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Abstract

Multi-label active learning is a crucial yet challenging area in contemporary ma-
chine learning, often complicated by a large and sparse label space. This challenge
is further exacerbated in active learning scenarios where labeling resources are con-
strained. Drawing inspiration from existing mixture of Bernoulli models, which ef-
ficiently compress the label space into a more manageable weight coefficient space
by learning correlated Bernoulli components, we propose a novel model called
Evidential Mixture Machines (EMM). Our model leverages mixture components
derived from unsupervised learning in the label space and improves prediction ac-
curacy by predicting weight coefficients following the evidential learning paradigm.
These coefficients are aggregated as proxy pseudo counts to enhance component
offset predictions. The evidential learning approach provides an uncertainty-aware
connection between input features and the predicted coefficients and components.
Additionally, our method combines evidential uncertainty with predicted label
embedding covariances for active sample selection, creating a richer, multi-source
uncertainty metric beyond traditional uncertainty scores. Experiments on synthetic
datasets show the effectiveness of evidential uncertainty prediction and EMM’s
capability to capture label correlations through predicted components. Further
testing on real-world datasets demonstrates improved performance compared to
existing multi-label active learning methods.

1 Introduction
Active learning (AL) is a paradigm where we have access to abundant unlabeled data instances with a
limited labeling budget [35] [15]. Most AL methods focus on the selection strategy that helps the
machine learner achieve better performances with an informed selection of labeled data instances.
However, while AL for standard classification tasks has been studied extensively, an important task
that is multi-label classification has been largely overlooked. In real-world problems, each data
instance may be associated with more than one labels [11, 39, 27]. For machine learning models, the
difference between the multi-class problem where only one ground truth label is associated with a
data instance and the multi-label classification (MLC) problem is fundamental. Classic solutions
either transforming the MLC problem into multiple binary problems or directly build a joint learning
problem for all labels. With the binary approach, we lose the common underlying correlations
between input features and labels. The number of classifiers may be large due to the large label space,
thus the separated training process can be costly. Also, many labels are relatively rare and may depend
on other labels, and we can not learn such dependencies when we isolate these labels. With the joint
learning approach, the biggest challenge is to combine common labels with rare labels in a balanced
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way. For the rare labels, there might be few positive data instances. A typical model is likely to
optimize the feature embedding according to popular labels or adopt the so-called “shortcut” learning,
making a direct connection from the input features to the rare labels more difficult. Although we now
have access to common and rare labels at the same time, it might not suffice to promote the learning
of their correlations if we directly model the labels from the input features. These unique challenges
of the MLC problem become more pronounced in AL settings, where the rare labels become even
more scarce. They also increase the difficulty of obtaining high-quality uncertainty estimation, which
is often crucial in many AL selection strategies as it allows us to know when the model “does not
know” in order to make an educated decision on which data instances to label.

To address these challenges, we draw inspiration from the mixture of Bernoulli model, which can
model a large label space with a small number of mixture components. There are existing methods
that try to capture the label correlation using such a model [17, 30]. However, to connect with the
input features, they either resort to a purely conditional case, namely conditional Bernoulli mixtures
(CBM) [17] or use a conjugate classification head, which is a Gaussian Process model (GP-B2M) [30].
For the former, a distinct set of label clusters is predicted for each data instance, meaning that the
label correlations are completely separated from the learning tasks. This shortcoming makes the CBM
model unsuitable for AL. The latter relies on the Gaussian Process (GP) which outputs the weights
of the mixture components. For the intended task, a complete GP is too expensive [20, 16], while a
sparse GP has limited predictive ability. Unlike the CBM model, GP-B2M creates a set of global
label clusters. However, the label prediction for rare labels remains challenging because they can
only ever be as good as the best label cluster available. Furthermore, the uncertainty quantification
is superficial because it only captures the approximate covariance of the label prediction and the
variance of the GP predictions. This point estimate does not fully capture the unknown and is not
sufficiently effective in AL.

In this work, we propose to combine the mixture of Bernoulli with a deep evidential model [28], both
incorporating deep learning and enabling more fine-grained uncertainty analysis. The deep learning
model needs only a forward pass during prediction time, which is much more efficient than estimating
the predictive distribution in a random process model. The uncertainty analysis can now include
each evidential prediction. This flexibility is crucial in improving the informativeness evaluation
of multi-label data samples as mentioned above. Structurally, the proposed model is composed of
a shared encoder that provides embeddings and two decoders that predict the weight coefficients
and the proxy pseudo counts correction for the Posterior Beta which models the global label cluster,
respectively, as shown in Figure 1. The weight coefficient predictor is trained as a deep evidential
regression model, which makes uncertainty-aware predictions of optimal assignments to the mixture
of label clusters for each data instance. By using a deep evidential model as the classification head, we
achieve the aforementioned improvement of efficiency during inference time. By sharing the encoder,
we maintain a close connection beginning from the input features, through the weight coefficients,
and to the label clusters. Compared to the CBM model, the proposed Evidential Mixture Machines
(EMM) maintains a global label cluster. Compared to the GP-B2M model, the EMM model allows
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adjustment to the label clusters based on each data instance. Additionally, the uncertainty information
can be captured by both the fine-grained uncertainty decomposition from the evidential posterior
parameters and the predicted variability in final labels. The evidential uncertainty decomposition is
implemented through a conjugate interpretation of the Normal Inverse Gamma parameters, which
gives these parameters a more impactful pseudo count meaning. The label variability is assessed
using the covariance approximation in predictions and the discrepancy between the global label
cluster and the proxy pseudo counts. Apart from the novel sampling strategy, the model is trained
using alternating loops of the evidential training step and a joint label-based training step, which
strengthens the ability to accommodate individual samples.

