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Abstract

In this work, we explore the prediction of lex-001
ical complexity by combining supervised ap-002
proaches and the use of large language mod-003
els (LLMs). We first evaluate the impact of004
different prompting strategies (zero-shot, one-005
shot, and chain-of-thought) on the quality of006
the predictions, comparing the results with hu-007
man annotations from the CompLex 2.0 corpus.008
Our results indicate that LLMs, and in particu-009
lar gpt-4o, benefit from explicit instructions010
to better approximate human judgments, al-011
though some discrepancies remain. Moreover,012
a calibration approach to better align LLMs pre-013
dictions and human judgements based on few014
manually annotated data appears as a promis-015
ing solution to improve the reliability of the016
annotations in a supervised scenario.017

1 Introduction018

The prediction of lexical complexity is an essential019

task for adapting linguistic content to the specific020

needs of learners and educational systems. Such a021

task consists in predicting a numerical complexity022

score for a target word in a given sentence (there-023

after an instance). Data annotation plays a key role024

in this task, directly influencing the performance of025

supervised models. With the emergence of large-026

scale language models (LLMs) the possibility of027

using automatically generated annotations raises028

new questions regarding the generalization and ro-029

bustness of these models.030

In this work, we focus on measuring the simi-031

larities between human annotators and generative032

models (LLMs) by varying the prompts. The ob-033

jective is to determine whether it is possible to use034

LLMs as reliable annotators by measuring their035

level of agreement with human annotations and by036

analyzing the distribution of the produced annota-037

tions. We also seek to identify new perspectives for038

improving the alignment between these two sources039

of annotations using a calibration model based on040

few manually annotated data. We specifically apply 041

this approach in the context of a supervised model 042

trained on LLM-based annotated data to avoid the 043

use of LLMs at prediction time, prioritizing time 044

efficiency and energy conservation. All our experi- 045

ments were performed on the CompLex 2.0 dataset 046

(Shardlow et al., 2021) for English. This dataset 047

has the advantage of including the source individ- 048

ual human annotations that can be used for directly 049

comparing human and LLM annotations. 050

The paper is organized as follows. Section 2 051

presents related work with respect to lexical com- 052

plexity prediction and data annotation using LLMs. 053

Next, section 3 describes the Complex 2.0 dataset, 054

the LLM strategies to be tested as well as the 055

supervised model used in the final experiments. 056

Then, sections 4 and 5 evaluate LLMs performance 057

against human annotations. Finally, section 6 ex- 058

plores supervised scenarios integrating a calibra- 059

tion model for LLMs. 060

2 Related work 061

2.1 Lexical complexity prediction 062

Lexical complexity is a key issue in text simplifica- 063

tion and accessibility. North et al. (2023) provide a 064

comprehensive review of computational methods 065

for predicting lexical complexity primarily in En- 066

glish texts. Their work aims to enhance comprehen- 067

sion by identifying complex words and substituting 068

them with simpler alternatives. The review cov- 069

ers both traditional machine learning techniques, 070

such as support vector machines and logistic regres- 071

sion, and advanced deep neural network models. 072

Moreover, the authors emphasize the use of diverse 073

features including psycholinguistic cues, word fre- 074

quency, and word length and discuss dedicated 075

competitions, datasets, and practical applications 076

in readability assessment and text simplification 077

across multiple languages. 078

Research emerging from shared tasks on this sub- 079
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ject highlights the evolution of the field and signifi-080

