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ABSTRACT

Applying large language models (LLMs) to assist in psycho-counseling is an emerg-
ing and meaningful approach, driven by the significant gap between patient needs
and the availability of mental health support. However, current LLMs struggle
to consistently provide effective responses to client speeches, largely due to the
lack of supervision from high-quality real psycho-counseling data, whose content
is typically inaccessible due to client privacy concerns. Furthermore, the quality
of therapists’ responses in available sessions can vary significantly based on their
professional training and experience. Assessing the quality of therapists’ responses
remains an open challenge. In this work, we address these challenges by first
proposing a set of professional and comprehensive principles to evaluate thera-
pists’ responses to client speeches. Using these principles, we create a preference
dataset, PsychoCounsel-Preference, which contains 36k high-quality preference
comparison pairs. This dataset aligns with the preferences of professional psy-
chotherapists, providing a robust foundation for evaluating and improving LLMs
in psycho-counseling. Experiments on reward modeling and preference learning
demonstrate that PsychoCounsel-Preference is an excellent resource for LLMs
to acquire essential skills for responding to clients in a counseling session. Our
best-aligned model, PsychoCounsel-Llama3-8B, achieves an impressive win rate of
87% against GPT-4o. We will release PsychoCounsel-Preference, PsychoCounsel-
Llama3-8B and the reward model PsychoCounsel-Llama3-8B-Reward to facilitate
the research of psycho-counseling with LLMs.

1 INTRODUCTION

According to the World Mental Health Report1, the global demand for mental health support far
exceeds the availability of accessible, affordable, and timely care. Millions of individuals struggle with
mental health challenges, yet many face a severe shortage of trained professionals, particularly in low-
and middle-income countries. The emergence of Large Language Models (LLMs) has accelerated
the integration of AI into psycho-counseling, thanks to their remarkable ability to comprehend
human intent and provide effective responses (Ouyang et al., 2022). However, due to the complexity
of clients’ situations and the professional skills required, current LLMs still face challenges in
consistently providing effective responses to client speeches during counseling sessions (Na et al.,
2025; Zhang et al., 2024; Chung et al., 2023).

The sensitive and private nature of counseling sessions poses significant challenges for obtaining
publicly available datasets that accurately reflect real-world interactions (Stade et al., 2024). This
scarcity of resources hinders efforts to train LLMs in effectively understanding and responding to
client speech within counseling contexts. Moreover, the quality of responses provided by therapists
can vary widely, influenced by their level of professional training and experience (Rocco et al., 2019).
This variability impacts the consistency of counseling effects and underscores the importance of
standardizing and assessing therapist responses.

To address these gaps, we collaborated with professors in social work and psychiatry to develop a set
of professional and comprehensive principles for evaluating therapists’ responses to client speeches.
These principles assess not only the fundamental aspects of a response in a counseling session, such

1https://www.who.int/teams/mental-health-and-substance-use/world-mental-health-report
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as empathy, relevance, conciseness, and safety, but also extend the effectiveness of a response based
on professional psycho-counseling theory. This includes evaluating whether the response promotes
clients’ self-exploration, enhances their autonomy, and effectively identifies the client’s stage of
change.

Using these principles, we extract high-quality responses from the generations of a pool of popular
LLMs and construct a large psycho-counseling preference dataset, PsychoCounsel-Preference. The
dataset comprises 26,483 unique client speeches spanning 8 coarse-grained and 42 fine-grained topics.
To the best of our knowledge, PsychoCounsel-Preference is the first large-scale and comprehensive
psycho-counseling preference dataset. We hired professional psychotherapists for verification, and
their annotations exhibit strong agreement within PsychoCounsel-Preference, ensuring the dataset’s
reliability and consistency.

Experiments show that our reward models trained with PsychoCounsel-Preference show an excellent
ability of evaluating responses to clients while previous start-of-the-art reward models lag behind.
Moreover, we apply both online and offline preference learning on PsychoCounsel-Preference or
the trained reward models. Our best resulting model, PsychoCounsel-Llama3-8B, achieves the
state-of-the-art performance on the testing set of PsychoCounsel-Preference, with an impressive win
rate of 87% against GPT-4o. Feedback from professional psychologists shows that PsychoCounsel-
Llama3-8B could give more balanced and desirable responses under length constraint during the
inference stage. Through further analysis and case study, we demonstrate the advantage of training
online over offline and provide insights into how to improve the model performance in the future.

2 RELATED WORK

2.1 LLMS ASSISTING PSYCHOTHERAPY

Integrating LLMs into Psychotherapy is not a trivial process which could articulated as a continuum
of stages of assistive AI, collaborated AI, and fully autonomous AI (Stade et al., 2024). Currently,
we are still in the first two stages where models operating tasks need human supervision. Related
tasks include cognitive disorder detection (Shreevastava & Foltz, 2021; Chen et al., 2023b), negative
thoughts recognition and reframing (Maddela et al., 2023; Sharma et al., 2024), and patient simula-
tion (Chen et al., 2023a) or therapist simulation Liu et al. (2023), among which therapist simulation is
the primary goal across the stages. However, Zhang et al. (2024) found that due to the lack of public
high-quality data in psychotherapy and the complexity of clients’ situation, LLMs still are not able
to give effective responses to a client’s speech consistently in a therapy session. Our work focuses
on psycho-counseling, which is a short-term, supportive process for helping individuals cope with
life challenges and emotional distress, and constructs a high-quality preference dataset that aligns
with the preference of professional psychotherapists and uses preference learning to train helpful and
reliable assistants for psycho-counseling.