With both the demonstration on synthetic datasets and the AL evaluation on real-world datasets, we
show the effectiveness of the EMM model. Our main contribution is threefold:

• integration of evidential learning with multi-label classification through EMM,
• principled uncertainty quantification for active sampling using EMM,
• intensive evaluation showing performance gain by EMM for large label spaces, especially on

sparse and rare labels.

2 Related Works

Multi-label classification. In the realm of multi-label classification (MLC) [41] [27], Binary
Relevance Models (BRMs) have gained widespread use, leading to the development of various active
learning (AL) models based on BRMs. Notable examples include employing the estimated reduction
of a BRM loss function as an uncertainty criterion for data sampling, as demonstrated by [38]. A
large portion of the multi-label active learning work do not require annotators to label all possible
labels for a given data instance [25, 37, 7]. The main consideration behind these approaches is the
significant reduction in annotator labeling costs. However, this strategy inevitably breaks the inherent
connections between labels, making it impossible to comprehensively measure the informativeness
of a data instance using label correlations. Additionally, models designed to handle partially labeled
data are required, limiting the applicability of such methods. Therefore, in this paper, we will not
compare our approach to these methods. Other approaches integrate the properties of the support
vectors of individual support vector machines (SVM) within BRMs, using label correlation more as
a means to simplify the querying process than to enhance active sampling [29, 32, 8, 9, 10]. While
these methods incorporate label correlation to some extent, such as through label inconsistency [18],
label ranking [26], or learning reularization[40], they do not systematically capture label correlations,
potentially leading to imprecise uncertainty measures in ML-AL contexts.

Label correlations and multi-label AL. Some existing models attempt to explicitly capture label
correlations or use latent embeddings to facilitate active multi-label sampling. For instance, the CBM
model uses the approximate entropy of predicted labels for data sampling [5], but its dependency
on an external multi-class classifier for predicting component coefficients complicates AL due to
the challenges in model selection and parameter tuning. Furthermore, CBM, designed primarily for
MLC rather than AL, predicts distinct label clusters for each data sample without discovering global
label clusters, thus limiting its effectiveness in multi-label AL [17]. Other approaches like correlation-
aware method for transfer learning [7] struggle with large and sparse label spaces due to their reliance
on kernel functions for measuring label similarity. Compressed sensing (CS) techniques [34, 31]
innovative in learning latent embeddings to capture label correlations but assume labels are drawn
from a Gaussian distribution and are not efficient in AL, especially in early stages with limited training
data. In [30], a Bayesian mixture of Bernoulli model is proposed. A set of global label clusters are
captured in a Bayesian manner. However, the inference process of the model is complicated and the
fixed label clusters limit the predictive ability in the final label space.

Evidential learning. Evidential models have been developed to enable fine-grained uncertainty
quantification in deep learning (DL) models [28] [1]. These models introduce a higher order conjugate
prior distribution over the likelihood distribution, and train the DL model to output the parameters
of the higher order distribution [4] [3]. The higher order distribution enables the model to express
the fine-grained uncertainty information. Evidential models have been successfully extended to
classification [12, 19], regression [1, 21], action recognition [2], OOD detection [13], and meta-
learning problems [22]. We extend the evidential deep learning framework to our setting that leads to
novel fine-grained uncertainty guided active-learning for multi-label classification.
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3 Methodology
Problem setting. In our multi-label active learning problem, the essential task is to predict a multi-
variate 0-1 label vector y = (y1, ..., yL)

⊤ ∈ {0, 1}L from the input features x ∈ RM . For AL, we
start with a small initial labeled set SL, and a large unlabeled pool SU (NL = |SL| ≪ NU = |SU |).
The AL strategy A(x) : RM → R is a function that grades the instance x∗ ∈ SU according to its
informativeness. The top graded samples will be labeled as a batch bt and added to SL. The building
blocks of our proposed method include the Mixture of Bernoulli label clusters and the coefficient
predictor which connects the input features to the label clusters.

3.1 Preliminaries
Mixture of Bernoulli. The set of label clusters contains K mixture components. Each mixture
component is a L-variate Bernoulli distribution zk =

∏L
l=1 Bernoulli(yl;µkl) that captures a local

‘stereotype’ of the complete label distribution, where Bernoulli(yl;µkl) = µyl

kl(1 − µkl)
(1−yl) and

L is the total number of labels. The Bernoulli parameter µkl has conjugate prior Beta(µkl; akl, bkl).
Initially, the mixture of Bernoulli can be found through label-only learning. Using an EM algorithm,
we can learn the initial components µ(0)

K×L from the labeled samples SL. These components can model
the set of labels p(y|µ) =

∑K
k=1 πk

∏L
l=1 Bernoulli(yl;µkl), where πk ∈ (0, 1] is the normalized

weight coefficient of the component k. However, since this is a label-only process, we are missing
the connection to the input features x.

Connecting to input features. For a conditional model such as CBM, the connection is through
πk = p(zk|x) and µ = µ(x). The model is still trained in an EM manner so that the predictions
ŷ can be made for each x. For a conjugate model such as GP-B2M, the connection is through
πk = p(zk|GPk(x)), and the variational training process of the conjugate model impacting the
posterior µ. As mentioned before, one issue with CBM is the disconnected prediction models of π
and µ, while the inference process of GP-B2M is too expensive. In our proposed model, we also
predict both π̂ and µ̂ from x using two decoder networks gπ(·) and gµ(·). However, we maintain
the connection by using a shared encoder network e(x), as shown in the structure in Figure 1.
Specifically, gπ(e(x)) is an evidential model that predicts the distribution of π using the output
evidence parameters, which function in the following way.