cant advances in lexical complexity prediction.In081

2018, the Complex Word Identification (CWI)082

shared task marked a turning point by proposing083

systems capable of identifying words that may be084

difficult for readers, depending on various contexts.085

Yimam et al. (2018) revealed that simple models086

based on n-grams could rival more complex ap-087

proaches, emphasizing the importance of data and088

linguistic features in this task. In addition, Gooding089

and Kochmar (2018) proposed a method based on090

an ensemble system using majority voting among091

several models, demonstrating that combining di-092

verse predictors improves overall performance and093

yields robust results. Furthermore, Kajiwara and094

Komachi (2018) explored an approach based on095

lexical frequency in a learner corpus, showing that096

this methodology is particularly well suited for ed-097

ucational contexts.098

Research on predicting lexical complexity has099

progressed significantly thanks to contributions100

from the shared task LCP 2021 (Shardlow et al.,101

2021), which explored the prediction of the com-102

plexity of simple words and multiword expressions.103

Pan et al. (2021) proposed an approach based on104

a deep ensemble combining pre-trained models105

such as BERT with advanced techniques such as106

pseudo-labeling and data augmentation, achieving107

remarkable results, including first place for multi-108

word expressions. Similarly, Yaseen et al. (2021)109

used pre-trained models BERT and RoBERTa to110

compute complexity scores on a continuous scale,111

ranking first for simple words with a Pearson cor-112

relation coefficient of 0.788. Moreover, Mosquera113

(2021) demonstrated that manual engineering of114

contextual, lexical and semantic features can still115

rival modern models, obtaining high correlations116

for both simple words and multiword expressions.117

In a more recent study on the LCP 2021 dataset,118

Kelious et al. (2024b) compared the performance119

of ChatGPT with that of dedicated models, show-120

ing that prompt engineering allows ChatGPT to121

be competitive, albeit less consistent than special-122

ized models, which reached an R² score of 0.65.123

In parallel, the same authors explored multilingual124

strategies, comparing supervised and generative125

approaches to predict lexical complexity. The gen-126

erative models, although achieving high correla-127

tions with prompting strategies (zero-shot, one-128

shot, etc.), are still surpassed by models optimized129

for specific tasks. These contributions illustrate a130

combination of modern and traditional approaches131

to address the challenges of lexical complexity in 132

both monolingual and multilingual contexts (Ke- 133

lious et al., 2024a). 134

Recent research on predicting lexical complex- 135

ity and text simplification, particularly in multilin- 136

gual contexts, demonstrates significant advances 137

through the integration of modern techniques. The 138

BEA 2024 shared task explored these aspects in 139

ten languages, using open and proprietary lan- 140

guage models, while showing the potential for 141

improvement in complex tasks (Shardlow et al., 142

2024). Enomoto et al. (2024) [TMU-HIT] demon- 143

strated the effectiveness of GPT-4 in assessing and 144

simplifying lexical complexity in various multi- 145

lingual contexts, particularly for under-resourced 146

languages, without resorting to supervised data. 147

Similarly, Seneviratne and Suominen (2024) used 148

generative prompts to simplify texts in English and 149

Sinhala, confirming the utility of generative models 150

in less common languages. Another innovative ap- 151

proach used machine translation to predict lexical 152

complexity and simplify texts, combining regres- 153

sors based on linguistic features with quantized 154

generative models to generate suitable lexical sub- 155

stitutions (Cristea and Nisioi, 2024). 156

2.2 LLMs for data annotation 157

Large language models (LLMs) offer significant 158

potential to transform data annotation by reduc- 159

ing costs and increasing efficiency. The work of 160

Liu et al. (2023) presents a systematic review of 161

prompting methods based on LLMs, which allow 162

zero-shot or few-shot learning through structured 163

prompts and pre-trained models, thereby opening 164

up new opportunities for automating annotation. 165

Moreover, Tan et al. (2024) explore how LLMs, 166

such as GPT-4, can generate annotations, classify 167

eligible data types, and address challenges related 168

to bias and annotation quality. Gilardi et al. (2023) 169

show that ChatGPT outperforms human workers in 170

text annotation tasks, with increased accuracy (25 171

percent higher) and costs 30 times lower. In the 172

field of computational social science, Ziems et al. 173

(2024) demonstrate that while LLMs do not surpass 174

specialized models for classification, they produce 175

qualitative explanations that can enhance research 176

in annotation and creative generation. Other works, 177

such as those by Farr et al. (2024), combine chains 178

of LLMs for more robust and scalable annotation 179

by aggregating predictions from multiple models, 180

while Qiu et al. (2025) use ensembles of LLMs for 181

the evaluation of unstructured textual data, thereby 182
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improving annotation consistency. Research by183