2.2 HUMAN PREFERENCE ALIGNMENT

Human preference alignment has been shown to be a critical step in making LLMs helpful, harmless,
and honest (Ouyang et al., 2022; Bai et al., 2022a). Current methods can be broadly categorized
into offline and online approaches. Offline methods optimize the model using a pre-annotated set of
preference data with objectives such as DPO (Rafailov et al., 2023). Online methods, on the other
hand, generate outputs during training and utilize a reward function to score them. High-scoring
generations are encouraged, while low-scoring ones are discouraged through policy gradient methods
such as PPO (Schulman et al., 2017).

Compared to offline alignment, online methods are more computationally expensive and require
careful hyperparameter tuning to ensure stable training (Xu et al., 2024). Offline methods, which
frame alignment as optimizing a classification loss, eliminate the need for a reward model, making
them more stable and efficient. However, they are susceptible to distribution shifts (Marks et al.,
2023). Furthermore, Tang et al. (2024) found that optimizing with online preferences instead of
offline data can lead to better model performance. Iterative direct preference learning combines the
strengths of both offline and online methods. In this approach, preference data is generated online
and used to optimize an offline learning objective (Pang et al., 2024), which has been demonstrated
as a strong baseline in both academia (Xu et al., 2024) and industry (Yang et al., 2024).
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3 PSYCHOCOUNSEL-PREFERENCE

PsychoCounsel Principles

I have been experiencing a loss 
of energy lately…

26k Client Speeches

Empathy      -> [1, 2, 3, 4, 5]
Relevance   -> [1, 2, 3, 4, 5]
Clarity          -> [1, 2, 3, 4, 5]
Safety          -> [1, 2, 3, 4, 5]
Exploration -> [1, 2, 3, 4, 5]
Autonomy   -> [1, 2, 3, 4, 5]
Staging        -> [1, 2, 3, 4, 5]

PsychoCounsel
-Preference

I just got married but i hate my 
husbands daughter…

I grew up with a feeling that my 
mother wasn't as happy as she 
could be…

There's this constant nagging 
feeling of worry and fear that 
has taken over my life…

I've been feeling overwhelmed 
by all the tasks I need to 
complete…

Get 
Response

Score 
& Pair20 Popular LLMs

(High, Low) 
Score Pairs

Sample & Verify
by Experts

36k Pairs

Figure 1: PsychoCounsel-Preference Construction Pipeline. 1) We first collect over 26k client
speeches covering a wide range of topics from various sources, applying necessary data cleaning.
2) 20 popular LLMs are sampled and prompted to roleplay as psychotherapists and give responses
to these client speeches. 3) GPT-4o is instructed to evaluate the responses based on our proposed
PsychoCounsel Principles, and preference pairs with substantial score gaps are incorporated into
PsychoCounsel-Preference.

3.1 CLIENT SPEECH COLLECTION

We collect client speeches from various data sources: counsel-chat2, MentalAgora (Lee et al., 2024),
TherapistQA (Shreevastava & Foltz, 2021), Psycho8k (Liu et al., 2023), and several huggingface
datasets (amod-counsel3, MentalChat16K4, and phi2Mental5). Client speeches with number of
characters more than 1,000 and less than 100 are discarded to ensure a proper length of context.
After an additional step of de-duplication, the resulting data contains 26,483 client speeches with
average length of 366 characters covering a wide range of topics including 8 coarse topics: Core
Mental Health Issues (9,054), Emotional Well-being and Coping Strategies (5,717), Relationships and
Interpersonal Dynamics (6,483), Life Transitions and Challenges (934), Social Issues (667), Youth
and Development (1,175), Crisis and Safety Concerns (529) and Special Topics (1,924). Under these
8 topics are 42 fine-grained topics (see Table 5 in the appendix for the detailed topic distribution).

3.2 PSYCHOCOUNSEL PRINCIPLES

To answer the question what is a good response to a client speech in psycho-counseling, we collaborate
with experts in social work and psychiatry (our co-authors) and propose a set of professional principles
to measure the response to a client speech from seven different dimensions:

2https://github.com/nbertagnolli/counsel-chat
3https://huggingface.co/datasets/Amod/mental health counseling conversations
4https://huggingface.co/datasets/ShenLab/MentalChat16K
5https://huggingface.co/datasets/saxenaindresh681/microsoft-phi2-mental-health
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PsychoCounsel Principles

Empathy and Emotional Understanding: The response should convey genuine empathy,
acknowledging and validating the client’s feelings and experiences.
Personalization and Relevance: The response should be tailored to the client’s unique situation,
ensuring that the content is directly relevant to their concerns.
Clarity and Conciseness: The response should be clear, well-organized, and free of unnecessary
jargon, making it easy for the client to understand and engage with.
Avoidance of Harmful Language or Content: The response should avoid any language or
content that could potentially harm, distress, or trigger the client, ensuring the interaction is safe
and supportive.
Facilitation of Self-Exploration: The response should encourage the client to reflect on their
thoughts and feelings, promoting self-awareness and insight.
Promotion of Autonomy and Confidence: The response should support the client’s sense of
control over their decisions and encourage confidence in their ability to make positive changes.
Sensitivity to the Stage of Change: The response should recognize the client’s current stage
in the process of change and address their needs accordingly. If the client is in an early
stage—uncertain or ambivalent about making a change—the response should help them explore
their thoughts and motivations. If the client is in a later stage and has already made changes,
the response should focus on reinforcing progress, preventing setbacks, and sustaining positive
outcomes.