Evidential weight coefficient predictor. We model the connection from input features to la-
bel clusters with fine-grained uncertainty information using the evidential regression model. The
target for regression is to learn a combination of πk values that best reconstruct the final la-
bel predictions. To this end, we place a higher-order Normal Inverse Gamma (NIG) prior
NIG(τ, σ2|p) = N (τ |γ, σ2

ν )Γ−1(σ2|α, β) over the regression model’s Gaussian output N (π|τ, σ).
The evidential model is trained to output the NIG parameters p = (γ, ν, α, β) similar to [1]. In
this evidential model, the Gaussian likelihood interacts with the NIG prior, leading to a Student-t
predictive distribution:

p(π|x,p) =
∫
τ

∫
σ2

p(π|x, τ, σ2)NIG(τ, σ2|p)dτdσ2 = St
(
π; γ,

β(1 + v)

vα
, 2α

)
(1)

Here, the evidential model predicts coefficients for input x as: π̂ = Ep(π|x,p)[π] = γ.

The NIG parameters γ, ν, α, β are outputs from the predictor branch gπ(e(x)). The evidential model,
through its higher order NIG prior, can quantify the aleatoric (ALE) and epistemic (EP) uncertainty
[1] as ALE = E[σ2] = β

α−1 ,EP = Var[τ ] = β
ν(α−1) . In this evidential framework, due to the

conjugacy of the NIG prior with the Gaussian likelihood, the posterior is also the NIG distribution.
Moreover, in this model, after interacting with N i.i.d. data points (π1, ...,πN ), the posterior NIG
parameters update as the observations increase [23]. Through the pseudo-count interpretation, the
total evidence is quantified as E = v + 1

2α+ 1
β .

We train the model to maximize The likelihood under the predictive Student-t distribution, which
gives the NLL loss:

LNLL = − log(p(πk|x,p)

=
1

2
log
(π
ν

)
− α log Ω +

(
α+

1

2

)
log
(
(πk − γ)2ν +Ω

)
+ log

(
Γ(α)

Γ(α+ 1
2 )

)
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where Ω = 2β(1 + ν). Additionally, we want the model’s confidence/evidence for the prediction
to be low when the prediction is incorrect by introducing a evidence-based regularization LREG =
(πk − γ)2 · E . The regularization penalizes the highly confident wrong predictions, and ensures
model’s confidence is rightly placed. The overall loss is

LEVID = LNLL + λregLREG (2)
where λ controls the impact of the regularization.

3.2 Bringing Evidential Learning into Multi-Label Active Learning
The integration of an evidential model in our multi-label classification approach presents several
distinct advantages, particularly in addressing the inherent complexities of active learning (AL)
environments. Firstly, evidential models provide a more nuanced and sophisticated mechanism
for uncertainty quantification. This is crucial in AL settings, especially when dealing with sparse
and rare labels, where traditional models often struggle. By effectively capturing and quantifying
uncertainty, our approach leads to more informed and strategic decisions selecting data instances
for labeling, optimizing the use of limited labeling resources. Furthermore, the evidential model
facilitates a deeper understanding of the underlying label correlations, enabling the model to make
more accurate predictions across a broad spectrum of labels, including the rare ones. This leads to
a significant improvement in the overall classification performance, especially in scenarios where
conventional methods might overlook subtle but crucial label dependencies. Additionally, the
evidential approach inherently enhances the interpretability of the model’s predictions, offering
insights into the confidence and reliability of these predictions. This aspect is particularly valuable in
knowledge-rich domains where understanding the model’s decision-making process is as important as
the predictions accuracy. Thus, incorporating an evidential model into our multi-label classification
framework marks a substantial advancement, offering a robust, efficient, and insightful solution to
the challenges posed by large and complex label spaces in active learning scenarios.

3.3 Evidential Mixture Machines
Building upon the tools above, we propose a novel EMM model. Compared to existing methods, our
novel contribution to model learning lies in how we connect label clusters to input features and how
we learns the final labels in a joint manner. The integration enables evidential uncertainty analysis
through both weight coefficient predictions and final label predictions. The evidential learning of π
is already explained above. Here, we introduce the joint learning using actual labels y.

Joint multi-label training with label clusters. Once we have the coefficient predictor branch, we
can train the full model to make the final label predictions. We first freeze e(·) and gπk

(·) to train
gµ(·). Instead of directly letting the network predict µ from gµ(·), we make gµ(·) output proxy
pseudo counts âkl and b̂kl to be combined with the initial (µ(0)

K×L; a
(0)
kl , b

(0)
kl ). This ensures that we

maintain the correlations encoded in µ
(0)
K×L. The network outputs of dimension 2 ·N ·K ·L are split

into â and b̂ and added to a(0) and b(0) in a weighted fashion: akl(x) = a
(0)
kl + wµâkl(x), bkl(x) =

b
(0)
kl + wµb̂kl(x). The new Bernoulli parameter for each instance is then computed by µkl(x) =
akl(x)/(akl(x) + bkl(x)). The label prediction is ŷl(x) =

∑
k πk(x)µkl(x). The model is trained

using a soft margin multi-label loss:

LSoftMargin = − 1

L

L∑
l=1

yl log

(
1

1 + exp (− ŷl)

)
+ (1− yl) log

(
exp (− ŷl)

1 + exp (− ŷl)

)
(3)

We then adopt the evidential pseudo-count style update of the label clusters, we would have a
(1)
kl =

a
(0)
kl +

∑K
k=1 π̂k(xn)ynl and b

(1)
kl = b

(0)
kl +

∑K
k=1 π̂k(xn)(1−ynl). However, this update only makes

the correction based on the predicted weightsµ̂k. If we keep updating in this way, the biases build
up and the popular labels will be dominant in future components. Thus, we also include a weighted
update based on the predicted proxy pseudo-counts, similar to when we make label predictions:
akl(x) = a

(0)
kl + wupâkl(x), bkl(x) = b

(0)
kl + wupb̂kl(x). This step ensures that our model mutually

benefits from the coefficient predictor and the proxy pseudo-count predictor. The initial components
are learned unsupervised and do not make up for the training of the predictors. By introducing the
joint update, we connect the two predictors more closely.

