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Abstract

Disparities in resource allocation, efficacy of care,
and patient outcomes along demographic lines
have been documented throughout the healthcare
system. In order to reduce such health dispari-
ties, it is crucial to quantify uncertainty and bi-
ases in the medical decision-making process. In
this work, we propose a novel setup to audit in-
equity in treatment allocation. We develop multi-
ple bounds on the treatment allocation rate, under
different strengths of assumptions, which lever-
age risk estimates via standard classification mod-
els. We demonstrate the effectiveness of our ap-
proach in assessing racial and ethnic inequity of
COVID-19 outpatient Paxlovid allocation. We
provably show that for all groups, patients who
would die without treatment receive Paxlovid at
most 53% of the time, highlighting substantial
under-allocation of resources. Furthermore, we il-
luminate discrepancies between racial subgroups,
showing that Black patients who would die with-
out treatment receive Paxlovid at most 32% and
65% lower than White and Asian patients, respec-
tively.

1. Introduction
Long-standing evidence attests to disparities in the health-
care system, along demographic lines (e.g., race and ethnic-
ity) (Nelson, 2002; Artiga et al., 2020; Buchmueller & Levy,
2020). For instance, recent studies have reported racial and
ethnic disparities for COVID-19 outpatient treatment, for
both oral antiviral drug treatment and monoclonal antibody
(mAb) treatment (Boehmer, 2022; Tarabichi et al., 2023).
In particular, treatment rates for Paxlovid (Nirmatralvir-
Ritonavir), an oral anti-viral drug important to prevent mor-
tality in high-risk individuals, are reported to be much lower
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amongst Black and Hispanic patients than White and non-
Hispanic patients (Boehmer, 2022).

To reduce such health disparities, it is essential to identify
biases in medical decision-making processes. However, this
is fundamentally a causal inference problem that requires
untestable assumptions, as we cannot simultaneously ob-
serve the impacts of treatment decisions and their counter-
factual outcomes. Furthermore, it is hard to identify how
the predictions of decision-makers are systematically biased
since the information of decision-makers is unknown to re-
searchers. For instance, clinicians have information during
treatment assignments, not observed by researchers in elec-
tronic health records, and naive comparison of ML predic-
tions to clinician decisions neglects this key source of un-
certainty.

We address uncertainty quantification for medical decision
making by developing provably valid strategies for using
machine learning models to quantify inequities or inefficien-
cies in medical resource allocation. The output is a set of
bounds on the rate at which treatment is allocated to high-
risk patients, allowing users to pinpoint interpretable sub-
groups where treatment inequity is present after controlling
for clinically meaningful covariates.

In general, producing valid bounds is difficult due to the
presence of unobserved confounders, but in this setting, we
leverage the unique set of circumstances for a newly intro-
duced therapeutic (i.e., Paxlovid). We introduce a new de-
sign, based on pre-treatment (i.e., data before Paxlovid re-
lease) and post-treatment availability data (i.e., data after
Paxlovid release) that allows principled auditing of alloca-
tive equity, where the allocation should only depend on one
potential outcome (e.g., mortality risk without treatment).
In this setting, we obtain bounds that can be estimated via
standard classification models for outcomes and treatment.

We demonstrate the efficacy of this setup, by identifying
racial and ethnic disparities in Paxlovid allocation for high
risk individuals in the COVID-19 outpatient setting. Fur-
thermore, this framework can generally be applied to set-
tings with pre-availability and post-availability data, such
as the introduction of other new therapeutics, the creation
of new services or government programs, etc.
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2. Relevant Work
Unobserved Confounding and Uncertainty Quantifica-
tion. Many approaches in statistics and machine learning
tackle the problem of handling unobserved and potentially
confounding covariates. One approach is through a marginal
structural model (Robins et al., 2000; Hernán et al., 2001;
Brumback et al., 2004; Joffe et al., 2004; Bonvini et al.,
2022), which captures the impacts of interventions on result-
ing outcomes, by estimating time-dependent weights on the
confounding variables. Another similar approach is through
propensity scores (Tan, 2006; Kallus & Zhou, 2021), which
models the likelihood of receiving a treatment given a par-
ticular set of observed features. We use similar notions from
this line of work (and particularly from Tan (2006)), to reg-
ulate the impact of unobserved covariates, which helps in
our search for tighter bounds: a key quantity in our show-
ing of inequity in treatment allocation. While less related,
Kallus & Zhou (2019) proposes minimax optimal policies
with unobserved confounders, providing bounds on their
impact through observable quantities. Finally, some work
focuses on the impacts of unobserved confounders on indi-
vidual treatment effects and proposes their own conformal
prediction intervals (Lei & Candès, 2021; Jin et al., 2023).