Please refer to Box 8 for the complete definition of the principles. Among these seven principles,
Facilitation of Self-Exploration, Promotion of Autonomy and Confidence, and Identifying Stages
and Reasons for Change emphasize a client-centered approach, which is recognized as a hallmark
of effective psycho-counseling (Miller & Stephen Rollnick; Rooney et al., 2017; Hogarty, 2002;
Tower, 1994). We use these three principles to measure the effectiveness of a response to a client
speech, complementary to the other four principles, which are more basic requirements for an AI,
requiring the response to be empathy, relevant, concise, and safe (Bai et al., 2022b; Ouyang et al.,
2022). Evaluating therapist responses using these fine-grained principles provides a more structured
and nuanced assessment of their effectiveness. Unlike general evaluations that focus solely on overall
quality, this detailed approach allows for a deeper understanding of how well a response supports the
client’s emotional and psychological needs.

3.3 PREFERENCE GENERATION

We apply the generate-score-pair pipeline as Cui et al. (2023) to construct the PsychoCounsel-
Preference dataset. For each client speech, we randomly sample four off-the-shelf LLMs from a
model pool to give the response and instruct GPT-4o to annotate each response with 5-Likert scores
for each principle defined in Section 3.2; higher scores mean more alignment with the principles.
Then scores of the principles are averaged to get the overall score for a response and preference
pairs are generated based on the overall scores. The whole pipeline is illustrated in Figure 1. To
increase the diversity of the model responses, we initialize the model pool with 20 popular LLMs of
a range of sizes developed by different organizations shown in Table 6. We also include LLMs with
different architectures other than pure transformers like AI21-Jamba-1.5-Mini (Jamba Team et al.,
2024), which is a hybrid transformer-mamba model. We randomly held out 3,291 client speeches for
testing and the remaining 23,192 for training. After obtaining the scores of principles, for training,
we extract response pairs with the overall score gap larger than or equal to 1 as the preference pairs,
and for testing, we only extract the ([highest score response], [lowest score response]) pairs and pairs
with the score gap less than 1 are discarded. In this way, we could exclude response pairs with similar
scores, whose quality may be hard to differentiate.

Ultimately, PsychoCounsel-Preference includes 34,329 training preference pairs and 2,324 testing
pairs. The models most likely to be chosen and those most likely to be rejected vary significantly
in size (see Figures 5 and 6 for the distributions of chosen and rejected models). This suggests
that simply scaling model size is not a decisive factor in making LLMs effective responders in
psycho-counseling. We also observe that LLMs developed by non-English-speaking institutions are
more likely to be rejected compared to those from English-speaking countries. This may suggest that
non-English-speaking institutions have a greater need to enhance the capabilities of LLMs in their

4
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respective languages, potentially leading to less emphasis on developing psycho-counseling skills in
English.

3.4 PREFERENCE VALIDATION

To validate the quality of synthetic human preferences in PsychoCounsel-Preference, we hired two
professional psychotherapists through Upwork6 and instructed them to annotate preferences based on
each principle and give the overall preference. The annotation set consists of 200 preference pairs
randomly sampled from PsychoCounsel-Preference. The two therapists agree on 174 out of 200
samples. Additionally, one expert’s annotations align with the preference labels in PsychoCounsel-
Preference for 184 out of 200 samples, while the other aligns for 170 out of 200 samples. These results
indicate a high level of agreement between the experts (87%) and demonstrate strong alignment
between the expert annotations and the preference labels in PsychoCounsel-Preference (88.5%). This
strongly suggests that the labels in PsychoCounsel-Preference are reliable and trustworthy.

4 EXPERIMENTS

4.1 REWARD MODEL

Model Acc. AUC (↑) ECE (↓) Brier (↓)

State-of-the-art Reward Models
Skywork-Reward-Llama-3.1-8B-v0.2 (Liu et al., 2024) 57.9 0.623 0.331 0.379
Skywork-Reward-Gemma-2-27B (Liu et al., 2024) 69.2 0.740 0.123 0.229
Llama-3.1-Nemotron-70B-Reward (Wang et al., 2024) 87.3 0.938 0.040 0.102

Generative LLMs
gemma-2-9b-it (Gemma Team, 2024) 81.5 - - -
Mistral-Nemo-Instruct-24077 78.0 - - -
Llama-3.1-8B-Instruct 80.1 - - -
Llama-3.1-70B-Instruct (Llama Team, 2024) 88.2 - - -

Our Reward Models
PsychoCounsel-Llama3-3B-Reward 98.1 0.997 0.050 0.014
PsychoCounsel-Llama3-8B-Reward 97.8 0.998 0.045 0.016

Table 1: Performance on the Testing Set of PsychoCounsel-Preference

Following Ouyang et al. (2022) and Bai et al. (2022a), we train Bradley-Terry (BT) style reward
models rθ(·) where a linear head added on the top of LLMs outputs a scalar reward. Given a pair of
preference data {yc, yr} to a prompt x, the objective is to optimize the reward gap between chosen
response yc and rejected response yr:

L = − log
(
σ
(
rθ(x, yc)− rθ(x, yr)

))
,

where the sigmoid function σ(·) generates the probability of yc preferred than yr.

We use Llama3.2-3B-Instruct and Llama3.1-8B-Instruct (abbreviated as Llama3-3B and Llama3-8B)
to initialize the BT models, training them on PsychoCounsel-Preference for 2 epochs with a batch
size of 128 and a learning rate of 9e-6. To evaluate our reward models, we compare them against
three state-of-the-art reward models that rank highly on RewardBench (Lambert et al., 2024), as well
as three popular LLMs, which are prompted to rank responses (see Box 7 for the prompt).