The joint training step of EMM addresses an important problem with the mixture model formulation,
where the model prediction is restricted by the mixture components µ. Because the weight coefficients
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0 ≤ πk ≤ 1, the label prediction for yl can only be as great as maxk µkl. If we only make updates to
the mixture components using a

(1)
kl = a

(0)
kl +

∑K
k=1 π̂k(xn)ynl and b

(1)
kl = b

(0)
kl +

∑K
k=1 π̂k(xn)(1−

ynl), the rare labels will still suffer from the label imbalance which will be reflected in maxk µkl =
maxk

akl

akl+bkl
. By incorporating the joint training, we make the prediction based on akl(x) =

a
(0)
kl +wµâkl(x), bkl(x) = b

(0)
kl +wµb̂kl(x), allowing the model to better fit the labels using instance-

wise predictions âkl(x), b̂kl(x). The soft margin multi-label loss effectively brings the benefits of
binary relevance machines into model training because it promotes positive predictions through the
multi-label one-versus-rest formulation.

Complete EMM learning process. Having established the weight coefficient training step and
the joint multi-label training step, we integrate them in a complete learning process. To start with,
we have the EM-learned initial clusters µ(0)

K×L and the optimal Π(0) which reconstructs the labels

when combined with µ
(0)
K×L. In one learning round, the model first goes through a pre-training stage

of gπ(e(x)) to fit the set of Π(0) optimized for the initial µ(0)
K×L. Then, we move on to the joint

training stage where we alternate between training the coefficient predictor and jointly training the
full model to fit the labels y. Each coefficient predictor training step is the same as the pre-training
stage, while the joint training step is described above. The model will continually improve the quality
of label clusters to maximize the ability to recreate the labels in the joint training step, each time
followed by the evidential learning of optimal π to keep up with the new label clusters. The complete
training process is presented in Figure 1. At this stage, we have combined the advantages of Bayesian
mixture models, deep evidential models, and a bi-level multi-label problem formulation to obtain a
powerful multi-label classification model. Next, we introduce how the evidential flavor can provide
fine-grained uncertainty information and benefit active learning.

3.4 Active Learning Strategy
In order to select the most informative samples given the small initial budget, we adopt an uncertainty-
oriented selection strategy. From the proposed EMM model, we can obtain uncertainty information
from three sources: weight coefficient branch, proxy pseudo count predictor, and the final label
predictions. The first part of the uncertainty information is from the evidential model that predicts the
weight coefficients. The evidential model naturally decomposes into the aleatoric uncertainty E[σ2

πk
]

and the epistemic uncertainty EP. For AL purposes, we should target the samples that give us the
most epistemic uncertainty, which can potentially improve the model’s knowledge of the unknown.
From the weight coefficient perspective, this criterion searches for the least confident samples based
on our current model. Selecting these samples will help us quickly gain knowledge of the connection
between input features and the weight coefficients, which is the determining factor for predictive
performance. Thus, the first part of the selection function is

Aπk
(x) =

βk(x)

νk(x)(αk(x)− 1)
(4)

The second part of the uncertainty information comes from the proxy pseudo counts. We can
compare the current components and the updated components when the proxy pseudo counts for
x are added, and select the samples that would introduce more difference to the current model:
Aµ(x) = −CosineSimilarity(µ,µ′(x)) = µ·µ′(x)

∥µ∥·∥µ′(x)∥ . Because the label clusters play the most
important role in recreating the label space, we should try to capture as much latent label correlation
as possible. This requires sufficient exploration in the label space. Selection criterion Aµ(x) does
exactly this by searching for data samples that are potentially the most different from the currently
captured label space. The last part of the uncertainty information is computed over the final label
prediction. Since the full model is a mixture of Bernoulli, we can compute the expected covariance
of the predicted label distribution. Here, we adopt the point estimate as in existing methods:

cov[ŷ|x] =
∑
k

πk

(
diag(µ(1− µ)) + µkµ

⊤
k )− p(ŷ|x

)
p(ŷ|x)⊤ (5)

Note that ideally we would like to use the conditional entropy H[y|x] to measure the uncertainty
raised due to observing input x. However, the entropy of a mixture random variable is hard (or
intractable) to compute because of the sum in the expression. But under mild conditions, we can
show that y, as an average of the combination of weights and components, converge to a normal
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distribution so that the cov(y|x), which is easy to compute, can be used to quantify the uncertainties
in the mixture random variables.

Let ϕ1, ..ϕK be the i.i.d samples that encapsulates the coefficient-component pairs where ϕi =(
πiµ1i

...
πiµLi

)
with mean m =

(
m1

...
ml

)
=

(E[πiµ1i]
...

E[πiµLi]

)
and covariance Σ. Let y|x =

(
y1
...
yL

)
where yL =∑K

k=1 πkµkl. Then, according to the Multivariate Central Limit Theorem, we have y ∼ N( m
K , Σ

K ).
So we can leverage the dominant term in the entropy of multivariant Gaussian, ln(|cov(y|x)|) as a
surrogate measurement of H[y|x], since the number of components is relatively large.

The selection score is Aŷ(x) = log |cov[ŷ|x]|. This criterion captures the expected information gain
evaluated on the final label predictions when including the unlabeled samples. It aggregates the
predictions from the weight coefficient predictor and the proxy pseudo-count predictor, and shapes the
fine-grained uncertainty in a global view. By focusing on epistemic uncertainty from the evidential
model for weight coefficients, differences in label clusters indicated by proxy pseudo counts, and the
covariance in label predictions, we devise a comprehensive multi-source uncertainty-based selection
score (MSU) A(x) = Aπk

(x) + λAµ(x) + ηAŷ(x). Compared to a single uncertainty score, the
integration of these uncertainty measures facilitates a targeted exploration of the data space and
enables the identification of the most informative samples within a constrained budget.