Watts et al. (2024) focuses on the divergences be-184

tween humans and LLMs for multilingual and mul-185

ticultural data, highlighting the importance of cul-186

tural contexts in annotation. Finally, in software187

engineering, LLMs show their potential to replace188

manual annotations, though they remain limited in189

complex technical contexts (Ahmed et al., 2024).190

RED-CT, proposed by Farr et al. (2025), illustrates191

a hybrid approach combining LLM annotations192

and human interventions for linguistic classifica-193

tion tasks in constrained environments.194

3 Data and models195

This section will present the models and the data196

that will be used to (i) evaluate the performances197

of LLMs with respect to a gold standard and also198

with respect to individual human annotations; (ii)199

evaluate the impact of LLMs in a supervised sce-200

nario where the LLMs are only used to annotate201

the training dataset, in order to reduce the energy202

costs and improve response-time efficiency.203

3.1 Dataset204

Recently released lexical complexity datasets205

(Shardlow et al., 2021, 2024) usually provide for206

each instance a gold numerical complexity score207

that is the average of several numerical human an-208

notations. In this paper, our goal is to compare209

LLMs and human annotations. It therefore requires210

the use of a dataset where all individual human an-211

notations are available, and not only the average of212

their annotations. This is why for our evaluations,213

we use the "CompLex 2.0" dataset, an improve-214

ment over "CompLex 1.0" (Shardlow et al., 2021).215

This corpus contains individual human evaluations216

of the lexical complexity of a set of English texts,217

carried out using a 5-point Likert scale. The texts218

included in the corpus come from sources such219

as Wikipedia, educational books, and newspaper220

articles, covering a wide variety of topics. The221

texts were annotated by human evaluators who as-222

sessed the lexical complexity of a target word in223

its context (sentence) using the Likert scale. Each224

instance was annotated several times, and the aver-225

age of these annotations was used as the complexity226

score for each data instance. This score, once nor-227

malized, represents a continuous value between228

0 and 1. In CompLex 2.0, part of the data from229

CompLex 1.0 was reused, but the annotations were230

enriched by adding 10 additional annotations per231

instance, carried out via the Amazon Mechanical 232

Turk (MTurk) platform, while keeping the same 233

annotation instructions as before. In total, for this 234

second phase, 523 available workers annotated the 235

data, implying that all instances were not annotated 236

by the same workers, which is clearly a limit for 237

the sake of comparison. Furthermore, in the release 238

of Complex 2.0, we only have the data provided by 239

MTurk of the second annotation phase. Therefore, 240

when it comes to comparing with individual human 241

annotations, we will use this data only. 242

The training and test data contain 7,662 instances 243

and 917 instances respectively. 244

3.2 LLMs strategies 245

We used three prompt approaches to evaluate the 246

ability of large language models (LLMs) to predict 247

in-context lexical complexity as proposed by (Ke- 248

lious et al., 2024a). First, the Zero-shot prompt 249

(_b) relies solely on the model’s prior knowledge, 250

without providing any specific examples. Next, the 251

One-shot prompt (_i) provides a clearer frame- 252

work by incorporating annotation instructions and 253

a concrete example, allowing the model to bet- 254

ter grasp the task at hand. Finally, the Chain-of- 255

thought prompt (_a) goes further by exposing 256

detailed instructions, a step-by-step methodology, 257

and an illustrative example to structure the model’s 258

reasoning before producing an answer. These three 259

strategies allow the evaluation of complexity from 260

different angles, yielding variable results. 261

We will experiment with 7 different generative 262

models with the 3 prompts: llama3:8b (Dubey et al., 263

2024), mistral:7b (Jiang et al., 2023), gemma:9b 264

(Team et al., 2024), phi3:3.8b (Abdin et al., 2024), 265

gpt-4o (January-2025) 1, falcon3:7b (Almazrouei 266

et al., 2023), qwen2:7b (Yang et al., 2024) 267

For all these models we will use their 4-bit quan- 268

tized version. We use Ollama2, an open-source 269

tool, to test these different LLMs. 270

3.3 Supervised model 271

The supervised scenario consists in using a recent 272
system that has proven effective for predicting lexi- 273
cal complexity in English (Kelious et al., 2024b). 274
The model combines a pre-trained language model 275
with frequency-based features derived from Zipf’s 276
law. In summary, the prediction formula is: 277

ŷ = f
(
Wh · σ

(
We · E +Wf · F + be

)
+ bh

)
278

where: 279

1gpt-4o: https://openai.com
2https://ollama.com
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• ŷ is the predicted complexity value, between 0 and 1;280

• E correspond to the lexical embeddings extracted from281
a transformer model (e.g., DeBerta) from the sequence:282
[CLS] sentence [SEP] target_word;283

• F is the input frequency-based feature vector,284
[F1, F2, F3, F4, F5]

3;285

• We and Wf are the weights applied respectively to the286
lexical embeddings (E) and the features (F );287

• be and bh are the bias terms for the input layer and the288
hidden layer;289

• σ is a non-linear activation function (ReLU) applied to290
the combination of E and F ;291