Studying Treatments and Decision-Making.

There has been considerable work that studies decision-
making and its relation to policies learned by machine learn-
ing models (Kleinberg et al., 2018; Mullainathan & Ober-
meyer, 2022). Rambachan (2021) provides a broad statisti-
cal testing framework that can detect systematic mistakes
in the presence of unobserved variables, empirically identi-
fying bias in pretrial release decisions of New York judges.
Machine learning models that produce risk estimates have
been used as aides in decision-making in healthcare (Caru-
ana et al., 2015) as well as other scenarios (Kehl & Kessler,
2017; Chouldechova et al., 2018; Wilder et al., 2021). In
the setting of no unobserved confounding variables, Coston
et al. (2020) proposes new metrics that are potentially more
helpful in decision-making. Our work uses machine learn-
ing models to produce estimates of mortality risk, which we
use to analyze treatment allocation to different subpopula-
tions with the same risk estimates.

3. Preliminaries
We observe a set of pre-treatment labeled data X =
{(xi, τi, gi, yi)}ni=1 and a set of post-treatment labeled data
X ′ = {(x′

i, τ
′
i , g

′
i, y

′
i}, where τ is the treatment variable, g

denotes the group attribute for that individual, and y denotes
mortality. Our goal is to assess inequity in treatment alloca-
tion, utilizing pre-treatment and post-treatment availability
data (see Section 4). To do so, we use standard classification
models (i.e., XGBoost, Logistic Regression) to produce risk

estimates of mortality. As such, we consider a binary classi-
fication setting where we want to learn a classifier f : X →
{0, 1} to predict mortality y and a classifier h : X ′ → {0, 1}
to predict treatment τ . We also use the standard notion of a
potential mortality outcome where y(1) or y(0) denotes the
outcome of a patient that did or did not receive treatment.

We make the covariate shift assumption, where the pre-
treatment distribution (ppre) and post-treatment distribution
(ppost) can have different marginal distributions over the
covariates, although the labeling functions must stay the
same. More formally, this has that

ppre(y|x) = ppost(y|x), ppre(x) ̸= ppost(x).

This assumption ensures that a model that is trained on
each distribution will still classify examples as the same on
either distribution. For example, we train a model h on ppost
(i.e., data after treatment release) that predicts treatment and
apply this model on ppre (i.e., data before treatment release).
We have that ppre(τ = 1|x) = 0. Thus, a model trained
on this data would always allocate no treatment. However,
we want our model to give the same prediction on ppre as it
would on ppost. Intuitively, we want our model to produce
the same treatment decision that a doctor would have made
if the drug was available in the pre-treatment period.

4. Analysis of Treatment Allocation Inequity
Our goal is to assess whether or not our treatment of interest
is allocated equally for patients of similar risk over different
subpopulations. In order to evaluate this, we propose the
following as a measure of allocation equity:

|P (τ = 1|y(0) = 1, g = α)−P (τ = 1|y(0) = 1, g = β)|, (1)

for different subgroups α and β. If this difference is large,
we can conclude that treatment τ is being allocated un-
equally to different groups g, given the same level of mor-
tality y(0). We note that our proposed metric assumes all
subgroups respond similarly to our treatment of interest.

We note that it is not possible to directly estimate this quan-
tity since it conditions on y(0). We can never simultane-
ously observe τ = 1 and y(0), making this a causal infer-
ence problem. Computing this directly would require an
ignorability condition, or that y ⊥ τ |x. In other words, ig-
norability assumes independence of treatment assignment
and potential outcomes, which controls for all confounding
variables. We remark that this is a much stronger assump-
tion than what is required by our pre/post-treatment setup;
these two periods are similar in that nothing has changed
in the medical context, while ignorability is implausible in
most real-world contexts.