4 Experiments
We conduct experiments on both synthetic and real data to demonstrate the effectiveness of EMM. We
use the synthetic data experiment to show how label clusters of the mixture model can capture various
label compositions and correlations. We then verify the AUC performance of EMM on real-world
multi-label datasets, along with rare label analysis and ablation studies.

4.1 Synthetic Data Experiments

...

... ...

Feature
Space

Geo-based Labels
...

Non-geo-based Labels

...

5%

30%

Rare Label

Labels 
of 

Interest=

30%

Figure 2: Visualization of label composition in the synthetic
dataset. For visualization we show the geometric clusters in
2D, while they are high dimensional Gaussians in practice.

To demonstrate the effectiveness of
the EMM model and the MSU sam-
pling strategy, we design a synthetic
dataset that can verify each of the
proposed functionalities. The syn-
thetic dataset contains mostly geo-
metric feature related labels, along
with a few carefully designed labels.
The input features of the data points
consist of 16 clusters distributed as
m-dimensional Gaussian’s. In other
words, each point is sampled from
one Gaussian cluster. The clusters
have different means and universal
variances such that they have slight
overlaps. The geometric feature related labels indicate which Gaussian the point is sampled from. We
denote all the geometric-related labels as Lgeo’s (all 16 of them) for simplicity. While Lgeo’s mainly
indicate the location of the data samples in feature space and do not carry correlations in themselves,
we construct the labels of interest using certain groups of them to ensure complex label correlations
that are also feature-rooted. These labels of interest include a rare label L1, which has a frequency
as low as 5% of a regular label; a couple of highly-correlated labels L2 and L3 which share similar
features; and L4, which only depends on L2 and L3 and is dependent on other labels instead of input
features. Specifically, L1 is assigned to data samples randomly with a low probability of 5%. L2
and L3 are randomly sampled from the same quarter of the feature space. Then, L4 is generated
following the rule L4= L2 ∪ ¬L3. Besides these labels, we also append a set of non-geometry
information-based labels Lnon−geo, which prevent the problem from being purely geometry-based.
The label composition is shown in Figure 2.

Capturing label correlations. In one example of our experiments, we train the EMM with 6 label
clusters. Among these clusters, one has a particularly high weight µ{1,L2} for L2. Simultaneously,
the weight µ{1,L3} for L3 is low while the weight µ{1,L4} for L4 is high. Such behavior will ensure
that the co-appearing L2 and L4 are captured during the prediction process. In the 6-cluster setting,
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Table 1: The relationship between average uncertainty scores, label cardinality, and rare labels

|y|<3 |y| ≥ 3 yL1 = 1 yL1 = 0

Average Aπk
(x) 46.5 36.1 52.9 31.9

Average Aŷ(x) 0.079 0.070 0.138 0.069

only µ{1,.} and µ{3,.} have higher weights for L2, and in both clusters µ{.,L4} is similarly high as
µ{.,L2}. Meanwhile, in µ{6,.} we have a high weight µ{3,L3} for L3, in which case µ{3,L4} for L4 is
low (« 0.01). Furthermore, in cluster 4 µ{4,.}, both µ{4,L2} and µ{4,L3} have slightly higher values
but µ{4,L4} is low (« 0.01) so L4 does not falsely appear.

k=1

k=4

k=5

k=6

L2 L3 L4

(a) Clusters with L2, L3, L4

fixed

updated

irrelevant

L1 Correction

(b) Clusters with L1

Figure 3: (a) A visualization of the labels clusters concerning
L2, L3, and L4; (b) A visualization of the labels clusters
concerning L1 with and without updating with proxy pseudo-
counts. “fixed” is the original unsupervisedly trained µ1,L1,
“updated” is an updated µ1,L1(x1) where π1(x1) = 0.83
meaning µ1,. is dominant, and “irrelevant” is an updated
µ1,L1(x2) where π1(x2) = 0.18 meaning this cluster µ1,.
does not contribute much to the prediction of x2.

We further test various numbers of
components and quantify the label cor-
relations described in those label clus-
ters. The results show that the average
CosineSimilarity(µ{.,L2}, µ{.,L4}) is
0.91 meaning that the positive corre-
lation between L2 and L4 is always
captured. Meanwhile, the average
sim(µ{.,L3}, µ{.,L4}) is as low as 0.12
showing the lack of correlation be-
tween L3 and L4. More specifically,
when neither µ{.,L2} or µ{.,L3} is in-
significant, R(µ{.,L2}, µ{.,L4}) drops
to 0.31, indicating that the fine rela-
tionship of “if and only if” is well-
captured by the mixture model.

Prediction enhancement by proxy pseudo-count combination. Although the mixture model is
great at capturing the label correlations with label clusters, it is not always good at predicting rare
labels. For example, in the 6-cluster setting, the largest weight for L1 is µ{2,L1} = 0.016 because of
the extremely imbalanced label distribution. In this case, even if the model predicts solely µ{2,.} for
a sample x (π2 = 1, πk = 0, k ̸= 2), the prediction of L1 is 0.016. This small value creates difficulty
in converting the predicted score to a positive label prediction.

Rare label and correlation discovery by uncertainty quantification. As for actively selecting data
samples, we study the correlations between Aπk

(x), Aŷ(x), and the true labels of x. We show a set
of statistics in Table 1 to analyze these behaviors. For Aπk

(x), we compare the sampling score with
the estimated unknown information of the corresponding pool samples. The unknown information
is evaluated from both the feature and label perspective, using the feature similarity and the label
cardinality. The correlation between the feature similarity and the uncertainty score is -0.73, and the
correlation between the label similarity and the uncertainty score is -0.41. From the label similarity
we can also conclude the negative correlation between the similarity and uncertainty. For Aŷ(x), we
specifically focus on the rare labels. On average, the samples containing less than 3 labels have an
uncertainty score 28.8% higher than the other samples and the samples containing rare labels have an
uncertainty score 65.8% higher than the regular samples.