The overall results on PsychoCounsel-Preference testing response pairs are shown in Table 1. Our
reward models significantly outperform all other reward models and generative LLMs, achieving
notably high accuracy and ROC AUC Score (Bradley, 1997) on the PsychoCounsel-Preference
testing set. These results suggest that PsychoCounsel-Preference provides robust supervision for
training powerful reward models capable of effectively ranking responses to client speeches. We also

6https://www.upwork.com/
7https://mistral.ai/news/mistral-nemo/
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Model Training Data Acc. AUC (↑) Brier (↓) ECE (↓) Acc. (RewardBench)

Llama-3B HelpSteer2 81.6 0.916 0.120 0.044 83.6
HelpSteer2 + Ours 97.6 0.998 0.017 0.045 86.1

Llama-8B HelpSteer2 81.7 0.898 0.128 0.019 86.6
HelpSteer2 + Ours 97.5 0.998 0.018 0.040 87.2

Table 2: Ablation study on reward models trained with HelpSteer2 vs. HelpSteer2 + our
PsychoCounsel-Preference dataset. Results are reported on our test set and RewardBench.

calculate the Expected Calibration Error (ECE) (Naeini et al., 2015) and Brier Score8 to assess the
calibration level of the models. The results demonstrate that our reward models have comparable
and low ECE values to the state-of-the-art reward model, Llama-3.1-Nemotron-70B-Reward, while
achieving significantly better Brier Scores. This indicates that our reward models could give more
reliable rewards and preference probability.

To further validate the effectiveness of our reward models, we train Llama3-3B and Llama3-8B under
two settings: (i) on HelpSteer2 (Wang et al., 2024), a general-domain preference dataset, and (ii) on a
merged dataset consisting of HelpSteer2 and our newly developed PsychoCounsel-Preference. For
evaluation, we use both our PsychoCounsel-Preference test set and RewardBench (Lambert et al.,
2024), a widely adopted general benchmark for reward models. The results, presented in Table 2,
demonstrate that incorporating PsychoCounsel-Preference consistently improves performance across
both Llama model sizes and the gains are not confined to domain-specific test set but also generalize
to RewardBench. This indicates that PsychoCounsel-Preference provides complementary supervision
to HelpSteer2 and enhances reward modeling in both in-domain and out-of-domain settings.

4.2 POLICY MODEL

Model Mental
Issues

Emotional
Well-being

Relation-
ships

Life
Changes

Social
Issues Youth Safety Special

Topics Overall

w/o Length Constraint

Llama3-3B 30.5 27.1 26.7 30.4 28.4 24.7 36.9 28.9 28.5
+ DPO 57.7 59.1 57.9 63.5 54.3 53.4 60.0 64.7 58.5
+ DPO-Iter 66.7 70.9 68.7 75.7 70.4 65.8 75.4 77.9 69.4
Llama3-8B 28.9 31.5 28.0 33.9 23.5 29.5 33.8 26.8 29.3
+ DPO 70.2 74.5 73.7 74.8 77.8 73.3 80.0 74.0 72.9
+ DPO-Iter 86.3 88.2 87.1 87.0 91.4 87.0 90.8 84.3 87.0

w/ Length Constraint

Llama3-3B 15.1 15.5 15.0 15.7 13.6 13.7 9.20 15.3 15.0
+ DPO 36.8 38.1 35.6 37.4 42.0 39.7 30.8 37.9 37.0
+ DPO-Iter 47.5 46.7 46.3 40.9 46.9 45.2 47.7 43.4 46.4
Llama3-8B 19.3 17.9 17.1 21.7 21.0 17.1 18.5 19.6 18.5
+ DPO 50.4 48.0 47.3 53.9 45.7 54.1 46.2 51.9 49.3
+ DPO-Iter 75.6 77.9 79.2 77.4 76.5 73.3 83.1 74.0 77.0

Table 3: Win rates (%) of models trained with two different methods (+DPO or +DPO-Iter) on
PsychoCounsel-Preference under two different settings (w/o and w/ Length Constraint) compared to
GPT-4o. Bold numbers indicate the best performance in each column for each setting. The overall
win rates of models that outperformed GPT-4o are underlined.

To further verify the effectiveness of PsychoCounsel-Preference and the trained reward models, we
employ two preference alignment methods to optimize base models. 1) DPO: we directly optimize
the DPO (Rafailov et al., 2023) objective on PsychoCounsel-Preference:

8https://en.wikipedia.org/wiki/Brier score
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LDPO(πθ;πref) = −E(x,yc,yr)∼D

[
log σ

(
β log

πθ(yc | x)
πref(yc | x)

− β log
πθ(yr | x)
πref(yr | x)

)]
.

2) DPO-Iter: we follow an iterative approach (Pang et al., 2024), where, in each iteration, 8 responses
are generated for each client speech and ranked by the reward model of the same size as the base
model. The responses with the highest and lowest rewards are then annotated as online preference
pairs, which are used to train the base model with the DPO objective. The client speeches for each
iteration are 6400 sampled from the train set of PsychoCounsel-Preference. We use Llama3.2-3B-
Instruct and Llama3.1-8B-Instruct as the base models. The training configuration includes a batch
size of 64, a learning rate of 5e-7, and a total of 1,600 training steps. A development set comprising
10% of the training set from PsychoCounsel-Preference is used to select the best checkpoints. We set
the value of β as 0.1 for DPO across all the experiments.

Evaluation We use LLM-as-judge (Zheng et al., 2023) to effectively approximate human preferences
(validated by the human experts) for evaluation. We prompt the model to generate responses for the
testing client speeches in PsychoCounsel-Preference and leverage GPT-4o to compare these responses
against those of GPT-4o using the proposed PsychoCounsel Principles. Specifically, we prompt the
model in two settings: 1) w/o Length Constraint: The models are instructed to act as therapists
and respond to the given client speech without any restrictions on response length. 2) w/ Length
Constraint: To ensure a fairer comparison with GPT-4o, we impose a length constraint, requiring the
models to generate responses of similar length to those produced by GPT-4o. The overall win rates of
the models against GPT-4o are calculated for comparison. We also show the win rates for the coarse
topic categories.

