i, j, k, l = 1, . . . , D. Indeed, we will prove that this actually holds when both sides of Eq. (6)
are evaluated at µ1mat, for any real number µ > 0.

Proof of Eq. (6). Let X denote a D ×D matrix with positive entries. We begin by noting that

[∂ijRkl](X) = δik [∂jTl](Xi·) and [∂ijCkl](X) = δjl [∂iTk](X·j) , (7)

where δ denotes the Kronecker delta, T the normalization operator for D-dimensional vectors, and
Xi· (resp. X·j) the i-th row (resp. j-th column) of X .

Let x denote a D-dimensional vector. The partial derivatives of the components of T , evaluated at
x, are given by

∂αTβ(x) =
∂

∂α

xβ∑
γ xγ

=
δαβ∑
γ xγ

− xβ

(
∑

γ xγ)2
. (8)

Let 1 denote the D-dimensional vector whose entries are all equal to 1. Applying Eq. (8) to x = µ1
yields, for any real number µ > 0,

∂αTβ(µ1) =
1

Dµ
(δαβ − 1/D) =

1

Dµ
∆αβ , (9)

where we have defined the square matrix ∆ = Id− 1mat/D, with Id denoting the D ×D identity
matrix. We remark for later that 1mat/D is idempotent (i.e., its matrix square is itself), and that
therefore so is ∆.

Using the chain rule and the fact thatR(µ1mat) = 1mat/D for any µ > 0, we can write

[∂ijT ∗
kl](µ1mat) =

∑
m,n

[∂mnCkl](1mat/D) [∂ijRmn](µ1mat)

=
∑
m,n

δnl∆mk
δim
Dµ

∆jn

=
1

Dµ
∆ik∆jl , (10)

where we used Eq. (7) and Eq. (9) to obtain the second line.

We now compute

[∂ij(T ∗ ◦ T ∗)kl](µ1mat) =
∑
mn

[∂mnT ∗
kl](1mat/D) [∂ijT ∗

mn](µ1mat)

=
1

Dµ

∑
mn

∆mk∆nl∆im∆jn

=
1

Dµ
(∆2)ik(∆

2)jl

= [∂ijT ∗
kl](µ1mat),

where the last equality follows from the idempotency of ∆ and from Eq. (10). When µ = 1, this
proves Eq. (6).
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A2 DATASETS

Benchmark prokaryotic datasets. We developed and tested DiffPaSS using joint MSAs extracted
from a dataset composed of 23,632 cognate pairs of histidine kinases (HK) and response regulators
(RR) from the P2CS database (Barakat et al., 2009; 2011), paired using genome proximity, and pre-
viously described in Bitbol et al. (2016); Bitbol (2018). Our focus is on pairing interaction partners
among paralogs within each species. Pairing is trivial for a small number of species comprising only
one pair of sequences. Hence, these species were discarded from the dataset. The average number
of pairs per species in the resulting dataset is 11.0.

From this benchmark dataset of known interacting pairs, we extract paired MSAs of average depth
50, 100, 200, 300, 400, 500, 750 or 1000, constructed by selecting all the sequences of randomly
sampled species from the full dataset. Each depth bin contains at least 200 MSAs. More precisely,
for a target MSA depth D = 50, 100, 200, 300, 400, 500, 750 or 1000, we add randomly sampled
complete species one by one; if the first m species (but no fewer) give an MSA depth D ≥ 0.9D,
and the first n ≥ m species (but no more) give D ≤ 1.1D, then we select the first k species in our
final MSA, with k picked uniformly at random between m and n.

Eukaryotic complexes. We consider 15 heteromeric eukaryotic targets whose structures are not
in the training set of AFM with v2 weights, already considered in Lupo et al. (2023).

T-cell receptor paired CDR3α-CDR3β data. We downloaded the full VDJDb database (Gon-
charov et al., 2022) and removed all entries where only a single TCR chain is available. For each
epitope, we removed duplicate TCRs (defined at the level of α/β) and retained only epitopes for
which at least 100 and no more than 10,000 sequences were available. Patient metadata from the
database is used to define groups that permutations are to be restricted to. Our final dataset contains
19 pairs of CDR3α-CDR3β sequence collections of highly variable total size (ranging from 103
to 704 sequence pairs) and mean group size (see Fig. A7 for the expected fraction of correct pairs
under random pairing), for which the ground truth matchings are known.

A3 GENERAL POINTS ON AFM

For all structure prediction tasks, we use the five pre-trained AFM models with v2 weights (Evans
et al., 2021). We use full genomic databases and code from release v2.3.1 of the official implementa-
tion in https://github.com/deepmind/alphafold. We use no structural templates, and
perform 3 recycles for each structure, without early stopping. We relax all models using AMBER.

We pair the same subset of pairable sequence retrieved by AFM as Lupo et al. (2023), and refer to
Lupo et al. (2023, Table S1) for details on the pairable MSAs. For all structures, we use the query
protein pair as fixed context for DiffPaSS.

The AFM confidence score is defined as 0.8 · iptm+0.2 ·ptm, where iptm is the predicted TM-score
in the interface, and ptm the predicted TM-score of the entire complex (Evans et al., 2021).
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A4 DIFFPASS PAIRING QUALITY AFTER THE FIRST GRADIENT STEP
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Figure A1: Comparing the distributions of inter-chain two-body entropy losses between MI-IPA and
DiffPaSS after the first gradient step.
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Figure A2: Pairing performance by DiffPaSS after the first gradient step.
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A5 QUALITY OF SIGNAL EXTRACTION BY DIFFPASS
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Figure A3: Distributions of the inter-chain two-body entropy losses for several methods, on the HK-
RR dataset.

A6 ROBUST PAIRS
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Figure A4: Precision and recall for the robust pairs found by GA–MI-IPA, DiffPaSS, and DiffPaSS-
IPA.
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A7 ALPHAFOLD-MULTIMER CONFIDENCE SCORES ON OUR EUKARYOTIC
TARGETS
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Figure A5: Multimer model confidence for structure prediction by AFM using different MSA pair-
ing methods. See Appendix A3 for a definition of this score. “Trajectory visualizations” and results
for Default AFM and DiffPALM-based pairing are as in Lupo et al. (2023, Fig. S5).

A8 DIFFPASS OPTIMIZATION AND PAIRING QUALITY ON THE
CDR3α-CDR3β DATASET
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Figure A6: Mean normalized graph alignment scores per epitope in the paired CDR3α-CDR3β
dataset, across 100 runs of both DiffPaSS and the simulated annealing graph alignment algorithm in
Gandarilla-Perez et al. (2023). Each point represents one of the epitopes in the dataset, and higher
scores indicate more successful optimization. GA scores are as defined in (Gandarilla-Perez et al.,
2023), but normalized by the number of sequences to pair in each case.
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Figure A7: Mean pairing performance per epitope in the paired CDR3α-CDR3β dataset, across 100
runs of DiffPaSS. Each point represents one of the epitopes in the dataset.
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