We develop bounds under three different strengths of as-
sumptions, which each yield informative results.
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4.1. No Additional Assumptions

Without any additional assumptions on confounders or the
treatment assignment process, we observe the following
bound on these quantities of interest. We remark that, in this
setting of arbitrary unobserved confounding, we surprisingly
obtain non-vacuous, informative bounds (see Section 5.2.1).

Proposition 1.

P (τ = 1|y(0) = 1, x) ≤ P (τ = 1|x)
P (y(0) = 1|x)

P (τ = 1|y(0) = 1, x) ≥ P (τ = 1|x)− P (y(0) = 0|x)
P (y(0) = 1|x)

Proof. This holds as

P (τ = 1|x) = P (y(0) = 1|x)P (τ = 1|y(0) = 1, x)

+ P (y(0) = 0|x)P (τ = 1|y(0) = 0, x)

We can rearrange this equation, giving us that

P (τ =1|y(0) = 1, x) =

P (τ = 1|x)− P (y(0) = 0|x)P (τ = 1|y(0) = 0, x)

P (y(0) = 1|x)

Then, we observe that 0 ≤ P (τ = 1|y(0) = 0, x) ≤ 1,
which gives us that

P (τ = 1|y(0) = 1, x) ≤ P (τ = 1|x)
P (y(0) = 1|x) ,

P (τ = 1|y(0) = 1, x) ≥ P (τ = 1|x)− P (y(0) = 0|x)
P (y(0) = 1|x) .

We can estimate the quantities P (τ = 1|x) and P (y(0) =
1|x) by training classifiers on post-treatment and pre-
treatment data respectively, and then evaluate them on a
held-out set of data from the pre-treatment period. We note
that we train classifier f for mortality prediction on pre-
treatment data, because we do not want our treatment of in-
terest τ to influence y.

We note that

P (τ = 1|y(0) = 1) =
∑
x

P (τ = 1|y(0) = 1, x) · P (x|y(0) = 1)

Therefore, we average the bounds computed in Proposition
1 over only those in the held-out test set with y(0) = 1.

4.2. Bounded Confounding Assumption

In order to construct a tighter bound on the values in Equa-
tion 1, we must address the influence of unobserved vari-
ables on the task of interest. We introduce a parameter γ that
captures the extent of the impact of these unobserved con-
founders on y(0), similar to the setup from prior work (Tan,

2006). This model allows us to, under an assumption that
confounding is limited, assess whether there are verifiable
discrepancies in treatment rates across subgroups. With this
framework, we can vary γ over a range of values to deter-
mine to how much confounding our finding is robust. More
formally, we assume that ∃γ s.t.

1

γ
≤ P (y(0) = 1|τ = 0, x)

P (y(0) = 1|τ = 1, x)
≤ γ. (2)

We note that γ = ∞ is equivalent to making no assumptions,
or arbitrary confounding. In this scenario, we can recover
the result in Proposition 1. Thus, with this term γ, we
observe the following inequality:
Proposition 2.

1

γ
(

P (τ=0|x)
P (τ=1|x)

)
+ 1

≤ P (τ = 1|y(0) = 1, x) ≤ 1

1
γ

(
P (τ=0|x)
P (τ=1|x)

)
+ 1

Proof. Deferred to Appendix A.

We can again compute the quantities P (τ = 0|x) and
P (τ = 1|x) on the same held-out set of pre-treatment data
from Section 4.1, with a treatment predictor trained on post-
treatment data. We again average this quantity over patients
in the hold-out set with y(0) = 1.

We compute this bound per racial and ethnic group, with
varying parameters of γ ∈ [1, 2], which represents a range
from no unobserved confounding (γ = 1) to a moderate
degree of confounding (γ = 2). We provide a frame of
reference for values of γ in Section 5.2.3.