4.2 Real Data Experiments
Datasets and experiment settings. We conduct AL experiments on representative real-world
datasets including Delicious, Bibtex, Corel5k, Enron, and NUS-WIDE, covering multiple application
domains [33, 6]. The number of labels ranges from 53 to 156, most of which are relatively rare in
the entire dataset. We summarize the datasets and data preprocessing in Appendix D.

Performance comparison. We compare the AL performance with competitive AL baselines:

• GP-B2M uses a Bayesian mixture model and conducts active sampling using the combined
predicted variance of multi-output GP and the label clusters [30].

• MMC is model-adaptive (implemented with label ranking model) and involves a predictive process
for the number of labels. It samples instances based on the expected loss [38].

• Adaptive Adaptive uses SVM margin and label cardinality inconsistency for data sampling. [18].
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Figure 4: Performances on real-world datasets (AU-ROC increases as we sample 5 rounds with 100
samples in each round)
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Figure 5: Average precision improvement (API) for rare labels
• CVIRS combines the margin based margin ranking and label inconsistency for data sampling [26].

For AL comparison, we use the area under the ROC curve as the main criterion. We start with 2%
initially labeled samples for datasets Delicious, Bibtex, Corel5K, and 0.03% for NUS-WIDE. The
initial labeled set contains a minimum of one positive instance per label to ensure that binary solutions
can be trained. For EMM and methods that can perform batch active learning, we sample 5 rounds
with 100 samples selected in each round. For single-batch baseline methods, we sample 500 rounds
to obtain the same number of labels in the end. The base performance of classification models varies
as some baseline methods use binary-SVMs (Adaptive, CVIRS), some use strategy-specific models
such as the label-ranking model (MMC) and the GP-B2M model.

We also include a configuration EMM-entropy that uses the proposed EMM model and a simple
entropy-based selection strategy as an additional baseline, showcasing the performance gain from
the proposed sampling (MSU selection) on its own. From Figure 4, we can see that the EMM
model makes better predictions using the same amount of initial labels compared to the SVM model,
which explains the advantage at the starting point. Although the label ranking model or the GP-B2M
model may also have good performance at the starting point, they are restricted by specific sampling
methods. To separately verify the advantage brought by the uncertainty quantification, we show that
our MSU selection always has an advantage in selecting better AL samples compared to a simple
uncertainty-based selection (EMM-Entropy).

For a more fine-grained analysis of the model performance, we also compute the average precision
improvement [30]. This shows how the rare-label predictions have improved using the EMM model
compared to a fully Bayesian mixture model where the label clusters are completely global.

APIl(%) =
APl(EMM)− APl(GP-B2M)

APl(GP-B2M)
× 100% (6)

In Figure 5, we show the API metric for the 50 rarest labels on each dataset. The improved API on a
label is shown by a blue bar above the API = 0 axis, while the worse API performances are shown
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Figure 6: Ablation study on model components
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Figure 7: Ablation study on balancing parameters

by the orange bars. The x axis shows the number of times each label has appeared in the testing set.
We can see that EMM has a significant advantage on rarer labels.

Ablation study. We conduct an ablation study on model components (weight coefficient and proxy
pseudo-count predictors) and the AL sampling method (balancing parameters λ and η). Since the
proposed EMM model combines the evidential weight coefficient learning and the proxy pseudo-
counts learning, we compare the complete model with two weakened configurations:

• EMM−rr reduces the weight coefficient leaner to a simple ridge regression model, and only
combines the prediction with fixed Bernoulli mixtures as the label clusters.

• EMM−fixed uses the evidential learning of weight coefficients with only the fixed Bernoulli
mixtures as the label clusters.

From Figure 6, we can see that the evidential regression model predicts the weight coefficients better
than a simple regression model such as Ridge Regression, which shows the effectiveness of the first
branch of EMM (e() and gπ()). We can also see that without the proxy pseudo-count updates, the
performance is not as good, which shows the effectiveness of the second branch of EMM (gµ()) and
the joint training of the entire model.

From Figure 4, we can already see that the proposed evidential uncertainty-based sampling outper-
forms a simple metric such as Entropy. From Figure 7, we can see that our MSU sampling strategy
effectively benefited from the multi-source uncertainty information compared to the single-source
uncertainty (λ = η = 0). However, the epistemic uncertainty from the evidential model is still the
most important source of uncertainty as the sampling performance decreases when we increase the
balancing parameters for Aµ(x) and Aŷ(x) too much.

5 Conclusion
In this work, we introduced a novel Evidential Mixture Machines (EMM) model, which integrates
deep evidential learning with a multi-label classification framework of AL. This approach effectively
tackle a large and sparse label space, particularly addressing the challenges posed by sparse and rare
labels. Our model’s sophisticated uncertainty quantification and improved prediction accuracy set it
apart from traditional Binary Relevance Models and other existing methodologies. The effectiveness
of the EMM model is demonstrated through rigorous evaluations on both synthetic and real-world
datasets, showcasing its superiority in diverse labeling scenarios. This advancement not only con-
tributes to the development of more efficient MLC methods but also paves the way for future research
in this domain. The potential for scaling this approach to larger datasets and adapting it to various
domains offers exciting opportunities for further exploration and refinement.
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Appendix
Organization. In this appendix, we provide additional details of the work, including a summary of
notations in Appendix A, a detailed evidential model interpretation in Appendix B, detailed algorithm
blocks C, and the experiment details with additional results in Appendix D.

A Summary of Notations

Table 2: Summary of key notations with definitions

Notation Definition

y = (y1, ..., yL)
⊤ Multi-label vector

x Data feature vector
zk =

∏L
l=1 Bernoulli(yl, µkl) L-variate Bernoulli random variable.

µkl Beta random variable
(akl, bkl) Parameters of the Beta distribution.
πk Gaussian random variable (component coefficient).
p = (γ, ν, α, β) Parameters of inverse normal gamma distribution.