• Wh corresponds to the weights of the hidden layer;292

• f is the linear activation function at the output.293

4 Evaluation of LLMs performances294

against human-based gold complexity295

scores296

In this section, we analyze the performances of the297

21 LLM systems derived from our three prompting298

strategies (section 3.2). We compare the predicted299

lexical complexity scores with the gold scores, that300

are, for each instance, the average of several indi-301

vidual human numerical annotations.302

4.1 Pearson Correlation Analysis303

According to Figure 1, the performance of the mod-304

els follows a clear trend where the addition of struc-305

ture and examples improves their ability to predict306

lexical complexity: on average, the Zero-shot (_b)307

strategy achieves 0.214, the One-shot (_i) 0.365,308

and the Chain-of-Thought (_a) [COT] 0.439, con-309

firming the positive impact of explicit reasoning.310

Comparatively, gpt-4o outperforms all other mod-311

els, showing high correlations even in Zero-shot312

(0.746) and reaching 0.780 in COT, while Llama-3313

and Mistral show good performance but remain314

far behind, requiring more advanced prompts to315

improve their results. In contrast, Phi-3 and Falcon-316

3 are noticeably less performant, particularly in317

Zero-shot (respectively 0.023 and 0.088), and need318

the COT to reach better levels, while Gemma com-319

pletely fails to capture lexical complexity, with a320

negative close-to-zero correlation in One-shot (-321

0.003). In conclusion, the advantage of advanced322

models like gpt-4o is undeniable, but prompt opti-323

mization remains essential to improve the perfor-324

mance of weaker models.325

3
F1 (the Zipf score of the word frequency), F2 (the average Zipf score in a sentence), F3

(the difference between the target word’s Zipf score and the average score), F4 (the number
of words with a Zipf score higher than the target word) and F5 (a binary value indicating
whether the target word is considered rare with a score less than or equal to 3).

Figure 1: Pearson correlation between complexity predicted
by LLMs and the gold complexity (left part); and average
correlation (right part) with respect to the prompt strategy
types (_b: zero-shot, _i: one-shot, _a: chain-of-thoughts).

4.2 Predicted complexity and error 326

distributions 327

The violin plot in Figure 2 provides a more detailed 328

view of the distribution of the model predictions 329

compared to the distribution of human-based gold 330

complexity scores on the test set. Figure 4 in Ap- 331

pendix A provides a complementary view showing 332

the distributions of the residuals, i.e. the LLM 333

errors (ygold - yllm). 334

Distribution of gold complexity scores (com- 335

plexity): The distribution of values is quite spread 336

out, meaning that the perception of lexical com- 337

plexity by human annotators varies according to the 338

instances. There is a notable concentration around 339

specific values, which may indicate that most words 340

have a moderately perceived complexity (neither 341

too easy nor too difficult). Some extreme values 342

exist, which could correspond to words that are 343

widely considered either very simple or very com- 344

plex. 345

Models close to gold annotations: The models 346

gpt-4o (gpt-4o_b, gpt-4o_i, gpt-4o_a) and Llama3 347

(llama3_i, llama3_a) display distributions similar 348

to human complexity. Their medians are relatively 349

aligned with the gold annotations and their pre- 350

dictions cover a comparable range of values, in- 351

dicating a certain consistency. Mistral (mistral_i, 352

mistral_a) follows a similar trend with moderate 353

dispersion, suggesting that it evaluates lexical com- 354

plexity in a balanced manner, without excessively 355

overestimating or underestimating. These trends 356

are confirmed with the error distributions. 357

Models with notable discrepancies: Some 358

models show more marked divergences compared 359

to human annotations. Phi3 (phi3_b, phi3_i, 360

phi3_a) and Qwen2 (qwen2_b, qwen2_i, qwen2_a) 361

have a higher median, indicating a tendency to 362
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Figure 2: Distribution of lexical complexity predictions for each LLM and distribution of gold scores ("complexity" violin plot)

Figure 3: Comparison between individual human annotations and LLMs, by selecting the top-21 annotators with lowest MSE.