4.3. Bayes Optimality Assumption

In this setting, we test an assumption that doctors assign
treatments according to a Bayes optimal strategy (that at
least accesses all variables observed by us). While doctors
are domain experts, they may not always follow a Bayes
optimal policy. If doctors are indeed Bayes optimal, we
observe the following inequality:

P (τ̂ = 1|y(0) = 1, x) ≤ P (τ = 1|y(0) = 1, x),

where τ̂ is some policy that only uses observed covariates x.

Proposition 3. Let τ̂ be some treatment policy, and let u be
a set of unobserved covariates. Then,

P (τ̂ = 1|y(0) = 1, x) ≤ P (τ = 1|y(0) = 1, x, u).

The underlying intuition is that, with only the observed co-
variates, we can do no better than a Bayes optimal policy
that accesses unobserved covariates. In other words, the
doctor’s strategy is more effective than our approximation
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that uses only the observable variables. This is rather intu-
itive as an optimal strategy should more frequently assign
treatment to patients with y(0) = 1 or that would die with-
out any treatment.

We consider the following treatment policy that is a lower
bound to a Bayes optimal policy over the observed covari-
ates. Let ŷ ∈ {0, 1} denote the output of our classifier f
trained on X ∼ Dpre. Let r̂(x) denote our classifier’s pre-
dicted probabilities for y, where r̂(x) ∈ [0, 1]. We assign
τ = 1 to samples with the top PX∼Dpost(τ = 1) fraction of
risk values r̂(x), and τ = 0 otherwise. We evaluate this pol-
icy on a held-out set of pre-treatment test data (see Section
5.2.4).

5. Results for Inequity in Paxlovid Allocation
We apply our analysis framework to understand treatment
allocation inequity and efficiency of Paxlovid (nirmatrelvir-
ritonavir) in the COVID-19 outpatient setting.

5.1. Dataset and Cohort Definition

We use the NCATS NC3 cohort (Haendel et al., 2020), con-
sisting of national line-level data of 18, 438, 581 total pa-
tients, including 7, 149, 421 confirmed COVID-19 positive
patients and 198, 717 possible COVID-19 positive patients,
pooled from 76 different data sharing centers across the
United States. We focus our analysis on outpatients with
a positive SARS-CoV-2 test result, satisfying eligibility re-
quirements outlined in Appendix C. Due to underreported
figures for prescriptions at certain sites, we restrict our co-
hort to sites with at least a 10% treatment rate.

5.2. Results

5.2.1. ARBITRARY UNOBSERVED CONFOUNDING

We observe the following bounds for different racial and
ethnic groups. We remark that even without placing any
additional assumptions on confounding (γ = ∞), we obtain
non-vacuous, informative bounds:

0.039 ≤ P (τ = 1|y(0) = 1, x, ghisp) ≤ 0.429

0.089 ≤ P (τ = 1|y(0) = 1, x, gnot hisp) ≤ 0.375

0.094 ≤ P (τ = 1|y(0) = 1, x, gwhite) ≤ 0.387

0.066 ≤ P (τ = 1|y(0) = 1, x, gblack) ≤ 0.348

0.102 ≤ P (τ = 1|y(0) = 1, x, gasian) ≤ 0.535

These bounds show that for all groups, there is a significant
under-allocation of resources since patients who would die
without treatment receive Paxlovid at most 53% of the time.
To assess inequity between subgroups, we need to construct
tighter and non-overlapping bounds across subgroups. Thus,
we move our setting to assume some γ-measure of unob-
served confounding.

5.2.2. γ-MEASURE OF UNOBSERVED CONFOUNDING
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Figure 1. Upper and lower bounds for quantity of interest P (y =
1|τ = 1, x) is computed for each racial/ethnic group, with varying
values of γ ∈ [1, 2]. Post-treatment availability data (post Decem-
ber 22, 2021) is used to compute quantities. Solid lines represent
upper bounds and dashed lines represent lower bounds.