N (τ |γ, σ2

v
)

Gaussian distribution in the evidential NIG prior with mean γ

and variance of σ2

v

Γ−1(σ2|α, β) Inverse Gamma distribution in the evidential NIG prior with
shape parameter α and scale parameter of β

St(π; ·, ·, ·) Student t distribution
Evidence(E) The integrated model evidence
A(x) Active sampling score function

B Detailed Evidential Model Interpretation

In this section, we introduce the details of the evidential regression model that predicts π. Specifically,
the Student-t predictive distribution is obtained through:

p(π|x,p) =
∫
τ

∫
σ2

p(π|x, τ, σ2)NIG(τ, σ2|p)dτdσ2

=
Γ(α+ 1

2 )

Γ(α)

√
v

2πβ(1 + v)

(
1 +

v(π − γ)2

2β(1 + v)

)−(α+ 1
2 )

=St
(
π; γ,

β(1 + v)

vα
, 2α

)
(7)

Among the posterior NIG parameters, γ is the expected mean of the predictive distribution:

π̂ = Ep(π|x,p)[π] =

∫
πp(π|x,p)dπ = γ (8)

According to [22], the other three evidential NIG parameters ν, α, and β accumulate as the observa-
tions increase. The updates of these posterior parameters work as follows:

νN = ν +N, γN =
ν

νN
γ +

1

νN

N∑
N=1

πn, αN = α+
N

2
(9)

βN = β +
1

2

N∑
k=1

(πn −
N∑

N=1

πn

N
)2 +

Nν

2(ν +N)
(

N∑
N=1

πn

N
− γ)2 (10)

As we can see, each observation impacts the confidence of the model through these three parameters.
ν and α can be seen as the pseudo-counts and directly impact the model evidence i.e., quantify the
confidence on the prior mean and the prediction of a target data sample, respectively. Furthermore,
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a large β leads to low confidence in the model’s prediction, which implies a lack of evidence.
Additionally, each observation increases the pseudo-count of ν by 1, and α by 1

2 . Thus, we obtain
the final form of the overall evidence E = v + 1

2α+ 1
β and the evidence-based regularization term

LREG.

C Detailed Algorithms

We provide our proposed model and AL strategy as two main algorithms shown in Algorithms 1&2:
the first one describes the entire AL process, while the second one describes the detailed training
process of EMM.

Algorithm 1 Active Learning with EMM Model (Outer Loop)
Input :Total number of AL rounds: T , AL batch size |bt|

Unlabeled pool: SU , annotation method: h : x → y
Model at step t: fθt(x), consisting of e(x), gπ(x), gµ(x)
AL sampling strategy A : fθt(x)× SU → R,
Learning objective L: fθt(x)× y → R,

Output :Annotated training dataset: SL, final model fθT
Randomly select SL // Balanced Split Method for Initial Training
for t = 1 to T do

1. Train preset components Θ0 on SL // E-M: Bernoulli Mixture Training
2. Compute preset weights Π0 with Θ0 // Linear Program Optimization
3. Pre-train for weight coefficient predictions (e() and gπ()) to fit Π0 // LEVID(Π0, π̂)
4. Completely train EMM model (e() and gπ(), gµ()) to fit y // Alternating LEVID/LSoftMargin

5. Active sample bt from SU based on A // Multi-source AMSU(x)
6. Update the pool and training set SU = SU\bt, SL = SL ∪ bt // Prepare for next round

end

Algorithm 2 EMM Model Training (Inner Loop)
Input :Model: fθt(x), consisting of e(x), gπ(x), gµ(x))

Learning objective L: L : fθt(x)× y → R (Types: LEVID(Π0), LSoftMargin(y))
Output :Trained model f ′, updated label clusters Θ′

0, predictions ŷ
for i = 1 to epochspretrain do

Train e() and gπ() using LEVID(Π0)

end
for j = 1 to epochstrain do

for k = 1 to epochsl do
Freeze e() and gπ()
Train gµ() using LSoftMargin(y)
(Θ(x) is predicted from gµ() for each point, Θ′

0 = Θ0 +
∑

n wnewΘ(xn))

end
for l = 1 to epochsπ do

Train e() and gπ() using LEVID(Π0)
end

end

D Experiment Details and Additional Results

D.1 Experiment settings

Our experiments are performed on clusters with NVIDIA A6000 and NVIDIA A100 graphic cards
and Intel Xeon Gold 6150 CPU processors. The code is implemented with PyTorch [24]. The runtime
of the experiments varies depending on the size of the unlabeled pool. Compared to traditional
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models, the evidential deep learning model takes a longer time to train. However, compared to
Bayesian models or label ranking models, the inference time is significantly shorter.

For our main results, we pre-train the label clusters using an E-M algorithm and obtain initial optimal
weights for the labeled training set using linear programming optimization. The evidential model is
trained for around 5000 epochs to fit the weight coefficients π, and the joint training step is trained
iteratively for 100 epochs in each round.

D.2 Additional Baseline Comparison

Here we show additional AL comparison with two other baselines:

• AUDI uses a label ranking mechanism, where a dummy label is used to separate the positive
and negative labels. Its sampling function is based on a modified cardinality inconsistency
measure [14].

• CS uses a compressed sensing mechanism combined with GP predictions [31].
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Figure 8: Additional active learning performances comparison on smaller-sized real-world datasets
(the AUDI and CS baselines become computationally expensive on larger datasets)

From Figure 8 we can see that both baselines do not perform well at the low budget, while EMM
still outperforms them. The implementation of AUDI and CS on BibTex and NUS-WIDE are
computationally too demanding and we would expect similar behavior given the labeling budget.