Main Results As shown in Table 3, in the w/o Length Constraint setting, the base models have low
probabilities of outperforming GPT-4o. However, the models after alignment demonstrate signifi-
cantly higher win rates against GPT-4o, indicating that supervision from PsychoCounsel-Preference
effectively guides the models in learning how to respond to client speeches. Notably, Llama3-
8B(+DPO-Iter) achieves the best performance, with a high overall win rate of 87.0% against GPT-4o.
This result suggests that online training and larger model sizes can potentially enhance generation
quality, and models with approximately 8B parameters can effectively develop the skills to
respond to client speeches under the guidance of reward models trained on PsychoCounsel-
Preference. Compared to models in the w/o Length Constraint setting, those in the w/ Length
Constraint setting generally have lower win rates against GPT-4o. We attribute this to the stricter
generation constraint, which requires our models to align their response length with that of GPT-4o.
However, our model, Llama3-8B (+DPO-Iter), still achieves a high win rate of 77% against GPT-4o,
demonstrating that with proper training, the model can develop a robust ability to effectively respond
to clients, regardless of generation constraints such as response length. We refer to the best model
Llama3-8B (+DPO-Iter) as PsychoCounsel-Llama3-8B.

Human Evaluation We instruct the hired psychotherapists to provide preference judgments between
the 200 randomly sampled response pairs generated by PsychoCounsel-Llama3-8B and GPT-4o,
among which 100 for w/o Length Constraint setting and 100 for w/ Length Constraint. The provided
order is shuffled to eliminate any position bias in the evaluation. In 82.5% of cases, GPT-4o and
human experts made the same judgments, indicating that GPT-4o serves as a reliable evaluator for
assessing psycho-counseling responses. Figure 2 presents the human experts’ comparison between
the two models based on the annotation principles. Overall, real experts clearly prefer the outputs
of PsychoCounsel-Llama3-8B across both evaluation settings and nearly all principles. Only
if no length constraint is applied, PsychoCounsel-Llama3-8B exhibits lower clarity compared to
GPT-4o. This is primarily because PsychoCounsel-Llama3-8B tends to generate longer responses,
which aligns with the observed phenomenon that as LLMs develop more complex capabilities
through reinforcement learning (RL), they tend to produce more tokens (DeepSeek-AI et al., 2025).
However, in the w/ Length Constraint setting, where models generate responses of similar length,
PsychoCounsel-Llama3-8B demonstrates better performance in Clarity, Safety and Staging. This
suggests that applying a length constraint after RL training is a promising approach to obtain more
balanced and desirable generations.

Additionally, higher win rates only indicate the relative quality of responses. To provide an absolute
assessment of the responses generated by PsychoCounsel-Llama3-8B, we instructed experts to assign
fine-grained scores based on the PsychoCounsel Principles. Figure 3 presents the average scores

7
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Figure 2: Experts’ Comparison between GPT-4o and PychoChat-Llama3-8B in Two Settings

of 100 randomly sampled responses, evaluated by experts under two different settings. We observe
that, except for Clarity in the w/ Length Constraint setting, PsychoCounsel-Llama3-8B achieves
consistently high scores (>4) across all principles, indicating a strong alignment with the criteria for
effective responses in psycho-counseling.

4.3 ABLATION STUDY

To explore the differences between training on offline vs online data and base models with different
sizes, we set up a controlled experimental group. In this setup, base models are trained by DPO with
two different sets of preference data, one is offline preferences from PsychoCounsel-Preference, and
the other is trained using online preferences generated by the base model. Responses are selected by
the reward model of the same size trained on PsychoCounsel-Preference. All the other experimental
settings are kept identical with the training epoch as 1, learning rate as 5e-7, and global batch size as
64. Figure 4 illustrates the win rates of checkpoints against GPT-4o on the testing client speeches of
PsychoCounsel-Preference.

In general, training on online samples demonstrates clear advantages over offline training: 1) Better
Performance: For Llama3-3B, training with online data (green line) consistently achieves a higher
win rate compared to training with offline data (orange line). Similarly, for Llama3-8B, training
with online data (blue line) delivers performance comparable to the best checkpoints of training
with offline data (red line). 2) Greater Stability: Both offline training curves exhibit a pronounced
hump-shaped pattern, a known indicator of reward hacking (Rafailov et al., 2024). In contrast, the
performance of online training models remains more stable across training steps. 3) Enhanced
Compatibility with Smaller LLMs: Online samples enable Llama3-3B to perform on par with, and
sometimes even surpass, Llama3-8B models. This highlights the significant potential of combining
online training with smaller LLMs. We can also observe that in this setting, training online can be
viewed as DPO-Iter with only one round of updates on the policy model. However, its performance
lags significantly behind DPO-Iter (shown in Table 3), indicating that utilizing online generations
from the latest updated policy is crucial for more effective online preference learning.