Assuming γ-measure of unobserved confounding in treat-
ment, we are able to identify non-overlapping bounds for
our quantity of interest P (τ = 1|y(0) = 1, x). We iden-
tify non-overlapping bounds between 1) Blacks and Asians
up to high values of γ ≈ 1.8; 2) Blacks and Whites (1 ≤
γ ≤ 1.37); and 3) Hispanics and non-Hispanics (1 ≤ γ ≤
1.15). We clearly identify that treatment allocation rates for
Black patients that would die without treatment are at most
32.00% (γ = 1.37) and 64.88% lower (γ = 1.8) than treat-
ment rates for White and Asian patients, respectively. Simi-
larly, we can observe that treatment rates for Hispanic pa-
tients that would die without treatment are at most 6.45%
(γ = 1.15) lower than treatment rates for non-Hispanic pa-
tients. Further, we uncover a high rate of underdiagnosis
across all populations, for all values γ ∈ [1, 2].

5.2.3. INTERPRETATION OF γ

Our results identify provable inequity under specific val-
ues of γ. Since γ is impossible to compute in practice, the
feasibility assumption is difficult to ascertain. To give a
frame of reference for the strength of our assumption, we
can compute an analogous γ′ for an observed covariate (e.g.,
diabetes), which is computable in practice. We can simi-
larly determine this value of γ′ by training a discriminative
model to compute the ratio P (y(0)=1|z=0,x)

P (y(0)=1|z=1,x) , where z is the
random variable that represents if the patient x has the co-
variate of interest. We select diabetes as our covariate of in-
terest, based on its well-documented association with high
risk of severe COVID-19 (Centers for Disease Control and
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Prevention, 2023). We again proceed by training a classi-
fier f to predict mortality and evaluate on a held-out test set
of patients with counterfactual features of having diabetes
(z = 1) and not having diabetes (z = 0). From the value of
this ratio, we can then compute a similar value of

1

γ′ ≤
P (y(0) = 1|z = 0, x)

P (y(0) = 1|z = 1, x)
≤ γ′

Taking the smallest value of γ′ that satisfies our assumptions
for the influence of diabetes, we observe such a value of
γ′ is 1.42. Therefore, our result in identifying disparities
in allocation (for example, Blacks and Asians have non-
overlapping bounds at a value of γ ≈ 1.8) is robust to
confounders that exhibit a stronger influence on COVID-
19 mortality risk than the presence of a patient’s diabetes, a
condition evidenced to be associated with high risk of severe
COVID-19 (Centers for Disease Control and Prevention,
2023).

5.2.4. BAYES’ OPTIMALITY ASSUMPTION

To test our Bayes’ optimality assumption, we empirically
compute an upper bound via Proposition 1 under no addi-
tional assumptions on confounding and reconcile it with the
proposed approximation of the Bayes optimal strategy. As
a result, we observe that

P (τ̂ = 1|y(0) = 1, x) ⩽̸
P (τ = 1|x)

P (y(0) = 1|x)

or that the lower bound produced by our Bayes optimal
strategy is greater than the valid upper bound. For example,
we observe that our lower bound on the Bayes optimal
strategy achieves an allocation rate of 78.9% for Asians,
which is a much larger allocation rate than the upper bound
in Proposition 1, which has an allocation rate of 53.5%. We
report the full results for each group in Appendix B. As a
consequence, this refutes the assumption that doctors are
Bayes optimal with respect to at least as much information
as we observe.

As such, this finding does not provide a viable lower bound,
but rather, it makes claims about the doctors’ decisions
regarding the allocation of τ .

6. Discussion
Our framework introduces a principled approach, using ma-
chine learning to audit inequity in treatment allocation. We
demonstrate our approach, which makes much weaker as-
sumptions than standard yet unrealistic ignorability condi-
tions, to provably identify inequity for different subgroups
in the allocation of a new treatment. We remark that this
setting is quite broad; it can easily be applied to different ap-
plications such as the creation of new services, government

programs, etc. Equivalently, it can be applied to policies,
benefits, or treatments that roll out in one location and not
the other.
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A. Additional Proofs
We now present the proof of Proposition 2.