overestimate word complexity. Falcon3_i and Fal-363

con3_a, on the other hand, display a larger disper-364

sion, notably Falcon3_i which sometimes assigns365

exceptionally high values. This variability suggests366

a lack of stability in the predictions, which can367

be problematic for reliable evaluation of lexical368

complexity.369

General insights and implications: The mod-370

els gpt-4o, Llama3, and Mistral seem to be the371

closest to human annotations, suggesting that they372

could be the most reliable for predicting lexical373

complexity. Conversely, Phi3 and Falcon3 tend374

to overestimate complexity, while Qwen2 shows375

more rigid predictions biased toward higher val-376

ues. A high dispersion in predictions, as observed377

in some models, may indicate inconsistency or a378

lack of calibration, while an overly concentrated379

distribution can reflect a lack of diversity in the380

evaluation of words. Thus, if the goal is to mimic381

human perception, the models most aligned with382

the annotations should be favored, whereas those383

with high variability or marked bias might require384

adjustment for better calibration.385

5 Comparison of LLM predictions with 386

individual human annotations 387

In this section, we compare LLM predictions with 388

the individual human annotations. Unfortunately, 389

the way the dataset is annotated using the MTurk 390

platform with a limitation of 10 human annota- 391

tions per instance makes a fair comparison difficult, 392

whereas we have the predictions of all the LLMs 393

per instance. Although there are clear limitations 394

in the various provided evaluations below due to 395

this issue, the results will reveal some trends that 396

will pave the way for other experiments. 397

5.1 Comparing the LLMs with the best 398

human annotators 399

Since we have 7 LLMs and 3 different prompts, 400

making a total of 21 models, we will compare this 401

set with the top 21 human annotators selected based 402

on their Mean Square Error (MSE) score. Note that 403

we did not use the Pearson correlation scores as 404

the difference of two Pearson correlation scores is 405

difficult to interpret with two different sets of anno- 406

tated instances (all instances for LLMs vs. various 407

numbers of instances for human annotators). 408

General Error Comparison (MSE): Figure 3 409

5



shows that human annotators generally have lower410

errors than LLMs. Indeed, most annotators display411

a more stable and homogeneous MSE, whereas412

LLMs show much more variability in their per-413

formance. Some models come close to human414

performance, while others have much larger dis-415

crepancies.416

Error Dispersion: Human errors range between417

approximately 0.03 and 0.13 for the top-21, indi-418

cating a certain consistency in their annotations.419

In contrast, LLM errors are much more dispersed,420

ranging from 0.03 up to over 0.32, suggesting sig-421

nificant heterogeneity depending on the model used.422

Some LLMs are very performant, while others423

clearly struggle to reproduce precise annotations.424

Best and Worst Performers: The best mod-425

els and annotators are those that display the low-426

est MSE. Among the LLMs, Falcon3_a (MSE ≈427

0.036) and Llama3_i (MSE ≈ 0.038) stand out for428

their precision, rivaling the best human annotators,429

notably "A39VVWV1GHLMFD" (MSE ≈ 0.032)430

and "A2GJK2MDTHNQ6Q" (MSE ≈ 0.043). Con-431

versely, some models display particularly high er-432

rors. Qwen2_b (MSE ≈ 0.33) is the least precise433

among the LLMs, followed by Mistral_b (MSE ≈434

0.21). On the human side, "A2QT3PLP9RR3K0"435

is the annotator whose annotations deviate the most436

from the reference values (MSE ≈ 0.13).437

Direct Comparison between LLMs and Hu-438

man Annotators: Some LLMs manage to achieve,439

or even surpass, the performance of the least pre-440

cise human annotators among the top-21 ones. The441

graph shows that up to the 10th-best annotator there442

is more or less an equivalence between human and443

LLM performances.444

5.2 Comparing LLMs with individual human445

annotations on a common set of instances446

In the ideal case, comparing LLMs with individ-447

ual human annotations should be performed on a448

common set of instances. To make the analysis449

manageable due to impractical combinatorics in450

CompLex 2.0 to find the set of annotators with451

the largest set of shared annotated instances, we452

chose to take the five annotators who annotated453

the largest number of instances and extract the 375454

instances annotated in common. This approach re-455

duces the scope of the problem while retaining a456

representative set of annotations for our analyses.457

On this subset of instances, we performed an458

evaluation using standard evaluation metrics (R²,459

Pearson Coefficient, and MSE) comparing anno-460

tators and LLMs. For each of the annotators (an- 461

not1..5), we selected the five LLM/humans whose 462

evaluations were in the closest agreement with 463

theirs (according to Cohen’s Quadratic Kappa met- 464

ric). Table 1 provides the results of the evaluation 465

metrics. 466

Human Model R² Pearson MSE Kappa

annot1, (MSE :0.021)

gpt-4o_a 0.4801 0.6929 0.0345 0.68
gpt-4o_i 0.4194 0.6476 0.0410 0.62
gpt-4o_b 0.4116 0.6415 0.0518 0.60
annot3 0.3398 0.5830 0.0610 0.57
annot5 0.3288 0.5734 0.0542 0.57

annot2, (MSE :0.039)

annot1 0.1612 0.4015 0.0810 0.36
annot3 0.1448 0.3806 0.0957 0.36
gpt-4o_b 0.1338 0.3659 0.0798 0.36
annot5 0.1481 0.3848 0.0988 0.33
gpt-4o_a 0.0901 0.3001 0.1002 0.24

annot3, (MSE :0.034)

annot1 0.3398 0.5830 0.0610 0.57
annot5 0.3076 0.5546 0.0722 0.54
gpt-4o_b 0.2927 0.5410 0.0728 0.53
gpt-4o_a 0.2982 0.5461 0.0688 0.50
gpt-4o_i 0.2741 0.5236 0.0747 0.47

annot4, (MSE :0.039)

gpt-4o_b 0.0529 0.2300 0.0883 0.21
llama3_a 0.0446 0.2113 0.0655 0.21
annot2 0.0461 0.2147 0.0878 0.19
annot1 0.0319 0.1787 0.0775 0.18
mistral_i 0.0224 0.1497 0.0728 0.16

annot5, (MSE :0.030)

annot1 0.3288 0.5734 0.0542 0.57
annot3 0.3076 0.5546 0.0722 0.54
gpt-4o_a 0.2978 0.5457 0.0537 0.54
gpt-4o_i 0.2777 0.5270 0.0562 0.51
gpt-4o_b 0.2404 0.4903 0.0830 0.44