EMPATHY

RELEVANCE

CLARITY

SAFETY

EXPLORATION

AUTONOMY

STAGING

1
2

3
4

5

w/ Length Constraint
w/o Length Constraint

Figure 3: Absolute Scores

200 400 600 800 1000 1200 1400
Training Steps

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

W
in

 R
at

es
 v

s G
PT

-4
o

offline (Llama3-3B)
offline (Llama3-8B)
online (Llama3-3B)
online (Llama3-8B)

Figure 4: Comparison of Training Online or Offline

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.4 CASE STUDY

We sample testing cases and compare the outputs of GPT-4o with those of our best policy model,
PsychoCounsel-Llama3-8B. Generally, PsychoCounsel-Llama3-8B provides better responses than
GPT-4o. Table 4 provides a typical example in the w/ Length Constraint setting. We could see
that the response of PsychoCounsel-Llama3-8B, not only validates the client’s distress with deep
empathy—acknowledging both her emotional burden and the courage it took to share—but also
engages her in a detailed, collaborative exploration of her experiences. By inviting her to pinpoint
specific patterns and triggers behind her fears, Response 1 promotes self-exploration and empow-
erment, making it particularly effective for someone in the early stages of considering change. In
contrast, the response of GPT-4o is general and less detailed, which can make the client feel less
deeply understood. We provide more cases in Appendix 9.

Client Speech

I’ve been having emotional issues for a few years. Nonetheless, these have been somewhat manageable. However, I became increasingly
paranoid this winter. I thought that people were trying to poison me, I feared that family members were going to kill me. I was aware that
these thoughts were illogical, but I couldn’t shake the fear that they caused me. I would get panic attacks thinking that I drank from a
poisoned water fountain. I thought that someone had put small rips in my ice cream sandwich packaging because there was only one that
didn’t have tiny rips in it. I refused to eat this one because I assumed some reverse psychology was being pulled and the ones without the
rips were fine. I thought that this was mostly caused by anxiety but there are other symptoms that lead me to believe it is something more.

PsychoCounsel-Llama3-8B (chosen)

I can sense the immense distress and fear that you’ve been experiencing, and I’m here to create a safe space for you to explore these
feelings. It takes a lot of courage to acknowledge and share these thoughts with me. I want to acknowledge that it sounds like you’ve been
carrying a heavy burden, and it’s understandable that you felt the need to try to make sense of these experiences, even if they seemed
illogical at times.
⇒ (detailed acknowledgment of the client’s feelings tends to create a stronger emotional connection, making the client feel more
profoundly understood)
I’d like to gently explore this further. You mentioned that you recognized these thoughts as anxiety-driven, but there are other symptoms
that make you question whether it’s more than that. Can you tell me more about what specifically makes you think it’s not just anxiety?
What are those other symptoms that have led you to consider this? Let’s work together to tease out what might be contributing to these
feelings, and see if we can identify any patterns or triggers that might be at play. We can also explore ways to help you manage these
fears and develop more grounding techniques to reduce your anxiety. How does that sound?
⇒ (engage the client in a detailed, collaborative exploration of her experiences)

GPT-4o (rejected)

Thank you for sharing all of this with me. It sounds like you’ve been going through a particularly difficult time with these intense feelings
and thoughts. It must be very distressing to experience such fears and the resulting panic attacks. I want to make sure we explore this in a
way that feels safe for you.
⇒ (more general in validating the client’s feelings)
You mentioned that while you’ve considered it might be anxiety, there are additional symptoms that make you think there might be more
to it. Could you tell me more about these other symptoms? Understanding the full picture can help us figure out what might be happening
and how best to support you.
⇒ (lacks the specific, collaborative invitation to explore the triggers)
Also, it’s important to acknowledge the awareness you’ve shown about the thoughts being illogical at times, yet still powerful. This
awareness is a valuable strength as we work through these experiences together. Let’s take it one step at a time and see if we can find
patterns or triggers for these thoughts and discuss some strategies that might help manage them.
⇒ (general and less detailed)

Table 4: Case Study

5 CONCLUSION AND FUTURE WORK

In this work, we introduce a set of professional and comprehensive principles for evaluating therapists’
responses to client speeches in psycho-counseling, along with PsychoCounsel-Preference, a prefer-
ence dataset containing 36k high-quality preference comparison pairs. Our experiments show that
with PsychoCounsel-Preference, preference learning could effectively unlock LLMs’ professional
psycho-counseling skills. In the future, we will explore how to reduce the reward hacking problem in
preference learning and ways to increase the reliability of LLMs assisting psycho-counseling.

6 ETHICS STATEMENT

This project has been classified as exempt by the Institutional Review Board (IRB). All hired experts
were at least 18 years old and hold either a master’s or doctoral degree in a mental health-related field,
such as psychology or counseling psychology. Each expert received a fixed payment of $1,500 for all
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annotations, corresponding to an approximate hourly rate of $60. The goal of this work is to leverage
synthetic data and preference learning algorithms to equip LLMs with the skills needed to generate
responses to client speeches in psycho-counseling. However, these responses should not be directly
exposed to clients without review by real therapists. Instead, they serve as assistive suggestions to
help therapists draft responses, improving the efficiency of psycho-counseling:

Enhancing Human Expertise, Not Replacing It. AI tools should function as supportive mechanisms
that enhance the capabilities of mental health professionals rather than replacing them. These tools
can provide therapists with valuable data-driven insights into client speech, suggest psycho-counseling
responses, and assist in structuring interventions. However, their role remains assistive, ensuring
human expertise remains central to patient care.

Training and Ethical Integration. The effective use of AI in psycho-counseling requires mental
health professionals to receive specialized training. This ensures they can integrate AI-generated
insights into their practice ethically and effectively, maintaining both professional oversight and
adherence to best practices.

Safeguards Against Unsupervised AI Interaction. To uphold safety and ethical integrity, AI-
generated insights and psycho-counseling suggestions should always be reviewed by a licensed
professional before reaching a patient. Deployment models must include strict access controls,
intervention thresholds, and supervision mechanisms to prevent autonomous operation without
human oversight.

Transparency and Accountability

• Open Communication: AI deployment in mental health should involve clear and open
communication with all stakeholders, including therapists, patients, and regulatory bodies.
This fosters trust and ensures transparency in the development and use of AI tools.