Most recent multi-label works also focus on AUC optimization. So, we also add a discussion on the
macro-AUC. For example, [36] achieves the state-of-the-art macro-AUC results on bibTex, Corel
5k and Delicious. In our work, due to the poor macro-AUC performance of some baselines, we
mainly present micro-AUC results. However, here we provide the macro-AUC results using 80%
training data (except for NUS-WIDE where we use 13,000 training samples because full-training is
too expensive) compared to the methods in [36]. We can see that the macro-AUC is close on common
datasets. Additionally, the AUC optimization method is orthogonal to our evidential model. We could
incorporate AUC-based loss regularization into our joint-label training step. Due to the complexity,
we leave these studies to future work. Instead, we focus on the AL improvements in this paper.

Table 3: Performance metrics of EMM across datasets
EMM Delicious Corel 5k bibTex NUS-WIDE

micro-AUC 0.8021 0.8063 0.8669 0.8625
macro-AUC 0.7256 0.6613 0.8153 0.6396

Table 4: Repetition of EMM metrics across datasets
EMM Delicious Corel 5k bibTex NUS-WIDE

micro-AUC 0.8021 0.8063 0.8669 0.8625
macro-AUC 0.7256 0.6613 0.8153 0.6396
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Table 5: AUC-surrogate performance on selected datasets
AUC-surrogate Delicious Corel 5k bibTex

Au1 0.7633 0.6645 0.8693
Au2 0.8044 0.5703 0.9299

D.3 Additional Ablation Study

In this set of experiments, we show results using more configurations of λ and η. As explained in the
main paper, these balancing parameters work well with a moderately small value. With λ and η both
around 0.1 to 0.01, we are able to obtain stable AL results. However, if the values are set too large,
the performance may degrade.
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Figure 9: Additional ablation study on balancing parameters: different values
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Figure 10: Additional ablation study on balancing parameters: single uncertainty source

When we set λ = 0, η = 1 or λ = 1, η = 0, we get the combination of Aπk
and a single source of

label uncertainty Aµ or Aŷ. As we can see, the combination of all three works the best. In Figure
11, we show the comparison between different K values. As we can see, extremely low number of
clusters is not sufficient for achieving good model performance, while a large number is much more
costly and also suffers from overfitting. The latter problem might harm the AL sampling more as we
see the K = 10 case performs even worse than K = 3.

D.4 Additional Uncertainty Analysis

We can also evaluate the quality of uncertainty estimation using true labels of the pool samples after
AL experiments. Here, we present an example of the rare-label uncertainty being captured by both
the cluster difference prediction and the covariance of the predicted labels. From Table 6 (results
obtained on BibTex), we can see that similar to the synthetic data case, the uncertainty metric captures
the rare labels well, although the difference is smaller because there are more labels in total.

E Limitations, Future Works and Broader Impact

While EMM offers significant advancements in multi-label active learning, there are some limitations
to consider. First, the model’s complexity and computational requirements may pose challenges when
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Figure 11: Additional ablation study on number of clusters K

Table 6: The relationship between average uncertainty scores, label cardinality, and rare labels

|y|<3 |y| ≥ 3 yL1 = 1 yL1 = 0

Average Aπk
(x) 3.886 3.062 3.834 3.196

Average Aŷ(x) 0.021 0.064 0.018 0.013

applied to extremely large datasets or in real-time applications. Second, we have not integrated the
Bayesian selection for K in EMM, making the choice of K crucial. Our future works include a more
adaptive model structure that allows a dynamic K as the number of label clusters, along with a more
lightweight training and adaptation process of the model. We also look to integrate adaptive testing
and validation approaches for the AL process.

EMM has the potential to significantly impact various fields that rely on multi-label classification. In
domains such as healthcare, bioinformatics, and environmental science, where data labeling is often
expensive and time-consuming, our model can optimize the use of limited labeling resources, leading
to more efficient and accurate predictions. This can accelerate research and development in these
fields by enabling the discovery of new patterns and correlations. Moreover, the model’s sophisticated
uncertainty quantification can improve decision-making processes in critical applications, where
understanding the confidence and reliability of predictions is crucial. However, the implications of
label clusters need to be carefully considered in applications.

F Source Code

https://github.com/ritmininglab/EMM.git
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main contribution of the paper is the EMM model and the AL strategy
using EMM, which are clearly stated in both the abstract and the introduction.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Appendix E.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: For the evidential model interpretation, we provide detailed analysis in Ap-
pendix B.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The source code is provided in Appendix F. The detailed experiment settings
are provided in D.1.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The source code is provided in Appendix F. The datasets are open access. The
detailed experiment settings are provided in D.1.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The source code is provided in Appendix F. The detailed experiment settings
are provided in D.1.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We repeat all experiments 3 times with random seeds. The error bars are drawn
in main figures.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]
Justification: We have provided the detailed information about the computational resources
needed to obtain the experimental results in the paper in the D.1 section of the appendix.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research strictly follows the NeurIPS Code of Ethics. Our study does
not involve human subjects. We keep transparency and honesty and as being a small-data
learning paradigm, the model training has minimal environmental impacts. We also complies
with all relevant laws and regulations.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We address potential biases and boarder impact of the research in section E. of
the appendix.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: NA

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The programming code and data used in our study are properly credited and
their licenses are respected. Specifically, we used PyTorch for our implementations and
datasets from the UC Irvine Machine Learning Repository, both of which are properly cited
and used according to their respective licenses.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

20

https://neurips.cc/public/EthicsGuidelines

	Introduction
	Related Works
	Methodology
	Preliminaries
	Bringing Evidential Learning into Multi-Label Active Learning
	Evidential Mixture Machines
	Active Learning Strategy

	Experiments
	Synthetic Data Experiments
	Real Data Experiments

	Conclusion
	Summary of Notations
	Detailed Evidential Model Interpretation
	Detailed Algorithms
	 Experiment Details and Additional Results
	Experiment settings
	Additional Baseline Comparison
	Additional Ablation Study
	Additional Uncertainty Analysis

	Limitations, Future Works and Broader Impact
	Source Code