Proof. Using Bayes Rule, we can rewrite the equation, giving us that

1

γ
≤ P (τ = 0|y(0) = 1, x)

P (τ = 1|y(0) = 1, x)
· P (τ = 1, x)

P (τ = 0, x)
≤ γ

We can rearrange this equation,

1

γ
· P (τ = 0, x)

P (τ = 1, x)
≤ P (τ = 0|y(0) = 1, x)

P (τ = 1|y(0) = 1, x)
≤ γ · P (τ = 0, x)

P (τ = 1, x)

Substituting P (τ = 0|y(0) = 1, x) = 1− P (τ = 1|y(0) = 1, x) gives us that

1

γ
· P (τ = 0, x)

P (τ = 1, x)
≤ 1− P (τ = 1|y(0) = 1, x)

P (τ = 1|y(0) = 1, x)
≤ γ · P (τ = 0, x)

P (τ = 1, x)

Let a = P (τ = 1|y(0) = 1, x). We can rearrange this equation,

1

γ
· P (τ = 0, x)

P (τ = 1, x)
· a ≤ (1− a) ≤ γ · P (τ = 0, x)

P (τ = 1, x)
· a

We remark that P (τ=0,x)
P (τ=1,x) =

P (τ=0|x)
P (τ=1|x) . Taking the left-hand side, we can derive the upper bound. Similarly, we can derive

the lower bound from the right-hand side.

1

γ
(

P (τ=0|x)
P (τ=1|x)

)
+ 1

≤ P (τ = 1|y(0) = 1, x) ≤ 1

1
γ

(
P (τ=0|x)
P (τ=1|x)

)
+ 1

.

B. Bayes Optimal Assumption Results
We observe the following results for the lower bound generated through the Bayes optimal assumption, compared to the
upper bound generated through Proposition 1.

P (τ̂ = 1|y(0) = 1, x, ghisp) = 0.5357 ⩽̸ 0.4285 =
P (τ = 1|x, ghisp)

P (y(0) = 1|x, ghisp)

P (τ̂ = 1|y(0) = 1, x, gnot hisp) = 0.5856 ⩽̸ 0.3751 =
P (τ = 1|x, gnot hisp)

P (y(0) = 1|x, gnot hisp)

P (τ̂ = 1|y(0) = 1, x, gwhite) = 0.6225 ⩽̸ 0.3872 =
P (τ = 1|x, gwhite)

P (y(0) = 1|x, gwhite)

P (τ̂ = 1|y(0) = 1, x, gblack) = 0.4680 ⩽̸ 0.3479 =
P (τ = 1|x, gblack)

P (y(0) = 1|x, gblack)

P (τ̂ = 1|y(0) = 1, x, gasian) = 0.7894 ⩽̸ 0.5354 =
P (τ = 1|x, gasian)

P (y(0) = 1|x, gasian)

As such, in all cases, we observe that

P (τ̂ = 1|y(0) = 1, x) ⩽̸
P (τ = 1|x)

P (y(0) = 1|x)
.

This implies that our assumption about doctors’ treatment policies is false; they do not appear to follow Bayes optimal
strategies (with respect to risk estimates from a model on observable data).
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C. Dataset and Cohort Details
C.1. Dataset Acknowledgement Statement

The analyses described in this publication were conducted with data or tools accessed through the NCATS N3C Data
Enclave https://covid.cd2h.org and N3C Attribution & Publication Policy v 1.2-2020-08-25b supported by NCATS U24
TR002306, Axle Informatics Subcontract: NCATS-P00438-B. This research was possible because of the patients whose
information is included within the data and the organizations (https://ncats.nih.gov/n3c/resources/data-contribution/data-
transfer-agreement-signatories) and scientists who have contributed to the on-going development of this community resource
[https://doi.org/10.1093/jamia/ocaa196].

C.2. Cohort Details

The patient cohort is filtered out based on the following eligibility requirements:

• Satisfy all FDA-approved Paxlovid eligibility requirements (U.S. Food and Drug Administration, Year of Access)

• Not taking any medications, where coadministration with Nirmatralvir-Ritonavir is contraindicated (Marzolini et al.,
2022; Larkin, 2022)

• First COVID-19 diagnosis visits are between 22 December 2021 (date of FDA approval for Paxlovid) and 31 May 2023

• From sites with at least a 10% treatment rate—to exclude sites where treatment is potentially underreported.
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