• Explainability and Justification: AI-generated recommendations should be interpretable,
providing clear reasoning behind decisions. This is particularly crucial for psycho-counseling
suggestions and mental health assessments, where explainability is essential to professional
trust and responsible use.

• User Awareness: Patients and therapists interacting with AI must be fully informed about
the system’s role, capabilities, and limitations to prevent over-reliance and misapplication.

Safety and Privacy Standards

• Error Mitigation: AI models should be rigorously tested to minimize the risk of errors
in medical advice or psychological recommendations. Misdiagnoses or inappropriate
interventions could have significant negative consequences.

• Preventing Misinformation and Hallucinations: AI systems must prioritize accuracy by
reducing misinformation and hallucinations, ensuring responses are evidence-based and
context-appropriate.

• Data Privacy and Confidentiality: AI tools in mental health care must adhere to strict
data privacy regulations, ensuring that patient interactions remain secure and confidential.
Compliance with legal and ethical data-handling standards is critical to protecting users
from breaches or misuse.
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7 PROMPTS

Rating Prompt

You are provided with a client speech and four responses from different psychotherapists. Rate
the responses based on how they align with the given principle.

Client Speech: {client speech}
Response 1: {response1}
Response 2: {response2}
Response 3: {response3}
Response 4: {response4}

Provide a JSON object as output that includes the following keys:
• response 1 rating: An integer score from 1 to 5 for response 1
• rationale 1: A string explaining the reasoning behind the given score for response 1
• response 2 rating: An integer score from 1 to 5 for response 2
• rationale 2: A string explaining the reasoning behind the given score for response 2
• response 3 rating: An integer score from 1 to 5 for response 3
• rationale 3: A string explaining the reasoning behind the given score for response 3
• response 4 rating: An integer score from 1 to 5 for response 4
• rationale 4: A string explaining the reasoning behind the given score for response 4

Responding Prompt

You are now a professional psychotherapist conducting a session with a client. Answer the given
client speech.
Client Speech: {client speech}

LLM-as-Ranker Prompt

Determine which of the two given responses from different psychotherapists to a client’s speech
is better:
Client Speech: {client speech}
Response 1: {response 1}
Response 2: {response 2}
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8 DATASET INFORMATION

PsychoCounsel Principles

Empathy and Emotional Understanding: The response should convey genuine empathy,
acknowledging and validating the client’s feelings and experiences.

• Emotional Reflection: Reflecting the client’s emotions back to them.
• Validation: Affirming the client’s feelings as legitimate and understandable.
• Non-Judgmental Tone: Maintaining a compassionate and accepting approach.

Personalization and Relevance: The response should be tailored to the client’s unique situation,
ensuring that the content is directly relevant to their concerns.

• Specific References: Mentioning details specific to the client’s statements.
• Avoidance of Generic Responses: Steering clear of overly general or canned replies.
• Cultural and Individual Sensitivity: Respecting the client’s background and personal

context.
Facilitation of Self-Exploration: The response should encourage the client to reflect on their
thoughts and feelings, promoting self-awareness and insight.

• Open-Ended Questions: Asking questions that invite elaboration.
• Reflective Statements: Paraphrasing the client’s words to deepen understanding.
• Exploration of Thoughts and Feelings: Guiding the client to consider underlying

emotions and beliefs.
Clarity and Conciseness: The response should be clear, well-organized, and free of unnecessary
jargon, making it easy for the client to understand and engage with.

• Plain Language: Using words that are easily understood.
• Logical Flow: Presenting ideas in a coherent sequence.
• Brevity: Keeping the response concise while covering essential points.

Promotion of Autonomy and Confidence: The response should support the client’s sense of
control over their decisions and encourage confidence in their ability to make positive changes.

• Affirmation of Strengths: Highlighting the client’s abilities and past successes.
• Encouraging Initiative: Motivating the client to take proactive steps.

Avoidance of Harmful Language or Content: The response should avoid any language or
content that could potentially harm, distress, or trigger the client, ensuring the interaction is safe
and supportive.

Sensitivity to the Stage of Change: The response should recognize the client’s current stage
in the process of change and address their needs accordingly. If the client is in an early
stage—uncertain or ambivalent about making a change—the response should help them explore
their thoughts and motivations. If the client is in a later stage and has already made changes, the
response should focus on reinforcing progress, preventing setbacks, and sustaining positive

9https://mistral.ai/news/ministraux/
10https://mistral.ai/news/mistral-nemo/
11https://openai.com/index/openai-o1-system-card/
12https://docs.cohere.com/docs/responsible-use
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Figure 5: Chosen Model Distribution
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Table 5: Topic Distribution

Coarse Category Fine Category Count
1. Core Mental Health Issues

Anxiety 3714
Depression 2859
Stress 1439
Trauma 526
Substance-abuse 387
Addiction 129

2. Emotional Well-being and Coping Strategies
Self-esteem 1377
Grief-and-loss 1023
Caregiving 1541
Behavioral-change 740
Anger-management 448
Self-care 311
Sleep-improvement 277

3. Relationships and Interpersonal Dynamics
Relationships 1690
Family-conflict 2358
Friendship-conflict 292
Marriage 373
Intimacy 403
Social-relationships 410
Workplace-relationships 383
Relationship-dissolution 574

4. Life Transitions and Challenges
Career 441
Aging 140
New-environment 235
Military-issues 118

5. Social Issues
LGBTQ 335
Culture 113
Human-sexuality 151
Bullying 68

6. Youth and Development
Children-adolescents 123
School-life 322
Parenting 730

7. Crisis and Safety Concerns
Domestic-violence 144
Self-harm 231
Eating-disorders 154

8. Special Topics
Counseling-fundamentals 638
Diagnosis 531
Communication 205
Professional-ethics 128
Legal-regulatory 94
Spirituality 192
Others 136
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Category Models