Table 1: Results of evaluation metrics (R², Pearson, MSE,
Kappa) comparing annotators annot1...5 and models. The
5-closest annotators annot1...5 or LLM models are provided
for each human annotator annot1...5 with respect to Cohen’s
Quadratic Kappa (Kappa).

Overall, we can see that for each selected hu- 467

man annotator there are three LLMs in its 5-closest 468

humans/LLMs (exception: only two LLMs for an- 469

not2). It shows that we can always find an LLM 470

closer to her/him than two other human annotators 471

(only one for annot2). The gpt4o LLMs tend to 472

be the closest to the selected human annotators: 3 473

occurrences in the top-5 for three human annota- 474

tors (annot1, annot3 and annot5), 2 occurrences 475

for annot2 and only one occurrence (zero-shot) for 476

annot4, the latter emerging as an “outlier” (low 477

correlation with everyone). 478

This view is of course partial because of the 479

specificity of the selected human annotators (the 480

ones who annotated the largest number of in- 481

stances) that are not representative of all annotators. 482

This should be investigated further by enlarging the 483

set of annotators (but reducing the evaluation set), 484

and/or by varying selection criteria in order to have 485

more global view. Nevertheless, the preliminary 486

investigation presented in this section show some 487

potential for aligning individual human annotators 488

and LLMs. 489
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6 Train supervised model490

In a real scenario, annotating an instance using 10491

LLMs simultaneously would be very expensive in492

terms of time, money and energy cost compared to493

using a small supervised model. In this section, we494

train various supervised models on the CompLex495

2.0 dataset, trying to take advantage of LLMs to496

annotate the training data, and therefore limiting497

their use to an offline setting.498

6.1 Preliminary cross-evaluation499

We first perform evaluations using the supervised500

model described in section 3.3, notably crossing501

the various types of annotations available. In par-502

ticular, the Complex 2.0 dataset contains, for each503

instance, individual annotations from Amazon Me-504

chanical Turk as well as an overall score that incor-505

porates other inaccessible annotations. We distin-506

guish three types of annotations:507

• llms: the average of the annotations provided508

by several language models (LLMs). To sim-509

ulate the Amazon Mechanical Turk approach,510

we randomly select 10 LLMs out of 21, re-511

calling that MTurk selects 10 annotators from512

among 523.513

• mturk: the average of the scores assigned by514

the human annotators from Amazon Mechani-515

cal Turk.516

• all: the average of all annotations, that is,517

those from MTurk plus the additional inac-518

cessible annotations (global score).519

Train → Test Pearson R2 MSE
all → all 0.79 0.62 0.0065
mturk → mturk 0.87 0.76 0.0072
llms → llms 0.78 0.62 0.0080
all → mturk 0.86 0.74 0.0100
all → llms 0.50 0.25 0.1780
mturk → all 0.79 0.63 0.1210
mturk → llms 0.53 0.28 0.3320
llms → mturk 0.57 0.33 0.0450
llms → all 0.52 0.27 0.0250

Table 2: Results of Pearson, R2, and MSE for each train →
test setting.

Intra-ensemble performance (homogeneous):520

When both training and testing are performed on521

annotations of the same type, the performance522

is high (Table 2). For instance, the scenario523

all → all (r = 0.79, R2 = 0.62, MSE = 0.0065) il-524

lustrates good consistency when human annotators525

are used for both training and testing. Similarly,526

the mturk → mturk approach (r = 0.87, R2 = 0.76, 527

MSE = 0.0072) gives the highest results, reflecting 528

the high homogeneity of MTurk annotators. Finally, 529

in llms → llms (r = 0.78, R2 = 0.62, MSE = 0.0080), 530

the language models generate annotations that are 531

globally consistent with each other, even though 532

they remain slightly below the quality obtained 533

with MTurk. 534

Cross-performance (heterogeneous): In a con- 535

text where training and testing come from differ- 536

ent sources, the generalization varies greatly. The 537

all → mturk approach (Pearson = 0.86, R2 = 0.74, 538

MSE = 0.010) shows a fairly good capacity of the 539

model to predict the MTurk-specific annotations 540

when trained on data annotated by a larger set of 541

human annotator. Conversely, all → llms (Pear- 542

son = 0.50, R2 = 0.25, MSE = 0.178) results in a 543

significant drop in performance, revealing a marked 544

divergence between the annotations generated by 545

LLMs and those by humans. The mturk → all op- 546

tion (Pearson = 0.79, R2 = 0.63, MSE = 0.121) 547

remains relatively satisfactory, but the increase in 548

MSE indicates a difficulty in fully capturing the 549

diversity of the annotations. Finally, mturk → llms 550

(Pearson = 0.53, R2 = 0.28, MSE = 0.332) confirms 551

a notable incompatibility between the judgments 552

of MTurk and those of the generative models. 553

Impact of LLMs with respect to human anno- 554

tations: When training on annotations from LLMs 555

to test on MTurk (llms → mturk), the performance 556

remains modest (r = 0.57, R2 = 0.33, MSE = 0.045), 557

demonstrating that the models do not fully cap- 558

ture the complexity as perceived by human anno- 559

tators. Similarly, the scenario llms → all (r = 0.52, 560

R2 = 0.27, MSE = 0.025) yields similar results: 561

LLMs do not faithfully reproduce the judgments 562

from a mixed set of human annotations. 563

6.2 Calibrating LLMs 564

The results in the previous section indicate that, 565

despite their internal consistency, LLMs require 566

significant adjustments to align their annotations 567

with human judgments, especially in subjective 568

tasks such as lexical complexity prediction. To do 569

so, we propose the following three-step method: (1) 570

we train a calibration model on N samples from the 571

training set to learn how to combine the predictions 572

from the various LLMs, (2) we directly apply this 573

model to generate annotations on the training set; 574

and (3) we train a supervised model (section 3.3) 575

on these pseudo-labels and evaluate it on the test 576

set produced by human annotators. 577
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The proposed calibration model combines LLMs578

using a weighting scheme that can be mathemati-579

cally formulated as:580

ŷ =
n∑

i=1

αi · xi + b581

where n is the number of LLMs (21 in our case)582

and αi is the weight associated to the complexity583

score xi predicted by the LLM LLMi, the term b584

being the bias. The weights and the bias are trained585

by minimizing the MSE on the subset of training586

data annotated by humans.587

Sample size (N) Pearson R2 MSE
100 0.73 0.54 0.0145
500 0.75 0.55 0.0108
1 000 0.74 0.55 0.0103
2 000 0.74 0.55 0.0114
5 000 0.75 0.57 0.009
All (7 662) 0.74 0.56 0.0116
No weights (avg) 0.44 -2.90 0.0635
Model llms → all 0.52 0.27 0.0250
Model all → all 0.79 0.62 0.0065

Table 3: Evaluation of the LLMs calibration on test set.