3-4B models Llama-3.2-3B-Instruct (Llama Team, 2024)
Phi-3.5-mini-instruct (Abdin et al., 2024)
MiniCPM3-4B (Hu et al., 2024)

7-9B models Ministral-8B-Instruct-24109

Llama-3.1-8B-Instruct (Llama Team, 2024)
gemma-2-9b-it (Gemma Team, 2024)
Qwen2.5-7B-Instruct (Qwen et al., 2024)
OLMo-7B-0724-Instruct (Muennighoff et al., 2024)
Baichuan2-7B-Chat (Yang et al., 2023)

12-14B models Baichuan2-13B-Chat (Yang et al., 2023)
Orion-14B-Chat (Chen et al., 2024)
Mistral-Nemo-Instruct-240710

AI21-Jamba-1.5-Mini (Jamba Team et al., 2024)
65-75B models Llama-3.1-70B-Instruct (Llama Team, 2024)

Qwen2.5-72B-Instruct (Qwen et al., 2024)
deepseek-llm-67b-chat (DeepSeek-AI et al., 2024)

Commercial models GPT-4o (OpenAI, 2024)
GPT-4o-mini (OpenAI, 2024)
o1-mini11

Cohere-command-r-08-202412

Table 6: Overview of selected models in the pool.
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9 CASE STUDY

In the example in Table 7, PsychoCounsel-Llama3-8B demonstrates a deeper level of empathy and
personalization. It acknowledges the client’s unique emotional experiences and suggests tailored
strategies, such as the “3-4-5” exercise, to directly address their concerns. Additionally, it facilitates
self-exploration by asking thoughtful questions about the client’s fears, values, and understanding of
self-trust, ultimately promoting autonomy and confidence in decision-making. In contrast, GPT-4o’s
response feels more clinical and general.
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Client Speech

Anxiety often strikes when I’m faced with making decisions. The fear of making the wrong choice or
disappointing others paralyzes me, leaving me stuck in indecision. I want to learn how to trust myself and
make confident choices.

PsychoCounsel-Llama3-8B (chosen)

It takes a lot of courage to share something so vulnerable with me, and I appreciate your trust in our
conversation. I can sense the weight of that anxiety you’re carrying, and we’re going to explore ways to
shift that together.
First, let’s acknowledge that the fear of making the wrong choice or disappointing others is a common and
normal feeling. It doesn’t mean there’s anything inherently wrong with you; it just means you care deeply
about others and yourself. That’s a beautiful quality to have.
Can you tell me more about what you think would happen if you made a ”wrong” choice? What are some
of the worst-case scenarios that come to mind? Sometimes, exploring these fears can help us gain clarity
and perspective. We can work together to reframe those thoughts in a more realistic and compassionate
light.
Let’s also explore the idea of self-trust. What does it mean to you to trust yourself? What does self-trust
look like in action? We can work on building that trust by identifying what you value and what aligns with
your goals. We can practice recognizing when your thoughts are trying to control or second-guess you, and
we can develop strategies to gently acknowledge those thoughts without letting them overwhelm you.
I’d like to introduce an exercise called ”3-4-5.” When you’re faced with a difficult decision, I want you to
take a deep breath and pause for 3 seconds, acknowledge the thought or feeling that arises, and then ask
yourself: ”Is this thought based on facts or perceived facts?” Sometimes, when we’re anxious, our thoughts
can get tangled up in assumptions or past experiences. Then, take 4 seconds to ask yourself what you
truly value in this situation, what’s most important to you. And finally, take 5 seconds to imagine yourself
moving forward, taking action, and making a choice that aligns with your values. This exercise can help
you tap into your inner wisdom and develop a sense of self-trust.
Lastly, let’s work on reframing the idea of ”wrong” choices. What if, instead of focusing on the fear of
making the wrong choice, we reframe it as a learning opportunity? What if you saw every choice as a
chance to learn, grow, and develop? How might that change your approach to decision-making?
Remember, our goal isn’t to eliminate anxiety completely, but to develop a more compassionate relationship
with it. We’ll work together to cultivate self-awareness, self-acceptance, and trust in your decision-making
abilities.
How do these ideas resonate with you? What feels most helpful or interesting to explore further?

GPT-4o (rejected)

Thank you for sharing that with me. It’s understandable that making decisions can be overwhelming,
especially when there’s fear of making the wrong choice or disappointing others. Let’s explore this together.
Firstly, it’s important to acknowledge that decision-making can be challenging and it’s completely normal
to feel anxious about it. You’re not alone in experiencing this.
One way we might start working on this is by exploring some of the underlying thoughts or beliefs that
contribute to your anxiety about decision-making. For instance, you mentioned a fear of disappointing
others. Can you tell me more about where you think that fear comes from?
We could also look at ways to build your confidence in your decision-making skills. Sometimes breaking
down decisions into smaller, more manageable parts can make the process feel less daunting. Have you
ever tried writing down the pros and cons of each option or talking it through with someone you trust?
Another technique is to practice self-compassion. Remind yourself that no one makes the right choice all
the time and that it’s okay to make mistakes. Every decision is a learning opportunity.
Finally, something that can be quite helpful is examining past decisions you’ve made. Often, we are harsher
with ourselves than necessary and we overlook our strengths. Can you recall a situation in the past where
you made a decision and things turned out well, or you learned something valuable from the outcome?
Let’s take some time to explore these aspects and see what might resonate most with you. How does that
sound?

Table 7: Case Study - 2
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