Table 3 provides the performances of the super-588

vised model based on the calibration model predic-589

tions to annotate the training dataset, varying the590

sample size N . It appears that with only few anno-591

tated data (N=100) we can observe a significant im-592

provement of the performances with respect to us-593

ing a simple average of the LLMs predictions to an-594

notate the training set: Pearson increases from 0.44595

to 0.73, MSE decreases from 0.064 to 0.015. Vary-596

ing the sample size N from 100 to all instances, the597

performances remain mostly stable despite some598

little variations indicating that a N value between599

100 and 500 seems sufficient to approach the results600

of the supervised model (all → all) which remains601

superior (Pearson=0.79, R2 = 0.62, MSE=0.0065).602

Note that applying the calibration model directly603

on the test set yields similar trends as shown in Ap-604

pendix B, confirming the validity of the approach.605

Moreover, the condensed error distribution around606

0 for the calibrated model applied directly on the607

test set shows the improved alignment with human608

annotations (cf. "stacked_calibrated" violin plot609

in Appendix A). It is also interesting to note that610

using to simple average method with no weights611

tend to be better by randomly sampling ten LLMs612

per instance than by using the all set of LLMs (Ta-613

ble 3).614

7 Conclusion 615

In this study, we explored the prediction of lexical 616

complexity by using large language models (LLMs) 617

with different prompting strategies (zero-shot, one- 618

shot, chain-of-thought). Our experiments show that 619

adding structure and explicit examples significantly 620

improves the models’ ability to approach human 621

judgments, with gpt-4o notably standing out with 622

high correlations and better alignment with the ref- 623

erence annotations. 624

The comparative analysis of predictions distribu- 625

tions and errors (MSE) highlights significant vari- 626

ability between LLM predictions and human eval- 627

uations. While some models (such as Llama3 and 628

Mistral) manage to approach human performance 629

in certain scenarios, others (such as Qwen2) exhibit 630

marked biases or excessive dispersion in their pre- 631

dictions. These findings underscore the importance 632

of precise calibration and prompt optimization to 633

fully leverage the capabilities of generative models. 634

Moreover, although training a supervised 635

model on human annotations remains the perfor- 636

mance benchmark (Pearson=0,79, R2 = 0, 62, 637

MSE=0,0065), our results show that the use of 638

a calibration model which integrates an optimized 639

weighting of the LLMs’ predictions yields signif- 640

icantly higher scores than simply averaging the 641

LLMs predictions, with Pearson coefficients reach- 642

ing up to 0,75 and R2 values of 0,57 with as few 643

as 500 examples. This improvement, consistent 644

across various subsets, confirms that calibration 645

by stacking enables a better use of the combined 646

richness of human annotations and automatic pre- 647

dictions, while drastically reducing the number of 648

human annotations required. 649

In brief, our work shows the potential of LLMs 650

and in particular that of the calibration models 651

for lexical complexity prediction. However, the 652

variability observed in certain metrics, such as the 653

MSE, and the persistent gaps with human anno- 654

tations call for continued optimization efforts, no- 655

tably by refining prompting techniques and cali- 656

bration strategies. Future research could focus on 657

improving the self calibration of generative models 658

and adapting these approaches to other languages 659

and educational contexts, in order to fully exploit 660

the synergy between human annotations and auto- 661

matic predictions. 662
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8 Limitations663

Despite the promising results presented in this664

study, several limitations must be acknowledged:665

• Choice and size of language models:666

The analysis was based on a limited set of667

models (e.g., llama3, Mistral, Gemma, Phi3,668

gpt-4o, Falcon3, and Qwen2), whose sizes669

and architectures were chosen based on practi-670

cal criteria (notably the use of 4-bit quantized671

versions). Although this selection represents a672

certain segment of current LLMs, it limits the673

generalizability of the results. Future investi-674

gations could incorporate a greater variety of675

models and examine the impact of model size676

and parameter settings on predicting lexical677

complexity.678

• Focus on English and the Complex 2.0679

dataset:680

This study is limited to the analysis of English681

texts, relying exclusively on the Complex 2.0682

dataset, which was chosen for the richness of683

its annotations. However, lexical complexity684

is a phenomenon that can vary significantly685

across languages due to structural and lexical686

differences. Extending the analysis to other687

languages, accompanied by language-specific688

prompts and guidelines, would help capture689

intercultural dynamics more accurately and690

broaden the scope of the conclusions.691

• Simulation of MTurk annotations:692

The dataset used is based on annotations693

from 523 participants via Amazon Mechan-694

ical Turk. Accurately reproducing this level695

of heterogeneity is challenging, as simulating696

the equivalent of 523 annotators using LLMs697

is difficult. In this study, we limited our anal-698

ysis to a subset of 5 annotators who annotated699

the highest number of common instances. In-700

creasing this number in future research would701

allow for a better estimation of the variability702

and robustness of human judgments.703

• Calibration method:704

Although the calibration method has shown705

its effectiveness in aligning LLM predictions706

with human annotations, it is only a start-707

ing point. A more comprehensive bench-708

mark incorporating various calibration meth-709

ods would be beneficial in identifying the op-710

timal strategy and further improving the align-711

ment between automatic predictions and hu- 712

man judgments. 713

These limitations pave the way for interesting fu- 714

ture work, including extending the analysis to other 715

languages, exploring a greater diversity of models 716

and calibration methods, and incorporating a larger 717

number of annotators to enhance the robustness 718

and generalizability of the results. 719
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A Distributions of prediction errors of the884

LLMs885

Figure 4 provides a complementary view showing886

the distributions of the residuals, i.e. the LLM887

errors (ygold - yllm).888

B Performances of calibrated LLMs889

Table 4 shows the performances of the system com-890

bining LLMs using the calibration model on the891

test set.892

Sample size (N) Pearson r2 MSE
100 0.77 0.44 0.0169
500 0.81 0.60 0.0119

1,000 0.81 0.61 0.0118
2,000 0.82 0.64 0.0108
5,000 0.82 0.67 0.0098

All (7,662) 0.83 0.68 0.0095
No weights (avg) 0.44 -2.9 0.0635
model (all → all) 0.79 0.62 0.0065

Table 4: Performance metrics by sample size, applying
the calibration model directly to the test set.
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Figure 4: Distribution of errors for each LLM according to gold scores
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